Green Car Journal logo
Mercedes-Benz EQS electric car driving.

Mercedes-Benz plans to offer a carbon-neutral car fleet in less than 20 years through its ‘Ambition 2039’ strategy. As part of this, more than half of its cars will feature some sort of electrification – powertrains that are either pure electric or plug-in hybrid – by 2030. The company made a significant step in that direction with the introduction of the Mercedes-Benz EQS sedan, an S-Class-like battery electric vehicle. Two models will be available initially in the U.S.: the rear-wheel-drive EQS 450+ with 329 horsepower, and the AWD EQS 580 4MATIC with 516 horsepower. Mercedes-EQ, the company’s electric brand, hints that future plans include a performance version with up to 630 horsepower. It doesn’t take much imagination to see AMG badges on that one.

The EQS has exterior dimensions similar to the current S-Class, but it is a wholly new vehicle based on a modular platform that Mercedes-EQ will use to underpin other luxury and executive-class vehicles. Because there’s no internal combustion engine in front, and with the battery housed in a crash-protected area in the chassis, stylists were free to create a cab-forward body design with a coupe-like greenhouse and short front and rear overhangs. Special attention was paid to the sedan’s aerodynamics, not only for efficiency but also for interior sound management. The resulting coefficient of drag is as low as .20 with the use of Euro-spec 19-inch wheels and the suspension lowered in Sport mode.

High Energy Mercedes-Benz EQS

Powering the standard EQS is an electric propulsion system with a permanent synchronous motor (called eATS by Mercedes) at the rear axle. EQS 4MATIC models have a second eATS at the front axle. A new generation lithium-ion battery with significantly higher energy density powers these motors. The largest of those batteries has an energy content of 107.8 kWh and is managed by software designed to receive over-the-air (OTA) updates so the EQS remains up-to-date throughout its lifecycle. Mercedes-EQ is warrantying the battery to retain 70 percent of its capacity for 10 years or 155,000 miles.

The EQS suspension is like the conventional S-Class and consists of a four-link front axle and multi-link rear axle. Airmatic air suspension, which reduces the overall ride height at high speeds for aerodynamic efficiency, is standard equipment. Four-wheel steering is also standard and available in two versions. When the largest rear-steering angle is ordered (and unlocked using an OTA update), the turning circle of the EQS shortens to a compact-car-like 35 feet.

Mercedes-Benz EQS display.

Power and Performance

Performance statistics are impressive: 4-second 0-60 acceleration times for the 4MATIC version, range of nearly 480 miles (as measured by the more favorable European WLTP test procedure), and the ability to add quick energy to the battery for an additional 185 miles in just 15 minutes when using a fast-charge station.

Performance data, while an important yardstick for any new car, is just a small part of the appeal of the EQS. This is a luxury car, after all, and a Mercedes at that. Mercedes’ engineers have designed so many features into this vehicle – literally something for each of the five senses, save taste – that it took more than 60 pages of press briefing materials to document it all.

Mercedes-Benz EQS interior.

For instance, the EQS emits its own fragrance, while the HEPA filters in the optional Energizing Air Control system scrub incoming air. The ‘driving sound experience’ includes not only a Burmester surround-sound system with programmable soundscapes but also Forest Glade, Sound of the Sea, and Summer Rain calming sounds, produced for the EQS in conjunction with a consulting acoustic ecologist. Optional Automatic Comfort doors will open the driver’s door upon approach, close it when the brake pedal is depressed, and allow the driver to open any of the other doors to ease passenger entry. Some 350 on-board sensors and the sedan’s artificial intelligence monitor sense, and learn from, everything from ambient and road conditions to the driver’s eyelid movements. If the EQS reads a driver’s eyes as sleepy, it will sound an alert. Once it’s parked safely at a rest stop, the EQS has a Power Nap program that will recline the driver’s seat, close the side windows and panorama roof sunshade, dim the lights, and activate air ionization.

EQS Hyperscreen

One of the most innovative features of the EQS interior is the optional Mercedes-Benz User Experience (MBUX) Hyperscreen. Instead of a traditional dashboard and instrument panel, the Hyperscreen is a continual piece of convex glass, stretching from A-pillar to A-pillar, that covers three separate screens, including a 12.3-inch OLED screen in front of the front-seat passenger. Adaptive software in the MBUX programming will suggest infotainment and vehicle functions, and it is the home of the ‘Hey, Mercedes!’ voice assistant feature. MBUX is also used to access EQS Navigation with Electric Intelligence, which not only plans routes but calculates energy demands for the trip, taking into consideration traffic conditions and even changes in driving style along the way. It then plans charging station stops and even determines the lengths of time required at each stop for optimal charging.  

Spacious rear seat in Mercedes-Benz EQS electric car.

Helping to optimize range are several energy recovery options the driver can choose from, including automatic energy recovery during deceleration or braking and three levels of deceleration that can be manually selected via the shift paddles. Also assisting efficiency is ECO Assist, described as ‘situation-optimized energy recovery,’ that results in deceleration so strong it allows one-pedal driving.

Mercedes-Benz EQS Tech

As one would expect given the high level of technological sophistication built into the EQS, it is equipped with a long list of driver-assist and safety features, with a Power Nap program among them. The Driver Assist Package includes Active Distance Assist to maintain a pre-set distance from vehicles ahead, Active Steering Assist, Lane Keeping Assist, Lane Change Assist, and Emergency Stop Assist that recognizes when the driver is not responding to traffic situations. Also included is Active Brake Assist with cross-traffic function, Active Blind Spot Assist, and Evasive Steering Assist, the latter helping the driver avoid a pedestrian or another vehicle. A Parking Package with Surround View system helps the driver park in tight situations, even activating four-wheel steering as needed. Drive Away assist will alert the driver if it senses a potential collision as the EQS starts off.

Electric drivetrain in the Mercedes-Benz EQS electric car.

As technically groundbreaking as it is, the EQS sedan itself is just one facet of Mercedes’ Ambition 2039 goal of carbon neutrality. Each EQS is produced following carbon-neutral practices including the use of recycled materials, from the steel in its body to the yarn in its carpets. The roof of the factory that produces the EQS is covered with photovoltaic cells that produce about 30 percent of the factory’s energy needs. When EQS owners charge their sedans using the Mercedes me Charge app, all the energy comes from renewable resources. The production of lithium-ion batteries at Mercedes’ Hedelfingen plant will also be CO2 neutral in 2022.

Dr. Gill Pratt, Chief Scientist, Toyota Motor Corp.

As Chief Scientist for Toyota Motor Corporation, one of my most important responsibilities is to think about how to address climate change using science, data, and facts. When it comes to electrification, my role is to maximize environmental benefits with the limited number of battery cells the world can produce.

Toyota’s way of thinking about this question is strongly influenced by the Toyota Production System (TPS). It forms the basis for how we conserve resources and eliminate waste to maximize the quality, durability, reliability, and value of our products. Based on TPS, we believe that maximum net environmental benefit can be achieved by considering the most limited resource – in this case the battery cell.

Every battery cell is an investment of environmental and financial resources. Carbon is emitted for every battery cell produced. Once built, every battery cell has the potential to produce more benefit than what was invested, or what we call a positive Carbon Return on Investment (CROI). But that CROI is not guaranteed. The result depends on how the battery cell is put to use. The physics of climate change (which accumulates carbon in the atmosphere for decades) and limited battery cell production suggests that we minimize total carbon emissions from all of the world’s vehicles by maximizing the CROI of every manufactured battery cell.

