Green Car Journal logo
Ron Lamberty, CMO of the American Coalition for Ethanol.
Ron Lamberty, CMO of the American Coalition for Ethanol.

Just over three years ago, when California’s Governor announced an executive order allowing only zero-emissions vehicles (ZEVs) to be sold in the state, most media (and probably the governor, regulators, and supporters of the rule) understood “ZEV” to mean battery electric vehicles (BEVs) only.

Although the final rule included plug-in hybrids and hydrogen vehicles, we theorized a standard hybrid, with an internal combustion engine (ICE) powered by E85 could have emissions similar to BEVs. When total lifecycle greenhouse gas (GHG) emissions were tallied, as well as carbon intensity (CI) scoring correctly reflecting CI reductions being achieved by farmers and ethanol producers, a standard hybrid flex-fuel vehicle (FFV) can be a ZEV long before any EV.

The American Coalition for Ethanol (ACE) began testing our theory 10 months after the California executive order, using a hybrid vehicle the U.S. Department of Energy (DOE) identifies as midsized, to avoid naysayers dismissing the results as coming from a specialty vehicle or tiny clown car that would get good mileage on any fuel. We also wanted a vehicle similar in size to the best-selling BEV on the market, the Tesla Model 3 Long Range. We bought a 2019 Ford Fusion Hybrid in July 2021 for $30k to $50k less than the most popular new EVs of the day, and before converting it to the Hybrid Electric Flex-Fuel Vehicle we call “HEFF.”

We filled it with regular gasoline and drove 3,688 miles to establish a real-world regular gasoline use baseline, rather than having to compare our real-world results with fictional best case showroom sticker miles-per-gallon (mpg) and EPA’s emissions estimates based on that mileage. EPA pegged our car at 42 mpg on regular, with lifecycle GHG of 255 grams per mile (g/m). While that’s much better than the 25 mpg and 429 g/m of the non-hybrid Fusion, our pre-transition Fusion hybrid results were just over 34 mpg and around 310 g/m. We also adjusted the “regular gas” number we use for comparison using generally accepted mileage differentials for cold weather, and have periodically run tanks of regular gasoline to recalibrate for winter temps, vehicle age, and battery capacity changes during the demonstration project.

Clean-Running Hybrid Flex-Fuel Vehicle

Ford Fuxion hybrid flex-fuel vehicle.

Those results are used to estimate regular gasoline consumption and also when we record flex-fuel purchases, cost, and odometer reading with each fill. We record current regular gas price along with the baseline mileage to make a cost comparison. Although our goal is to demonstrate the low CI capability of a hybrid FFV and durability of a standard engine using flex-fuel, we track fuel expenditures because we know critics will always ask about mileage and cost.

Once we calculate real mileage and CI, we compare the results to the Tesla mentioned above, and depending on where you plug in, EPA estimates the 2019 Tesla 3 Long Range emits 80 to 200 g/m lifecycle GHGs, with a national average of 111, assuming a range of 310 miles per charge. However, unscientific anecdotal Tesla Uber driver estimates told us the actual range is from 225 to 240 miles, and Car and Driver’s more scientific 40,000-mile test confirmed the drivers’ reports, saying the 2019 Tesla 3 Long Range got 80 miles less than the expected 310 miles per charge. Changing Tesla’s range to 230 miles increases its real CO2 number to 110 to 270 g/m in different markets, and boosts the U.S. average to 150 g/m.

Test Methodology

Fueling a hybrid flex-fuel vehicle with ethanol E85.

Our baseline mpg-establishing journey ended in San Diego in August of 2021, where Pearson Fuels, the nation’s largest E85 distributor, arranged to transform the Fusion to HEFF with an eFlexFuel Plus conversion kit. The app that communicates with the flex-fuel converter provides actual ethanol content of the flex-fuel purchased, since flex-fuel can have 51 to 85 percent ethanol. Since the amount of carbon in gasoline and ethanol is different, we need the breakdown to calculate how many grams of carbon are being burned, and we divide that number by miles traveled to get our CI. We also use the ethanol and gasoline content to calculate BTU content of whatever fuel is in the tank to compare the mileage one should expect given that energy content with actual mileage to judge the effectiveness of the conversion kit.

Recording price, miles and ethanol content of every fuel purchase, and calculating E10 use and cost, after two years and three months and almost 30,000 miles on flex-fuel averaging 72 percent ethanol, produced average lifecycle GHGs of 205 g/m CO2 at 26.2 miles per gallon – not much higher than real Tesla average numbers, and lower than a Tesla 3 in many parts of the country. We calculated regular gas mpg at 32.7, which would’ve emitted 375 g/m CO2. And HEFF (Hybrid Electric Flex-Fuel) chugged 1,135 gallons of E72 versus a calculated 906 gallons regular, but the E72 cost $2,942, compared to $3,183 for gas.

Lower Emissions Than a Tesla

We have been able to calculate some other interesting numbers based on our test results so far. Had we been able to use true E85 – 83 percent ethanol – throughout the test, our emissions number would drop to 181 g/m, and further to 113 g/m if the ethanol was CARB-approved low-CI corn fiber ethanol. Blending low-CI ethanol with renewable naphtha would provide a CI of 71 g/m in our converted Ford Fusion Hybrid – lower than the same size Tesla could achieve plugged in anywhere in the U.S. All the flex-fuel blends just mentioned are real; they have been or are being sold today.

And although the flex-fuel hybrid – even a converted flex-fuel hybrid – is capable of achieving such results, a fact recognized by Toyota and Volkswagen and being put into use in the 2024 model year in Brazil, fuel regulations being adopted in the U.S. simply refuse to acknowledge that reality. Ethanol has been responsible for nearly all the air quality improvements seen in the U.S. in the past 20 years, and its ability to reduce carbon intensity is a proven fact. But people who claim to be interested in reducing carbon pollution are enacting regulations that increase the use of electricity that is still 60 percent fossil fuel generated, over plant-based fuels like ethanol, based on what they hope and believe will be done to make electricity cleaner over the next few decades. They use buzz-phrases like “extending the life of petroleum fuels” and “false climate solution” to avoid dealing with real numbers. Projections of cleaner electricity are assumed to be facts, and scientific facts of cleaner ethanol production are ignored.

The inclusion of plug-in hybrids and hydrogen vehicles in CARB’s final Advanced Clean Cars II rule provides a sliver of hope that regulators will eventually be as concerned about actually reducing CO2 emissions as they are enforcing the electric car solution they prefer and believe in. If environmentalists and regulators are truly interested in reducing carbon emissions, solutions are available today. HEFF is proof. But if you can’t trust HEFF, ask Brazil. Or Toyota. Or Volkswagen.

Ron Lamberty is the chief marketing officer of the American Coalition for Ethanol.

Stuart Weidie, CE0 of Blossman Gas, Inc.

It is surprising to many people in the United States that globally, propane autogas vehicles exceed the number of battery electric and natural gas vehicles on the road. In addition, the emergence of renewable propane is expected to dramatically increase the number of autogas vehicles operating in the U.S. – currently estimated at 150,000 vehicles – due to its low carbon intensity and cost-effectiveness. 

Propane is for much more than your outdoor grill. There are more than 4,000 uses of propane for homes, businesses, and industrial applications, including in the U.S. transportation sector. The Carbon Intensity (CI) of traditional propane is 79.6, less than gasoline, which is currently at 90. Today renewable propane produced in the United States has a CI score of 18-20. In the next five years, innovations such as GTI Energy’s new Cool LPG technology will increase the production of renewable propane globally.

In 2022, rLPG North America formed to bring an increasing amount of renewable propane to the U.S. market in partnership with BioLPG, LLC. Their goal is to utilize GTI Energy’s Cool LPG technology to effectuate the widespread potential of renewably sourced propane. Currently, most renewable propane comes from the production of sustainable aviation fuels (SAF) and renewable diesel. Renewable propane is a co-product of these fuels, which are derived from organic waste such as plant oils, beef tallow, and waste oils.

GTI Energy’s Cool LPG technology was recently recognized at the World LPG Global Science Conference as the technology with the most promise and potential to decarbonize propane and create a legitimate path to zero carbon emissions. Cool LPG technology converts biogas, or bio-syngas, into renewably sourced propane. Cool LPG will expand the number of feedstocks that can be used to produce more renewable propane, as it is agnostic to the feedstock source. This includes landfill waste, livestock and animal waste, food waste, and other sources of biogas. It is estimated that renewable propane derived from the Cool LPG process will have a CI score as low as (-)75 when produced from landfill waste and a score of (-)200 when utilizing dairy and animal waste. This means a blend of renewable propane and traditional propane could be used to provide a zero-carbon solution for small to large commercial fleets and consumers. 

Renewable Propane is Clean

Nationally, the average CI score of the electric grid is 165. The battery electric vehicle (BEV) has garnered widespread government support and publicity, but it will be decades before the electric grid can accomplish a CI score equivalent to innovative transportation fuels such as renewable natural gas (RNG) and renewable propane. Companies and consumers who want to make a positive impact today have options. RNG provides a good option for Class 8 trucks and vehicles, while renewable propane autogas is ideal for Class 2 through 7 vehicles. 

Renewable propane in tanker trucks.

Over the past 15 years, operating a vehicle on propane autogas has averaged fuel costs 35 percent less than gasoline. Small and large commercial fleets can make a positive impact on emissions while also saving money – a rare feature for companies striving to meet their decarbonization and sustainability goals without extraordinary costs. 

Promoting Energy Security

Renewable propane and traditional propane can be 100 percent produced in the U.S. In fact, more than 24 billion gallons of traditional propane are exported out of the United States. These exports could fuel more than 6 million commercial vehicles or 12 million consumer vehicles on an annual basis. Between today and 2035, it is projected that as much as 2 billion gallons of renewable propane can be produced in the U.S., enhancing the availability of a low-carbon transportation fuel that can make an immediate impact.

Why are propane autogas and RNG not more widely used as transportation fuels in the United States as they are in the rest of the world? Good question. The status quo and resistance to change are part of the reason. The other reason often cited is no longer valid – lack of viable technology. Today, there is vehicle technology to operate fleets efficiently and reliably on autogas or RNG. Companies such as Alliance AutoGas have more than 1,800 EPA-certified vehicle platforms available to businesses and consumers. Renewable propane will be compatible with current propane technology, so the question for consumers now is, why wait for renewable when we can be prepared for a clean, efficient technology right now?

Stuart Weidie is president and CEO of Blossman Gas, Inc. He also serves as president of the nationwide alternative fuels and equipment network Alliance AutoGas and is founder of the industry coalition AutoGas for America.

Nissan Ariya EV parked by water.

Nissan’s LEAF electric vehicle was groundbreaking when it was introduced in the 2011 model year and has maintained an honored spot in the Nissan lineup, but it’s on its way out. Until the time comes for a replacement, Nissan fans in search of a zero-emission option needn’t worry. There’s another choice in the new Nissan Ariya EV.

The Ariya is built on Renault-Nissan’s CMF-EV platform, also utilized by the European-market exclusive Renault Megane E-Tech Electric. It has the same exterior dimensions as the Nissan Rogue yet the same interior dimensions as the larger Murano, owing the larger space to the absence of a front trunk (“frunk”), along with a clever space-saving design.

