Green Car Journal logo
Andrew Fox is Founder, CEO, and Chairman of Charge Enterprises

The electric revolution is upon us, the infrastructure is not.

With the recent signing of the Glasgow Declaration on Zero Emission Cars and Vans at the 2021 United Nations Climate Change Conference, multiple automakers and 33 countries are now officially working toward the goal of making all new cars and vans sold globally zero emission by 2040. ‘Zero emission’ in this case is defined as producing zero greenhouse gas emissions at the tailpipe, as accomplished by electric vehicles, for example.

While much has been reported about the ever-increasing number of EV offerings and the growing interest and demand, there are still major hurdles to mainstream adoption. One of the most pressing is the dire lack of charging infrastructure.

Today, there are less than 2 million EVs in operation within the United States, according to some estimates, and fewer than 100,000 charging stations to service them — nearly a third of them in California. With projections for EVs in operation within the U.S. exceeding 25 million by 2030, the calculus on what it will take to keep those zero-emission vehicles running is staggering: Approximately 13 million EV stations need to be installed by 2030, which equates to 120,000 a month in the United States alone.

The trillion-dollar infrastructure bill just signed into U.S. law does include $7.5 billion earmarked for building out EV charging networks. But given the anticipated growth rate of EVs versus today’s infrastructure, it’s going to take a lot more than that. This is where companies like Charge Enterprises come in.

From on-the-go power banks to micro-mobility and EV charging stations, we design and engineer, select and source equipment, install, and coordinate software selection and if the customer requires, implement remote maintenance and monitoring services. So whether it’s a ChargePoint system or a Blink system, or a third-party charging company, what we do is the infrastructure build-out and ecosystem planning of the site location. Servicing and educating the client is critical in establishing a reliable, safe, scalable and flexible site for future demands.

We are equipment- and software-agnostic, which means that we can provide custom solutions with careful consideration of various business use cases to ensure efficient, effective, design plans that not only satisfy current needs but also account for future scalability, growth, and ever-advancing technology. Our experienced team with nationwide scale offers turnkey engineering, design, equipment and software specifications, planning, sourcing, and installation for EV charging ecosystems.

As important as EV infrastructure is, true global sustainability isn’t confined to how we fuel our mobility. That’s why our recent strategic alliance with the National Community Renaissance, one of the nation’s largest nonprofit developers of LEED certified affordable housing, is such a critical compliment to Charge’s infrastructure solutions for intelligent wireless campuses. This partnership will further align with National CORE’s dedication to providing high-performance affordable housing that integrates energy and sustainability to reduce harmful emissions, making all communities more sustainable, healthy and equitable places to live, work, and play – especially historically disadvantaged communities.

The demand for clean, sustainable charging infrastructure is building,  whether for commercial properties, fleet depots, truck/van centers, retail facilities, auto dealerships, government, or residential. Our strategy is to make it simple for everyone to switch to an EV and other electrified technology. We’re helping accelerate the transition away from fossil fuels toward a fully electric future.

Andrew Fox is Founder, CEO, and Chairman of Charge Enterprises, a portfolio of global businesses specializing in communications and electric-vehicle charging infrastructure.

Canoo’s out-of-the-box approach to its fully electric pickup truck is evident from the first look at its cab-forward design, which to a certain generation may resemble a 21st century take on Volkswagen’s venerable Transporter-based pickup. Yet the layout is no nostalgic homage. Instead, it maximizes space efficiency, incorporating a configurable cabin and a cargo bed with the dimensions of a full-size pickup into an overall footprint smaller than most mid-size trucks.

It’s clear that a lot of thought went into the design of the pickup bed. Its standard 6-foot length can grow to 8 feet thanks to a pull-out extender stored below the bed floor. Bed-extension gates housed within the side-hinged tailgate doors enable the bed to be enclosed at its extended length. Canoo developed a modular divider system for the bed to separate items when necessary, and the flat bed floor (no wheel housings intrude into the space) can easily accommodate that yardstick of every working vehicle, the 4x8 sheet of plywood. Configurable wheel chocks and tie-down hooks allow the securing of all kinds of recreational- and work-related gear. There’s a multi-accessory charge port built into the inside of a bed wall, and the bed can be lit from several sources, including an overhead light on the back of the cab’s roof and perimeter lights build into the bed.

Adding to the bed’s versatility, the bed sides fold down to create work benches. Hidden drawers ahead of the rear wheels pull out to provide extra storage as well as a step for bed access.

Freed of a conventional engine compartment, the Canoo pickup has enclosed storage in its nose. The front gate doubles as a fold-down worktable when open. As with the bed, there are multiple power outlets in the storage area for wall plugs, USBs ,and mini-USBs.

The pickup’s cab features four doors in an extended-cab configuration with front-hinged front doors and narrower, rear-hinged rear doors. Two front seats are standard, while the rear area can be configured for additional seats or customized storage capability. The rear window rolls down for access to the bed from the cab, a handy feature if the truck is equipped with a camper shell. Canoo has developed optional roof racks for the pickup that can accommodate as much as 18 square feet.

What makes the truck’s layout possible is Canoo’s multi-purpose platform, which packages the powertrain, Panasonic cylindrical lithium-ion batteries, and suspension components into a flat, skateboard-like chassis. A drive-by-wire system eliminates the steering column that normally protrudes into the passenger compartment. Likewise, control arms, transverse fiberglass leaf springs, and frame-mounted dampers make up a suspension system that is contained below the height of the tires.

The platform can be equipped with a single rear-mounted motor or dual motors, with a target of 500 horsepower and 550 lb-ft torque for the dual motor version. Canoo estimates the pickup’s range at 200-plus miles. Payload capacity is quoted at 1,800 pounds, which is comparable to most mid-size and even some full-size pickups. No towing capacity figures have been released, though the truck will have a receiver for a tow hitch.

Canoo’s Pickup, Multi-Purpose Delivery Vehicle, and Lifestyle Vehicle are available for preorder on the company’s website. First to market will be the Lifestyle Vehicle, a minivan, that’s set for production and delivery late in 2022. Next up are the Pickup and MPDV that will come “as early as 2023,” says the company. While pricing for Canoo’s Lifestyle Vehicle has been disclosed as $34,750 to $49,950 for Delivery, Base, and Premium models, pricing for the MPDV and Pickup variants have yet to be revealed.

Canoo recently tapped Bentonville, Arkansas, as the location for its headquarters and low-volume production facility for the MPDV, along with Fayetteville, Arkansas, for its new R&D center focusing on powertrains and advanced vehicle electronics. Netherlands-based VDL Nedcar is the contract partner that will manufacturer the Lifestyle Vehicle for the U.S. and European markets.