Let’s consider the average U.S. commute of 32 miles roundtrip each day. In this case, a 300 mile range battery will yield a very low CROI. The reason is that the vehicle carries excessive battery capacity and excessive weight that is rarely needed or used. The bulk of the energy stored in the battery cell (and the battery cell’s weight) will be carried around most of the time for no purpose, consuming extra energy for its transport, and wasting the opportunity to use that energy for more benefit to the environment. In TPS terms, we consider this to be a waste of transport and inventory. Put another way, that same battery capacity could be spread over a handful of plug-in hybrid vehicles (PHEVs), each of which would utilize most, if not all, of the battery capacity while rarely using its internal combustion engine (ICE). In this case, the overall CROI is higher for the same number of battery cells.

As another example: If a battery cell in a battery electric vehicle (BEV) is recharged by a high-carbon intensity powerplant, the CROI of that cell will be small compared to one recharged by a renewable energy powerplant. So in this case, consider a situation of two cars – one ICE-type and one BEV, and two geographic locations – one with renewable power and the other with high-carbon intensity power. More net CROI will be derived by operating the BEV in the area with renewable power and the ICE in the geography with non-renewable power than the other way around.

Finally, if a battery cell ends up in a long-range BEV whose price puts it beyond the budget of a consumer, or in a street parked vehicle that must use high-rate chargers that lower the battery cell’s life, the CROI will again be smaller than what is possible, versus placing the battery cell into, for example, a PHEV.

BEVs are an important part of the future of electrification. But we can achieve greater carbon reductions by meeting customer needs and circumstances with a diversity of solutions. Wasted CROI harms the environment because there is a limited supply of battery cells, and the cost of production to the planet and to the producer is not zero. Given this fact, how and where battery cells are actually used and charged are critically important.

In summary, given limited battery cell production and significant environmental and financial costs, the way to maximize CROI is to target battery cells into diverse vehicle types – hybrid vehicles, plug-in hybrid vehicles, battery electric vehicles, and fuel cell vehicles that match customer needs and circumstances, and maximize the CROI for every battery cell. This strategy is similar to running a factory efficiently in the Toyota Production System, where efficiency is maximized by eliminating waste at each stage of production and maximizing the benefit derived from every resource and cost. And it forms the basis for Toyota’s belief in this result.

The EV6 paints a bold picture of Kia’s take on the booming electric vehicle experience. A close cousin to the Hyundai IONIQ 5, EV6 is compact and efficient yet also aggressive, with this five-door hatch presenting a sporty fastback profile. It offers the muscular styling cues of Kia rally cars with sleek and clean lines while prioritizing a spirited driving experience. It has a long wheelbase for the car’s overall footprint that should add to both on road stability and overall ride quality.

This is the first Kia model to be built on the South Korean automaker’s dedicated Electric-Global Modular Platform. It was designed from the ground up aa a pure electric vehicle, rather than being derived from an existing internal combustion engine model. Kia is signaling a serious commitment to the electric car market with the introduction of the EV6.

While diminutive on the outside, EV6 manages a very spacious interior due to the intelligent packaging of electric drive components. In fact, interior volume compares favorably to that of a midsize to large crossover or SUV, with its roomy cabin translating into a comfortable space for five occupants. Recycled materials are used throughout the cabin. Naturally, all the latest electronic driver assist tools are front-and-center in the EV6 cockpit, along with other innovative systems like an augmented reality head-up display that projects driving info in the driver’s line of sight, plus alerts from the car’s driver assist system.

Kia will offer the EV6 with a variety of drivetrain and battery pack options, including a choice of standard 58 kWh and long-range 77.4 kWh packs. Two- and all-wheel drive versions will be available. The standard range two-wheel drive model uses a 168 hp motor powering the rear wheels or a 232 hp motor powering both front and rear wheels. The longer range variant integrates a 225 hp motor driving the rear wheels with a 320 hp motor delivering power to front and rear.

Those who desire a real performance rush will be interested in the high torque, high power EV6 GT that turns up the volume to deafening levels. Powered by dual motors producing 576 hp, this all-wheel drive EV6 accelerates from 0-60 in about 3.5 seconds, true supercar performance territory.

EV6 enables both 400 and 800 volt charging capability without the need for adaptors, delivering quick charge times and greater flexibility on the road. A high-speed charge bringing the battery from 10 to 80 percent in any EV6 variant takes just 18 minutes. Those in a hurry will find their 2WD 88.4 kWh model gaining about 60 miles of driving range in less than five minutes with a high-speed charge. EV6 features multiple drive modes to accommodate a range of driving styles, from aggressive regenerative braking with a one-foot driving experience to a sail mode that disengages the powertrain to deliver extended coasting.

Kia is planning to launch the EV6 in 2022 and round out their EV portfolio with a total of 11 electric models by 2026.

While an array of brightly-colored Fiat 500s were available, we chose red. No 'green' car for us this time.

A year of pandemic has stopped international – or really any – travel in its tracks. But the world will soon open up and maybe it’s time to plan something big. Here’s our take: Make it a trip to Rome, and amid the diversity of activities you’ll experience there, take in all things automotive, because it is different. Witness the endless sea of tiny city cars parked nose-to-tail – and sometimes backed at right angles to the curb – into impossibly small spots. See the many scooters and motorcycles passing by and the countless ones parked on sidewalks. Note the electric cars and motorcycles charging at street-side public chargers. In tourist-centric piazzas, appreciate the array of human-powered pedicabs with their lightweight, car-like bodies, perhaps the purest form of zero-emission vehicle.

My wife/photographer and I are into cars, travel, food, art, and wine. Italy is a natural since these interests are served up in abundance. In a pre-COVID trip there, we were set to view historic art in Florence, Milan, and Rome, and of course we would be documenting a variety of car-related activities. While we had a full and diverse itinerary planned, we were also looking for something distinctive in the way of a car experience to complement our Italian adventures. We’ve been to the Ferrari, Lamborghini, and Maserati factories in Italy and also attended the Italian Grand Prix, all exciting subjects for words and images. But what’s next?

Palatine Hill, where Rome was founded.

As if fate was calling, we overheard someone talking about his recent Rome tour in a vintage Fiat 500, and how this was the best part of his Italian vacation. Out came his iPhone, and he shared photos of his group traveling in a caravan tour around Rome, in a colorful collage of vintage Fiat 500s in pink, red, yellow, blue, and white, all piloted by tourists experiencing what appeared to be enormous fun while seeing the sights and in general having a blast. That was what we were looking for, so we booked a night tour with Rome 500 Experience to cap off our upcoming Italian immersion.

When the time came for our tour, we made our way to a commercial structure just a short distance from the Colosseum where Rome 500 Experience stores its colorful array of lovingly restored Fiat 500s. Here, we met up with Alvise Di Giulio, proprietor of this unique tour. His love of this iconic car is evident, the culmination of a decades-long Fiat Cinquecento (500) passion that found him personally owning many of these once-ubiquitous city cars produced between 1957 to 1975, before he decided to make a business of it.

Our iconic Fiat 500 drew attention and a thumbs-up throughout our drive, and whenever it was parked.

Nearly four million copies of this diminutive city car were produced during its lifetime, powered by a 500 cc engine for most of its run and a 600 cc engine at the end. The Fiat 500’s small physical footprint and high fuel efficiency certainly qualifies it as vintage ‘green’ car in our book. Still, when presented with an array of colors to choose from, it was no 'green' car for us...we selected a red 500 as our ride.

