Green Car Journal logo
Polestar 3 electric car driving on the highway.

The midsize Polestar 3 SUV, the latest Polestar model to hit U.S. shores, is distinguished with sculpted styling, a minimalist interior, and loads of tech. It also features a good amount of real-world range and, living up to the automaker’s sporty performance goals, great handling and plenty of power.

The rub: The 2025 Polestar 3 starts at almost $69,000 and can edge close to $100,000 in top performance trim with all the available options. It’s not for the multitudes who live on tight budgets.

Likely rivals for shoppers’ attention include electric SUVs from the likes of Audi, BMW, Mercedes-Benz, and Volvo. You could toss in models such as the Cadillac Optiq, Tesla Model Y, and Genesis Electrified GV70, but they really play in a different segment as compact SUVs.

Rear view of Polestar 3 electric car.

Polestar offers the 3 in three “long range” powertrain choices with option packages to increase the tech, driver assist and comfort, and “gee, look at me” content. The base single-motor, rear-wheel drive version delivers, per the EPA, up to 350 miles of range. None of the competing high-end electric SUVs can match that, although none offer single-motor version, opting instead for 100 percent all-wheel drive lineups.

More powerful but less efficient dual-motor, all-wheel drive versions of the Polestar 3 come in two flavors. The base dual-motor trim boasts a segment-leading 315 miles of range, per the EPA’s rating system. Adding the Performance Pack option drops the Polestar 3 Dual Motor’s rated range to between 279 and 300 miles, depending on tire and wheel size. That’s in the ballpark with the 300-mile Audi Q8 e-tron, 307-mile Mercedes-Benz EQE SUV, 309-mile BMW iX xDrive50, and 310-mile Volvo EX9.

Sizewise, the Polestar 3 sits near the bottom of it pack. While its passenger cabin is roomy, the 3 overall is as much as 5.5 inches shorter than other premium and luxury mid-size electric SUVs. It sits mid-pack in cargo capacity, though, bested by the BMW iX and Audi but leading the EQE SUV and the Volvo EX90. Pricewise, the Polestar starts lower than any likely competitor.

Who is Polestar?

The Swedish EV maker started life as an independent tuning shop for Volvo racers, then was absorbed by Volvo Cars, which has been owned by China’s Zhejiang Geely Holding Group since 2010. In 2017 Geely decided it wanted a stand-along EV makers in its stable to market performance-oriented but premium-level vehicles globally. Polestar was spun off from Volvo to be that company.

It is publicly traded, but a majority of its shares are held by Geely and Geely founder and CEO Li Shufu’s private PSD Investment. Volvo Cars also holds a stake.

Polestar’s first model, the limited production Polestar 1, was a sport coupe with a 600 horsepower plug-in hybrid powertrain and 52 mile all-electric range, the best in the business. It was sold globally, though in very small numbers, from 2019 through 2021 and won praise for its styling and performance. Only about 1,500 of the $150,000 cars were built and just 250 of them made it to the U.S.

The Polestar 2, a compact sedan-styled hatchback, launched in 2019 and still is sold in Asia and Europe. U.S. sales of the sporty 2 were curtailed this year in the face of stiff tariffs on vehicles imported from China, where it is built.

Front detail of Polestar 3 electric SUV.

Polestar 3 went on sale in the U.S. earlier this year in dual-motor trim, with the single-motor version launching in April. Models sold in the U.S. are built alongside the Volvo EX90 at Volvo’s South Carolina assembly plant. The 3 will be followed later this year by the Polestar 4, a tall sedan styled midsize SUV that shares most of its powertrain, suspension, and interior with the 3. It will be built in South Korea.

A Polestar 5 sport sedan – the brand’s new flagship model – is slated for 2026 and will be built in South Carolina and/or South Korea. The Polestar 7 compact SUV aimed mainly for the European market and slated to be assembled there is scheduled next, to be followed by the Polestar 6, a 2+2 performance roadster with head-turning design.

Real-World Range

Don’t expect to consistently get EPA estimated range from any Polestar 3 variant unless your accelerator foot is feather light, your driving style rather timid, and you avoid hilly or mountainous terrain and highway driving. Real-world range for most EVs runs 10 to 15 percent below EPA estimates with the variance depending largely on tire size, the weight of cargo (including people) on board, driving style, terrain, and the amount of high speed driving involved. We tested both the single-motor and dual-motor performance versions of the Polestar 3. Our experience is that it manages to stick pretty close to the estimates, running 10 to 12 percent short in most driving conditions.

In in our range test of a single-motor Polestar 3 with 21-inch wheels – the variant EPA rates at 350 miles – our 250-mile round-trip ride covered 140 miles of fast freeway driving in light traffic, plus 70 miles of ambling country lanes and 40 miles of mountain roads. We tried to keep within 10 mph of posted speed limits.

Polestar 3 information display.

Per EPA’s estimate, we should have been draining the battery pack at a rate of 3.27 miles per kilowatt-hour (350 miles/107 kWh usable battery capacity). But country and mountain driving on the first leg of the trip was uphill most of the way, cutting efficiency to just 2.4 miles per kWh. That would have resulted in just under 266 miles of range had we kept going at that pace. We benefitted from an equal amount of downhill motoring on the way back, though, and improved efficiency for that part was a relatively thrifty 3 miles per kWh. For the entire round trip, average consumption was 37.3 kWh per 100 miles. That’s the equivalent of 307 miles of range – 12.2% under the EPA estimate.  

We tested the dual-motor performance version of the Polestar 3 last fall on rain-slicked roads in the area around Jackson, Wyoming. An abundance of caution with someone else’s vehicle kept speeds down, but we did climb about 2,200 feet from Jackson’s 6,240-foot elevation to hit the pass through the Tetons into neighboring Idaho. Overall, we found real range on that trip was pretty much what EPA estimated for the performance version with 22 inch tires.

Polestar 3 Trims and Pricing

All versions of the 2025 Polestar 3 are two-row, five-seat electric crossovers. There’s a lot of Volvo under the skin and in the interior, but Polestar DNA is dominant in the 3’s design and chassis, suspension, and powertrain development.