With Subaru’s recently-unveiled Solterra electric SUV and existing plug-in Crosstrek Hybrid, you might think this automaker’s efforts toward electrification are fairly new. But that’s not the case. Like most automakers, Subaru was exploring electrification many years ago. Among the most interesting example was the Subaru B9 SC Scrambler series-parallel hybrid electric concept that was unveiled almost two decades ago. Here, we take a look at the B9 SC Scrambler roadster in a feature that originally appeared in Green Car Journal’s Summer 2004 issue.

Excerpted from Summer 2004 Issue: Subaru, a marque that doesn’t come readily to mind when talking advanced technology vehicles, can be a bit of a tease. Back in 1991, this auto- maker all but stunned the automotive world with a sports coupe that could generously be called atypical – the cutting edge Subaru SVX.

This swoopy, fast, and decidedly cool car didn’t become a huge seller, but it did establish Subaru’s credentials as a company that could bring advanced vehicles to the showroom with the best of ‘em, something we see today in models like the Impreza WRX STi. Still, Subaru tends to stay on the mainstream side with such well-engineered staples as the Outback, Forester, and Legacy rather than heading for the limelight with flexible fuel or hybrid models.

Well, Subaru has stepped out of the box again, and in a big way. Its B9 SC “Scrambler” hybrid electric concept blends the design direction of Subaru’s Andreas Zapatinas – formerly head of design at Alfa Romeo – with a unique hybrid electric drive technology that works seamlessly with Subaru’s Symmetrical All-Wheel Drive system, and also is adaptable to its current vehicle platforms.

This automaker’s Sequential Series Hybrid Electric Vehicle (SSHEV) system places a generator between a 2.0-liter, 4-cylinder DOHC Subaru Boxer gasoline engine and transmission with a two-way clutch, high-performance electric motor, and all-wheel drive transfer gearing integrated into the transmission case. What’s unique about the SSHEV powerplant is that its Boxer gasoline engine supplements the electric drive motor, rather than the other way around. Up to about 50 mph, the gasoline engine’s primary role is to charge the laminated lithium-ion batteries that power the hybrid vehicle’s electric motor. The gasoline Boxer engine takes over as primary propulsion above 50 mph, a speed range that’s most efficient for this internal combustion powerplant. Both electric and gasoline powerplants jointly provide power under demanding driving conditions.

Subaru says it will be able to offer customers the kind of performance now enjoyed with its turbocharged models by using its own hybrid electric drive technology. After being blown away by the impressive performance of Subaru’s SVX while driving this sports coupe at its debut back in 1991, we have no doubt that Subaru has the technical savvy and is surely up to this challenge…with a few more tricks up its sleeve, to be sure.

Hyundai’s IONIQ 5 is meant to be noticed. Sharp and angular bodylines define the model, along with a V-shaped front bumper, distinctive daytime running lights, and a clamshell hood to minimize panel gaps and enhance aerodynamics. Attention to efficiency is exhibited in many ways, one of these a low drag coefficient enhanced with flush door handles and 20 inch, aero-optimized rims. The new electric crossover rides on an extended 118.1-inch wheelbase that’s nearly four inches longer than Hyundai’s Palisade SUV, offering short overhangs that allow for more expansive interior space.

Inside is a cabin focused on comfort and functionality, featuring what Hyundai defines as a ‘living space’ theme. Since it uses a dedicated EV platform with batteries located beneath the floorboard, IONIQ 5’s floor is flat without the requisite transmission tunnel of combustion engine vehicles, thus lending additional interior design freedom.

Drivers are treated to a configurable dual cockpit with a 12-inch digital instrument cluster and 12-inch touchscreen. A new-for-Hyundai augmented reality head-up display delivers needed information in a way that essentially makes the windshield a handy display screen. Of course, the latest driver assist systems are provided, with Hyundai SmartSense offering the make’s first use of its Driving Assist plus driver attention warning, blind spot collision avoidance assist, intelligent speed limit assist, and forward collision avoidance assist.

Interesting touches abound, like a moveable center console that can be positioned normally or slid rearward up to 5 1/2 inches to decrease any impediment between front seating positions. Both front seats take reclining to a whole new level and even provide first-class style footrests. Those in the rear are also treated to more comfortable accommodations. Front seat thickness has been reduced by 30 percent to provide more room for rear seat passengers, and those  passengers can also recline their seats or slide them rearward for increased legroom. Sustainability is addressed with the use of eco-friendly and sustainable materials sourced from recycled thermoplastics, plant-based yarns, and bio paint.

There are plenty of powertrain configurations to fit all needs including 48 kWh and 72.6 kWh battery options, plus a choice of a single rear motor or motors front and rear. At the top of the food chain, the AWD variant with the larger battery provides 301 horsepower and 446 lb-ft torque, netting 0-60 mile acceleration in about 5 seconds. The best range is achieved by the 2WD single-motor version, which is estimated at just over 290 miles, though that’s not based on the EPA testing regimen used in the U.S. Top speed is 115 mph in all configurations. IONIQ 5’s multi charging system is capable of 400- and 800-volt charging, with a 350 kW fast charger bringing the battery from 10 to 80 percent charge in just 18 minutes.

As an added bonus, the IONIQ 5’s V2L function enables it to function as a mobile charging unit to power up camping equipment, electric scooters, or electric bikes. You can take it all with you for those power-up opportunities, too, since IONIQ 5 is rated to tow up to 2,000 pounds.

The fully electric, five-passenger Lucid Air luxury sedan is a study in superlatives. It has generated significant attention thanks to some impressive numbers: up to 1,111 horsepower, 0 to 60 times as quick as 2.5 seconds, sub-10-second quarter-mile times, and an EPA rating of 125 MPGe. Its charging-system technology allows for 900-plus volts of fast charging, capable of quickly energizing the battery for up to 300 miles of range in just 20 minutes. Then there’s the Lucid Air’s groundbreaking EPA rated driving range of up to 520 miles, far beyond any other electric car on the road today.

It features an overall length of 195.88 inches and 116.54-inch wheelbase are nearly identical to a Tesla Model S. It’s narrower than the S by about an inch, lower in overall height by an inch and a half, and its key interior dimensions are about an inch or so bigger than the Tesla. Lucid reports the Air has a very slippery 0.21 coefficient of drag, nearly the same as the 0.208 Cd of the Tesla S.

Lucid was able to create generous interior room within that sleek body package by designing the Air around its Lucid Electric Advanced Platform (LEAP), which positions the batteries low in the floor and makes use of relatively small motors, in terms of exterior dimensions. They produce up to 670 horsepower yet weigh just 163 pounds.