We set off on our night drive knowing little of what to expect, but with a feeling this was going to be memorable. As owner of Rome 500 Experience and one of the tour’s driver-guides, Alvise is as well-versed on Rome’s history and rhythms as anyone we’ve encountered. His understanding of all there is to know about the Eternal City is impressive, as is his ability to get you around in ways that avoid the congestion inherent in any major urban area. We drove unencumbered streets in our little red Fiat 500 and, at times, were passengers while Alvise tooled around with an air of confidence and purpose that comes from having done this many, many times before, with great joy.

Driving around Rome at night in a vintage Fiat 500 is a wonderful and uncrowded way to experience the Eternal City.

Though we’ve been to Rome before, we visited places we hadn’t seen previously. Of course, important touchstones like the Colosseum, Pantheon, Trevi Fountain, and St. Peter’s Square were on the tour’s drive-by and park-and-stop itinerary. But so were many historic places that were never on our list, like the ruins at Palatine Hill where Rome was founded, Piazza Navona, the Arch of Constantine, and of course many lesser-known courtyards and fountains of historic importance. Plus, there was the Castel Sant'Angelo, built in 123 BC as Emperor Hadrian’s mausoleum and later repurposed as a fortress. Many know it today as a scene of dramatic importance in Dan Brown’s film, Angels and Demons.

There were other interesting stops along the way, including a brief time at the Aventine Keyhole, located in an obscure green door at the Villa del Priorato di Malta on Aventine Hill. Peering through this keyhole, as tourists must, provided a view from our stance in Italy, through the grounds of the villa that’s the sovereign territory of Malta, and into Vatican City, the world’s smallest country. Here, we found the keyhole perfectly framing the Vatican’s St. Peter’s Basilica in the distance. Yes, very cool!

Bocca della Verita (“Mouth of Truth”), which legend has it bites off the hands of liars.

Another off-the-beaten stop was at the Bocca della Verita (“Mouth of Truth”), a marble mask with an obscure face and open mouth located in a portico at the Basilica di Santa Maria in Cosmedin, also at Aventine Hill. Visitors who stick their hand in that mouth had better be confident, since legend has it that it bites off the hands of liars. Truth be told…we didn't suffer that fate. It gained notoriety in modern times as Gregory Peck took the challenge in the company of Audrey Hepburn in the 1953 film, Roman Holiday.

Finally, there was a stop at an unusual site in Rome, the Pyramid of Cestius, built from 18-12 BC as a tomb for magistrate Gaius Cestius. The pyramid was later incorporated into Rome’s Aurelian Walls that surround the city, built in 271-275 AD. Across the way from this pyramid and part of the wall is the dramatically illuminated San Paolo Gate flanked by imposing twin turrets.

Pyramid of Cestius and the San Paolo Gate, part of Rome's Aurelian Walls.

Touring a world-class city at night is always an amazing experience. We've done this before in Paris, Washington DC, and New York, so we knew that doing this in Rome would be unforgettable. Monuments are illuminated and more dramatic, while places of interest are uncrowded. Doing a tour in a vintage Fiat 500, though, adds an extra dimension of fun. The car is iconic-cool and an important part of Italy’s automotive history, so it gets plenty of attention and thumbs-up from people you pass by on your drive.

One of the nice touches is that Alvise shares his passion for the city, its history, and his vintage cars in a most enthusiastic way. You just don’t get that from more traditional and structured tours. This is special, and Alvise – as well as all his driver-guides – ensures you see the excitement of Rome through his eyes, and his perspective.

Alvise Di Giulio, proprietor of Rome 500 Experience.

We experienced a lot during our time in Italy, and as it turned out this was clearly one of the highlights. It was also the perfect ending for our adventures before boarding our Alitalia flight back to Los Angeles the next morning and our drive back to our headquarters on California’s Central Coast, reminiscent of Italy with its moderate Mediterranean climate.

We have fond memories of this tour and motoring around Rome’s ancient streets in a vintage car of historic importance. We liked it so much, in fact, we plan to return and partake in one of the Rome 500 Experience day tours, perhaps one that includes wine touring or a strategic stop for a sumptuous Italian meal.

La dolce vita!

Green Car Time Machine.

Chrysler was in the thick of it in the early 1990s as automakers explored ways to meet California’s new and increasingly stringent Low Emission Vehicle regulations, and in particular the state’s coming Zero Emission Vehicle (ZEV) mandate. Though there was a flurry of activity in the Chrysler camp at first, other auto brands took the lead and we didn’t hear much from Chrysler for quite some time. Then, in 2008 there was an October Surprise. Chrysler unveiled three electric concepts that got people pretty excited, electrifying models from three of the automaker’s brands – Dodge, Jeep , and Chrysler. At the time, these were to lead to at least one production EV model and a renewed electrification effort at the company over the next few years, something that history shows did not materialize. The following article detailing Chrysler’s renewed interest in electric vehicles and its exciting Dodge EV prototype is pulled from the Green Car Journal archives and presented as it was originally published in the fall of 2008.

Dodge EV prototype.

Excerpted from Fall 2008 Issue: In many ways, Chrysler has been late to the party in recent years. While others like Ford, GM, Honda, Nissan, Mazda, and Toyota have forged ahead with eco-friendly advanced technology vehicle programs, Chrysler has largely sat it out in favor of a more traditional road. Maybe we can chalk it up to its former life as part of DaimlerChrysler, but with that automotive marriage behind it there’s no longer an excuse. And excuses are not being offered by Chrysler LLC, as evidenced by its stunning announcement of not one, but three production-intent electric vehicles.

Playing Catch Up With EVs

Playing catch-up wasn’t always the way at Chrysler. In the early 1990s, Chrysler was on top of its alternative fuel game, with forays into virtually all of the important areas unfolding at the time from methanol and ethanol flexible-fuel vehicles to ones running on hydrogen, natural gas, and electricity. Then Chrysler seemed to all but disappear from the running, making news instead with such stylistic models as the Viper, Prowler, and 300, but with little in the way of alternative fuel vehicles beyond its GEM neighborhood electric vehicle and the occasional eco concept. Apparently, those earlier days are returning with a vengeance.

Now Chrysler has announced the coming of a production electric vehicle for the North American market. The automaker is showcasing its efforts with three prototypes – an all-electric Dodge sports car using Lotus Europa underpinnings and two range-extended electrics, a Jeep Wrangler and a Chrysler Town & Country. Chrysler says it will select one of these for production and sale to North American consumers in 2010. This will be preceded by 100 Chrysler electrics in fleet use in 2009.

Dodge EV Uses UQM Motor

All use what Chrysler says is ‘production intent’ technology, incorporating an electric drive motor, a motor controller to manage energy flow, and a lithium-ion battery pack. Chrysler will work with General Electric to develop batteries for the production model. It has also been reported that the automaker is in talks with battery company A123 Systems, which is separately working with GM on the Volt program and has contracts to provide its nanophosphate lithium-ion batteries for production Th!nk electric cars and BAE Systems hybrid bus powerplants. GE Energy Financial Services has invested $20 million in A123 Systems.

While Chrysler has not identified its other suppliers, photos of the Dodge sports car show the use of electric drive components from UQM Technologies, a company noted for its energy dense and high-performance electric drive motors and controllers. Specs provided by Chrysler indicate a 268 hp (200 kW) electric drive motor featuring a whopping 480 lbs-ft torque that powers the performance electric car from 0-60 mph in under 5 seconds. Top speed is said to be 120 mph. Charging at 110 volts is accomplished in 8 hours, or 4 hours at 220 volts.