A Pair of Powertrains

Nissan provides two powertrain choices. The standard powertrain setup is a single-motor, front-wheel-drive option producing 238 horsepower and 221 lb-ft torque. If buyers wish to upgrade, Nissan offers a 389 horsepower, 442 lb-ft torque dual-motor configuration that also boasts Nissan’s e-4ORCE all-wheel-drive system. This system is loosely related to the racetrack-dominating Nissan GT-R’s ATTESA E-TS torque split all-wheel-drive configuration. 

As for batteries, Nissan offers two of those as well. The entry-level battery is a 63 kWh liquid-cooled lithium-ion battery with an EPA-estimated range of 216 miles. The second, more powerful option is an 87 kWh lithium-ion battery which is also liquid-cooled and offers an EPA-estimated range up to 304 miles. The Ariya is capable of charging from 20 to 80 percent in about 40 minutes using a fast charger via its front fender-mounted charge port. 

Front end detail of the Nissan Ariya EV.

Nissan Arriya EV Design

Exterior and interior design were at the forefront of the Ariya’s conception. Nissan uses many traditional and modern Japanese techniques, combining them into a rather unique finished product. The front end of the Ariya exhibits what Nissan describes as chic and timeless Japanese futurism, or iki, exemplified by its Bullet Train-inspired fascia. Its slim, four-LED V-Motion headlights are underlined by thin LED running lights, darting diagonally into the translucent front grille. Underneath this see-through cover is an example of Kumiko, a traditional Japanese pattern. Large, functional air scoops sit in front of both wheels with a diffuser-inspired gloss-black central air intake situated at the bottom of the front end.

At the sides, the Ariya assumes a more sporty appearance, but still captures some of the minimalistic elegance that Nissan has tried to convey. Cleverly designed wheels take air and push it away from the body while in motion to minimize drag. A sleek, low roofline is painted gloss-black to create a floating look.

Overhead view of the Nissan Ariya EV.

Traditional Japanese Influences

At the back, Nissan angled the rear end a bit more than most SUVs to further its sporty appearance. A large roof spoiler comes down almost to the middle of the rear window. A thin LED rear light spanning the entirety of the rear hatch is present, with a design that hints at the Nissan Z. Another air diffuser-inspired design is seen at the bottom of the rear bumper. 

Inside the Ariya, Nissan has again employed traditional Japanese design. The door panels all have an embossed paper lantern-inspired pattern around the speaker-surround and armrest. HVAC vents are hidden in the dashboard, powered by haptic-touch buttons built into the dash beneath a convex 12.3-inch infotainment screen. Along with this screen is a connected 12.3-inch digital gauge cluster with easy to locate drive mode selections. Nissan has provided plenty of rear legroom and the Ariya is capable of folding the second-row seats completely flat, providing a maximum 60 cubic feet of cargo room with the second row folded. 

Nissan Ariya EV instrument panel.

High Tech Nissan Ariya EV

Arriya integrates Nissan’s newest driver assistance platform, ProPILOT Assist 2.0. Included in this iteration is a hands-on system that aids drivers with staying in their lane, changing lanes, and exiting highways. ProPILOT Assist 2.0 also allows drivers to take their hands off the wheel, as long as the drivers eyes are squarely on the road ahead. Nissan Safety Shield 360 is also present, offering High Beam Assist, Blind Spot Warning, and Pedestrian Detection, among others. 

While coming at a cost some $15,000 higher than Nissan’s longstanding LEAF, the $43,190 Ariya crossover is more spacious, quite stylish, and offers significantly longer driving range that can top 300 miles. Overall, it represents a solid choice for buyers looking to upgrade their everyday driving experience to a zero-emission crossover from one of the industry’s EV pioneers.

Driver's compartment in a Nissan Ariya EV.
John Bozzella, president and CEO, Alliance for Automotive Innovation.
John Bozzella, Alliance for Automotive Innovation.

Requiring 60+ percent of U.S. vehicles sales to be pure battery electric vehicles (BEVs) by 2030 leapfrogged the administration’s own 2021 executive order that called for 50 percent electric vehicles – including plug-in hybrid and fuel cell EVs – by 2030. More on that below.

That 2021 executive order was a stretch goal (then and now), but the auto industry backed a 40-50 percent EV sales target – presuming the requisite public policies would also be in place. 

When the companies that will build the millions of EVs required by these regulations say the pace and balance of EPA’s rules are out of whack – in fact, we told the agency those rules are “neither reasonable nor achievable in the timeframe provided" and opens the door to China – regulators and policymakers  should believe them.

It’s not too late to course correct. Here are five ways for EPA to fix the proposed rule while supporting increased automotive electrification and carbon reduction.

1.  Don’t write off plug-in hybrids and fuel cell EVs.

The current EPA rule calls for 37 percent of new light-duty cars and trucks to be BEVs by 2027 (and the aforementioned 60+ percent by 2030). Keep in mind, BEV sales were just under 6 percent in 2022.

But EPA’s proposal goes further and completely writes off plug-in hybrid electric vehicles (PHEVs). A 67 percent BEV-only approach by 2032 will unquestionably reduce consumer choice and push automakers to non-compliance with such unachievable requirements. The administration’s 50 percent executive order from 2021 included BEVs and PHEVs and fuel cell electric vehicles. Why take PHEV technology off the field?

2. Don't siphon finite resource from EVs to gas-powered vehicles.

EPA’s proposal also sets new rules for criteria pollutants from gas-powered vehicles that are already near zero emissions. A backpack leaf blower produces more ozone-forming pollution in one hour than driving an SUV for 6,000 miles. 

But automakers support criteria pollution reductions, most recently in California where we developed a path to reduce particulate matter by 67 percent between 2025 and 2028. EPA should get behind those criteria pollution standards.

That said, EPA’s rule requires automakers to eke out some incremental improvements by installing expensive new technology on all internal combustion engines – a powertrain the administration wants to discourage (and California has already banned for new vehicles sales by 2035).

The point: automakers are investing massive amounts of capital in electrification, but every dollar invested (required to be invested, that is) in internal combustion technology is a dollar not spent on zero carbon technology. And vice versa.

3. Sync up EPA’s rules with yet-to-be-released Corporate Average Fuel Economy (CAFE) standards.

A vehicle tailpipe is regulated by three federal agencies and four sets of regulations. One vehicle overseen by competing, overlapping (sometimes conflicting) rules that aren’t coordinated. It’s expensive and complex and frankly why the country and automakers need a single national standard to reduce carbon in transportation through a streamlined regulatory structure.

At the very least, if an automaker complies with EPA’s greenhouse gas emissions rules, they shouldn’t be at risk of violating the Transportation Department’s coming CAFE rules and subject to significant civil penalties (that create no environmental benefit but do levy additional costs on consumers, workers, and manufacturers).

4. While you’re at it… sync up the rules and eliminate conflict with state standards too.

Let me revise that. A vehicle tailpipe is regulated by three federal agencies and the California Air Resources Board (CARB) using seven sets of regulations. EPA should get with CARB to ensure both programs are on the same wavelength and not creating unnecessary compliance burdens (that deliver no corresponding emissions reduction benefits).

5. Keep score (and keep track) of conditions outside the vehicle.

I’m a broken record about policies and conditions outside the vehicle, necessary for a successful EV transition: residential and public charging, critical mineral availability and grid capacity. EPA should develop a roadmap and methodically track this data so the country – and all sectors of the economy responsible for the transformation – can collectively assess progress.

EPA should release a public report taking stock of the overall EV market, the mineral and processing supply chain, and state of refueling and charging infrastructure. For example: How is the transition going? Is it meeting EPA’s milestones? If not, what’s the fix?

When I raise these points with policymakers, I hear: “Well, things have changed since 2021” and the 50 percent executive order. The implication: EPA’s higher EV targets make sense because EV sales continue to grow. We’re on the right path… they say.

I don’t see it that way, and most experts who’ve been building autos or studying the industry for any length of time don’t either. EPA’s proposal is an outlier when compared to the EV adoption models of S&P, Bloomberg, and other analysts. See this chart:

National Blueprint for National Decarbonization.

EPA is asking for a huge BEV ramp up in the next few years. On a graph, their model looks like a hockey stick. The pitch of that curve is most aggressive in the next few years when market conditions (consumer acceptance, supply chains, infrastructure) are most speculative.

The administration’s 50 percent goal in 2021 was aspirational, but it was also based on clearly defined climate goals – from the United Nations and the incoming Biden administration (reflected in its 2023 National Blueprint for Transportation Decarbonization). It was built on a foundation of credible assumptions. And data.

The 60+ percent BEVs by 2030 plan, on the other hand, is a house of cards (… a house of cars?). It rolls up rosy forecasts (like EV batteries will eventually cost automakers nothing) and other hopeful assumptions.

The next couple years are make or break. The auto industry is making huge progress on electrification and continued improvements to internal combustion engine technology. Don’t toss it away now. Let’s come out of this process with a balanced, achievable and durable rule that maintains customer choice and doesn’t blunt America’s EV momentum.

John Bozzella is president and CEO of Alliance for Automotive Innovation. This editorial originally ran at

East Peterson-Trujillo of Public Citizen.
Photo by Justin Knight

Consumer demand for electric vehicles (EVs) is at an all-time high – in fact, EV sales saw a 50 percent increase in the first half of this year, compared to 10 percent growth for combustion engine vehicles. Analysts estimate the U.S. will reach one million EV sales this year, and roughly one-third of U.S. drivers say they are considering an EV for their next car purchase. The Tesla Model Y is the best-selling car in the country.

These are the facts, yet I keep hearing claims about sagging EV demand. But to claim this is just flimsy cover for automakers who want to argue that a rapid transition away from polluting gas-powered cars and trucks is too ambitious. 

Cox Automotive recently reported that EVs sit longer on dealership lots than do combustion engine vehicles. Based on that report, many media outlets concluded that EV demand is weak. Unfortunately, most analyses of Cox’s report ignore critical data and context.

For starters, Tesla, the best-selling EV manufacturer on the planet, does not use dealerships – so there is no data on the company factored into Cox’s report. Given that Tesla accounts for roughly 60 percent of all EVs sold in the U.S., to conclude that EV demand is low because EVs are sitting on dealer lots is judging demand based on only 40 percent of the market – and the weaker 40 percent at that.

For the EVs that are sold through dealers, Cox’s report looks at wait times for all EVs instead of differentiating by type – compact SUVs, hatchbacks, luxury electric trucks, etc. Internal combustion engine data is analyzed at a detailed level, instead of lumped together, so why do the opposite for EVs?

It’s 2023, and electric vehicles come in all sizes, shapes, and at wide-ranging price points. A closer look reveals that the EVs flagged for slower sales are largely big, expensive luxury SUVs or foreign-made luxury EVs. This isn’t just true for EVs: the slowest-selling gas-powered models right now are luxury cars and SUVs priced similarly to the slowest-selling EVs. 