The Lucid Air is offered in four models, from the $77,400 Air Pure to the top-of-the-line $169,000 Air Dream Edition. The Dream Edition is the first available — reservations are closed, but there is a waitlist for the hopeful — with all-wheel drive, dual electric motors producing a combined 1,111 horsepower, and the aforementioned EPA rating of 520 miles. As a first edition it has exclusive paint and interior materials, special 21-inch wheels, ‘future-ready’ hardware for eventual Level 3 autonomous functionality, and the ability to receive over-the-air updates. The $139,000 Air Grand Touring and $95,000 Air Touring models also have dual motors and AWD, while the Pure is rear-wheel-drive with a single motor and the option for dual motor/AWD.

Inside is a 34-inch, 5K glass cockpit display with touch controls for wipers, lights, navigation, climate, and the audio system. A retractable Pilot Panel display in the lower center of the dash augments the cockpit display controls. Touch controls for media and Lucid’s DreamDrive are built into the steering wheel. DreamDrive is Lucid’s suite of driver assistance and safety features, which receives information from a total of 32 cameras, radar, LIDAR, and ultrasonic sensors positioned around the car. Among the interior options that are now, or will be, available is a glass canopy roof and an Executive Rear Seating Package with the ‘jet-style experience’ of two reclining back seats. Miniaturizing the Lucid Air’s powertrain has made room for a spacious bi-level rear trunk and a front trunk that Lucid claims is four times larger than other electric cars.

Lucid Motors is headquartered in California’s Silicon Valley with its cars assembled at a 500-acre greenfield manufacturing facility in Casa Grande, Arizona.

Porsche’s addition to the Taycan line now means that fans of the marque not only get scintillating electric performance, but a more crossover-like persona to go with it. The Gran Turismo features with a longer and somewhat flatter roofline while retaining all the features that make the Taycan sedan so desirable. In an era where crossover SUVs get enormous attention and enjoy brisk sales, the addition of the Cross Turismo to the Taycan lineup makes perfect sense.

Here’s where it gets interesting. All Taycan Cross Turismo models are all-wheel drive due to their use of motors front and rear, and to a one they are serious performers. But there are a few choices that bust out the performance numbers entirely. At the top of the list is the Taycan Gran Turismo Turbo S that’s powered by dual electric motors churning out 460 horsepower and 774 lb-ft torque, with an impressive bump to 560 horsepower in boost mode that lasts for the first 2.5 seconds.

All that power makes its way to pavement via a single-speed front transmission and a two-speed dog-ring transmission at the rear, catapulting the Turbo S from 0 to 60 mph in just 2.6 seconds. Top speed is 161 mpg. Performance numbers moderate just a bit in the Gran Turismo Turbo and 4S, with those models delivering 3.0- and 3.8-second sprints from 0-60 mph, respectively. Top speed for the 4S is 161 mph with the Turbo topping out at 155 mph.

While not aimed at harsh off-roading, off-pavement and recreational functionality is built into the Taycan Cross Turismo with features like adjustable air suspension, unique rocker panels, rugged front and rear fascia, and fender extensions. Additional body cladding and a slight increase in right height are gained with an available Off Road Design Package. A driver-selectable Gravel Mode optimizes traction in gravel, sand, and mud by adjusting the Cross Turismo’s torque management, suspension height and firmness, and traction control. Integrated roof rails are standard fare, allowing the use of a roof transport system for bulky items, while accessories like a rear-mounted Tequipment bike rack are available.

Beyond its notable performance, the Taycan Grand Turismo is also quite high-tech and connected. Inside is a comfortable command cabin with handsome appointments and a center 10.9-inch infotainment screen. Its Porsche Communication Management (PCM) system controls an array of vehicle functions and now offers Android Auto for the first time, joining Apple CarPlay integration that’s been part of the Taycan from the start. A panoramic glass roof is standard. A full suite of safety and driver assist systems are standard or optional. There’s even optional Remote Park Assist, while allows remotely controlling parking via a smartphone from outside the vehicle.

The Taycan Gran Turismo seems to have it all, in one very stylish, zero-emission package. You can carve turns in ways one would expect from a Porsche, turn heads with an eye-catching design, enjoy the latest in advanced electronics and driver assist systems, and recreate with accessories that can bring your gear along for the ride. Plus, of course, while minding the speed limit there’s the knowledge you could get wherever you’re going at blazing speed…if only circumstances allowed it.

For a lot of folks, Volkswagen’s all-new ID.4 introduced last year checked off all the boxes, except maybe one. It powered its rear wheels only with a single electric motor. Now a new ID.4 AWD model adds a second electric motor up front for better overall performance and all-wheel drive traction.

Power in the base rear-wheel drive ID.4 is delivered by a 201 horsepower permanent magnet motor featuring 229 lb-ft torque. The AWD version adds a second 107 horsepower asynchronous electric motor up front that not only provides all-wheel drive capability, but a boost to 295 horsepower total output and 339 lb-ft torque.

Energy is stored in an 82 kWh lithium-ion battery pack. In the single motor version this delivers a driving range of up to 260 miles at an EPA estimated 99 combined MPGe fuel efficiency, with the more powerful AWD version achieving up to 249 miles of range at 97 MPGe. Charging with a 240-volt Level 2 charger takes about 7 to 8 hours, with 30 miles of range provided in about an hour. Level 3 fast-charging can add around 60 miles of range in just 10 minutes. VW ID.4 buyers get three years of DC fast-charging through Electrify America public chargers for free.

The ID.4 rides on MacPherson struts and coil springs in the front and a multilink suspension in the rear, with anti-roll bars at both ends. It also sports VW’s electronic stability control system as standard equipment. ID.4 features a 108.9-inch wheelbase and a 62.5-inch track, making it quite maneuverable in tight city driving situations. It rides on either 19- or 20-inch aluminum alloy wheels with all-season tires to keep a good grip on the road. A low 0.28 coefficient of drag enhances the model’s overall efficiency. Because the ID.4 is designed as a utility vehicle, the standard version is designed to tow 2200 pounds with the AWD capable of handling 2700 pounds.

True to its German roots, the interior of the ID.4 emphasizes a purposeful design with clean styling and minimal frills, while offering all the functional equipment expected in a modern vehicle. The driver is treated to a commanding driving position behind a sporty three spoke steering wheel fitted with all the primary control buttons the driver might need. It has an overall interior volume of 99.9 cubic feet, roomy for the vehicle’s overall footprint. VW’s Car Talk allows the vehicle to communicate with the driver through voice commands so the driver’s eyes never need to leave the road. IQ.DRIVE, Volkswagen’s suite of advanced driver assist technologies, provides an array of desired features such as hands-on semi-autonomous driving, lane assist, and active cruise control.