Its aerodynamic looks derive from the Polestar Precept electric sedan concept that was unveiled in 2020. It’s built on an EV-specific platform developed by Volvo.

The rear-drive Polestar 3 starts at $68,900 under pre-tariff pricing. It has its own powertrain and suspension but otherwise is almost identical in looks and features to the dual-motor trims.

Rear of Polestar 3 SUV.

Standard features include 20-inch alloy wheels, panoramic glass roof, acoustic laminated windshield and rear window, auto-extending flush door handles, power rear liftgate with foot sensor, power adjustable and heated, auto-dimming, and folding frameless side mirrors. Inside are standard heated and power adjustable front seats with extendable thigh bolsters, ambient interior lighting, tri-zone heat-pump climate control, rear touchscreen for climate and seat heating controls, and a 10-speaker audio system.

If your regular driving conditions don’t require all wheel drive and you don’t mind taking a couple of seconds longer to hit 60 from a standing stop, the single-motor version makes a lot of sense.

The dual-motor Polestar 3 starts at $74,800.  It includes all the single-motor variant’s standard features and adds more power, electronic all-wheel drive with torque vectoring, and air suspension with active dampers. The dual motor AWD with Performance Pack jumps to $80,800 and includes everything on the standard dual motor but adds a performance software upgrade that boosts horsepower and torque. It also gets 22-inch alloys with performance tires, special chassis tuning, and gold-color seatbelts, valve caps, and brake calipers.

Available Options

The Plus Pack, priced at $5,500, adds a head-up display, power adjustable steering column, soft-close door mechanism, heated rear seats and steering wheel, heated windshield wiper blades, and a foldable rear cargo bay floor. Also provided is a 25-speaker Bowers & Wilkins audio system with surround sound, Dolby Atmos capability, and active road noise cancellation.

Polestar 3 dashboard.

Available only with the Plus Pack at an additional $5,500 is a combination of animal welfare certified Nappa leather upholstery in three color choices and dark ash wood trim. The Performance Pack, at $6,000 and available only for the dual-motor variant, adds 22-inch alloy and performance tires, a software upgrade that boosts horsepower and torque, sport and performance tuned chassis, and gold-colored seatbelts, brake calipers, and valve caps. A $2,100 Pro Pack option for the single-motor and base dual-motor variants adds specially designed 21-inch wheels, gold-colored valve caps, and black seatbelts with a gold center stripe.

All Polestar 3 variants use a 111-kilowatt-hour battery pack (107 kWh usable capacity) installed under the floor in a so-called skateboard EV platform. For the single-motor version, the battery supplies a rear-mounted motor rated at 299 horsepower and 361 lb.-ft. of torque. Dual-motor variants get an additional motor for the front axle. Combined, they produce a total of 489 horsepower and 620 lb-ft torque. The Performance Pack boosts that to 517 hp and 671 lb-ft.

Polstar says the standard dual-motor version can zoom from zero to 60 mpg in 4.9 seconds. Adding the Performance Pack cuts that to 4.6 seconds – at a cost of $2,000 per tenth of a second. The single motor Polestar 3 get to 60 in a more leisurely but perfectly acceptable 7.5 seconds, per Polestar’s estimate.

Single and Dual Motor Differences

In any configuration there’s a decent amount of power, which is good because the Long-Range Dual Motor Polestar 3 weighs in at more than 2.5 tons in its lightest configuration, and is just 120 pounds short of 3 tons at its heftiest. The single motor version is some 200 pounds lighter than the base dual-motor Polestar 3.

Shifting stalk in Polestar 3 electric car.

The single motor version gets steel coil springs, passive dampers, and a rear motor without torque vectoring. Steering calibration is also a little softer in the single motor model. In our test drive we found it to deliver a comfortable ride and compliant handling, but its suspension couldn’t compensate for rough roads and high-speed corners quite as well as the dual moor variants’ more sophisticated system.

Dual motor Polestar 3s get adaptive air suspension and a rear-biased, electronic all-wheel drive system with torque vectoring that lets the Polestar 3 put its power to the road quite effectively and sure-footedly. All versions get four-piston Brembo front brakes with single-piston Brembos in the rears and they handle the vehicle’s weight with aplomb. A one-pedal drive setting for the Polestar 3’s multi-stage regenerative braking reduces brake-foot fatigue in crowded traffic and can mimic a downshift when turning or carving up a twisty country road.

We didn’t find either version of the Polestar 3 to be unwieldly or unbalanced when tossed around mountain corners or while carving winding roads, but our preference was for the double-motor variants’ air springs and adaptive dampers.

Range and Charging Times

The single motor Polestar 3 with optional 21-inch wheels and all-season tires is EPA-rated at up to 350 miles of range, dropping to 342 miles with the standard 20-inch tires and 333 miles with 22-inchers. Dual-motor versions are rated at 315 miles with 21-inch wheels, 310 miles with the standard 20-inch wheels, and 287 miles with 22-inch wheels.

Polestar 3 charging.

Adding the performance pack gets up to 300 miles of range. The Performance pack with its standard 22-inch alloys and sticky performance tires drops the estimated range to 279 miles. While the smaller 20-inch tires should deliver less rolling resistance and thus more range than the 21-inchers, the 20-inch wheels are made of cast aluminum, which makes them heavier and thus slightly less energy efficient than the forged aluminum wheels used with the 21 inch rubber.

At a DC fast charger, the Polestar can replenish its battery pack at up to 250 kilowatts per hour, good for a 10 to 80 percent recharge in 30 minutes. For home charging, the Polestar, like its competitors, uses an 11 kW Level 2 charging system. With properly sized 240-volt equipment, the Polestar can take a battery from 10 to 100 percent in 11 hours. Both DC and Level 2 charging speeds are competitive in the segment.

Polestar 3 Interior

Polestar 3 has a Scandinavian minimalist interior that would have been avant-garde had it been rolled out a few years ago, before the Hyundai Motor Group set the standard for modern minimalism with its Hyundai and Kia small crossover interiors. 