Large/Luxury EVs Sell Slower

Vehicles ineligible for federal tax credits are seeing higher lot wait times than others. If consumer demand for EVs was the problem, all EVs would be sitting on lots, not just the expensive ones.

Smaller, more affordable EVs like the Chevy Bolt and Tesla Models 3 and Y have set records and drove EV sales to all-time highs in the second quarter of 2023. That’s not a surprise, because the gas-powered cars with the tightest inventories in the U.S. are also smaller cars and compact SUVs. 

The issue is not demand, it’s affordability, and it's affecting gas and electric cars alike. If the market for EVs appears weak overall, it’s only because automakers are making too many larger, pricier models and not enough smaller, less expensive ones.

Analysis of the car market cannot ignore the broader economy. High interest rates and a turbulent economy are changing consumer spending habits for all kinds of products, including cars. Earlier this year, analysts found new gas-powered cars are out of reach for many consumers as interest rates rise and the average price hit almost $50,000 (a 30 percent increase from three years ago). Manufacturers have reduced the number of affordable models, leading many people to put off buying a car or opt for a used vehicle. 

MINIs are affordable electric vehicles.

Big Demand for Smaller EVs

Clearly there is enormous demand for affordable EVs. Luckily,automakers have more resources than ever from the federal government to make the transition to electric vehicles and to make more affordable EVs available now. With the Inflation Reduction Act signed into law, new tax credits for EVs make some models even more affordable than comparable combustion engine cars. 

EVs are more popular than ever, and Americans want to buy them. We are moving from the early-adopter phase to the mass market, and car companies should adjust their production accordingly. Instead of producing bigger, more expensive electric trucks and SUVs, automakers must make more affordable EVs to meet booming demand. 

East Peterson-Trujillo is a clean vehicles campaigner at Public Citizen, a nonprofit consumer advocacy organization that champions the public interest,

Corvette E-Ray driving on bridge.

Chevrolet’s exciting new Corvette E-Ray marks several important milestones for the marque, most notably the Corvette’s first application of hybrid technology and its first use of all-wheel-drive. It’s also expected to be the quickest Corvette ever with projected 0-60 acceleration in just 2.5 seconds. The E-Ray will be replacing the Gran Sport trim option in the Corvette lineup, with Chevrolet offering three trim levels for the E-Ray including the entry-level 1LZ, mid-range 2LZ, and top-line 3LZ. 

The E-Ray will use Chevrolet’s 6.2-liter LT2 crossplane crankshaft V-8 producing 495 horsepower and 470 lb-ft torque. The midship LT2 is augmented by a magnesium and carbon fiber-encased 160 horsepower electric motor mounted at the front, with energy supplied by a 1.9 kWh lithium-ion battery. The E-Ray’s combined 655 horsepower and 595 lb-ft torque is channeled through a Tremec eight-speed dual clutch automatic transmission. All this provides enough muscle to earn the E-Ray a quarter-mile time of 10.5 seconds at 130 mph. 

Corvette E-Ray overhead view.

High-Tech Features Abound

Handling all this muscle is well-covered. Brembo Carbon-Ceramic brakes and Chevrolet’s Magnetic Ride Control 4.0 are standard equipment, along with staggered 20-inch front and 21-inch rear wheels employing wide, Z-rated all-season tires. Chevrolet also gives drivers plenty of options when it comes to applying the E-Ray’s lean and green power with six selectable driving modes. These include Tour, Sport, Track, Weather, My Mode, and Z-Mode. 

Plenty of sustainable and eco-friendly functions are also built in. Active Fuel Management allows the LT2 V-8 to shut down half its cylinders during times of low power demand to conserve fuel. Drivers can select a Charge+ mode to maximize battery life when high performance is not needed. An E-Ray-specific Stealth Mode is also standard that enables driving silently on battery power up to 45 mph for limited distances, a welcome function for drivers and neighbors alike.

Cockpit of Corvette E-Ray.

Corvette E-Ray Styling

A Corvette is meant to look lean as well as quick, and the E-Ray is no exception. The E-Ray’s front end retains the C8 Corvette look, with a couple of unique styling cues. A body-colored grille surround is present around the wide-mouthed opening, along with a pair of large and functional air induction ports sitting beneath chiseled, aggressive headlights. The classic Fleur-De-Lis emblem, synonymous with the Corvette name since its introduction in 1953, is seen center stage. 

At both sides of the E-Ray are a pair of imposing side scoops that guide air over the rear wheels to enhance better grip. These side scoops are outlined with a three-pronged, gloss black design that’s yet another styling cue unique to the E-Ray. Aggressive haunches sit atop both the front and rear wheels, a look that is ironically Corvette. 

Corvette E-Ray rear detail.

A Driver-Centric Cockpit

Looking rearward, those wide haunches slope back into the E-Rays slightly pointed rear end and impart a familiar and decidedly athletic look. A pair of functional air exit ports sitting above a quad-tailpipe exhaust system are surrounded by a large, race-inspired rear air diffuser finished in gloss black. Looking down through the rear window allows viewing the LT2 V-8 on full display.

Inside is an interior designed to completely immerse occupants in the driving experience. A squared, Formula 1-inspired carbon fiber steering wheel sits in front of  the driver with an 8-inch infotainment screen angled directly towards the driver’s position. A 12-inch digital gauge cluster in front of the wheel displays the usual functions along with battery life and torque readings unique to the E-Ray. A large pillar angling downward from the dash features climate and seat warmer controls, among others. Twin stitching and tone-on-tone colors are used throughout the passenger space, along with carbon fiber-accented seatbacks. Chevrolet made sure to include a front trunk, or frunk, seen on regular C8 models as research indicated it was an important feature for prospective E-Ray buyers. 

Corvette E-Ray Breaks New Ground

The E-Ray contains plenty of brains to go along with all its brawn. Chevrolet’s Infotainment 3 Plus system is present, offering Bluetooth audio streaming and wireless CarPlay and Android Auto capability.

Chevrolet’s Corvette E-Ray is a very big deal for the performance automotive world. It is the first hybrid V-8 sports car made domestically for the consumer market, as well as the quickest Corvette ever produced. All eyes will be on the E-Ray, and time will tell if it can live up to the hype. Pricing starts at $104,295 for the 1LZ coupe version, with deliveries of the E-Ray expected to begin in late 2023.

EV total energy meter.

Range estimates are important for electric vehicle drivers, especially when traveling long distances along routes with sparse fast charge infrastructure. Even though EVs do provide range information, drivers do not have much useful real-time information on how environmental conditions of the drive,  or elevation changes of the route, are affecting the vehicle's energy use.

For example, short term miles per kilowatt-hour (miles/kWh) or watt-hour per mile (Wh/mile) information is strongly affected by the slope of the road and recent speed changes. However, this is very difficult to use for range estimation, especially on an unfamiliar route, and does not provide much useful feedback to the driver so they can adapt to current conditions. 

The fundamental concept of the Total Energy Meter system here is that there are actually three important energy storage mechanisms, which may be intuitively thought of as ‘batteries.’ The first is the potential energy a battery stores from elevation changes. Second is the kinetic energy a battery stores from the vehicle’s speed and mass. Third is the chemical battery that stores the electrical energy.

Total energy meter measures three forms of energy.

The Total Energy in these three batteries accurately represents the energy available to the vehicle. Altitude and speed changes merely transfer energy between the three batteries, so the Total Energy consumption represents energy actually being dissipated to the environment by aerodynamic drag, friction, electrical losses, and climate control.

With real-time Total Energy Wh/mile information, a driver can easily adjust their vehicle’s speed and climate settings to stay within an energy budget and achieve a desired range, even in difficult environmental conditions such as hilly terrain, high winds, rain or snow, and extreme temperatures.

How the Total Energy Meter Works

It may be useful to consider the following energy equivalents for a ‘typical’ 2000kg, 260Wh/mi (@65mph) EV: The EV traveling at 65mph has 234Wh of kinetic energy, which represents 0.9 miles of range; On a road with 3.0% down slope the EV will coast at 65mph with no power; The potential energy of a 1000m elevation change is 5.45kWh, which represents 21 miles of range.

In order to provide accurate range prediction in varying driving conditions, it important to determine the energy that is truly being lost to the environment in the form of friction, aerodynamic drag, electrical losses, and auxiliary loads, and not to contaminate this with energy that is merely being transferred between the vehicle’s ‘batteries.’

Total energy meter for electric vehicles.

Vehicle instrumentation that calculates the true energy use (Wh/mi) using the total of the 3 ‘batteries’ can be used to extrapolate accurate range estimations from the most recent few miles of driving. It can also provide the driver with meaningful real-time feedback on their driving choices (such as speed,  climate control, cargo racks, and tire pressure) that can be easily interpreted to ensure that a desired range is attained. 

An EV with total energy metering will indicate an energy use (Wh/mi, to be preferred over the mi/kWh shown by some) that remains relatively constant whether the vehicle is on a level road, climbing a grade, or descending. The Wh/mi number will accurately reflect the effect of driving speed, headwinds, temperature, rain, and A/C load on the vehicle’s actual power dissipation even over hilly terrain. As the effects of speed changes (kinetic energy) are properly accounted for, the short term energy use, averaged over only a fraction of a mile, is quite a smooth function during city driving.

When offered more usable energy feedback, there is the potential that a driver may learn to optimize their driving efficiency and enjoy enhanced vehicle utility with reduced energy consumption, battery degradation, and range anxiety.

The Elevation Measurement Problem

Most EVs already have GPS, and this provides altitude information. The short term error of the GPS altitude can be several meters, especially in urban or mountain environments. For 4 percent accuracy of the total energy Wh/mi over a specific distance, for example quarter mile, the altitude must have less than 0.5m error. Another measurement method is required for short term accuracy.

A practical solution has been to use a sensitive longitudinal accelerometer to measure the slope that the vehicle is driving on. For the same accuracy as above, the slope needs a precision of 0.12 percent, or a few mm over the wheelbase. As the sensor must be mounted to the chassis (not the road surface!), the variations of the suspension loads and tire deflections introduce errors greater than desired.

The complete solution has been to use the GPS altitude data (which has excellent long term precision), averaged over several miles, to adjust the accelerometer null used in the total energy calculation. It is interesting to note that the time integral of  (accel * mass * speed) is the sum of the potential and kinetic energies, exactly what is needed for the total energy meter system.

There is another detail that needs to be considered when deciding where to mount the accelerometer in the chassis. The location should minimize the cross coupling between the lateral g generated in turns to the desired measurement of longitudinal acceleration. Fortunately most EV s only steer the front wheels, so a location above the rear axle ensures that the lateral g forces are orthogonal to the longitudinal axis of the vehicle. Lower in the chassis is also preferable, as pitch oscillations have less effect.

System Integration

The EV total energy meter is not just a theoretical discussion. A prototype was developed during the last year and has been implemented in a Hyundai Kona EV. The system has been tested in a wide variety of driving conditions.

The prototype uses a Windows tablet PC with a Bluetooth link to the vehicle’s OBDII port to get battery state of charge (SOC), volts, amps, and motor rpm. This is combined with accelerometer data and GPS altitude to calculate and display energy use information. As the software in the tablet is not linked to the NAV system, the user manually enters the destination altitude for the range calculation.