Both single and dual motor ID.4 models are available in Pro and Pro S trim, with prices starting at $39,995 to $43,675.

Automakers, energy interests, and major government-funded efforts have been on the hunt for the ideal battery to power electric cars for decades. It hasn’t been an easy road and remains a challenge even today, as shown by several massive recalls of electric vehicles with batteries that, in rare cases, have suffered spontaneous combustion. Fires aren’t a new thing. During the EV’s drive to market, a small number of battery fires occurred early on, including several in experimental Ford Ecostar electric vehicles powered by sodium-sulfur batteries back in 1994. One battery safety incident that stands out occurred at an electric car race in 1992. Rather than a fire, a race entry running an experimental battery suffered a leak that spewed a toxic vapor cloud that injured racers and race personnel, causing the raceway to be evacuated. Here, we present the following article from the Green Car Journal archives, as it was originally published in June 1992.

Excerpted from June 1992 Issue: It was in the final hours of racing activity at Phoenix International Raceway when the lead car began spewing a reddish-brown vapor trail into turn one, then went into a spin, braking hard.

As the car slowed to a stop, its driver tore at the window’s safety net and dove out of the opening head-first, stumbling, then collapsing as he tried to escape the battery gases that filled his cockpit and the area around the car. Like the driver, James Worden, of the Solectria team (Boston, Mass.), 14 track officials and others who came to his aid would be taken to the hospital to treat breathing difficulties. Worden was admitted in serious condition. Fortunately, all 15 people injured in the accident recovered.

This was the sobering final scene that red-flagged this year’s APS Solar and Electric 500 in Phoenix, Ariz. An important showcase of new and developing electric car technology, the race exemplified new thinking like quick-change battery packs and race-style pit stops under 20 seconds. Many of the cars were substantially faster than just a year ago, and the driving more sophisticated. Products from major sponsors like General Electric, Motorola, Goodyear, and Firestone were used and touted on banners and cars. The event drew a small crowd of enthusiasts and a good showing of research teams from across the U.S. Many were small-time efforts with personal cars converted to electric propulsion. Others were well-financed teams equipped with the latest in electric motors, controllers, and batteries.

It was the experimental battery technology that brought an early end to the Chrysler-Plymouth Electric Stock Car 200. Complexed bromine solution leaked from a dislodged tube in the race car’s pressurized zinc-bromine battery on lap 91, hitting the hot track and creating a toxic cloud near the car and an acrid smell that hung over the infield. The hazardous materials team handling the incident ultimately ordered the raceway evacuated. Although disabled, Worden’s Solectria entry was later declared the winner since he was five laps ahead of the field.

Should this experimental battery have been at the race? Race sanctioning body Solar and Electric Race Association (SERA) regulations specifically cite that “any battery type (except silver-zinc) is generally permitted and any number of batteries may be utilized within the vehicle.” Thus, the prototype zinc-bromine batteries used independently by both the Solectria and Texas A&M entries were allowed. A wide array of other battery technologies, some potentially dangerous, would also be permitted under these rules.

Phillip Eidler of Johnson Controls, supplier of the experimental batteries in the Solectria car, told GCJ that of the battery technologies being pursued, zinc-bromine is one of the safer ones. “What you saw out there was one of the worst incidents, short of crashing into the wall, you’re probably going to see from the battery system.” He also cites that the Johnson Controls battery does not contain pure bromine. “It’s a complexed form, in solution, that doesn’t have near the vapor pressure and evaporation rate of pure bromine,” advises Eidler. Johnson Controls is the largest U.S. manufacturer of lead-acid automotive batteries and the leading supplier to both the original equipment and replacement markets.

Sources at Johnson Controls cite the company is engaged in a cost-shared development contract for the zinc/bromine battery with the U.S, Department of Energy for utility applications. Zinc-bromine is said to have 2-3 times the energy capacity of lead-acid batteries and, according to Johnson Controls’ vice-president of battery research Bill Tiedemann, it’s “one of the most environmentally safe battery technologies available.”

"While experimental technology is critical to the developing EV and alternative fuel vehicle fields, it’s equally critical that safety is addressed as vigorously outside the lab as it is inside. "

A spokesman for principal race sponsor Arizona Public Service (APS) told GCJ that the technologies to be used by race teams will certainly be examined more clearly for safety in coming years. SERA’s Ernie Holden cited that closer scrutiny would be built into the safety inspection process for future races as well. Johnson Controls is also offering to help in any way it can to make the race a safer event. Since assurances from entries using experimental technology cannot serve as the final word on safety, though, it’s obvious that an expert inspection team will be needed to independently perform this task.

This incident should sound a warning signal within the industry. While experimental technology is critical to the developing EV and alternative fuel vehicle fields, it’s equally critical that safety is addressed as vigorously outside the lab as it is inside. This is especially true in the case of public demonstrations of experimental technology. With the upcoming schedule or races, ride-and-drives-, and public demonstrations of electric vehicle technology worldwide, it will be imperative that adequate safety measures are taken. The same holds true for future fleet testing of electric vehicles using potentially hazardous batteries. A catastrophic battery failure on city streets could have wide-ranging consequences.

Experimental technology will continue to be seen in electric car racing, since racing is the proving ground that ultimately benefits the cars that make it to dealer showrooms. But high-risk system components, or even ones protected by redundant safety systems which could still prove deadly in the event of catastrophic failure, might be penciled out in the rule books for safety and liability reasons. This is especially true of those technologies which could injure large numbers of people in a single incident.

What of experimental components, like batteries, which need to be tested during their evolutionary run to market? That’s why the major automakers have proving grounds In their place, smaller R&D firms can rent a track like Phoenix International Raceway or countless others around the world…and do their testing with the stands empty. “It would probably have been much better for us if we would have just ran and ran the car around the track without anybody there,” muses Johnson Controls’ Eidler. “But we’ve done years worth of testing. After that works, where’s the next place you go?” That’s a dilemma that will surely be faced by many R&D efforts in coming years. He adds: “There comes a point where you have to take it out on the road.”

GCJ editors do expect that electric cars will compete in major-league racing alongside conventional gasoline-engine cars. But it seems certain that some important safety checks will have to be in place. Racetracks packed with tens of thousands of spectators are not the venue for volatile technology that could endanger the lives of those who are on hand to root for its success.