In the Polestar 3, the dashboard is divided into a padded textile-covered upper section with a textured plastic or optional aluminum or wood-trimmed lower face, divided by a thin strip of LED lighting. The dash houses a 9-inch-wide digital driver information screen and a centrally mounted, vertically oriented 14.5-inch infotainment touchscreen that also serves as a control center for almost all vehicle settings and functions. The only physical switches and knobs are vehicle function and driver display control buttons – unlabeled - on the steering wheel, the shifter, and turn signal stalks on the steering column. A rotary controller for the audio system is located on the center console’s floating bridge.

Rear cargo area in the Polestar 3.

Power-adjustable, sports-styled front bucket seats are set low to maximize headroom and are both supportive and comfortable. The 60/40 split rear seat sits higher than the front seats for improved lines of sight for rear occupants. The bench is divided into three molded seating positions, and while the middle position is narrow, there’s decent rear legroom even for center-seat occupants since below-floor batteries allow a flat floor with decent legroom.

Cargo and Towing

The Polestar 3 has a small-for-the-segment primary cargo bay providing 17.1 cubic feet behinds the rear seats, which we’re told allows carrying along about 15 grocery bags or five airline carry-ons. In contrast, the BMW iX features more than twice the Polestar’s capacity at 35.5 cubic feet with the Mercedes-Benz EQE SUV offering 20 cubic feet. Things improve when the Polestar 3’s rear seat back is folded down as this boosts total interior cargo capacity to 49.8 cubic feet. That’s still the least of the competitive set, though, with the iX boasting 77.9 cubes of maximum interior cargo space that takes the lead.

There’s also a 1.1 cu.-ft. storage area, or “frunk,” under the hood. It’s not large enough to be of much use but will hold a portable charging cord that otherwise would take up open cargo space in the rear. Among likely competitors, the Audi Q8 e-tron has a 2.1-cu.-ft. frunk while the BMW iX and Mercedes EQE SUV do without.

Polestar says the “3” can haul up to 220 pounds on its roof and dual-motor versions can tow up to 3,500 pounds. That tow rating is adequate for a small utility trailer but comes in less than the 5,500 pound rating of the BMW iX or the 4,000 pound rating of the Audi Q8. The Mercedes isn’t tow-rated in the U.S. The single-moor Polestar 3 is rated to tow up to 2,000 pounds.

Infotainment and Connectivity

Polestar uses an Android Automotive operating system for its infotainment centers. We’ve found it to be one of the most user-friendly interfaces around, especially for those who prefer to use voice commands, which are executed in everyday language after a “Hey Google” wakeup call.  The built-in Google Play Store makes downloading new apps to the system easy. There’s 5G connectivity available, along with Google Maps with a 3-year constant internet connectivity plan at no charge.

Connectivity is enhanced with four USB-C ports – two for each seating row – and a 120-volt outlet in the rear cargo bay. Wireless phone and Bluetooth phone connectivity are standard as are Android Auto and Apple CarPlay compatibility. If there’s a drawback to the infotainment setup it’s that it is also control central for almost all vehicle adjustments and functions. This requires drivers who like to adjust drive modes, cabin temperature, and the like while underway to shift their eyes from road to screen far too often.

Audio is handled with a 10-speaker system. A 25-speaker Bowers & Wilkins sound system with Dolby Atmos surround sound and headrest speakers is an option. Three external speakers broadcast a warning tone at low speeds so that pedestrians, cyclists, and others can hear the otherwise silent EV as its draws near.

Safety and Driver Assistance

Polestar 3 charging app.

As a new model on a new platform, the Polestar 3 hasn’t yet been crash-tested by the National Highway Traffic Safety Administration (NHTSA) or the nonprofit Insurance Institute for Highway Safety (IIHS). It has received a 5-star safety rating in the European NCAP crash test program.

Polestar 3 is equipped with an impressive array of advanced safety and driver assistance technologies, all integrated via a centralized computer running on software developed by Volvo Cars. The driver assistance and safety systems use a variety of imaging systems to monitor external surroundings and conditions, monitor driver alertness, and even report in-car movement to help prevent accidentally leaving pets or children in a parked car.

Standard safety and driver assist features on the 2025 Polestar 3 include front collision avoidance and mitigation with braking and steering assist, pedestrian and cyclist detection, blind spot and rear cross traffic alert, rear collision mitigation, and driver alertness monitoring. Adaptive cruise control featuring full stop-and-go functionality along with lane keeping and centering with lane departure warning are also standard fare.

Final Thoughts

The Polestar 3 stands out for its unfussy good looks, user-friendly operating interface, and sporty ride, though its cargo bay isn’t as useful as some because of the rearward sloping roofline.

We certainly hope Polestar’s challenges don’t prove fatal. It has lost money every year since it was spun off from Volvo, had to delay production of the 3 for almost a year because of software issues, and hasn’t yet managed to achieve widespread name recognition in the U.S. Still, its vehicles are world-class EVs and the Polestar 3 belongs on any premium performance SUV shopper’s must-test list.

David Thomas is Director of Content Marketing and an automotive industry analyst at CDK Global.

The march toward electrification is still moving forward, even if the momentum has slowed in recent months. One key reason the positive push remains is the devoted legion of EV owners. This group has taken the plunge to go electric and they’re going to keep buying EVs well into the future.

For the second year in a row, CDK – one of the largest software suppliers to car dealers and automakers – surveyed hundreds of EV owners to better understand their day-to-day lives with the technology and their attitudes toward it. Four out of five (82 percent) owners say they’ll buy another EV in the future, a significant number that suggests a solid future for EV sales.

Nevertheless, 69 percent of owners say they’ll “always” own a gas or hybrid car along with an EV. This suggests they believe there are specific limitations to the technology and are hedging their bets. However, this contradicts many of the study’s findings that illustrate just how much owners utilize their EVs in all driving scenarios as well as a passion for the vehicles themselves.