For an OEM implementation, the only additional hardware requirement over what is currently in most EV s is the accelerometer, which can use a $2 sensor chip and needs to be connected to the vehicle CAN bus. The vehicle dashboard computer could handle the data processing and display.

User Interface

The prototype system display is for engineering test and evaluation, but much of the basic functionality could be applied to a consumer oriented implementation. This view of the touchscreen shows the range display tab.

The calculated remaining range can either be based on the “E.use” Wh/mi evaluated over the last x miles (“eval dist” user select), or on a target Wh/mile number entered by the user. The target Wh/mi mode has proven valuable when it is important to ensure a desired range is attained; as long as measured energy use is kept below the target, the range requirement will be met. 

Note how the blue Wh/mi trace is not affected by altitude changes (red), but does reflect the effect of different driving speeds (white), from 65 mph freeway driving to 35 mph on a twisty mountain road. Both the trip average of 170Wh/mi “trip E” and the 157Wh/mi “E use” were well below the target 210Wh/mi “set targ” at this point in the drive, so the remaining range number would be indicating an increasing margin to the destination.  The range calculation is based on the 280m “dest alt” that is set manually. During the drive, shown cruise control was used extensively to maximize efficiency and to generate smoother data records.

An Open Source Invitation

This presentation of the EV Total Energy Meter is an invitation for this concept to be used by OEMs and anyone else as an open source technology to enhance EV products and promote more efficient transportation. The same concept could also be applied to fueled vehicles, substituting gal/mi or $/mi for Wh/mi.

Kia EV9 on a mountain road.

First teased back in 2021 with a bold, forward-looking design that’s still signature Kia, the automaker’s electric EV9 emerged in recent months to great expectations. Not the least of these expectations is from Kia itself, which aims for the Kia EV9 to take the family SUV market by storm, much like its spiritual Telluride sibling did when it was released four years ago.

Kia’s signature EV model line was launched in 2021 with the EV6, an all-electric compact crossover. The EV9 is the automaker’s second volley in the EV wars, sharing Kia’s E-GMP platform also used by the EV6, Hyundai Ioniq 5 and 6, and the Genesis GV60. Kia hasn’t released much info regarding trim levels, but we do know the EV9 will be offered in Kia’s GT trim sporting unique 21-inch wheels, roof rack, and dark chrome exterior accents. Entry pricing is speculated to begin around $55,000.

Three row seating in Kia EV9.

Three Rows, Two Powertrains

As of now, Kia has announced two powertrain choices for the upcoming EV9. First will be a base RWD option sporting 215 horsepower and 258 lb-ft torque utilizing a 77.6 kWh battery. The second is an AWD variant capable of producing 379 horsepower and 516 lb-ft torque with a long range 99.8 kWh battery. Kia is targeting 300 miles with its long range battery setup, while estimates for the base 77.6 kWh battery variant are currently unknown. Kia boasts a towing capacity of up to 5000 pounds, matching the Telluride. Charging the battery from 10 to 80 percent is handled in just 25 minutes thanks to Kia’s fourth-generation battery technology and use of an 800-volt fast charger.

The Kia EV9 has a surprisingly well-blended combination of varying styles, most prominent being its sci-fi essence. At the front, Kia’s ‘Tiger Face’ front fascia design metric is ruggedly futuristic with a large, black grille that emphasizes an appealing design flow, accentuated by slim, vertically oriented headlights that angle diagonally toward the grille. A high, sloping hood reminds us we are in the presence of a large and capable SUV. Hidden windshield wipers mean the continuity of the hood is uninterrupted, adding a subtle sleekness to this SUV.

Kia EV9 distinctive wheels.

Kia EV9 Has Futuristic Styling

Along the sides, the EV9’s most striking feature is its wheels. Kia’s use of simple geometric shapes as a base for the wheel design underscores how futuristic the model is meant to be perceived. That, along with its chunky, trapezoidal wheel arches, sharp fender lines, and smoothly uninterrupted body lines, provide an appealing amalgamation of styles. Around back, we see a very minimalist hatch with a subtle spoiler extending out from the roofline. The taillights were designed along the lines of Kia’s ‘Star-map Signature Lighting’ system, with the intent to emphasize the flow of body lines as they wrap into the rear of the EV9. Another styling benefit of this lighting system is its ability to frame the rear window, which represents yet another futuristic design cue.

Inside is a different story. Here’s Kia’s intent is to offer a cabin designed to be as comfortable and calming as possible without the complexity and futurism of its exterior. Most functions are controlled through the infotainment screen, which extends into the driver’s sightline to also act as a digital gauge cluster. Beneath the screen, Kia added dash-integrated haptic buttons that control key functions of the infotainment system. Buttons and switches are kept to a minimum to reinforce the model’s calm and comfortable interior theme.

Calming cabin of the Kia EV9.

A Calming Cabin in the Kia EV9

The EV9 makes good use of negative space, with decorative cloth inserts placed in the doors and the passenger side dash fascia. A floating center console stretches into the second row and features a reasonable amount of storage space. Optional 8-way reclining seats are offered for the first and second rows featuring heating and cooling capabilities. The EV9 follows Kia’s 10 essential materials interior production method using synthetic leather and recycled material throughout the cabin. Using a flat floor, cargo room is ample within the EV9, with 20 cubic feet of cargo room when all three rows are in use, as well as nearly 82 cubic feet with the second and third rows folded down.

The EV9 features a lot of tech with 20 collision avoidance and active driver technologies, three of which are all-new for Kia. These include standard Highway Driving Assist 2 that combines adaptive cruise control, stop-and-go assist, and lane-centering assistance. Standard Lane Following Assist helps the driver stay centered in their lane by delivering slight steering inputs, and optional Advanced Highway Driving Assist uses LiDAR technology to scan the road for potential hazards. Also standard is Remote Parking Assist 2, allowing drivers to remotely park their vehicles using Kia’s smartphone app, Kia Connect. The EV9 also employs over-the-air software updates.

Kia EV9 has spacious cargo area with the seats folded down.

With the speedy advance of electric vehicles, it’s no surprise that legacy automakers are starting to make strides in tech and production, and the Kia EV9 is poised to make a big impact. The EV9 is pointed squarely at Kia’s plans for the future of the brand and should begin arriving at dealers by the end of 2023.

Marquest McCammon, president of EV manufacturer Karma Automotive.

Approximately 6 percent of the vehicles sold in the U.S. today are electric. That’s only 825,000 EVs. When you consider that 40 percent of those sales are in California, that leaves less than 500,000 divided among 49 states.

The good news – for the environment and EV sales – is that most prognostications point toward 40 – 50 percent of all vehicles on America’s roads by 2030 will be electric.So, what’s an EV manufacturer to do? The simple answer is that there’s a rainbow of solutions.

Some traditional manufacturers are still making profits from predictable internal combustion vehicles. They’re selling the ICE experience that wraps around their cars and trucks. For example, there’s the hot version from Dodge and the off-road variants from Ford. They are wisely finding low-cost methods to stretch the lives of their portfolio products while simultaneously stepping into the EV marketplace.

A Flexible Approach

Quite a few pundits have disparaged Toyota for being slow to develop a pure EV portfolio. Their scientists, however, claim there is no single silver bullet. To support a move to lower carbon consumption, the worldwide leader in auto sales is remaining flexible. Their reasoning is that drivers across the country will not have access to a widespread full electric infrastructure for quite a few years. So, hybrid range, extended electric, cleaner gasoline, hydrogen fuel cells and, of course, full electric are going to play prominent roles for at least the next 20 to 30 years.

Tesla originally shook the industry when the investment community heaped kudos and cash on Elon Musk for being a futurist and an outsized disruptor. Now, nearly every manufacturer is sprinting into electrification, but, as usual, it will not be a one-size-fits-all formula. Manufacturers will still have to balance their portfolios to ensure profits and perform tried-and-true marketing methods.

There will assuredly be quite a few auto companies that fall away in the process. And some that aren’t making headlines today will be front page news tomorrow. Bottom line: we still have at least another decade or so of industry disruption ahead of us.

Inspiring Transformation

Karma Automotive EV platform.

Playing it safe creates mediocrity and oftentimes failure. At Karma, research, data, a brilliant design team, and common sense are guiding our efforts toward fulfilling a unique market niche. Our American luxury brand will be a variant of: Distinctive. Aspirational. Exotic-Elegant-Electric. Or maybe something entirely different, but still addressing a clean mobility future. (We’ll be revealing our actual updated branding and marketing beginning in the latter stages of 2023.)

Whatever we decide, we expect to build a competitive advantage by being a mirror of our customers in an industry that will soon be bursting at the seams. We truly aspire to drive change beyond the norm, building vehicles that inspire positive transformation in the world.

Select a strategic direction, extol the differentiators, and state the story. An entire organization – inside and out – should enthusiastically speak with one voice, unapologetically dispensing core messaging over and over again.

U.S. businesses lose nearly $40 billion annually due to poor customer service. The EV world – where there are often unique customer demands – is not an exception to this rule. In fact, as the segment expands, superior service is actually becoming a differentiator. While we’ve all been rightfully focused on sales, many of the shiny new vehicles have become a bit road-worn and require regular maintenance and occasional repairs.

This is where a breakdown occurs. A quality customer experience should be mandatory. Developing well-schooled EV service techs is an astute investment that is too often overlooked.

The Next Chapter

The transition into EVs and, more broadly, the next chapter of automotive will be defined by the experiences that automakers create for customers. As media and digital interactions move deeper into the fabric of society, the ability and desire to create an unbroken connection between the life of the consumer and the products they consume will be an increasingly prevalent focus.

It will not be the buying, the service, or even the driving that build sales. Instead, it will be how the vehicle can be inserted into the continuum of a consumer’s life to complement their sense of self and future aspirations.

In April, Marques McCammon was named president of Irvine, Calif.-based ultra-luxury carmaker Karma Automotive. His 30-year auto industry career across four continents includes engineering, manufacturing, brand leadership, marketing, and software-based product advancement.

Patrick Lindemann, President of e-mobility at Schaeffler.
Patrick Lindemann, President of Transmission Systems & E-Mobility at Schaeffler.

The concept of mobility is rapidly changing, with sustainable energy, carbon footprint reduction, and  electrification driving the evolution. As a leading global mobility supplier whose enduring success is built upon unsurpassed quality, outstanding technology, and partnership, Schaeffler is dedicated to energizing the next generation with sustainable mobility solutions that satisfy customer demands.

The successful transformation of Schaeffler’s automotive business is evident from the fact that it secured $5 billion euros in order intake for e-mobility in 2022. Driving this success are Schaeffler’s products, technology, and people.

Schaeffler has worked to transform in products in three key areas: a mix of ICE, hybrid, and BEV powertrains to meet current and future customer needs; intelligent, safe and reliable chassis systems; and new mobility solutions geared towards a driverless future. Dedicated to a systems approach, Schaeffler innovations span from electronic propulsion systems to steer-by-wire systems to innovative bearing advancements.