While Jeep’s all-new Grand Cherokee is offered with 3.6-liter Pentastar V-6 and 5.7-liter V-8 engines, it’s the 4xe plug-in hybrid that really has our attention. The 4xe drivetrain is like that in the Wrangler 4xe introduced last year, which combines two electric motors, a 2.0-liter turbocharged and direct-injected I-4 gasoline engine, and a 400-volt, 17-kWh battery pack.

In Grand Cherokee 4xe, one motor replaces the conventional alternator and is used to power the engine’s start/stop functions and charge the battery. The second motor replaces the torque converter in the TorqueFlite 8-speed automatic transmission. Clutches control the power flow from this motor generator, enabling either pure electric power or a combination of torque from the motor and engine. In total, the system produces 375 horsepower and 470 lb-ft peak torque. Jeep is estimating an all-electric range of 25 miles, 57 MPGe fuel economy, and a total range of more than 440 miles. Towing capacity is rated at 6,000 pounds, a little lower than the 6,200-pound capacity of the V-6-powered 2021 Grand Cherokee.

Three different E Selec modes allow the driver to tailor the powertrain’s output to suit trip conditions. Hybrid mode combines torque from the motor and engine. Electric mode is used for pure electric propulsion until the battery reaches minimum charge or the driver demands more torque – while passing, for example – which engages the engine. When saving battery power for trail or inner-city driving is desired, eSave mode can be selected so the Grand Cherokee 4x3 runs on engine power only.

The Grand Cherokee has a long history of winning awards for its off-roading capability, and Jeep plans to maintain that legacy with the 4xe. Limited and Overland models are equipped with Jeep’s Quadra-Trac II drive system, with a two-speed transfer case and 2.72:1 low range ratio. Trailhawk and Summit models have the Quadra-Drive II system, which adds an electronic limited-slip differential in the rear axle. The Selec-Terrain traction management system, standard on all 4xe trim levels, offers five selectable terrain modes and modifies 4x4 torque split, throttle control, brake and steering response, the suspension system, and stability and ABS systems to suit those circumstances.

Jeep’s Quadra-Lift air suspension system, standard on all but the Limited model, can raise the Grand Cherokee up to 11.3 inches for greater ground clearance and automatically adjusts shock tuning for road or trail conditions. Skid plates protect the batteries mounted under the floor. High-voltage electronics are sealed and waterproof, enabling the 4xe to ford water up to 2 feet deep. Jeep has already tested the Grand Cherokee Trailhawk on California’s legendary Rubicon Trail, where it made the rocky Sierra Nevada crossing on electric power alone.

What makes the Grand Cherokee truly ‘grand,’ though, is its combination of rugged capability and civilized amenities. The 2022 version is “the most technically advanced Grand Cherokee ever,” says Jeep, with more than 110 safety and security systems that range from adaptive cruise control and blind-spot monitoring to an available night-vision camera with pedestrian and animal detection. A new Active Driving Assist program allows Level II automated driving.

The Grand Cherokee is also equipped with Jeep’s fifth-generation Uconnect5 infotainment system, which can be linked with up to three 10.1-inch and two 10.25-inch digital displays in the cabin. Apple CarPlay and Android Auto capability are built in, as is Amazon’s Alexa digital assistant and Fire TV. Video content can be streamed via an in-vehicle 4G Wi-Fi hot spot or a mobile device hot spot, or it can be downloaded and played without connectivity thanks to storage capacity in each rear high-definition display.

Jeep says its Grand Cherokee will arrive at dealerships later this year with the plug-in 4xe coming early in 2022.

The 2022 Kona Electric from South Korean automaker Hyundai stands out in the ever growing electric car market on many fronts. Trim and nimble, this compact SUV has plenty of punch to deliver a spirited driving experience, yet has great electric range at a price point that makes it a real value. Base price for the Kona Electric starts at a reasonable $34,000. EPA-estimated range comes in at 258 miles, with the Kona Electric’s. EPA fuel economy rating up there with the best in the industry at 132 MPGe in the city, 108 on the highway, and 120 combined.

Power is stored in a 64 kWh lithium-ion polymer battery pack that energizes the model’s 201 horsepower electric motor. Hyundai says expect a full charging time in just over 9 hours with a Level II home or public charger. Charging time shortens considerably to 64 minutes for a 10-to-80 percent charge at an available public 50 kW Level III quick charger and just 47 minutes if charging at a 100 kW Level III charging station.

Exterior styling is markedly cleaner on the 2022 Kona Electric compared to the previous year’s model. It looks sleek and purposeful with a more aggressive stance and on road presence, featuring a stretched hood, revised front and rear fascia, and air inlets in the bumper corners. The charging port is cleanly built into the front fascia/bumper for easy connections when pulling straight into a charging spot, a welcome feature for those accustomed to charge ports mounted on the side of an electric vehicle. Night driving is made safer with the addition of high intensity halogen projector beam headlights and LED daylight running lights make the Kona easier to spot by other drivers. The taillights are also bright energy saving LEDs.

Kona Electric is very welcoming on the inside. The driver is treated to an 8-way adjustable seat with power lumbar support with the passenger provided a 6-way adjustable bucket seat, both of them heated. A Harmon Kardon engineered and tuned multi-speaker audio system includes a center console-mounted sub-woofer. The system is Apple CarPlay and Android compatible and controlled through a 10.25 inch color LCD touch screen at the center of the dash. A second 10.25 digital cluster is located in front of the driver. Interior panels are accented by trim with the look of brushed aluminum.

A full suite of driver assist and advanced safety systems is available . Among these are Smart Cruise Control with stop and go, Lane Following Assist, Forward Collision Avoidance Assist, Highway Drive Assist, Blind Spot Collision Avoidance, and more.

The Kona platform is right-sized for many mobility missions, compact for easy city maneuverability and parking but also accommodating enough to provide a comfortable experience for driver and passengers. It measures in with an overall length of 165.6 inches and is built on a 102.4 inch wheelbase chassis, offering welcome ride-quality for around-town driving and longer daily commutes.

Toyota’s full-size pickup truck has received a complete makeover for the 2022 model year, featuring a bold broad-shouldered look with LED lighting all around. Its nose features an oversized grill opening for optimum cooling when hauling or towing heavy loads. In a market segment that consistently delivers large sales numbers, competing with U.S. domestic entries from Ford, GM, and RAM requires manufacturers to make continual progress and innovate to excel in the pickup market, and design is no small consideration. Overall, Tundra is a worthy successor to the immensely popular model that came before it.