The electric vehicles are being developed in an in-house effort that’s focusing on electric drive production vehicles and advanced technologies. This effort – called ENVI – is so-named by taking the first four letters of 'environmental.’

The Hummer EV SUV will share key components with the Hummer EV pickup, from its Ultium powertrain platform to the open-air driving experience that comes from its removable Infinity Roof panels. Both the SUV and pickup are being touted as having significant off-roading chops, including the ability to ‘crab walk’ diagonally around trail obstacles thanks to four-wheel steering, and an Extract Mode that utilizes the Hummer’s Adaptive Air Ride suspension to raise the body some 6 inches out of harm’s way.  

Because the SUV is shorter than the pickup – overall by about 10 inches and with a wheelbase nearly 9 inches shorter – GMC is promoting it as having ‘best in class off-road proportions.’ Those proportions, combined with its four-wheel-steering capability, do give it a tight turning radius of 35.4 feet, equal to that of the Chevrolet Bolt.

The smaller platform, though, does have a cost: less room for batteries. The Hummer EV SUV’s double-stacked battery pack contains 20 modules, while the Hummer EV pickup has 24. That means, on paper, anyway, the SUV is less powerful. The Edition 1 version of the SUV that will be available at launch is rated at up to 830 horsepower compared to the pickup’s 1,000. Range is shorter, too, at 300 miles compared to the pickup’s 350. Torque remains rated at up to 11,500 lb-ft, a number GM arrived at by multiplying the twisting force through the gear ratios in the Ultium platform’s front and rear drive units.

How Hummer configures that platform will be a key differentiator between Hummer EV SUV models. Edition 1 and 3X models will have three drive units, one to power the front wheels and one each for the rear wheels. The 2X and 2 models will have two drive units, one up front and one at the rear. The 2 will also have 16 instead of 20 battery modules, lower power output, and shorter range, but will be priced accordingly – 79,995 compared to $105,595 for the Edition 1.

Adding the Extreme Off-Road Package to an Edition 1 raises its MSRP by $10,000, for which the Hummer buyer receives 35-inch Goodyear Wrangler Territory tires on 18-inch wheels (22s are standard). Also provided are underbody armor and rock sliders, front and rear lockers, heavy-duty half-shafts, and the UltraVision camera system that provides up to 17 views around the vehicle to see the surrounding terrain, including under the body, in real time.

Those UltraVision images are among the infotainment channels broadcast on a 13.4-inch high-def touchscreen positioned between the driver and passenger. In front of the driver is another 12.3-inch information screen. GMC promises Hummer occupants a  ‘multisensory, immersive experience’ with customizable features that can tailor not just the sound through the Bose entertainment system and the feel through the haptic driver’s seat, but also the SUV’s steering, suspension, and acceleration response. The center screen can also be used with an updated version of the myGMC mobile phone app to show satellite-rendered trail maps for navigating off-road. The revised app also tracks real-time energy consumption and can find local charging stations.

On the subject of charging, an optional Power Station generator can be used not just to charge personal devices and power recreational gear, but has the power (240v/25A/6kW) to charge other electric vehicles.

The low-floor, skateboard-like Ultium drivetrain platform has one other advantage: It affords several gear storage options. Folding the SUV’s rear seat flat and opening the powered tailgate reveals nearly 82 cubic feet of cargo space, more than GMC’s Acadia SUV with its second and third row seats folded. There is additional storage space hidden beneath the load floor and more in the Hummer’s front trunk.

GMC expects to launch the Hummer EV SUV in Edition 1 form in early 2023. It will  be followed by 3X and 2X models in the spring of ’23, and the base 2 model in spring ’24.

Toyota has ‘fully rebooted’ the second-generation Mirai fuel cell electric vehicle (FCEV) for an evolving automotive arena. While the first-generation Mirai was a four-passenger, front-wheel-drive sedan with a decidedly futuristic design, the new Mirai is Toyota’s flagship sedan, a premium, rear-wheel-drive, five-passenger sports-luxury car in the vein of the Lexus LS, on whose GA-L platform the Mirai is now based. It’s offered in XLE and Limited trim levels, with corresponding differences in equipment and interior materials.

The new Mirai is larger in every dimension except height, more powerful, and has a longer cruising range. Its four-wheel independent multi-link suspension, replacing the previous car’s strut-type front and rear beam axle, improves the car’s handling and performance, as does the change to rear-wheel-drive and the configuration of its new fuel cell system. In combination, those latter two revisions give the Mirai a near 50/50 front/rear weight distribution.

The fuel cell stack in the new-generation Mirai, like the one in its predecessor, takes in hydrogen and oxygen to create electricity without combustion to power its rear-drive motor. Water vapor is the only emissions produced during the process. The stack is about 20 percent smaller and 50 percent lighter, and now fits under the sedan’s hood. A new power control unit and other changes to the stack result in a 12-percent power increase, boosting the Mirai’s rear-drive motor output to 182 horsepower and 221 lb-ft torque (versus the outgoing model’s 151 horsepower and 247 lb-ft).

Electricity is stored in a lithium-ion battery that’s smaller, lighter, and has greater capacity than the Mirai’s previous nickel-metal-hydride battery. The battery rides between the rear seat and the trunk. Three 10,000-psi carbon-fiber-reinforced tanks hold about 11 pounds of hydrogen, giving the Mirai 402 miles of range in XLE models, and 357 in the Limited. Toyota is continuing the practice of offering up to $15,000 of complimentary hydrogen with each Mirai.

Inside the Mirai are seats trimmed in SofTex synthetic leather. The dashboard is dominated by two digital displays, an 8-inch LCD gauge cluster in front of the driver and a 12.3-inch touchscreen in the center of the dash to operate the climate control, infotainment, and navigation systems. To bring down cabin temperatures and reduce the load on the Mirai’s air-conditioning system, Toyota engineers installed extra insulation in the roof and added UV protection in the side windows.

Both Mirai models come standard with Toyota’s Safety Sense 2.5+, a suite of active safety systems with several enhanced functions. Among them is the Pre-Collision System with Pedestrian Detection, which not only registers a vehicle ahead but a bicyclist or pedestrian in front of that vehicle.

Initially the Mirai is available in California only, but Toyota says it is fully optimized for cold-weather operation, hinting that broader availability may be in the works. The Mirai XLE is priced at $49,500 with the uplevel Limited coming in at $66,000 before substantial federal and California state incentives, and potential Toyota incentives as well.

Here’s the thing about plug-in hybrid electric vehicles (PHEVs): You get the benefits of a battery electric vehicle for driving a certain number of zero-emission miles, with the versatility of a gas-electric hybrid without range limitations. There’s no secret to it, and it’s that simple. But PHEV ownership does take some thought, and some effort.

The thought part is straightforward. If you’re in the market for a PHEV and your intent is to drive electric as much as possible, then part of the decision making is choosing a new plug-in hybrid model offering a battery electric range that fits your driving patterns. Some plug-in hybrids offer battery electric range as low as 14 to 19 miles, with a great many featuring electric range in the low to high 20s. Some raise that number up to 42 or 48 miles of battery electric driving, like the Toyota Prius Prime and Honda Clarity PHEV, before requiring a charge or the addition of  combustion power. Many families find the electric range of Chrysler’s Pacifica Hybrid to be entirely workable at 32 miles, with its total 520 miles of driving range reassuring for any driving need.