In the 2024 study, the love for EVs was off the charts. This year, the numbers across the board feel less enthusiastic even though they’re still quite high. For example, when asked if they were happy with their purchase, 93 percent of EV owners last year said yes. In 2025, the number fell to a still healthy 86 percent. Does this mean the glow is fading? Perhaps.

But one significant change made to the CDK study makeup may have indirectly altered the results. Last year, CDK ensured half of the respondents were Tesla owners, reflecting the market share at the time. This year, noting the inroads of traditional automakers in the EV space and Tesla’s diminishing market share, the Tesla owner makeup is closer to a quarter of the respondents.

Statistics on EV owners interest.

And Tesla owners are more enthusiastic about their car than other EV owners. Take those two factors and you get a pretty solid explanation for the lower overall results for owner satisfaction. Still, 68 percent of non-Tesla owners said their EV was the best car they’d ever owned, and 65 percent said it was the best car they’d ever driven. Tesla owners in comparison ranked those at 75 percent and 71 percent, respectively. The survey took place between the 2024 presidential election and 2025 presidential inauguration, so Elon Musk’s political leanings were well publicized over this period.

EV Owners on Range and Charging

Each year new EVs improve and evolve with most delivering well over 200 miles of range. Nearly every new EV sold in California (the country’s largest EV market) had more than 200 miles of range in 2024. Three-quarters (76 percent) of respondents in the CDK study said their EVs had 350 miles of range or more. And that number was negatively impacted compared to the year before because of the lower number of Tesla owners because Teslas generally have ranges higher than 250 miles.

Still, these higher numbers had a big impact on charging behavior. Extensive range meant less people charged every day, falling from 38 percent last year to 34 percent this year. And the number who charge every third day grew from 20 percent to 23 percent.

Less EV owners are installing Level 2 chargers in their homes as well, falling from 76 percent last year to 63 percent this year. Nearly half (46 percent) said it was a “hassle” to deal with a charger, up from 36 percent last year. Of those without a home charger, 82 percent said they charge at a public charging network. Only 9 percent of these owners said they charge at work.

Statistics on road trips by EV owners.

Longer range and faster charging time is improving the road trip experience as well. Almost half (45 percent) of EV owners said they faced no problems on long-distance trips in terms of charging or reaching their destination. The most common issue – with nearly a quarter of Tesla and non-Tesla owners – was occupied charging stations and having to wait. And road trips are getting longer. The number of owners who took road trips 750 miles or more grew from 18 percent to 27 percent

Incentives Aren't a Dealbreaker

The debate on future EV sales often centers around the current tax incentives for both new and used EVs, which are likely to disappear by year-end. While this may significantly impact sales, especially EV lease transactions, most EV owners said tax incentives had little impact on their overall decision to go electric.

Just 7 percent of owners said the tax incentive was the top motivator to purchase an EV. The main motivation was cost efficiency with environmental impact second. More than three-quarters (76 percent) of owners said they saved money by driving an EV.

The future sales success of EVs may be in doubt with shifting economic and political winds, but by listening to owners, it’s apparent there will be a steady base of future buyers. Increasing range, additional models entering the EV market, and more infrastructure investments (private and public) should bolster the technology’s success as well. The biggest question on everyone’s mind is: Just how quickly will EV market share grow?

David Thomas is Director of Content Marketing at CDK Global, a leading provider of cloud-based software to dealerships and original equipment manufacturers across automotive and related industries.

Front view of Honda Prologue EV.

The midsize Honda Prologue EV gets a new and more powerful and efficient front motor and upgraded power inverters for 2025 to boost range and horsepower in both front- and all-wheel drive versions. Despite the power and range boosts there’s only a slight price increase – $55 – due to a hike in Honda’s mandatory delivery and destination fee. There are no design or feature updates for the new model year.

Honda engineers had hoped to be able to boast of a 300-mile range estimate when the Prologue debuted as a 2024 model, but they weren’t in complete control because the EV was co-developed with General Motors and uses a GM platform and battery shared with the Chevrolet Blazer EV. The official EPA range estimate for the single-motor, front-drive version missed the desired mark by a scant 4 miles.

Greater Power and Range

Underhood view of Honda Prologue EV.

For the 2025 model, though, new power inverters and front motors enabled a bump to 308 miles for the front-drive Prologue, an increase of 12 miles. Range for dual motor all-wheel drive versions rises to 294 miles, up 13, for the EX and Touring trims, and to 283 miles, up 10, for the Elite.

The hardware boosts power output for front-drive models to 220 hp and 243 lb-ft of torque, up from 212 ponies and 236 lb-ft. For all-wheel drive models, output increases to 300 hp and 335 lb-ft, up 12 and 25, respectively.

Prologue EV CCS Charging Remains

Honda Prologue EV CCS chargeport.

Because the basic vehicle doesn’t change, the Prologue retains a CCS charging port for 2025, meaning that on road trips its default fast charging is at non-Tesla stations. It will require an adapter to hook up to a Tesla Supercharger once Tesla adds Honda EVs to its list of approved Supercharger users this spring.

On non-Tesla DC fast charges, the Prologue can take on juice up to a maximum of 150 kW per hour. Its 85 kWh battery needs about 35 minutes to recharge from 80 percent depleted to 80 percent full. For 240-volt Level 2 home charging, the Prologue has an 11.5 kW (maximum) on-board charger, good for overnight replenishment of a fully depleted battery.

Pricing, Features, and Incentives

Honda Prologue EV driving on interstate highway.

For as long as the federal clean vehicles tax credit remains available, all versions of the 2025 Prologue qualify for the full $7,500 credit and this can be applied at the dealership as an immediate discount if a buyer meets federal eligibility requirements. Those who lease will see the credit applied as a buy-down, resulting in reduced monthly payments.

Before any federal, state, or local incentives, pricing for the 2025 Prologue starts with the base front-drive EX at $48,850 including Honda’s $1,450 destination fee (up from $1,395 for 2024). All-wheel drive adds $3,000 for a pre-incentive price of $51,850.

Prologue EV Trim Levels

Interior of Honda Prologue EV.