The backbone of the new Tundra starts with a high-strength, fully boxed ladder-style steel frame. Tundra’s bed is now an aluminum-reinforced composite design, a nod to lightweighting and increasing fuel efficiency. With the new frame and high-strength materials throughout, Toyota was able to upgrade the rear suspension to a multilink design for improved ride and handling qualities. Up front is a new double wishbone suspension that can be upgraded to a formidable TRD (Toyota Racing Development) design with mono-tube Bilstein performance shocks for serious off-roading.

A significantly improved interior accompanies Tundra’s redesign. Advanced technology and convenience features include large LCD touch-screen displays. Center stage, buyers can even option a massive 14-inch touch screen. Heated and cooled seats, an available panoramic roof, and contemporary styling includes numerous car-like touches. Importantly, Toyota’s Safety Sense 2.5 active safety suite comes standard on all grades of Tundra.

The previous model’s thirsty 5.7 liter V-8 powerplant has been replaced by new and more fuel efficient engine options. Tundra comes standard with a i-FORCE twin-turbo 3.5 liter V-6 with 389 horsepower and 479 lb-ft torque. The i-FORCE Max option is a mild-hybrid version that increases power output to 437 horsepower and 583 lb-ft torque. Integrating an electric motor within the bell housing between the engine and 10-speed transmission, this hybrid design not only increases power and efficiency, but also enables limited all-electric driving at low speeds. The motor is powered by a nickel-metal-hydride battery located beneath the rear seats.

Transferring power to the road is a new ten-speed automatic transmission that promises plenty of gearing for any towing, hauling, or everyday cruising mission. Properly equipped, a 2022 Tundra is rated to tow up to 12,000 pounds. It is available with 5.5-, 6.5-, and 8.1-foot beds and capable of carrying up to 1940 pounds, an 11 percent improvement over the previous model.

There are two four-door cab options, Trim levels include the base SR, SR5, Limited, Platinum, and new top of the line 1794 model. The 2022 Toyota Tundra was designed, and engineered in the U.S., and is assembled in San Antonio, Texas. Pricing info and EPA fuel economy ratings will be revealed closer to Tundra’s on sale date later this year.

In the company’s words, the $129,990 Tesla Model S Plaid is ‘beyond ludicrous,’ with a new, three-motor powertrain producing a combined 1,020 horsepower, 0 to 60 times of 1.99 seconds, and 9-second quarter-mile sprints. It’s rated as delivering a 398 mile driving range, though that’s figured in a typical EPA test regimen. Given that buyers of the Model S Plaid are likely in it for the car’s performance potential, driving this car to its potential will certainly mean commensurately less range. Other models like the even more range conscious Model S Long Range can go an estimated 405 miles using dual motors producing 670 horsepower.

Recently, a Model S Plaid was dragstrip tested by Motor Trend in an attempt to independently verify Tesla’s claimed sub-2-second 0 to 60 time. They were successful in doing so on a surface fully-prepped with VHT, a resin-based compound typically used at dragstrips. On asphalt without a sticky coating of VHT, the Plaid took 2.07 seconds, making it the quickest production car that publication ever tested.

The Model S has been facelifted for 2022 with new front and rear fascia and fender bulges to fit wider wheels and tires. The new look continues inside with a more spacious cabin and an all-new interior design, featuring an aircraft-style yoke to replace the conventional steering wheel. ‘No stalks, no shifting’ to distract from the pure driving experience, says Tesla.

In the center of the dashboard is a 17-inch, landscape-oriented cinematic display that controls the navigation, infotainment, and tri-zone climate controls. The rear seat has been redesigned with extra head- and legroom for three passengers, and a stowable center armrest has storage compartments and wireless charging. The rear seat also folds flat to accommodate lengthy cargo. There’s a video monitor in the rear of the front armrest; Tesla says the Model S has up to 10 teraflops of processing power, enabling console-like in-car gaming. Wireless controller capability allows game play from any seat.

Tesla owners can take advantage of more than 25,000 Supercharger stations globally. On a Supercharger, the Plaid can charge at up to 250 kW, which has the capability to 200 miles of range in just 15 minutes.

The Model S is equipped with front-, side-, and rear-facing cameras to provide a 360-degree view around the car. In addition there are 12 ultrasonic sensors to assist in the car’s self-driving features, which include Autopilot, Auto Lane Change, Summon, and AutoPark. Over-the-air software updates enable instantaneous upgrades as they become available.

Karma’s new GS-6 is offered in Standard, Luxury, and Sport models, all sharing the sleek exterior design of the company’s upmarket Revero GT. The three GS-6 variants are powered by a transversely mounted, 400 kW twin-motor rear drive module (RDM) energized by a 28 kWh lithium-ion battery pack that delivers 61 miles of battery-electric range. The combination, which produces 536 horsepower and 550 lb-ft of peak torque, comes with an EPA rating of 70 combined city/highway MPGe. Range increases to 330 miles with additional electricity from a 1.5-liter, turbocharged three-cylinder gas engine spinning a 170 kW generator.

The driver can select one of three modes that control how the motor is powered: Stealth mode uses the battery pack only; Sustain mode accesses the generator to create electricity to power the car; Sport mode uses both the batteries and the generator to supply power directly to the motors.

The drive system’s Sport mode is available in all GS-6 versions, not just the Sport model. The line-topping Sport model is differentiated from the other GS-6 versions by its 22-inch wheels (21s are standard on the others), red Brembo brake calipers, and torque vectoring from the RDM.

The GS-6’s leather interior is available in a choice of five colors and accent trim that range from carbon fiber to reclaimed wood from forests burned by California wildfires. The car’s Human-Machine Interface enables driver control of features including steering feel, accelerator pedal aggressiveness, and its Advanced Driver Assistance System (ADAS). Controls in the haptic steering wheel give the driver command of the sound system and phone, driving modes, adaptive cruise control, and a three-mode regenerative brake system. The center touchscreen contains controls for the HVAC system, heated and ventilated seats, audio, and lighting. Also controlled through the center screen is the GS-6’s Track Mode, which provides data ranging from lap times and g-forces to energy use and even tire pressure and temperature.

The ADAS aboard the GS-6 has a long list of assistance and safety features including adaptive cruise control with stop and go, lane-keep assist, automatic emergency braking, blind-spot monitoring/rear cross-traffic alert, forward collision warning, and parking distance monitoring. Onboard cameras provide a 360-degree view around the Karma. Apple Car Play and Android Auto capability are built into the GS-6, and it can receive over-the-air updates for remote diagnostics and software upgrades.

While it sells vehicles globally, Karma's operations are in Southern California with headquarters in Irvine and a production facility in Moreno Valley.