The effort in owning a PHEV is that you need to install a 240-volt home wall charger and commit to using it to gain maximum benefit. Really, that’s no different than an all-electric vehicle, with the exception that an electric vehicle must be charged to function, while a PHEV will continue operating with the aid of combustion power once batteries are depleted. Both can be charged with a 120-volt convenience charger plugged into a standard household outlet, but that’s rarely a good option since the charging time at 120 volts is so long, while charging at 240 volts is comparatively short. The goal in achieving maximum benefit, of course, is to keep a PHEV charged in any event so you’re operating on battery power whenever possible.

What range do you really need? If your daily driving or commute is about 20 miles – as is the case for so many – then choose a PHEV with a battery electric range offering that capability, or more. Drivers with longer average daily drives should choose a PHEV with greater all-electric range. If you charge every night and wake up with a fully-charged battery ready for your day’s regular activities, you’ll likely find trips to the gas station unnecessary until longer drives are needed. In those cases, there’s nothing to think about because the transition from battery to combustion power happens seamlessly behind the scenes, with no driver action required. Yes, you’ll want to keep gas in the tank for those eventualities, but if your daily use fits within your rated electric range then fill-ups will be infrequent.

From my perspective, the ability to drive electric most of the time with the ability to motor on for hundreds of additional miles without thought is a win-win. I’ve been doing this for years with a variety of PHEV test cars, and more than a year-and-a-half now over 30,000 miles in a Mitsubishi Outlander PHEV. As much as possible, my driving is electric with zero localized emissions, as long as I’m consistent about plugging in at night and my charger isn’t required for another test car. I’m driven to do that not only because driving with zero emissions is the right thing to do, but also because electricity offers a cheaper cost-per-mile driving experience. If you’re on a utility’s electric vehicle rate plan and charge at off-peak hours, there’s even more money to be saved. And let’s not forget the blissful and effortless convenience of charging at home, right?

Any claim that PHEVs won’t deliver their desired environmental benefit is based on assumptions that drivers won’t plug in. That isn’t likely, given that PHEV drivers have paid, sometimes significantly, for the privilege of having a plug-in capability. The notion may have its roots in an unrelated alternative fuel story years ago, when we witnessed the phenomena of motorists driving flexible-fuel E85 ethanol/gasoline vehicles without ever fueling up with E85 alternative fuel. That occurred because of a loophole that allowed automakers to gain significant fuel economy credits by offering flexible-fuel vehicles without any consideration whether drivers would ever fuel up with E85 ethanol. Those vehicles were sold at no premium by the millions, with most drivers unaware their vehicle had an alternative fuel capability or whether E85 fueling stations were nearby.

But this is different. While you have the option to use public charging stations, and that’s a nice benefit enjoyed by many EV and PHEV owners, if you do this right there will be a plug in your garage that requires no effort at all to keep your PHEV charged up. Consider, too, that if a buyer spends the extra money for the plug-in hybrid variant of a popular model, there’s clearly an incentive to plug in most of the time to make the most of one’s PHEV investment.

PHEVs will be with us a long while because they are a sensible solution for many who wish to drive electric, and when used as intended they represent a logical pathway for the all-electric future many envision. There’s no doubt that the increasing number of plug-in hybrids coming now, and in the years ahead, will aim at greater electric driving range than the models that came before them. More choices and greater range will provide an even more compelling reason to step up to a plug-in hybrid for the daily drive.

With the debut of a new high-efficiency Tradesman HFE EcoDiesel, the 2021 RAM 1500 full-size pickup can now be ordered in 11 different models and five engine options, two bed lengths, two cab configurations, and two- and four-wheel-drive powertrains. Whew! The five engines span a wide range of output and efficiency metrics, from the 6.2-liter, 702-horsepower supercharged Hemi V-8 in the newly introduced ‘Apex Predator’ TRX model to V-6 and V-8 mild-hybrid gas engines and a 3.0-liter turbodiesel.

The Italian-made EcoDiesel V-6, now in its third generation, features aluminum cylinder heads and dual overhead camshafts with four valves per cylinder. Induction is via high-pressure, direct-injection nozzles, while a water-cooled, variable-geometry turbine provides boost. The engine is rated at 260 horsepower and 480 lb-ft torque, has earned 22 city/32 highway mpg, and has a towing capacity of up to 12,560 pounds. The new Tradesman HFE EcoDiesel variant ups the ante to an unsurpassed 33 highway mpg, in a model that starts at $42,240 

The mild-hybrid eTorque versions of the 3.6-liter Pentastar V-6 and 5.7-liter Hemi V-8 replace the standard engine alternator with a belt-driven motor-generator. Working with a 48-volt, 430 kWh lithium-ion nickel-manganese-cobalt battery pack, the motor-generator enables the engines’ stop/start function and brake-energy regeneration, and it provides short bursts of torque under certain driving conditions. The air-cooled battery pack is mounted to the back wall of the RAM's cab.

The eTorque Pentastar V-6 produces 305 horsepower and 269 lb-ft torque and is EPA rated at 20 city/25 highway mpg. The eTorque Hemi V-8 puts out 395 horsepower and 410 lb-ft torque and has earned 17 city/23 highway mpg ratings. By comparison, the 5.7-liter Hemi V-8 without eTorque assist has the same output ratings but lower fuel economy: 15 city/22 highway mpg. All these engines route their power through eight-speed TorqueFlite automatic transmissions.

New and improved driver aids available on the 2021 RAM 1500 include a full-color head-up display that can show up to five content areas at once; a digital rearview mirror that displays real-time video from a rear-facing camera (but can revert back to a traditional reflective mirror); and trailer-reverse steering control, which allows the driver to turn a dashboard-mounted dial in the intended direction of the trailer (handing the actual steering control to the system). Adaptive cruise control, forward-collision warning, blind-spot monitoring and pedestrian detection are also among the safety and security features available for the RAM.

The RAM 1500 remains the only light-duty full-size pickup in the segment with a coil-spring rear suspension system, which the maker says improves ride and handling while not compromising towing or hauling capacity. Buyers will find entry-level RAM 1500s starting at $32,595 and rising upward, with the high-performance TRX topping out the lineup at $70,095.

The Chrysler Pacifica Hybrid minivan.

Clearly, Chrysler’s original minivans had a great run, and for good reason. All were based on the same platform featuring a low floor and an overall design that allowed the ability to park in a typical garage. Plus, they drove like cars and not trucks due to their passenger car-like construction. Offering different flavors of the minivan under the Dodge, Plymouth, and Chrysler brands – with varying levels of sophistication – was a smart move as well. But alas, change is inevitable even within notable success stories. Enter the Pacifica Hybrid.

The company’s sixth-generation minivan broke new ground in 2017 as the Chrysler Pacifica replaced the Town & Country. Featuring an exciting new design on an all-new platform, among its many innovations was the inclusion of the Pacifica Hybrid variant, the first and only plug-in hybrid minivan in the U.S. market to this day.

Chrysler Pacifica Hybrid minivan driving.

Pacifica Hybrid Gets a Refresh

Four years later, the Pacifica Hybrid now features a redesign with deeper sculpting and sport-utility influences. It’s available in Touring, Touring L, Limited, and Pinnacle iterations, all powered by a 3.6-liter Atkinson V-6 engine mated with electric motors and a nine-speed electrically variable transmission.