Standard equipment for the EX includes 19-inch aluminum alloys, power-adjustable driver’s seat, heated front seats, dual-zone climate control, wireless phone charger, wireless Apple CarPlay and Android Auto compatibility, and a Google built-in operating system. All Prologue EV trims also get the Honda Sensing suite of advanced safety and driver assistance technologies, including Honda’s first applications of automated rear cross traffic emergency braking, rear pedestrian alert, and blind zone steering assist. Other features include front collision and road departure mitigation, lane departure warning and lane keeping assist, and adaptive cruise control. Like all Prologue trim levels, the base model comes in Mercury Silver Metallic with other exterior color choices available at a $455 upcharge.

Including delivery fee, the mid-level Touring trim jumps to $53,150 with front-drive and $56,150 with dual motor all-wheel drive. It adds to the base standard features package with a 12-speaker Bose premium sound system, leather upholstery, a driver seat memory system, auto dimming rear view mirror, panoramic sunroof, hands-free powered tailgate, and front and rear parking assist. At the top of the Prologue lineup, the Elite is available only with all-wheel drive and starts at $59,350 including destination. It adds to the Touring’s standard equipment with a number of upscale features including 21-inch wheels, ventilated front seats, a heated steering wheel, a Sport driving mode, and a color head-up display.

And There's a Charging Bonus

Honda Prologue EV shifter.

Honda is carrying over its charging bonus for 2025. Prologue buyers get 60 kWh of free public charging at Electrify America stations. Plus, buyers can opt for an additional valuable charging incentive.

Those choices include an additional $750 public charging credit, or alternatively, an 11.5-kilowatt Level 2 home charging station, a $500 installation credit, and a $100 public charging credit through Honda Home Electrification (HHE). The third option is a 7.6 kW portable Level 2 charging kit, a $250 installation credit (in case a new circuit is needed for the portable unit), and a $300 public charging credit, also via HHE.

Cargo area of Honda Prologue EV.

This was originally published on thegreencarguy.com. Author John O'Dell is a distinguished career journalist and has a been an automotive writer, editor, and analyst specializing in alternative vehicles and fuels for over two decades.

Nissan Ariya parked near trees.

Nissan was first out of the gate with a mass-market EV, the 2011 LEAF, but it took a dozen years for the automaker to pop out a second all-electric model. By the time the Nissan Ariya was introduced in 2023 it already trailed some of the competition in range and handling performance. That doesn’t change for 2025. The Nissan Ariya remains a fantastic improvement and step up from the Leaf, but except for its interior, it doesn’t stand out in the sea of compact electric crossovers and SUVs that EV shoppers can now choose from.

As a longtime Nissan EV driver – having leased a 2011 LEAF when they first came out and then later purchasing a 2018 LEAF – we  waited anxiously for the carmaker to bring out the Ariya. We were  impressed with its looks and features after viewing the new EV just prior to its on-sale date in the U.S.

Nissan Ariya Driving Impressions

Front view of Nissan Ariya.

It took a while after that to get into one, but we finally did and spent a week with the top-of-the-line, dual-motor, all-wheel drive Ariya Platinum. We found it to be a well-balanced EV with a quiet and comfortable ride, refined exterior design, outstanding interior, a long list of standard features, and top-notch driver assist and safety tech. But it proved to be only middle-of-the-road when it came to driving characteristics.

The Ariya doesn’t qualify for the buyer’s federal tax credit that can lop $7,500 off the price of competitive EVs from Chevrolet, Cadillac, Honda, Kia, and Tesla that do qualify. But Nissan often offers buyers cash rebates to make up some, or even all, of the difference. And those who lease can get the credit because of an IRS ruling exempting leased EVs from the credit’s “made in North America” requirement.

Range and Capabilities

Nissan Ariya dashboard.

While the base Ariya trim has a barely adequate range of just 216 miles (205 miles with all-wheel drive), higher trims use a much larger battery and offer lots more range – up to 289 miles with front-drive and 272 with electronic all-wheel drive. However, there are other small electric crossovers, such as the Chevrolet Equinox EV and Kia EV6, that offer more power or more range – sometimes more of both – for less cost. At the top of the trim tree, Cadillac’s new all-wheel drive Optiq electric SUV outdoes the Ariya Platinum+ AWD in range and is its equal in interior quality and fittings.

Still, if winning slaloms and topping the 300-mile mark on range or the 3-second mark for 0-60 mph acceleration aren’t at the top of your list of musts, the 2025 Nissan Ariya is certainly worth a look.

Top Rated by Recurrent

Nissan Ariya front fascia detail.

Boding well for Ariya is that the nearly identical 2023 model has been named a top choice for used EV buyers by Recurrent, a company that tracks EV battery health, sales, and pricing. It earned this distinction because of its advanced driver assistance and safety technologies, retained value, and strong performance in cold climates. Because the Ariya hasn’t changed mechanically – or much in any way – from 2023 (except lower starting prices for each trim), Recurrent’s real-world report on two-year-old models is good news for shoppers considering the 2025 Ariya.

The Ariya uses an EV-exclusive platform from Nissan that enables a longer wheelbase and more interior space. By packaging the batteries under the floor, the platform gets rid of transmission tunnels and permits interiors with flat floors. Removing the internal combustion engine allows designers to shorten hoods and rethink front fascia, which no longer need open grilles to gulp air for the engine.

What’s New for 2025

Nissan Ariya charging.

While we tested a 2024 Ariya, the 2025 models are identical. The only new features are that wireless phone charging is now standard in all trims and 2025 models built since the start of the year have the Tesla Supercharger-compatible NACS charging port as standard equipment. Models made before that date have the CCS port that requires a $235 accessory adapter to make use of Tesla chargers.

Nissan also dropped the Venture and Empower trims for 2025, winnowing the Ariya ‘family’ to a choice of four trims that include two battery sizes and two powertrain choices.

Nissan Ariya Trims and Pricing

Front cabin in Nissan Ariya.