The all-new five-door, five-passenger BMW i4 is right-sized for fans of the marque, similar in overall length and wheelbase to its 3 Series stablemates. Both i4 variants utilize BMW’s fifth-generation eDrive technology, which combines an 83.9 kWh lithium-ion battery pack with either a single electrically-excited synchronous motor on the rear axle (in eDrive 40) or motors front and rear (in M50). BMW expects up to 300 miles of driving range in the single motor i4 and an estimated 245 miles in the M50.

Taking its Ultimate Driving Machine strategy a step further, the all-wheel-drive i4 M50 – the first fully electric performance model from BMW’s M Group – ups the 335 horsepower of the standard i4 eDrive40 to a combined 536 horsepower. In addition, special attention is paid to chassis tuning and powertrain responsiveness in the M50 so it delivers the level of driving engagement expected from a BMW with the M badge.

The i4’s combined charging unit accepts either home-based AC power, at a rate of up to 11 kW, or up to 200 kW of DC power at a fast-charging station. BMW has partnered with EVgo to provide i4 owners access to EVgo and partner charging network stations. The partnership includes $100 in EVgo charging credit for buyers and lessees of qualifying BMW electric vehicles.  

Helping to boost the i4 models’ efficiency are their adaptive energy recuperation systems, which use data from the navigation and driver-assistance systems to vary the intensity of brake energy recuperation. The driver may also select high, medium, or low brake energy recuperation via the iDrive menu. Putting the gear selector in drive mode B provides enough regen for one-pedal driving with little or no use of the brakes, depending on driving habits and current driving conditions.  

The i4’s handling dynamics benefit from the battery pack’s location in the floor, which lowers its center of gravity below that of a 3 Series sedan. Both models are equipped with a rear air suspension using a self-leveling and lift-related shock system that controls damping force based on spring travel. An adaptive M suspension, optional on the eDrive 40 and standard on the M40, enables the driver to adjust shock settings electronically at each wheel.

Inside the i4, the BMW Curved Display puts the 12.3-inch driver information display and 14.9-inch control display behind a single piece of glass. Features in BMW’s new iDrive 8 system can be operated via the Curved Display or by voice commands. Among them is the new Cloud-based BMW Maps navigation system, which combines real-time information with forecasting models to improve navigation accuracy. Both Apple Car Play and Android Auto are programmed into the i4.

There are more than 40 driver assistance systems available for the i4 as either standard or optional equipment, including some Level 2 automated driving functions such as speed limit assist and route guidance when the optional active cruise control is engaged. Collision warning, pedestrian warning, and lane departure warning are all standard. Cross-traffic warnings, blind-spot detection, and rear-collision prevention are part of the optional driving assistant system. Optional parking assistant will control the i4 when entering or exiting parallel or perpendicular parking spaces, while its back-up assistant offers automatic reversing for up to 50 yards. A Driving Assistance Professional system utilizes three front cameras, one front-facing radar sensor ,and four side-facing radar sensors “to build a detailed picture of the car’s surroundings,” says BMW. That data is used for such functions as active navigation, steering and lane control assistant, lane-keeping assistant, emergency stop assistant, and evasion assistant.

The BMW i4 eDrive40 can be preordered now starting at $56,395 with the performance-oriented i4 M50 coming in at $66,895. Availability here in the States is spring 2022, according to BMW.

Efficient and innovative, the Honda Civic has always dared to be a little different. A look back at the first generation shows a diminutive two door hatchback that fit the subcompact mold. It was light and nimble, making it ideal for around-town duty. On the green technology front, early Civics featured Honda’s innovative CVCC (Compound Vortex Controlled Combustion) cylinder head. Unlike its competitors, the CVCC engine ran so clean the Civic passed then-new emissions standards without the need for a performance-robbing catalytic converter or other emissions devices.

Honda added a three-door hatchback model shortly after the Civic’s introduction. As many cars do, Civic grew in both size and weight over the years, an issue Honda solved with the introduction of the subcompact Honda Fit to fill the void in that class. An important ‘green’ milestone was the launch of a gasoline-electric hybrid version of the Civic to the U.S. market in 2002, as a 2003 model. This expanded the company’s hybrid efforts and provided Honda buyers a more mainstream choice than the Honda Insight hybrid that had entered the lineup in late 1999. The hybrid Civic was offered through the 2015 model year but discontinued after the launch of Honda’s larger Accord Hybrid.

Now in its 11th generation, Honda designers gave the 2022 Civic a clean design with a low hood and fenders for a sportier silhouette, exuding more of a European attitude. To keep the Civic line in tune with young and active buyers, an all-new and sportier Civic Hatchback with a Euro-inspired design is also offered.

Civic is powered by either a 2.0-liter naturally aspirated four-cylinder or a 1.5 liter turbocharged powerplant. The 2.0-liter four produces 158 horsepower and 138 lb-ft torque, with the 1.6-liter engine delivering 180 horsepower and 177 lb-ft. torque. Power transfers to the road via a continuously-variable transmission (CVT) with paddle shifters. The hatchback offers the same engine choices and CVT transmission as the sedan, but adds a six-speed manual gearbox option that adds to its sporty nature.

For improved handling and overall vehicle dynamics, the new Civic was designed with a 19 percent improvement in torsional rigidity compared to previous models. The Civic has a strong following with the tuner crowd and the stiffer chassis will lend itself to suspension mods.

Civic’s cabin is upgraded with sporty bucket seats up front that offer generous side bolsters. As you might expect, the 2022 Civic is offered with a full complement of tech features including a seven-inch color touch screen that pairs easily with Apple CarPlay and Android Auto devices. A nine-inch touch screen comes with the Touring trim package. A premium 12-speaker Bose sound system is optional. Civic drivers benefit from Honda Sensing, the automaker’s sophisticated suite of driver assist and active safety technologies.

One of the truly notable features of the new Honda Civic is its fuel efficiency, which has always been high throughout the years. For 2022, the Civic nets up to 42 mpg on the highway and 33 mpg in the city, achieved through its 1.5-liter turbocharged engine and without need for electrification. That efficient, straightforward approach helps keep Civic’s base price at $21,700, low enough for entry-level buyers in large numbers to benefit from high fuel efficiency and commensurately lower carbon emissions.

In fact, Civic has distinguished itself as the best-selling vehicle of any type with first-time buyers in America for the past seven years, with more than 1.7 million sold over the past five years alone. Civic has been built in North America for the past 35 years and the all-new 2022 11th generation model is no exception, coming from Honda’s Indiana assembly plant.