The consumption and emissions targets of the future can be met through electrification of the powertrain. Schaeffler offers a full range of electrification options from 48-volt hybrids and plug-in hybrids to technologies for all-electric vehicles and alternative drives, such as key components for fuel cells. The company’s systems expertise makes it the ideal partner for customers evolving into the electrified future. Schaeffler predicts the global percentage of new electrified cars in the year 2030 will be 80 percent (40 percent all-electric and 40 percent hybrids).

The idea of a steer-by-wire system initially seems almost foolhardy, as the system eliminates the steering column and the mechanical connection between the steering wheel and the steering gear. But on further investigation, this type of system has a wide range of benefits, including advanced driver safety. Schaeffler leveraged its experience in mechatronic systems to develop its intelligent Rear Wheel Steering System and took its first step towards becoming a steering system supplier. This intelligent technology turns the rear wheels in the opposite direction to the front wheels, significantly reducing the turning radius and optimizes maneuverability in tight spaces. At higher speeds, it further improves handling by allowing the rear axle to turn in the same direction as the front axle, enhancing handling, stability, ride comfort, and improving vehicle safety.

schaeffler fuel cell power for sustainable mobility.

Innovative bearing solutions play a key role in sustainable mobility by making powertrain and chassis systems more efficient. Schaeffler has developed an alternative to tapered roller wheel bearings – called the TriFinity wheel bearing. The TriFinity wheel bearing can reduce friction by 50 percent and increases stiffness by 33 percent compared to a tapered roller wheel bearing while maintaining the same package envelope. This innovative ball bearing design provides an alternative to tapered roller wheel bearings that didn’t exist prior to TriFinity.

Technology Transformation

Schaeffler has been leading the successful transformation in mobility and in the areas of digitalization and sustainability. The company has made significant investments in its U.S.-based operations to support growth in this sector. To that end, Schaeffler’s facility in Wooster, Ohio, represents its E-Mobility Center of Competence in the Americas, leading the region’s development of the next generation of powertrain solutions.

This facility, which recently celebrated its 45th anniversary, has transformed from a team of six employees assembling manual clutches into approximately 1,700 highly skilled employees pioneering motion for products like the e-axle, which is responsible for moving the entire electric vehicle, gearboxes, hybrid systems, batteries, and more. The Wooster facility is supported by Schaeffler’s Troy, Michigan competence center for chassis mechatronics and ultra-low friction bearings like TriFinity. The Troy center leverages decades of expertise in engine and chassis developments, now focusing on the next generation of technologies for these components and systems.

Schaeffler Ohio plant focuses on sustainable mobility.

People Transformation

Schaeffler's nationally recognized apprenticeship program also helps the global supplier attract and cultivate top talent that it needs to drive its E-Mobility transformation. Schaeffler offers apprenticeship programs throughout the country, partnering with technical schools to offer a range of trades. The 3.5-year program consists of both classroom and on-the-job training with a high retention rate after graduation.

In addition to apprenticeship programs, Schaeffler has partnered with 30 universities in the Americas to grow its internship and co-op programs. The company recently also developed a unique collaborative partnership with The Ohio State University (OSU), launching its first North American Schaeffler Hub for Advanced Research (SHARE) program. Located on the OSU campus in Columbus, the collaborative program is dedicated to advancing energy storage technology by working with students and professors on solid state battery and fuel cell technology. Schaeffler has several successful SHARE programs in Europe and Asia, each with a distinct focus.

Schaeffler electronics.

Additionally, the Schaeffler Academy has developed a variety of Fit4 qualification programs to support the required re- and upskilling of employees. The programs consist of modular training options with defined learning paths that consider the target groups’ different backgrounds and areas of experience. The ‘Fit4Mechatronics’ program currently offers more than 100 training courses providing research and development engineers with knowledge about mechatronics and electronics.

With a dedicated focus on the transformation of its products, technology, and people, Schaeffler is embracing disruptive change as it continues its mission of energizing the next generation of future mobility.

Patrick Lindemann is President of Transmission Systems & E-Mobility at Schaeffler.

Side view of electric BMW i5 Series sedan.

The BMW 5 Series has proved to be a huge success for the Bavarian automaker since its introduction in 1972. The all-new eighth generation 5 series carries on this tradition with its many innovations and improvements, and a few welcome surprises. Offering five trim levels including the base 530i, mid-range 530i xDrive, and the 540i xDrive, those surprises come in the form of two electric models in the series– the i5 eDrive40 and the range-topping i5 M60 xDrive. 

Gas-powered models receive a pair of updated engines. The 530i and 530i xDrive are powered by a 2.0-liter TwinPower four-cylinder producing 255 horsepower and 295 lb-ft torque. The 540i xDrive receives a refreshed 3.0-liter inline-six cylinder fitted with the same TwinPower turbo and a 48-volt mild hybrid system, which delivers a combined 375 horsepower and 398 lb-ft torque.

BMW 5 Series Power

The hallmark of this new generation 5 Series is the inclusion of all-electric models with strong power and efficiency numbers. The i5 eDrive40 features 335 horsepower and 317 lb-ft torque at the ready with an electric motor driving the rear wheels. The sport-focused i5 M60 xDrive ups those numbers considerably, with its maximum power output of 590 horsepower and 605 lb-ft torque delivering a 0-60 mph sprint in a reported 3.7 seconds. Two electric motors power the all-wheel drive i5 M60 xDrive, one at the rear and another at the front.

Both electric models use an 84.3 kWh battery that provides a range of 295 miles for the i5 eDrive40, and 256 miles for the i5 M60 xDrive. The battery includes BMW’s Combined Charging Unit, allowing Level 2 AC charging up to 11 kW and the ability to charge from 10 to 80 percent in about 30 minutes. BMW’s selectable MAX RANGE system enables drivers to further increase their i5’s range in low-battery situations. 

Rear view of electric BMW i5 Series sedan.

Signature BMW Design

The exterior of the new eighth generation 5 Series takes BMW’s sporty past and infuses it with the automaker’s current design form. BMW’s omnipresent, signature kidney grille makes its expected appearance and takes center stage on the 5 Series’ front end. A long, sloping with muscular lines ties into a steeply angled windshield to create a sleek and uninterrupted line continuing through the roofline. The flanks of the i5 see a much more refined and minimalist approach with inset door handles and a subtle body crease near the rocker panels. 

At the rear, BMW has redesigned the model’s taillights with a more understated look, presenting a thin appearance with two slim red LED bars running across the taillight.` Turn signals and reverse lights are nestled in between. A downward-sloping trunk decreasing the gradient from the rear window and roofline makes the i5 appear very streamlined. 

A Premier Interior

Inside the i5 is a new experience as well. Chiseled lines and premier surfaces, expected of BMW, are abundant. Hidden HVAC vents are placed strategically throughout the interior with leather-free seating surfaces available. The most noticeable new feature is q 14.9-inch infotainment screen and 12.3-inch digital gauge cluster. Both screens meet to create an uninterrupted and impressive digital display. An in-car gaming console, which BMW dubs the AirConsole, makes its appearance in the i5, allowing users to choose from 20 games to play while the car is stationary. A new BMW Operating System 8.5 controls all functions within the i5 and accommodates over-the-air updates. 

The BMW 5 Series has always been a strong model. Positioned in the midst of BMW’s sedan lineup, the 5 Series has historically delivered the sportiness of the 3 Series with a dash of refinement and the calm nature of the 7 Series. This new generation is no different. Deliveries of the new 5 Series are set to begin in fall 2023 at an entry price of $57,900.

Green Car Time Machine - archive articles from Green Car Journal.

Carroll Shelby was one of the auto scene’s most beloved icons. During his storied career he achieved racing wins around the world including the 24 Hours of Le Mans. Sports Illustrated named him “Driver of the Year.” He was inducted into the Automotive Hall of Fame and the International Motorsports Hall of Fame. Shelby worked with Ford on such legendary vehicles as the GT40 and the Shelby GT350/GT500 Mustangs. Perhaps most importantly, Shelby exemplified American ingenuity when he took an underpowered English AC Cars sports car, stuffed in a high-power Ford V-8, and debuted his legendary Cobra, a car that went on to achieve legendary status in the automotive world. While racing and performance were in his blood, Shelby also had a great interest in cars and the environment later in life, and served as a juror for Green Car Journal’s Green Car of the Year award program until his passing in 2012 at the age of 89. In this piece from our archives, Shelby shared his thoughts with publisher Ron Cogan on hybrids, alternative fuels, and the roles of government and the auto industry in dealing with advanced vehicles and environmental performance..

This article shares an archive interview of Carroll Shelby conducted by editor/publisher Ron Cogan and is presented as it originally ran in Green Car Journal’s 2003 Special Edition.

Carroll Shelby with Cobras in background.

Ron Cogan: How would you define performance these days, Carroll? You see a lot of advanced technology engines out there, and we’re doing a lot more with a lot less …

Carroll Shelby: “A lot more with a lot less what? Hell, no. Everybody is going for these bigger and bigger engines, six and seven liters with superchargers and turbochargers and 16 cylinders. And that’s fine. But at what cost?

“What’s going to happen is the same thing that happened in 1965. Then, the federal government and public opinion saw that seven liters in a 6,000-pound car hauling one person to work was pretty foolish. So, what happened? They decided to emissionize the cars and get into the safety aspects, which I think was a wonderful thing, although bureaucrats didn’t know very much about safety then. The automobile companies tried to explain to them what safety should be, and when the automobile companies try to explain anything, they explain it from their pocketbooks and not from what they really believe should be put into a safe car. They do as little as they have to…to interfere with their profits to the least extent.

“Instead of doing the things they did back in 1965 – choking engines up with all that (emissions controls) crap they put on them – they could have gone to compressed natural gas. They could have set up the entire infrastructure system at the time for what they spent over the next three or four years with all those regulations they put into effect. And we all know that it’s taken 20 years to get the Otto cycle (internal combustion) engine back so it performs decently.”

Carroll Shelby with Ford GT40 race car.

RC: So natural gas is the way to go?

Shelby: “Well, our big problem is imported oil. It’s causing so many financial problems … problems of us depending on antagonistic countries for our oil. It would seem to me that we’re not taking advantage of the two most obvious answers to this, which is compressed natural gas and hydrogen. Hydrogen works just fine in the engines we have now. It doesn’t give as much horsepower, but there are many ways to overcome that. Most of the cars would run on compressed natural gas – we flare off enough in Texas alone to power every car and truck in the United States – and we have hydrogen available to run in the same engines. Rather than depend on imported oil, why don’t we take advantage of these two energy sources that are here?”

RC: Where do hybrids fit in all this?

Shelby: “For 20 years we’ve had the potential for hybrid vehicles. All the technology is there, but why haven’t we gotten to that? It’s for the simple reason that they couldn’t make a profit building those things. Here we are now, finally, 20 years later just inching into the hybrid systems. Automobile companies are squealing and screaming all the way and building what I think are pretty stupid systems on these big SUVs that are picking up two or three miles to the gallon and spending hundreds of millions of dollars on it. And the Japanese have seen that this is what’s going to happen, so we’d better get with the system. That’s the reason, I think, that Toyota and Honda are leading the world right now in hybrids, which will lead us into fuel cells somewhere down the road ... but it looks to me like we’re still a lot of years away from that.”