This transmission incorporates two electric motors that drive the front wheels via a clutch, rather than using just one motor for propulsion and the other for regenerative braking. The one-way clutch is located on the input side of the transmission and the output shaft of the motor. This one-way clutch enables power from both ‘A’ and ‘B’ motors to act in parallel, delivering the full torque of both motors to the wheels. The system provides a combined 260 horsepower. All Pacifica Hybrid models feature front-wheel drive, with all-wheel drive available on the Touring L model.

Interior of Chrysler Pacifica hybrid minivan.

Energizing the electric drive system is a 16 kWh lithium-ion battery pack comprised of six 16-cell modules. The pack is located under the second row of seats. The benefit of this battery placement is that it doesn’t infringe on interior space, so cargo-carrying capacity is not sacrificed. The battery pack provides 32 miles of battery electric range and charging to full capacity can be done in two hours using a 240-volt charger. Total hybrid driving range is 520 miles.

Features Enhancing Family Safety

A suite of driver assistance systems is available either as standard or optional equipment, depending on trim level. Among these are a 360° Surround View Camera, Rear View Camera, Full-Speed Forward Collision Warning with Active Braking, Pedestrian Automatic Emergency Braking, Blind Spot Monitor, Adaptive Cruise Control, Parallel/Perpendicular Park Assist, and Lane Departure Warning with Lane Keep Assist. 

Rear passenger monitoring in the Chrysler Pacifica Hybrid.

Pacifica Hybrid’s Uconnect 4 system comes with a standard 7-inch or optional 8.4-inch touchscreen, standard Apple CarPlay and Android Auto, and available 4G Wi-Fi. Uconnect 4 with the 8.4-inch touchscreen displays vehicle performance, power flow, driving history, and adjusts charging schedules for less expensive off-peak hours.

The conventionally-powered Pacifica minivan offers a base price of $35,045, while the Pacifica Hybrid starts at $39,995 for the Touring L model and travels upward to $50,845 for the Pinnacle edition.

Power diagram for the Chrysler Pacifica Hybrid.

The efficient plug-in hybrid variant of BMW’s third-generation X3 premium compact crossover, the X3 xDrive30e shares drivetrain components, technology, and driving characteristics with the automaker’s 330e plug-in sports sedan. Manufactured in Spartanburg  North Carolina on BMW’s refreshed cluster architecture (CLAR) platform, the X3 x30e PHEV blends the efficiency of a hybrid powertrain, super low emissions, and instantaneous low to midrange torque for a spirited drive experience.

Motivation comes from BMW’s 2.0-liter direct injected, turbocharged 4-cylinder engine paired with a 107 horsepower electric motor. The result is 288 total combined horsepower and 310 lb-ft torque that provides a zero to 60 mpg sprint in 5.9 seconds. Fuel efficiency is EPA rated at 60 MPGe while driving on battery power, with a combined city/highway rating of 24 mpg on gasoline. It features an overall driving range of 340 miles on 13.2 gallons of gas plus 18 miles on battery power.

A frame-cradled, air-cooled 12.0 kWh lithium-ion battery supplies energy to the motor. Charging is via an on-board 3.7 kWh charger. Charge time is 3.5 to 6 hours depending on source. Gear shifting is delegated to the time-tested ZF 8-speed Sport Automatic transmission featuring sport and manual shift modes, steering wheel-mounted paddle shifters, and launch control. All-weather traction is enabled by BMW’s xDrive all-wheel drive.

The 5-passenger compact SUV features a driver-centric cockpit layout with premium materials like Sensatec upholstery, dark oak wood trim inlays, and quality hard and soft touch surfaces. Front seats feature 10-way power adjustment, with the rear offering 40/20/40 split and fold-down functionality with adjustable seat backs for passenger comfort. A 12.3-inch digital instrument cluster and 10.25-inch center information display provide information and controls, along with Apple CarPlay and Android Auto compatibility.

Standard equipment includes ‘smart key’ recognition and personal settings memory, a futuristic yet comprehensive electric drive monitor, remaining electric-only range minder, and navigation-controlled chassis efficiency monitoring. The latest in driver assist and active safety technology is offered. Rounding out this very comprehensive package are voice-activated commands, integrated navigation, optional 360-degree surround camera, premium audio, and automatic three-zone climate control. A two-way power glass moonroof is optional.

All this comes at a base price of $49,600, about $6,600 more than the conventionally-powered X3 xDrive 30i.

It’s no secret why the RAV4 is such a global hit. Beyond its obvious style, this is a model that carries a lot of gear, gets excellent fuel economy, and exhibits the traditional high standards for fit and finish found with Toyota products. What’s not to like? Toyota's latest variation, the RAV4 Prime, brings a plug-in hybrid variant to the model that adds to its appeal with 42 miles of all-electric driving range and 600 miles of total range.

RAV4 Prime is powered by the automaker’s 177 horsepower, four-cylinder DOHC engine and a pair of electric motors, one at the front and another at the rear, for on-demand four-wheel drive. Total combined power is a stunning 302 horsepower, which Toyota points out makes it the second-fastest car in its lineup behind the marque’s Supra sports car.

Available in two models, SE and XSE, RAV4 Prime combines lessons learned with Toyota’s other hybrid success stories like the groundbreaking Prius. While many competitors have focused on moving toward all electric power, Toyota has opted to focus on refining hybrid technology to motivate its electrified models. The RAV4 Prime presents an excellent example: Simply, it’s a popular and appealing plug-in crossover SUV offering on- and off-road capability with exceptional drivability, handling, and performance.

There’s a wealth of technology at work beneath the skin in the RAV4 Prime that makes it not only powerful, but exceptionally functional and efficient. Its 18.1 kWh battery is positioned beneath the floor, so it doesn’t impact interior and cargo space. Beyond its truly usable all-electric driving range, the RAV4 also delivers a 94 MPGe rating while operating on battery power. Recharging the battery is handled via a 240-volt home or public charger in about 4 ½ hours, or in about 12 hours when plugging into a conventional 120-volt AC outlet. When faster 6.6 kW charging is available, the RAV4 Prime can charge up in about 2 ½ hours.

Inside, driver and passengers enjoy heated and cooled leather seats, Apple CarPlay/Android Auto, JBL audio, and a handy conductive phone charging pad. The RAV4 Prime also comes will all the advanced safety and driver assist systems desired these days including Toyota's Safety Sense 2.0, which includes pre-collision with pedestrian detection, dynamic radar cruise control, lane departure alert with steering assist, lane tracing assist, and road sign assist. Also available is front and rear parking assist with automated braking, and rear cross traffic braking.

On the outside, the Prime edition features special badging and 19-inch alloy wheels, the only indications that call out this new and advanced version of the RAV4. Cost of entry for the RAV4 Prime is $38,100.

Since the launch of Green Car Journal in 1992, it’s been clear to me that environmental compatibility isn’t just a passing phase. Today, the most forceful drivers of change are the need to mitigate carbon emissions and reduce mankind’s potential impacts on our global climate. But long before that, there were other imperatives already prompting a rethinking of mobility and how it was affecting our collective lives.

Urban areas were often choked with smog, the result of far too many vehicles on the road,  with levels of tailpipe emissions that would be unthinkable today. Major cities across the country were in non-compliance with air quality standards. Smog alerts recommending limited outdoor activity were an unfortunate and regular occurrence in major cities and regions. I lived this growing up in the greater metropolitan L.A. area, as the smog from Los Angeles migrated some 50 miles eastward and stopped at the San Gabriel Mountains two miles from my home, causing the mountain range to magically disappear in the haze every summer.