Similar in size to Audi’s Q5 SUV, the Q4 e-tron is powered by one or two electric motors depending on configuration. The base Q4 40 e-tron sends an estimated 240 horsepower to the rear wheels through a permanently excited synchronous motor. The Q4 50 e-tron quattro and Q4 50 Sportback e-tron quattro add a temporary on-demand asynchronous motor to drive the front wheels as needed. The second motor brings total output to an estimated 290 horsepower. When not in use, the front motor doesn’t consume any energy or add any load resistance, so the drivetrain’s efficiency is like that of the rear-wheel drive system.

Both drive configurations are powered by a single 77 kWh battery located between the axles to optimize weight distribution. Preliminary estimates put the Q4 40 e-tron’s range at approximately 250 miles.

The drivetrain is configured to regenerate energy using what Audi calls intelligent recuperation, which incorporates navigation and topographical data in addition to the three regen modes selectable via steering wheel paddles and brake pedal modulation. The battery can be charged using either alternating or direct current, up to 11 kW with AC and up to 125 kW DC using a high-speed charger.

The Q4 e-tron interiors feature a 10.25-inch digital instrument cluster in front of the driver and a second, 10.1-inch touchscreen to operate the infotainment and navigation systems. A new steering wheel has seamless touch surfaces to control the instrument cluster. Available as an option is an augmented reality head-up display, which superimposes relevant driving information over the real-world view out the windshield at what is perceived to be a distance of 30 feet ahead of the driver, “creating an integrated and eyes-forward experience,” says Audi.

Several driver-assist systems are packaged into the Q4 e-tron models, ranging from High-Beam Assist to Adaptive Cruise Assist. Combined with Traffic Jam Assist, the adaptive cruise control can guide the SUV through its entire speed range. A Predictive Efficiency Assist program optimizes energy consumption over the duration of a trip.  

Audi expects to produce the Q4 e-tron models at its Zwickau, Germany, plant with a net carbon-neutral footprint. Zwickau will incorporate renewable electricity to help achieve this certification. The Q4 e-tron SUVs should be on sale in the U.S. in late 2021 with a starting MSRP of less than $45,000.

Volvo’s positioning of the C40 Recharge is interesting in an era where an abundance of new models are identified by their makers as SUVs, though many could just as easily be called large hatchbacks. This is in reverse. Volvo doesn’t describe the C40 Recharge as an SUV – thought it certainly could be categorized that way – but rather, says it ‘has all the benefits of an SUV’ like a high seating position, but with a sleeker body design. We’ll chalk it up to marketing.

However you define it, the model is powered by a 78 kWh battery driving front and rear electric motors for zero-emission driving. Anticipated range is estimated at about just over 200 miles on a charge, with an official EPA rating still to come. Range is expected to improve over time with over-the-air software updates, Volvo says. The battery is configured to be fast-charged to 80 percent in about 40 minutes. Buyers of the C40 Recharge, and all-fully electric 2022 Volvo vehicles, will receive 250 kWh of complimentary charging for the first three years of ownership using Electrify America’s charging network. After that, owners will be eligible for Electrify America’s Pass+, with Volvo picking up the membership fees for the first year.

The C40 Recharge is the first Volvo with a leather-free interior. Upholstery options include renewable wool fiber or a combination of suede textile (made of recycled plastic) and micro-tech material. The carpet and much of the interior panels and trim are also made using recycled plastics.

Other interior features include dual-zone automatic climate control, heated front and rear seats, a heated sport steering wheel wrapped in a synthetic material, a 12-inch driver display instrument panel, and a 9-inch center display panel. The infotainment system in the C40 Recharge was developed with Google and is based on the Android operating system. Google services, such as Google Maps, Google Assistant, and the Google Play Store are built in, and owners have access to Google apps using the car’s unlimited data.

Driver aids built into the C40 Recharge include Adaptive Cruise Control, Lane Keeping Aid, Oncoming Lane Mitigation, and Road Sign Information, which displays information alerts – speed limits, do not enter and other signs – in the speedometer.

Starting at a base price somewhat south of $60,000, the C40 Recharge is available through online orders only. It will come with a convenient care package that includes service, warranty, roadside assistance, insurance, and home-charging options. To simplify the online ordering process, the C40 Recharge will be available in one trim level called Ultimate. This model has ‘every available feature,’ says Volvo, including a panoramic fixed moonroof, pixel LED lighting, 360-degree surround-view camera, and Harmon Kardon premium sound.

The Santa Fe’s new plug-in hybrid powerplant comes a year after the all-new generation 2021 model saw its first hybrid option. Hybrid power was just one of many important upgrades for this five-passenger, mid-size sport utility vehicle last year. Along with its bold new look, Santa Fe gained upgraded electronics, additional driver-assist systems, and two new efficient 2.5-liter/2.5-liter turbo engines plus the efficient 1.6-liter hybrid.

Augmenting the standard hybrid’s 1.6-liter, direct-injected four-cylinder turbo engine and 90 horsepower electric motor is this year’s PHEV’s plug-in capability and larger battery pack. Power is transferred to the wheels through a smooth-shifting six speed automatic transmission. Electrical power is stored in a 12.4 kWh lithium-ion battery pack, which should provide enough juice to propel the Santa Fe up to 30 miles in pure electric mode.

Available in SEL Convenience and Limited trim levels, Santa Fe is a right-sized package measuring in at 188 inches in overall length and 74 inches tall, riding on a 108.8 inch wheelbase. The Santa Fe PHEV is sure-footed for all-weather duty courtesy of Hyundai’s HTRAC all-wheel-drive system complemented by four drive modes.

Its interior features large digital touchscreens including a 12.3-inch digital instrument cluster display, an 8-inch audio display, and a widescreen 10.25-inch navigation display. Wireless device charging, smart phone integration, and BlueLink are provided. Leather upholstery and ventilated front seats are standard equipment. The Santa Fe features multiple cameras positioned around the vehicle to give the driver a better view of surrounding conditions and obstacles. The front camera also serves to provide forward collision avoidance and active cruise control functionality.

For added convenience, Santa Fe PHEV has a self-parking function and cross-traffic backup alert. Hyundai calls this safety suite Reverse Parking Collision Avoidance Assist, or PCA for short. It will warn the driver if a collision risk is detected while backing up under challenging conditions, such as reversing out of a driveway into cross traffic.

Model-specific styling helps the PHEV variant stand out with a bold and aggressive grille treatment, 19 inch alloy wheels, and a panoramic sunroof. Initially, Santa Fe PHEV will be available in eleven states including California, Colorado, Connecticut, Maine, Massachusetts, Maryland, New Jersey, New York, Oregon, Rhode Island, and Vermont. Expect a MSRP of $40,535  for the SEL model and $46,545 in Limited trim.