Carroll Shelby next to engine block.

RC: So what’s next?

Shelby: “We’re going to have all these federal mandates. One of the options that should have been looked at was, let’s form an automobile company that uses the technology of the future the same way that the federal government has gotten us into all these super, super airplanes. That’s the defense department spending the money to see that all this R&D is done, but we’ve never done that in the automobile industry. We’ve depended on the automobile companies to tell the politicians what they can and can’t do, which seems a lot of bull to me. If we had a small automobile company that would be government funded and would hire the people to use the technology we know is already out there, we could build something to show the automobile companies that it is possible, and then move into the mainstream much quicker than the way they’ve done it.”

RC: The government should develop advanced vehicles and then turn these over to the automakers to build?

Shelby: “Well, I’m saying that we’re never going to get there in the automobile industry as far as the environment is concerned with the system we have now. I don’t have all the answers, and anything I come up with is going to be very controversial anyway. Nobody wants to talk about it because the automobile companies, with their huge political impact in Washington, don’t want things like this to happen. They want things to go along just like they are.

“I’m not really criticizing them because in a capitalist system, profits are the only thing that the people who put the money up – the investors – care about. And that’s the motivating factor for them to invest their money. There has to be a better system in place to see that the environment is better looked after than it is in our political system.”

Carroll Shelby with Series 1.

RC: Like what?

Shelby: “Let’s take racing. Let’s take performance. There’s no reason to think that if we wanted to have a racing program, like CART or drag racing, it couldn’t be done just as competitively with smaller engines and cars racing against each other in certain classes. If they were all hybrids now, you’d be improving the quality of the hybrids out there, and they’d be coming out a lot quicker than if the automobile companies weren’t fighting it. You could have all of these little Hondas that go out to the drag strip and all of these wonderfully intelligent young kids, 18 to 30 years old, who have all these Hondas and Focuses and all that going to the drag strip. What if they had to do it with hybrids? Would it be just as competitive?

“That’s the reason I get so frustrated. It’s my business. I’m building a Cobra now with 900 horsepower. You’ve got to do it to be competitive in the world as it is – profit centered – but I’d much rather be building something that I know is much friendlier to the environment, has rules and regulations that we all have to go by, and competes with the other competitors in something that is much more friendly to the environment. I don’t know … I’m frustrated about the whole thing, but at 80 years old, I know that I’m not going to change anything.

“It will be just like it was in 1966 if we don’t wake up in this country and see what it takes to build automobiles – to build a transportation system – that’s friendly to the environment. It has to be done, but it’s going to take a long time under the present system because the present system isn’t working … on a timely basis.

“I’m not trying to say I have any of the answers, I just know from living 80 years and watching the automobile industry that it has a long way to go environmentally. So many Americans, so many people all over the world – not half the number that are going to be using the automobile 20 years from now – and it seems so slow.”

RC: So after 80 years, Carroll, what’s next for you?

Shelby: “The things I’ll probably spend the rest of my life doing will be the things that are the least profitable, because I really feel that the environment is something that needs to be taken care of and it has to blend in with the automobile industry. That’s where the most fun is for me.”

Side view of electric Honda e:Ny1.

Honda recently unveiled its e:Ny1 electric crossover, the first EV model based on the automaker’s all-new e:N Architecture F platform. The oddly named e:Ny1 is important because it shares Honda’s evolving EV design language and shows a direction that includes electrifying smaller and lighter models. That said, the Honda e:Ny1 holds less importance to drivers in the U.S. since it will be sold exclusively in Europe and Japan. Still, given the overall similarity of this Honda EV to the automaker’s HR-V, it isn’t a stretch to imagine a similar electric model destined for our shores.

Holding to Honda’s usual tradition, the e:Ny1 blends both a conservative and reserved appearance with splashes of chiseled and chunky sportiness peppered throughout. At the front, the e:Ny1 features slim and flat headlights that wrap in from the front fenders with angular LED running lights at the top. Separating the headlights is a matte-finished panel with charging status lights, and below that we find a large chargeport port door that’s well integrated into the overall front end design. Two discrete LED fog lights are located at the bottom of the bumper, with a thin strip of chrome beneath that runs the width of the front fascia. 

Front detail of the electric Honda e:Ny1.

Honda e:Ny1: Compact, Sleek, Stylish

The Honda e:Ny1 features a high belt line and flanks that are sleek and smooth save for a creased line along the top and bottom of the doors. Black side-mirror caps, wheel arches, and window trim reveal sporty undertones, reinforced by thin-spoke alloy wheels with black accents. At the rear, a subtle roof spoiler extends slightly above the rear window, curving in at the sides. A red LED light bar runs the width of the rear hatch with two slim taillights at either end. A single, sharp body line runs just beneath with a typeface Honda badge.

A stylish and techy interior greets the driver. While Honda has yet to divulge details about the array of onboard systems to be featured in the e:Ny1, we do note the inclusion of a 10.2 inch digital instrument cluster facing the driver and a 15.1 inch portrait-style infotainment screen at the center of the dash. The infotainment screen is split into three sections with navigation and related applications at the top, entertainment and vehicle functions mid-screen, and climate information and selections at the bottom. Colored LED accents are inset in the doors and dashboard, with two-tone stitching adding a sporty touch to the dash and door upholstery. The center console, window switch panels, and steering wheel showcase gloss black-finished accents. Leather upholstery on all seating surfaces is 50 percent thicker and treated to increase softness for added passenger comfort.

Stylish cabin of the Honda e:Ny1 electric car.

Nicely Appointed Cabin

Rear seating in the e:Ny1 is very similar to that of the HR-V but without the ability to fold the rear seats flat, which impacts total available cargo area and limits carrying capacity to 11.3 cubic feet. The cargo area itself is also very similar to the HR-V, although employing a new smart-close capability that allows activating the self-closing hatch and walking away before it begins closing.

Power ratings are adequate with the e:Ny1 producing 201 horsepower and 229 lb-ft torque using a single-motor driving the front wheels. A 68.8 kWh battery pack is said to deliver a European WLTP drive cycle range estimate of 256 miles. Because of the fundamental differences in how WLPT and EPA testing measures EV range, that number would likely translate to about 200 miles of electric driving here in the States. Fast-charging via the car’s front-mounted chargeport is said to replenish the battery from 10 to 80 percent in about 45 minutes, somewhat slower than many other EVs at similar price points. 

Rear view of the electric Honda e:Ny1 electric car.

The Honda e:Ny1 is set to be delivered to dealers in Europe and Japan late this year, with pricing expected to begin at a USD equivalent of about $40,000. 

2024 Ford Ranger off-road.

Ford’s Ranger pickup stormed back into the market in 2019 after an eight year hiatus, keen to take on the likes of other midsize pickups such as the Toyota Tacoma, Chevy Colorado, and GMC Canyon. Despite receiving good reviews and many accolades, the Ranger has not sold as well as Ford had hoped. The all-new, fifth generation 2024 Ford Ranger seeks to change that. While heeding the importance of the Ranger as a popular global product, the new model has been developed with the U.S. market in mind. This change speaks to complaints that the previous generation Ranger was designed first for the Europe and then adapted for sales here.

The new Ranger shares Ford’s T6 mid-size pickup platform with the second generation Volkswagen Amarok, a pickup VW sells only in offshore markets. This new iteration of the Ranger platform features beefier construction with a fully boxed high-strength steel frame, which is both wider and longer than the previous generation. It has also been raised to offer improved ground clearance. Ford estimates a maximum towing capacity of 7,500 pounds along with a payload capacity of 1,805 pounds. Three trim levels will be offered including a base XL, mid-range XLT, and top-line Lariat.

2024 Ford Ranger 4WD control.

EcoBoost Powers 2024 Ford Ranger

Two fuel efficient engine options are available for the 2024 Ranger, starting with a base 2.3-liter EcoBoost inline-four delivering 270 horsepower and 310 lb-ft torque. A 2.7-liter EcoBoost V-6 shared with the F-150 and Bronco joins the lineup to offer higher performance with its 315 horsepower and 400 lb-ft torque. Both motors are paired with a 10-speed automatic transmission. Upping the excitement ante but far less efficient is the Ranger Raptor, a twin-turbo 405 horsepower off-road version of the Ranger featuring tons of unique equipment and specs. While many had speculated that a plug-in hybrid or fully electric version of the new pickup could be coming – with hopes running high for a Ranger hybrid after Ford’s debut of the Maverick hybrid pickup for the 2022 model year – that still remains just speculation.

Rear-wheel and part-time four-wheel drive are available, with the latter offering shift-on-the-fly capability allowing drivers to transition from two- to four-wheel drive at any speed under 55 mph. An electronic locking rear differential is also optional on both rear and four-wheel-drive applications to improve traction under challenging off-road driving conditions.

2024 Ford Ranger driving.

F-150 Design Cues

The all-new Ranger features a front fascia reminiscent of its F-150 big brother with a familiar wrap-around LED running light surrounding the headlights. While the F-150 and Ranger share similar design cues, the Ranger still takes on a look of its own with a brawny, high-slung bumper featuring a small opening for the Ranger’s intercooler with air active-shutters. When equipped with the FX4 Off-Road package, the Ranger includes a visible skid plate that protects the front differential and transmission from rugged terrain.

New touches set the new Ranger apart from the previous generation. Along the sides, smoothed wheel well arches replace the more boxed-out design of its predecessor, making its overall appearance appear a bit more grown up. Front fender badging appears above a functional fender vent designed to better cool front brakes under heavy use. At the back, Ford integrated optional side steps that allow easier access to the cargo bed without requiring the tailgate to be opened.

2024 Ford Ranger rear detail.

Appealing Design and Side Steps

The Ranger’s rear design has been reimagined and is more angular, highlighted by smoked LED taillights and ‘RANGER’ embossed at the bottom of a newly designed tailgate. Its pickup bed now boasts two additional inches of width and features optional 120- and 400-volt power sources. Five- and six-foot bed choices are available depending on cab configuration, though only the crew cab configuration is available for now.

Ford has redesigned the Ranger’s cabin to offer a much more refined experience. The dashboard has been refreshed and features new and stylish HVAC vents and a two-story glove box design with an inset storage tray in between. Door panels and seats now incorporate a cross-stitched design and include ample door pocket storage. The driving position is higher with better visibility and features a standard 8-inch digital instrument cluster with a 12.4-inch cluster available.

2024 Ford Ranger cabin with display.

Two Center Display Options

Taking center stage is a standard 10-inch  or optional 12-inch integrated infotainment screen with Apple CarPlay and Android Auto capabilities. The infotainment system utilizes Ford’s SYNC 4A operating system that’s capable of over-the-air software updates. A new electronic E-shift gear selector is present on the center console along with a four-wheel-drive select-shift dial for 4WD models. Rear seat functionality is improved with the seat backs now offering fold-flat capability that effectively transforms the rear passenger area into additional cargo space. That, paired with under-seat storage compartments and the pickup’s wider cargo bed, makes the new Ranger even more versatile for recreation or work.

