Green Car Journal logo

New Lab to Speed Battery Development

by Cars of Change EditorsOctober 17, 2013
Batteries remain the electric car’s most pervasive challenge. After decades of research and development plus billions of dollars of investment, an energy-dense and affordable electric car battery remains elusive. Automakers are acutely aware of this as high battery costs can mean significant losses on every unit sold. Ford is aiming to meet the challenge head-on […]

Michigan Assembly Plant Launches C-MAX Energi Plug-in HybridBatteries remain the electric car’s most pervasive challenge. After decades of research and development plus billions of dollars of investment, an energy-dense and affordable electric car battery remains elusive. Automakers are acutely aware of this as high battery costs can mean significant losses on every unit sold.

Ford is aiming to meet the challenge head-on with a new $8 million battery lab that’s now operating at the University of Michigan. The goal is to develop smaller and lighter batteries that are also less expensive to produce, resulting in more efficient and affordable battery electric vehicles with greater driving range.

The automaker’s existing battery labs focus on testing and validating production-ready batteries. This new effort will address batteries earlier in the development process, serving as a stepping-stone between the research lab and the production environment. The new lab includes a battery manufacturing facility supporting pilot projects, testing, and state-of-the-art manufacturing to make test batteries that replicates the performance of full-scale batteries.

Battery development is in its infancy and this kind of research is critical, says Ford, as is the need for new chemistries to be assessed in small-scale battery cells that can be tested in place of full-scale production batteries, without compromising test results. The automaker points out that in the span of 15 years, the industry has gone from lead-acid to nickel-metal-hydride to lithium-ion batteries, and it’s too early in the battery race to commit to one type of battery chemistry.