Nissin starts the Ariya lineup with a small battery-version, the Engage, followed by the Engage+, Evolve+, and Platinum. The first two can be had with front drive or, for a $4,000 upcharge, dual motor electric all-wheel drive that boosts power and range. The last two are dual motor AWD only that Nissan calls it e-4ORCE, because…why not?

The Ariya in base Engage trim starts at $41,160 including the $1,390 destination charge. It comes with front-wheel drive and a 66 kWh battery (63 kWh usable), 19-inch alloys with all-season rubber, and LED headlamps. Inside, there’s a head-up display, heated steering wheel and front seats, an eight-way power adjustable driver seat with memory, six-speaker stereo system, wireless Apple Car Play and wired Android Auto connectivity, wireless phone charger, and in-dash navigation. The all-wheel drive Engage variant starts at $45,160 and adds a beefier dual motor, electronic all-wheel drive system, and a sliding center console.

Stepping Up to Higher Trims

Nissan Ariya steering wheel controls.

Evolve+ trim is priced at $45,760 for front-wheel drive. It has a 91 kWh battery (87 kWh usable) for more range and power, and adds to the base model’s standard features with items such as a panoramic moonroof, rain-sensing windshield wipers, 360-degree camera and monitor, eight-way power-adjustable front passenger seat, and a stow-away table in the sliding front console, The all-wheel drive version of the Evolve+ starts at $49,760 and adds the dual-motor e-4ORCE AWD system and a powered rear liftgate.

Engage+ e-4ORCE starts at $46,760 and adds the 91 kWh battery and larger front disc brakes to the base Engage AWD package. Stepping up to Platinum+ e-4ORCE, the top trim in the Ariya lineup, brings a near-luxury class price of $55,760. It has all the features of the Evolve+ AWD and adds a 9-speaker Bose audio system, Nappa leather upholstery, power tilt and telescoping steering column, position memory for exterior side mirrors, a hand-free power rear liftgate, and LED fog lamps. A version with 20-inch wheels is priced the same.

Nissan Ariya Power and Range

Center console and shifter in Nissan Ariya.

The base Engage with front drive gets a single 160 kW motor on the front axle and is rated at 214 horsepower and 221 lb-ft torque. EPA estimated range is 216 miles. The AWD Engage e-4ORCE gets motors on each axle with a combined output rating of 335 hp, 413 lb-ft torque, and an EPA range estimate of 205 miles.

Range and power for the big-battery variants differ depending on trim level and drive type. The front-drive Evolve+ gets a single 178 kW motor rated at 238 hp and 221 lb-ft torque. EPA estimates range for the front-drive Evolve+ at 289 miles. The all-wheel drive Engage+ e-4ORCE is rated at 335 hp and 413 lb-ft torque. Evolve+ and Platinum+ e-4ORCE versions get dual-motor systems featuring 389 horsepower and 442 lb-ft torque. EPA range estimates are 272 miles for the Engage+ and Evolve+ with AWD. The Platinum+ has more features and is heaver, so its range drops to 267 miles, or 257 miles with 20-inch wheels and tires.

Batteries and Charging

Nissan Airya center console.

Both of the base Engage variants (without the “+”) use liquid-cooled, 66 kWh battery packs that can recharge from 80 percent depleted to 80 percent full in 35 minutes on a DC fast-charger rated at 135 kW, and in 65 minutes at 50 kW. For home charging on 240-volt Level 2 equipment, the Ariya has a 7.2 kW on-board charger that needs 10.5 hours to fully replenish an empty 66 kWh battery. All other 2025 Nissan Ariya trims and variants get a liquid-cooled 91 kWh battery. Charging at DC fast charge systems is a bit slower versus the base Engage because the battery has almost 50 percent more capacity. Per Nissan, it takes 40 minutes at 135 kW and 90 minutes at 50 kW. Home charging takes 14 hours with the larger battery if starting from a fully discharged state.

We found the Ariya range estimates to be fairly accurate. On a 232 mile trip in the Platinum+ e-4ORCE with 20-inch wheels, we lost just 11 percent – 28 miles – of the EPA-estimated 257 miles of range. The trip included 183 miles of freeway driving and 49 miles of city and country roads. Overall energy consumption worked out to 36.4 kWh per 100 miles, or 2.75 miles per kWh.

Inside the 2025 Nissan Ariya

Rear seat in Nissan Ariya.

The Ariya’s interior is one of the best at the non-luxury level, with a modern minimalist look, quality fittings, and, in upper trims, interesting ambient lighting that pops from laser-cut screening in the foot wells and along the upper door panels. The center console has backlit touch controls for drive and regenerative modes. There’s a metal trim bar that runs the width of the lower dash with matching trim on the console. The bar is lighted and, in models with the advanced ProPilot 2.0 driver assistance system, changes colors to communicate various driving modes. There are dual glove boxes but no center console storage on lower trims, while upper trims get a center console storage compartment and a roomy locking storage drawer that slides out of the lower dash panel.

Seat upholstery is leatherette (vinyl) on all but the Platinum trim, which gets Nappa leather. Seats are supportive and nicely padded front and back, with adequate adjustments for the driver and front passenger seats. The Ariya is near the top of its price class in headroom and front legroom. Even in back, where it trails competitors by an inch or more, the flat floor opens up room others don’t have and gives passengers room to sprawl a bit. All trims get power-adjustable driver’s seats while the two top trims also get power-adjustable front passenger seats.

Ariya Electronics and Controls

Nissan Ariya display.

A pair of 12.3-inch, horizontally-oriented screens pop up from a padded dash that is otherwise nearly barren of visible knobs and switches. A volume knob for the stereo sits at the bottom center of the infotainment screen. A row of backlit, touch-sensitive switches for the climate control system is hidden under a woodgrain trim strip along the dash bottom.

Most functions are controlled via the center-mounted infotainment touchscreen or by touch controls on the flat-bottomed steering wheel. The other 12.3-inch screen, mounted behind the wheel, serves as a digital instrument panel and delivers information the driver needs to know. The center console stops short of the dash and there’s no center stack. Nissan did a good job of sound attenuation and while some wind noise does get through, the cabin is very quiet even at high speeds.