An array of driver assist systems are standard or available. Among these are trailer-adaptable blind-spot monitoring, adaptive cruise control with stop-and-go, and Ford’s Active Park Assist 2.0 that allows drivers to remotely parallel or perpendicular-park their Ranger using the FordPass Connect smartphone app. Also handy for trailering are functions like Pro Trailer Backup Assist and Trailer Reverse Guidance, which use cameras to display different angles that aid drivers in accurately and safely backing up their trailers.

2024 Ford Ranger side view.

Stylish 2024 Ford Ranger

Ford ‘s Ranger has been an enduring choice for compact and mid-size truck buyers since it first appeared as a 1983 model. Now, with its appealing new generation Ranger, Ford is poised to capture the imagination of mid-size truck buyers who would otherwise consider the likes of competitors Toyota Tacoma and Chevy Colorado. With the entry price of a base Ranger XL SuperCrew coming in at  $34,160, order banks opening imminently, and deliveries beginning late this summer, we’ll know how successful the new Ranger will be soon enough.

Drawing showing drivetrain of electric commercial vehicles.

The mission to decarbonize transportation is well underway. We see this in the expanding field of high-profile electric cars regularly announced by automakers and discussed in the media every day. The unfolding story of personal transportation’s move toward higher efficiency, cleaner fuels, and decreased emissions is an important one that has been well documented by Green Car Journal over the past three decades. But this is just one part of the story. Over the years, we have also witnessed a growing movement toward more environmentally positive trucks and vans for business use, including electric commercial vehicles.

This is important since the movement of goods is an integral part of daily life and a significant contributor to CO2 greenhouse gases. Because of this, the big rigs transporting containers from ports to distribution centers, the trucks bringing food to supermarkets, and the commercial vans delivering packages to our businesses and homes have now become focal points for decarbonization strategies. Zero emission drivetrains have been developed for commercial vehicles of all types. New charging strategies have been devised for their batteries. Advanced technologies popular in personal electric vehicles have also been making their way to a new generation of commercial vehicles.

Packages being delivered by electric commercial vehicles.

Electric Commercial Vehicles

As all this is unfolding, it’s important to acknowledge the development and deployment of low- and zero-carbon commercial vehicles that are leading the way, as well as the companies committed to bringing them to our highways. This is the important mission of Green Car Journal’s Green Car Product of Excellence™ program and the Commercial Green Truck of the Year™ award.

The Green Car Product of Excellence™ honors commercial vehicles exhibiting laudable environmental achievement by virtue of higher efficiency, the integration of advanced technologies, and the use of powertrains that operate with low- or no carbon emissions. The Commercial Green Truck of the Year™ winner earns its distinction by rising above its competition as the most important ‘green’ vehicle in its field.

Freightliner eM2 is 2023 Commercial Green Truck of the Year.

Commercial Green Truck of the Year

Green Car Journal’s 2023 Commercial Green Truck of the Year™ is the Freightliner eM2. A standout amid an impressive field of electric commercial vehicles, the eM2 is an important flag bearer for the Freightliner brand as it further expands its reach into the crucial electrified commercial vehicle field. The electric eM2 is based on Freightliner’s best-selling medium duty M2 model with production taking place at the truck maker’s Portland, Oregon manufacturing facility.

Freightliner eM2 at electric charger..

Following the introduction of Freightliner’s eCascadia Class 8 electric truck, the series production eM2 represents a strategic move into the electric medium-duty truck market. Its impressive work capabilities and no compromise zero-emission operation make the Freightliner eM2 an attractive option for pickup and delivery service in crowded urban environments where Class 6/7 commercial trucks do much of their work.

Green Car Product of Excellence logo.

Product of Excellence Winners

The fast pace of the expanding low/no carbon commercial truck field means there are many new and important models that deserve to be honored for their environmental achievement. Green Car Journal recognizes these vehicles with the Green Car Product of Excellence™ award. We feel it’s important to acknowledge the design ingenuity, technical prowess, and environmental commitment exhibited by these award winning commercial vehicles and the companies responsible for bringing them to our highways.

Blue Arc electric step van.

BLUE ARC EV: The Blue Arc walk-in delivery van is aimed at last mile delivery service and other commercial activities. It offers Level 2 and 3 fast charging and an expected range of 150 miles, plus driver assist systems like a 360 degree camera, lane keep assist, and active emergency braking.

BrightDrop Zevo electric commercial vehicles.

BRIGHTDROP ZEVO: A GM business unit on the fast track, BrightDrop offers its Zevo electric delivery vans and an ecosystem built around them including the BrightDrop Core software suite. The Zevo 600 has a 250 mile range, over 600 cubic feet of cargo space, and a 2,200 pound payload rating.

GreenPower electric EV Star commercial truck.

GREENPOWER EV STAR: The EV Star electric cab and chassis has a GVWR rating of 14,300 pounds and can handle payloads up to 5,740 pounds. Its 118 kWh battery pack enables an estimated range of 150 miles. Charging is at 18.2 kw on a Level 2 charger or 50 kW with a DC fast charger.

Lion5 electric commercial truck by Lion Electric.

LION5: Lion Electric’s Lion5 is a new electric truck with crossover class 5/6 capabilities and a gross combined weight rating up to 30,000 pounds.  It’s powered by a 315 horsepower electric motor delivering 2,360 lb-ft torque and offers an estimated driving range of up to 200 miles.

Mack MD Electric commercial vehicles.

MACK MD ELECTRIC: Based on Mack’s popular MD medium-duty truck, the Mack MD Electric is available in Class 6 and Class 7 configurations with GVWR ratings of 25,995 to 33,000 pounds. Two battery choices, 150 kWh or 240 kWh, provide an estimated driving range up to 230 miles.

Mullen THREE electric truck.

MULLEN THREE: The electric Mullen THREE Class 3 cab chassis truck features an 11,000 pound GVWR, a payload capacity of 5,802 pounds, and the ability to be fitted with a maximum 14 foot box. It’s powered by a 160 horsepower electric motor and features an estimated 130 mile range.

Rizon medium duty electric truck is new to the field of electrified commercial vehicles.

RIZON e16M/e16L/e18L: A new brand from Daimler Truck Group, Rizon comes in three variations, the e16M, e16L, and e18L Class 4 and 5 medium-duty battery-electric trucks. They offer 15,995 to 17,995 pound gross vehicle weight ratings and have a range of up to 160 miles.

Tesla Semi electric Class 8 truck.

TESLA SEMI: This electric Class 8 big rig from Tesla is true to the company’s form with innovative design, a projected 500 mile driving range, and notable (for a semi) 0-60 acceleration in 20 seconds with its three electric motors.

Via Motors VTRUX electric commercial vehicles.

VIA MOTORS VTRUX: The VTRUX is a Class 3 electric work truck and chassis that can handle up to 6,657 pounds of payload. It’s available with a number of battery pack choices that are said to offer a driving range of 70 to 250 miles on a charge.

Workhorse W56 electric step van.

WORKHORSE W56: Available in various configurations, the Workhorse W56 Class 5 and Class 6 electric step vans from Workhorse Group offer a payload capability of up to 10,000 pounds and a driving range estimated at up to 150 miles.

2025 RAM REV electric pickup driving on trail.

RAM has been around as a distinct brand for some 14 years now, having split from its former identity as a Dodge nameplate in 2009. Since then, RAM has focused solely on pickup trucks and work vans with considerable success, especially with regard to its pickup truck line, which has won Green Car Journal’s Green Truck of the Year™ award three times in recent years. Now RAM has revealed details on its highly anticipated next act in the pickup realm, the all-electric RAM 1500 REV.

Building on the excitement generated by the wild electric RAM Revolution concept shown earlier this year, the 2025 RAM REV rides on the automaker’s all new STLA Frame optimized for full-size electric vehicle models with a body-on-frame design. This high strength steel frame is wider in the middle to accommodate battery packs while affording protection between the frame rails. It also features additional protection beneath courtesy of a full-length underbody belly pan.

2025 RAM REV electric pickup hood scoop.

RAM 1500 REV Power Options

This electric RAM pickup is especially noteworthy in that it boasts specs surpassing those of Ford’s F-150 Lightning and upcoming Chevrolet’s Silverado EV. REV will offer two EV powertrain options, with the base package featuring a standard 168 kWh battery pack projected to deliver a driving range of up to 350 miles. A more powerful option brings a 229 kWh battery pack with a targeted range of 500 miles, a feature sure to resonate with pickup buyers whose primary concerns are range and functionality. Normal and one-pedal driving capabilities are built in and regenerative braking comes as a matter of course.

Power won’t be a problem. We know the optional 229 kWh battery pack variant will offer a targeted rating of 654 horsepower and 620 lb-ft torque. Power ratings for the standard 168 kWh battery pack variant have yet to be disclosed. The REV’s projected towing capacity is said to be up to 14,000 pounds, with a payload capacity up to 2,700 pounds.

2025 Ram 1500 REV electric pickup chargeport.

Fast Charges in 10 Minutes

Charging is handled through the REV’s charge port located at the driver’s side front fender. Illuminated LED lighting and an audible chime lets a driver know that the truck is plugged in and charging. The charge port accommodates Level 1 and Level 2 AC charging connectivity on top and DC fast charging connectivity at the bottom of the charging interface. Drivers should expect the usual overnight charging experience if they have a 240-volt Level 2 wall charger at home. Those on the move can take advantage of the REV’s fast-charge capability at public fast chargers. If an 800-volt DC fast charger is available then the REV can add up to 110 miles of range in just 10 minutes while charging at up to 350 kW.

A handy feature is the RAM 1500 REV’s bi-directional vehicle-to-vehicle, vehicle-to-home, and vehicle-to-grid charging capability. With the use of a 7.2 kW on-board power panel mounted in the bed or a 3.6 kW power panel in the front trunk (frunk), this feature is very helpful during power outages in homes, or for individuals who will potentially use their truck to power equipment. It can also be used to charge your everyday devices if necessary.

RAM 1500 REV electric pickup.

Sporty RAM 1500 REV Styling

REV’s exterior styling lets us know this truck is electric without moving beyond the burly and commanding nature of the brand. A blend of elegance and toughness shows that RAM’s designers certainly didn’t want buyers forgetting what RAM stands for, while also conveying their vision for the future. To that end, the front fascia of this electric pickup features a sporty nature with its muscular hood and low grill. The look is accented with aptly named ‘tuning fork’ LED headlights and unique EV-specific RAM badging. At the rear we find a set of angular LED taillights that span a portion of the tailgate, and are specific to the RAM 1500 REV. RAM is boldly shown at the center of the tailgate and, like the front end, uses an exclusive lettering style to show us that this RAM is indeed electric.

Styling along the REV’s flanks remains quite similar to the current RAM truck with the exception of a flush-mounted chargeport at the driver’s side front fender and unique REV. Familiar lockable ‘RAM Boxes’ are available and positioned beneath the bed rails on either side of the pickup box and feature a handy 115-volt outlet. These boxes are also illuminated to facilitate easy access under low light conditions.

Interior view of the 2025 Ram 1500 REV electric pickup.