Still, there were bright spots amid the haze. California launched its Low Emission Vehicle Program in 1990, mandating cleaner vehicles in the years ahead. Part of this landmark program was the Zero Emission Vehicle Mandate that helped accelerate electric vehicle research and development, and ultimately drove auto manufacturers to get serious about vehicle electrification.

An important part of Green Car Journal’s mission over the years has been to explain the benefits and characteristics of ‘green’ cars of all types, regardless of their approach to better environmental impact. In the end, the goal has always been to present an overview of the directions, technologies, and fuels being explored, dive down into specifics, and enable readers to make up their own minds on what’s important based on what they learn.  

A complementary part of this has been the Green Car Awards, starting with the magazine’s annual Green Car of the Year® award first presented at the L.A. Auto Show in 2005. Green Car Journal editors conduct significant research every year to review the universe of new models to consider as the ‘best-of-the-best’ that exhibit commendable environment performance. Through an extensive vetting process, the field is narrowed down to five finalists for each award category. The goal has remained the same since that first award program in 2005 – recognize vehicles that significantly raise the bar in environmental performance and exhibit environmental leadership.

When it comes to positive change, leadership is important. A new direction acknowledging the automobile’s impact on our environment is important. New and better choices that speak to our future are important. These are among the compelling reasons why the Green Car Awards exist.

In the early years of the Green Car Awards, there were relatively few truly worthy vehicles to be considered. But change, though slow, has been ongoing. Now our cities and streets benefit from an ever-growing number of vastly more efficient, lower emission, and environmentally positive vehicle choices powered by advanced or electrified powerplants. Today, ‘green’ cars have come into their own through design, innovation, and consumer desire. That last part is crucial. Auto manufacturers have done a good job of bringing an increasing number of advanced and electrified vehicles to market. They have invested heavily, even subsidizing some models’ real cost along the way, to make them approachable to buyers.  But a serious and sustained desire for these vehicles had been lacking…until now.

Thankfully, the tipping point for ‘green’ cars is now behind us. While not all new car buyers are in the market for a high efficiency, hybrid, plug-in hybrid, or electric vehicle, the numbers are no longer small, and they’re growing significantly. Interest and demand are up. Consumers are eager to know more and they want to understand which vehicles, and manufacturers, are leading the field. And we’re proud that our annual Green Car Awards help deliver this critical information.

Somewhat smaller than Lincoln’s first plug-in SUV, the Aviator Grand Touring, the Corsair is a luxury-oriented, two-row crossover that injects comfort and class into a compact premium crossover segment dominated by European offerings. It's offered in both conventional gas- and plug-in hybrid-powered variants.

When one looks to Corsair, its distinguishing characteristics and luxury appointments mean there’s no mistaking it for anything other than a Lincoln. Its attractive design features creased and organic dynamic bodylines, a Lincoln-esque diamond patterned grille, and oversized alloy wheels. Inside is a premium leather-upholstered, wood-accented, and tech-rich cabin. The compact Lincoln Corsair Grand Touring lives large enough for four to five well-sized adults and a complement of weekend luggage.

At the heart of 2021 Corsair Grand Touring beats a 2.5-liter inline 4-cylinder, Atkinson cycle gas engine and a twin electric motor planetary drive system. A constant variable transmission transfers torque to the front wheels. A third motor producing 110 lb-ft torque is dedicated to driving the rear wheels, bringing the confident traction of all-wheel drive. Combined, this powertrain delivers an estimated 266 horsepower.

EPA fuel efficiency is rated at 33 combined mpg and 78 MPGe when running on battery power. It will drive 28 miles on its lithium-ion batteries with a total range of 430 miles. Conventionally-powered Corsairs net an estimated 22 city and 29 highway mpg, and 25 mpg combined .

A driver-centric cockpit offers infinitely adjustable and heated leather seating surrounded by wood and burnished metal accents. A comprehensive dash and infotainment display, back-up dashcam, pushbutton drive commands, head-up display, parking assist, and smartphone keyless access are standard or available. Top-of-the-line Co-Pilot 360 driver assist, electronic safety, and personal connectivity features are offered. Corsair Grand Touring’s 14.4 kWh battery module is located beneath the model’s body pan, resulting in a lower center of gravity and unobstructed rear deck cargo space.

The Corsair Grand Touring has an MSRP of $50,390, about fourteen grand more than the conventionally-powered base model. It's expected to make its way to Lincoln showrooms sometime this spring.

The Ford Mustang Mach-E, a slick crossover SUV with a name harkening back to the marque’s performance-based Mustang Mach 1 that debuted some five decades back, presents a new twist in Mustang heritage. Unlike the Mach 1, there’s no rumbling 428 cubic-inch big block V-8 and no emissions…because there’s no tailpipe. That’s because the Mach-E is powered by an all-electric powertrain that provides zero-emission driving.

As a five-door crossover, The Mach-E is far afield from the two-door Mustang coupe it joins in the Ford lineup. But key Mustang influences throughout let us know this is indeed of Mustang lineage, even as Mach-E exhibits more futuristic DNA. Among its signature Mustang styling cues are a long hood, aggressive headlights, tri-bar taillights, and of course all the expected Mustang badging. What’s different is decidedly a departure from the familiar Mustang form, most notably a silhouette that blends elements of crossover and coupe design.

The Mach-E is available as Standard Range and Extended Range variants featuring differing battery capacities, with rear- or all-wheel drive. The Standard Range version uses a 75.7 kWh lithium-ion battery that’s expected to offer a 230 mile range in rear-wheel drive trim. Up to 300 miles will be delivered by the Extended Range version with its larger 98.8 kWh battery. A single permanent magnet motor is used on the rear axle of the rear-wheel drive Mach-E and one on each axle for all-wheel drive models. Performance specs for these Mach-E models range from 255 to 332 horsepower and 306 to 417 lb-ft torque.

A Mustang Mach-E GT Performance Edition slated for next summer raises performance levels with 459 horsepower and 612 lb-ft torque that should deliver 0 to 60 mph sprints in the mid-three second range. This performance model is equipped with a MagneRide Damping System, an adaptive suspension technology that enables the car to hug the road while delivering an exciting and comfortable ride

Batteries are located inside the underbody of the Mach-E between the axles. Liquid cooling optimizes performance in extreme weather. Positioning batteries outside the passenger and cargo areas allows ample room inside for five adults and 33.8 cubic feet of cargo, with capacity increasing to 59.6 cubic feet with the rear seat folded. Mach-E buyers can opt for a 240 volt Ford Connected Charge Station for home charging. A 120-volt mobile charger included with the Mach-E conveniently plugs into a standard household outlet, but charges considerably slower. The Mach-E can handle 150 kW fast charging at public charge stations offering this capability.

Three Mach-E models are currently available to order – Select, Premium, and California Route 1 – priced at $42,895 to $49,800. The Mach-E GT coming later next year can be pre-ordered at an entry price of $60,500.

The 2021 introduction of the Audi e-tron Sportback now adds a second all-electric model to Audi’s stable of electrified vehicles, contributing to the automaker’s corporate goal of electrifying 30 percent of its U.S. model lineup by 2025. The e-tron Sportback is a crossover SUV like the standard e-tron, but with a coupe-like four-door body influenced by the shape of the A7 Sportback sedan. Despite the steep pitch of the e-tron Sportback’s rear roof, there is ample headroom at all five seating positions.