Cargo and Towing

Cargo area in Nissan Ariya.

Ariya offers 27.9 cubic-feet of storage space behind the rear seats. Flip the 60/40 split rear seats down and that grows to almost 60 cubic feet. The ‘crossover coupe’ shape (think BMW X6) helps the Ariya’s looks but eats into cargo space just a bit, although it remains very competitive in the segment with slightly more cargo space than the Kia EV6, Honda Prologue, Chevrolet Equinox EV, and Cadillac Optiq.

The two top Ariya trims are rated to tow up to 1,500 pounds. That capability fits the needs of those needing to tow items such as a small utility trailer, a jet ski, or a small sailboat.

Nissan Ariya Performance

Nissan Ariya on dirt road.

We tested the Platinum+ e-4ORCE and found it to be comfortable, quiet, and pleasant to drive. It exhibited sprightly acceleration, though without the stomach-dropping kick many EVs offer when the accelerator is jammed to the floor. Nissan claims a 5.0-second time for a 0 to 60 mph sprint in the 389 hp Ariya variants, and that’s about what we experienced. Drop down to the entry-level Engage, though, and acceleration gets a bit sluggish for an EV at 7.5-seconds for that same 0-60 run.

The 2025 Nissan Ariya boasts a low center of gravity and in AWD versions a 50:50 weight balance, but it still isn’t a sports car (the Platinum trim weighs in at 5,057 pounds). Ariya doesn’t like to be pushed hard into corners and offers little in the way of steering feedback. Overall, it’s best suited to highway cruising and leisurely sight-seeing drives in the mountains and on winding country roads. There is a high-performance NISMO edition with a re-tuned chassis and 429 horsepower available in Japan and Europe, so the car’s handling and power delivery can be improved. That variant costs about $5,000 more than the top-spec Platinum+e-4ORCE in Japan and there are no plans at present to bring it to the U.S.

Safety and Driver Assistance

Detail of Nissan Ariya wheel and tire.

Nissan’s ProPilot suite of driver assistance and advanced safety systems is standard on all Ariya trim levels. ProPilot includes full-range adaptive cruise control, lane departure warning with lane keeping assist, forward and rear automatic emergency braking, blind spot monitoring, and rear cross traffic alert. It’s linked with the on-board navigation system to more accurately predict highway conditions ahead and has speed adjust to automatically slow on curves and offramps. Nissan provides its updated ProPilot 2.0 system as standard equipment on the Platinum+ trim and as an option for the Evolve + AWD. It includes all the base ProPilot systems and adds automated highway driving capability and automated parking assist. The Evolve+  and Platinum+ trims also get a 360-degree camera-based monitor system.

The Ariya has been awarded a 5-star overall safety rating by the National Highway Traffic Safety Administration (NHTSA) and has been named a Top Safety Pick by the nonprofit Insurance Institute for Highway Safety (IIHS).

Styish glove box in Nissan Ariya.

This was originally published on thegreencarguy.com. Author John O'Dell is a distinguished career journalist and has a been an automotive writer, editor, and analyst specializing in alternative vehicles and fuels for over two decades.

Rear view of Toyota Prius Prime plug-in hybrid.

The latest generation Prius Prime – now rebadged as the Prius Plug-In Hybrid for 2025 – has been a welcome change of pace from Toyota. Sleek, stylish, and unexpectedly fast, the debut of an all-new model in 2023 presented an unexpected departure from the pedestrian Prius stylings of old.

Don’t get us wrong: The Prius has always been a game-changer in its own right with its supreme efficiency and leading eco-consciousness. But it never was a model appealing to performance-focused auto enthusiasts or one drawing admiring looks from passers-by…until now.

New Prius Prime a Big Improvement

Prius Prime engine.

Since we began our long-term test of a fifth generation Prius Prime XSE last year, we’ve found this hatchback’s overall driving experience to be just as we had hoped. While today’s Prime is similar to the previous generation with notable high efficiency and plug-in capability, there’s a world of difference that makes the model so much more compelling. First, there’s the styling. We don’t know what prompted Toyota to let its designers have at it with such a huge change in looks and an all-new ethos, but we do know what to say in response: “Thank you very much…great job!”

Beyond its now compelling appearance is the model’s newfound embrace of performance. The previous Prime used a 1.8-liter four-cylinder delivering 95 horsepower, augmented by its electric motor’s 71 horsepower. The new Prime ups the ante by nearly 100 horsepower, delivered by a 150 hp 2.0-liter engine and 161 hp electric motor. This extra power is immediately noticed and appreciated, especially during freeway driving when changing lanes and overtaking slower cars is a necessity. Plus, the extended range provided by the larger 13.6 kWh battery in this plug-in hybrid is a welcome addition, increasing electric driving range from some 25 miles to 44 miles of all-electric driving. EPA estimates the Prime XSE at an overall driving range of about 550 miles.

Safety Sense 3.0 is Confidence Inspiring

One of the things that often fascinates drivers is a plug-in hybrid’s ability to seamlessly blend the efficiencies of battery and hybrid drive during journeys beyond the Prime’s all-electric range. For example, on a recent roundtrip 600 mile drive down the California coast on the southbound 101 freeway, we experienced a peak combined 86.9 mpg during one segment of the trip after starting with a full charge. On the drive back and without having a charged battery, our mpg readings settled closer to 45 mpg while experiencing bouts of traffic and construction on the various highways heading back north.

On another 200 mile round-trip drive from California’s Central Coast to the Central Valley, our fuel economy remained an impressively stable 55 mpg on hybrid power alone. At times, driving conditions had degraded from a relatively clear evening and slowly gave way to dense fog. Despite the heavy fog conditions, the robust suite of technologies provided by Toyota’s Safety Sense 3.0 helped ensure a smooth and safe experience during this challenging drive with low visibility.

Safety Features in the Prius Prime

Headlights and sensors on Toyota Prius Prime.

The assistive driving features on the Prius Prime have been indispensable on many drives taken during the past year. While many Toyota Safety Sense 3.0 systems are available, our favorites would be Proactive Driving Assist and the Traffic Jam Assist.