Premium and High Tech Interior

Inside, the blend of practicality and luxury is seamless with premium materials like carbon fiber, metal, and leather with tech peppered throughout. Ample passenger room is built in and functionality is enhanced with second row seats that can fold up for additional cargo capacity. Optional 24-way power adjustments are available for the front seats, including three memory settings and massage capability. Also optional is a 23 speaker Klipsch Reference Premiere audio system.

The REV cabin features a central 14.5 inch touchscreen, 12.3 inch digital instrument display, and a 10.25 inch digital screen mounted in front of the passenger seat. These screens utilize the automaker’s Uconnect 5 system that allows access to eight EV-specific functions across all screens, and entertainment functionality for the passenger screen. The REV also features a configurable head-up display capable of showing an array of selected information beyond vehicle speed, such as turn-by-turn navigation, speed limit, Lane Departure, Lane Keep Assist, and adaptive cruise control. A Uconnect 5 mobile app supports remote start and touchless door lock/unlock functions.

Front passenger screen in the 2025 Ram 1500 REV electric pickup.

Showcasing many industry-leading specs and visionary style, the RAM 1500 REV is shaping up to be a model in demand when sales begin in advance of its likely arrival at dealers toward the end of 2024. Of course, RAM will continue offering its popular gas-powered pickups to a willing market even as it dives ever deeper into electrification. In the meantime, the 2025 REV shows us that RAM aims to be a serious contender in the electric pickup truck competition.

Rear view of Volkswagen ID.7 electric car driving on highway.

VW unveiled its ID.7 electric car concept in January of this year, sporting a vivid QR code-themed electro-luminescent paint job that caused quite a stir in the automotive world. Back then, we couldn’t make much of the styling due to that vibrant QR camouflage. Now though, the production ID.7 has been revealed.

The ID.7 shares its roots with the growing Volkswagen ID line that was introduced in 2019 with the release of the small Volkswagen ID.3 electric car, followed by other ID models sold in offshore markets and the ID.4 sold here in the States. The ID.7, along with the rest of the ID line, utilizes the Volkswagen Group’s MEB platform designed specifically for electric vehicles.

Side view of the Volkswagen ID.7 electric car.

ID.7 Electric Car Has Style

One word comes to mind when looking at the Volkswagen ID.7: sleek. There’s a definite flow to the exterior design, starting with the subtle sportiness of the front end and front fascia that’s accented by an angular low-mounted black grille. Discrete LED running lights visually connect the ID.7’s LED headlights together, separated only by a VW badge at the center.

Along the sides of the ID.7, one notices an angular and flowing design with a crisp body line cutting across the lower quarter of the car, accented by a smooth, curved body line through the center of both doors and another finishing at the top of the doors, just under the windows. A slim, white color accent runs the length of the roofline above the windows and comes to an end near the rear deck. Adding to the car’s subtle sportiness is a black roof and black under-trimming that runs the entirety of the car. A large and angular wheel design with a dash of black on the inner spokes is standard on the ID.7.

Overhead view of Volkswagen ID.7 electric car.

A Pair of Powertrain Choices

At the rear is a black honeycomb-inspired rear light bar that spans the width of the trunk. A slim, continuous red reflector strip is present near the bottom of the rear end, nestled in the black under-trimming. The sedan-like ID.7 is technically a hatchback, but it’s hard to notice upon close inspection. The rear window meets the trunk lid almost instantly and a small integrated trunk lid spoiler adds to the sweeping design. 

Two power choices will be available with early models featuring single motor rear-wheel drive and dual motor AWD coming later. The base power option will deliver 286 horsepower and 402 lb-ft torque with energy from a 77.0 kWh battery pack. A larger 86.0 kWh battery option will also be offered, though VW doesn’t yet specify horsepower and torque numbers for this. Volkswagen identifies the ID.7’s range at 382 miles on the more optimistic European WLTP testing cycle, so expect something more like 300 miles of range here with the smaller battery, and up to 350 miles with the larger battery, once EPA testing takes place. The ID.7 is fast charge-capable and drivers should expect the ID.7 to charge its battery from 10 to 80 percent in about 25 minutes using a public fast charge station.

Chargeport on the Volkswagen ID.7 electric car.

Driver-Centric Experience

Inside the ID.7 is an attractive and contemporary interior. Volkswagen’s usual formula for its interior design is minimalist yet fully functional, and the ID.7 is no exception. Taking center stage is a 15-inch infotainment screen designed to appear as if it's floating. Ahead of the driver sits a small, horizontally-oriented display indicating vehicle speed, charge level, and range.

Synthetic leather and recycled materials are used throughout the interior. Front seats feature generous side and back bolstering. Optional for the ID.7 are adaptive Climatronic ‘wellness seats’ that are heated and cooled, massage capable, and feature a drying function, the latter something we haven’t seen in an EV to date. A large center console with ample storage separates the front passengers. Climate vents are plentiful and seamlessly integrated into the dash architecture. Another hallmark of the ID.7’s interior is the optional panoramic SmartGlass roof, which has the ability to turn from transparent to opaque using an electrochromic charge, controlled by touch or voice control.

Instrument panel in the Volkswagen ID.7 electric car.

Tech Rich ID.7 Electric Car

Tech is in abundant supply in the ID.7. The 15-inch infotainment screen handles nearly all functions and features an aesthetically pleasing backlit touch slider at the bottom for navigating between selections. ID.7 also incorporates Volkswagen’s IDA voice assistant. Most operations can be handled by using the IDA, including panoramic roof operation and navigation, among others. An array of driver assist functions are offered including Travel Assist, a semi-autonomous driving feature supporting lane changing at speeds above 55 mph, keeping a preset distance from the vehicle ahead, and maintaining a set speed. The car can also park itself using VW’s We Connect ID smartphone app. An available Harman Kardon option to the standard sound system showcases 14 speakers, along with a centrally-located speaker in the dashboard and a 12-inch subwoofer in the rear cargo area. 

The Volkswagen ID.7 is entering the EV world at a time when Tesla dominates the all-electric sedan market, so Tesla is clearly in this model’s sights. While pricing for the ID.7 won’t be disclosed until closer to the model’s on sale date, expect it to be at a competitive level that makes the ID.7 an attractive and feature rich option to Tesla’s Model 3.

Rear view of Hyundai Kona Electric.

Hyundai's first generation Kona arrived in the U.S. market in 2018, expanding the Hyundai lineup with a new subcompact crossover SUV. An electrified version, the Kona Electric, added a new choice the next year. Now the popular Kona is entering its second generation for the 2024 model year with a complete redesign and scaled up dimensions to help drivers make the most of the model’s sport-utility potential. Five trim levels are offered including SE, SEL, Limited, N Line, and the Kona Electric. While prices have not yet been disclosed, we expect the Kona’s point of entry to be in the $25,000 range with the electric pushing $36,000 or so.

Along with its new looks, Kona brings a surprising amount of tech and pep for the price including two ways to go electric. Kona's base electric powertrain features a 133 horsepower electric motor producing 188 lb-ft torque and a 48.6 kWh battery. A more powerful option uses a 64.8 kWh battery and a 201 horsepower motor delivering 188 lb-ft torque. Hyundai estimates the new Kona Electric’s range at 197 miles with the standard battery and 260 miles with the upgraded battery package, the latter offering just a few miles more range than the 2023 Kona Electric. Both Electric trims feature Hyundai’s new ‘i-Pedal’ driving mode that enables acceleration, deceleration, and regenerative braking from just the accelerator pedal under many driving conditions.

Vehicle-to-Load Capable

Charging is handled via a chargeport located in the Kona’s front fascia, making it easy to park and charge from a public charger on either side of the vehicle. An illuminated chargeport door lamp makes night charging more convenient. Hyundai built in 400 volt fast charging capability in its new Kona, which means drivers should be able to charge their battery pack from 10 to 80 percent in just over 40 minutes when a quick charge is needed, and if a 400 volt public fast charger is available.

Hyundai integrated handy bi-directional charging capability in the Kona that enables Vehicle-to-Load (V2L) functionality. That means Kona not only can charge its batteries from the front chargeport, but it can also charge equipment or power devices plugged into a chargeport adaptor. This can come in handy for those who take along electric bikes or scooters on their travels, or camp with equipment that needs to be plugged in or could use a charge. During power outages, the system can even help power home appliances or other necessities to the extent of its power capabilities.

Other Powertrain Options

Hyundai Kona Electric underhood.

For those less inclined to go electric, the 2024 Kona also comes with two available gas engine options to complement its electric power choices. The base powerplant is a 2.0-liter four-cylinder that produces 147 horsepower and 132 lb-ft torque, paired with a continuously variable transmission. The more powerful powertrain option is Kona’s 1.6-liter turbocharged four-cylinder that makes 190 horsepower and 195 lb-ft torque and is paired with an 8-speed automatic transmission. The turbo engine is standard with the sporty N Line and Limited trims.

A step up from the previous generation, Kona’s styling is more aerodynamic with sleek with clean lines that hint its designers had the future in mind. This appealing design reveals a conservatively rugged nature with elements of edgy styling that make it stand out amid the usual flock of cars. Kona’s visual appeal is headlined by an LED ‘seamless horizon lamp’ running light spanning the width of the front fascia, a design feature complemented by an equally striking fender-to-fender taillight design at the rear. Interestingly, Hyundai reversed the usual protocol for designing a new vehicle, which takes into account combustion power first and electric as a secondary consideration. Instead, Kona has been developed from the start as an electric vehicle with its need for an electric motor, battery packaging, and other components and electronics unique to EVs.

A Driver-Centric Cabin

Inside, the new Kona presents an updated and more futuristic experience. A driver-oriented cabin sports dual integrated 12.3 inch panoramic display screens. The gear selector has been relocated from the center console to a stalk behind the steering wheel to provide more storage space in the center console. Front seat backs are 30 percent thinner than the previous model to give rear seat passengers more knee and leg room. A ‘curveless bench seat’ design further improves space and comfort for rear seat passengers. The rear cargo area provides 25.5 cubic feet of space for everyday needs, and if you fold down the seat backs that capacity increases to 63.7 cubic feet of cargo area. A small front trunk (frunk) adds about another cubic foot of storage.

Hyundai’s SmartSense ADAS is available in the new Kona, which includes remote parking assist, forward-collision avoidance, lane-keep assist capability, navigation-based smart cruise control with stop-and-go, and other features. Particularly handy is blind spot view monitoring, which presents live video within the instrument cluster showing the blind spot encountered during a lane change.

Well-Connected Kona Electric

Center display in Hyundai Kona Electric.

Kona also includes other desired advanced connectivity features with the ability to process over-the-air (OTA) software updates, a breakthrough technology popularized by Tesla that’s now being embraced by a growing number of automakers. This allows wireless communication to deliver software and firmware updates for the Kona’s various on board systems to enhance its features. OTA technology can also update the vehicle’s multimedia software and navigation maps.

The new 2024 Kona Electric is sure to please with its fresh style, agreeable pricing, and multitude of user-friendly tech. We can expect the Kona Electric to arrive at dealers later in the fall following the debut of its gas-powered sibling sometime this summer.

Driving mode controls in the Hyundai Kona Electric.