Mechanically, the 2021 e-tron Sportback benefits from several improvements Audi made to the e-tron powertrain. The e-tron’s quattro all-wheel-drive system is powered via asynchronous electric motors on the front and rear e-tron axles. In a new-for-2021 development, only the rear axle provides e-tron Sportback propulsion in most driving conditions to improve efficiency. The front motor is designed to engage instantly in spirited driving and cornering situations or before wheel slip occurs in inclement weather conditions.

Audi e-tron Power

Power for the motors is provided by a 95 kWh battery that Audi has configured to use at less than total capacity, thus optimizing battery longevity and repeatable performance. For 2021, e-tron drivers can access 91 percent, or 86.5 kWh, of the battery’s total capacity, up 3 kWh from the previous model. Also new for 2021 are battery charge ports on both sides of the vehicle to enhance charging convenience.

Output for the e-tron Sportback is rated at 355 horsepower and 414 lb-ft torque, though with Boost Mode engaged those numbers rise to 402 horsepower and 490 lb-ft. In Boost Mode, the e-tron Sportback accelerates from 0-60 mph in 5.5 seconds. EPA rates the e-tron Sportback’s efficiency at 76 city and 78 highway MPGe, and 77 combined, with driving range of 218 miles. The e-tron Sportback’s regenerative braking system is designed to recoup energy from both motors during coasting and braking. Steering wheel paddles control the amount of coasting recuperation in three stages.

Driver Assist and Electronics

The e-tron Sportback is equipped with 20-inch wheels and adaptive air suspension as standard equipment. Standard driver assistance systems include Audi pre sense basic, side assist with rear cross-traffic assist, and active lane-departure warning. Among the features on the e-tron Sportback’s MMI touch screen system is a map estimating where the SUV can travel given its current state of charge, plus suggested charging station locations along the route. Amazon Alexa is integrated into the e-tron Sportback’s MMI system, and a subscription service provides access to news, music, audiobooks, and control of Alexa-enabled devices from the SUV’s steering wheel.

With a cost of entry at $69,100, the e-tron Sportback’s pricing is solidly in the midst of its competitors in the luxury electric vehicle field, like the Jaguar I-Pace and Polestar 2.

Toyota presents a reimagined, bullet train-inspired minivan in its all-new 2021 Sienna. The fourth-generation Sienna family hauler boasts greatly improved drive dynamics, interior comfort, and a Toyota estimated 33 combined mpg, an impressive efficiency number thanks to its standard gas/electric hybrid powertrain. An all-wheel drive option is available in all trim offerings. 

Taking design cues from the Toyota Avalon, Sienna’s dynamic bodyline lends an aerodynamic elegance generally reserved for premium sedans. Longer, wider, and visually lower to the pavement, in any trim level Sienna gives the competition a run for the consumer dollar. This is especially true since a standard hybrid drivetrain means Toyota effectively broadens Sienna’s market appeal.

Built on Toyota’s TNGA-K world car platform, the 2021 Sienna blends the latest technology with much-improved ride comfort in five available trim levels. Toyota Safety Sense is standard, offering a comprehensive active safety suite that includes Automatic High Beams, Full-Speed Range Dynamic Radar Cruise Control, Lane Departure Alert with Steering Assist, Lane Trace Assist, Pre-Collision with Pedestrian Detection/Low Light Detection, and Road Sign Assist. Additional active safety and driver assist technologies are available throughout the trim walk.

Innovations for the new Sienna include kick-open and closing sliding side doors and rear gate, a four-zone climate control system, optional heated captain’s chairs with ottomans and a super-long adjustment range in the second row, plus an onboard vacuum and refrigerator. The Sienna LE and some XLE models come equipped with eight seat configurations overall. Some XLE models, as well as the XSE, Limited, and Platinum, afford comfortable seating for up to seven and feature  the Super Long Slide second-row captain’s chairs, with the Limited and Platinum FWD models further equipped with ottomans.

Sienna offers a segment-first power tilt and telescoping steering column with a heated steering wheel, along with a digital rearview mirror, 10-inch color heads-up display, and a 12-speaker JBL Premium Audio system. Minivan buyers wishing for more of an all-weather SUV utility experience will appreciate that the 2021 Sienna is available as an all-wheel-drive variant with a stated towing capacity of 3500 lbs.

For the adventurous, 2021 Sienna comes to market with a full line of dealer-available accessories designed and manufactured by Yakima, including a rooftop carrier, cross bars, bike rack, and more. Also offered is an available tow hitch and factory optional, 1500-watt inverter with 120-volt AC outlets to power camping equipment.

The fourth-generation 2021 Toyota Sienna is a milestone for Toyota. It blends minivan utility with SUV all-weather capabilities and premium sedan ride and drive comfort. Plus, its standard hybrid power provides for a fuel-efficient minivan ownership experience, further representing Toyota’s commitment toward fleet-wide electrification to reduce carbon emissions and environmental impact.

As part of Jeep’s plan to offer electric drivetrain options for all its nameplates over the next few years, the Wrangler is being offered with a plug-in, gas-electric hybrid powertrain in the 2021 model year. The Wrangler 4xe will be available  in three models – 4xe, Sahara 4xe, and Rubicon 4xe – the latter equipped with a 4:1 transfer case and other hard-core off-roading equipment found on conventionally powered Rubicon models.

The Wrangler 4xe powertrain uses a turbocharged, direct-injected, 2.0-liter inline-four engine, two high-voltage motor-generators, and a 400-volt, 17 kWh lithium-ion battery pack located beneath the second-row seat. One of the motors, mounted to the front of the engine instead of a conventional alternator, handles the Wrangler’s stop/start functions and sends power to the battery pack. A 12-volt battery is still used to power the Jeep’s accessories. The second motor is mounted in front of the eight-speed TorqueFlite automatic transmission in place of a conventional torque converter.

Dual clutches manage power from the engine and electric motor, enabling them to work in tandem or allowing the Wrangler to operate in electric-only mode for up to 25 miles. In total, the powertrain develops 375 horsepower and 470 lb-ft torque, and it delivers up to an estimated 50 MPGe. To retain the Wrangler’s ability to ford 30 inches of water – part of the brand’s ‘Trail Rated’ capability – its electronics are sealed and waterproof.

The Wrangler 4xe offers three E Selec driving modes. ‘Hybrid’ uses the motor’s torque first and then combines torque from the motor and engine when the battery reaches a minimum charge level. ‘Electric’ powers the Jeep via the motor only until the battery is at minimum charge. Then there’s ‘eSave,’ where power comes primarily from the engine, allowing battery charge to saved for later use. All three modes are available when the Wrangler’s transfer case is in either 4Hi or 4Lo.

An Eco Coaching readout via the Jeep’s Uconnect system illustrates power flow through the system and the impact of factors that include regenerative braking, which itself has several modes. With 4WD engaged, all four wheels contribute power to the system under braking, and a Max Regen setting can slow the Jeep faster while it’s coasting and generate more power for the battery pack.

Like all Wranglers, the 4xe models will be equipped with skid plates, tow hooks, and other ‘Trail Rated’ accessories. Electric Blue exterior and interior design cues set the 4xe models apart visually from other Wranglers. Jeep’s Wrangler 4xe will be on sale by the end of the year at an expected base price of about $40,000.