Adaptive cruise control typically feels more reactive than proactive, but the addition of features with the appropriately named Proactive Driving Assist helps make unfamiliar roads feel safer. Proactive Driving Assist complements Dynamic Radar Cruise Control and is a key component of the Toyota Safety Sense 3.0. Working in tandem with this system means that PDA is able to assist with breaking into curves, provide steering input to help keep you centered in the lane even during mild corners, and provide obstacle anticipation assist all at once.

Longer Drives are a Joy

Cabin in Toyota Prius Prime.

Traffic Jam Assist is indispensable during drives with stop and go traffic, which was common during our drive down the California coast as we approached larger metro areas. This feature does require Toyota’s Drive Connect subscription to use, but I did find it worthwhile if stop and go traffic is a common experience. TJA operates at typical traffic jam speeds under 25 mpg and engages a host of other features, including hands free steering, acceleration, and braking during heavy traffic. Recording is also an option with Traffic Jam Assist as an added (but hopefully unneeded) feature during bumper to bumper traffic where collisions are statistically more likely. Recording is implemented during crash or crash-like events.

These driver assist features, in addition to the entire Toyota Safety Sense 3.0 suite, add comfort and an enhanced sense of safety during our frequent drives. Overall, longer drives feel less arduous with Prius Prime, which means we can focus on enjoying the road ahead and being behind the wheel of an entirely satisfying vehicle that’s comfortable and a joy to drive.

It’s the 1990s and you’re looking to drive something different. Imagine piloting a car that was as technologically advanced as a Lamborghini Diablo was fast, and more exclusive in numbers than that decade’s Ferrari F40. Now picture it with a GM emblem on its hood. In your mind’s eye, you’re behind the wheel of the legendary EV1, the first mass produced electric car of our modern age.

This is the car that started it all. While many automakers pursued electric vehicle development programs in the 1990s, it was GM’s Impact concept car, and then the production EV1 that followed, that literally set the modern EV field in motion.

GM Impact Electric Car Prototype

GM turned to efficiencies-focused AeroVironment in California to develop an advanced electric vehicle unlike any other. When it debuted this car, the Impact prototype, at the 1990 LA Auto Show, the mission was to generate excitement. And that it did, courtesy of the Impact’s show-stopping teardrop-shaped plastic body, aluminum spaceframe, and a revolutionary electric propulsion system created by AeroVironment engineer and EV pioneer Alan Cocconi.

The electric EV1, based on the Impact concept but highly refined beneath the skin, emerged at Saturn dealers six years later. The EV1 was special, it was silent, and it was fast. Without the engine braking effect of a gas engine and with its regenerative braking setting adjusted accordingly, after lifting off the throttle it seemed to coast forever in a relatively friction-free state. Overall, it was seductive to drive, and if your mind wandered you could imagine piloting the era’s F-14 Tomcat on the street… and that doesn’t happen every day. We know, because we spent a year driving an EV1 on the roads and highways of California, one of the select areas where the EV1 was available.

GM EV1 Was High Tech

GM EV1 electric car propulsion system.

The EV1 came to market with a slew of all-new technologies that are common today, from low rolling resistance tires to regenerative braking and keyless ignition. Accelerating from 0 to 60 mph took about eight seconds. The Gen 1 model had an estimated 50 to 95 mile driving range on its advanced lead-acid batteries.

Later, GM introduced Gen 2 EV1s with more advanced and power dense nickel-metal-hydride batteries that enabled an EV1 to travele an estimated 75 to 140 miles. Energizing both Gen 1 and Gen 2 batteries was handled with a unique charging paddle that transferred electrical energy via magnetic induction, without a hard connection between the paddle and car.

The Untimely End of the GM EV1

Two GM EV1 electric cars on grass.

During its short lifetime, only 1,117 EV1s were built and these were leased only, with no purchase available. Leasing was a nod to GM’s need to maintain ultimate ownership over highly advanced and extremely expensive-to-produce vehicles, using all-new technology, that were being fielded in a limited way to feel out the market. Initially offered at a lease cost of $640 per month with financial incentives that brought this down to $480, the EV1’s lease terms evolved over time to be as low as $349.

Ultimately, this chapter of GM’s continuing electric vehicle story ended abruptly. The program was discontinued in 2002 and all EV1s were required to be returned at their end-of-lease, either making their way to the crusher or donated as inoperable examples to museums and other institutions, never to be seen on the highway again.

VW ID. Buzz electric van.

VW’s iconic Beetle and Transporter were signature vehicles on the roads of America because, for a time some six or seven decades back, they were virtually everywhere. They were also underpowered and pretty utilitarian, though that didn’t stop them from getting the love from adoring fans. That same love is soon to befall the all-new VW ID. Buzz.

The Transporter of old – known by many here as the VW Microbus, or just the VW Bus – never achieved the sheer volume of its cousin the Beetle (aka Bug). Still, it has an enduring place in the hearts of Americans who see the occasional restored VW Bus on the road or at the beach, harkening back to a simpler time when affordable and adorable vehicles were available to everyone.

VW ID. Buzz an Instant Hit

VW ID. Buzz electric van dashboard.

When VW debuted its ID. Buzz electric microbus concept in the States seven years back, an instant cult following emerged. People wanted this, and they wanted it bad. We could see why after experiencing an up-close-and-personal tour of the production model last year in Southern California. We have to say…we liked what we saw.

Comparable in size to VW’s Atlas Cross Sport, the ID. Buzz is visually stunning and showcases modern stylings with futuristic elements, but doesn't lose that vintage essence shared by the VW Buses of old. One such homage to its ancestry is the model’s vibrant color palette that optionally contrasts with white splashes on both the interior and exterior. Keeping things modern is standard IQ.Drive with adaptive cruise control, a digital dash with a 12.9 inch infotainment center, plus USB and wireless charging options for all your electronic devices.

Seating for Up to 7

VW ID. Buzz electric van with rear seat folded down.

Inside is an inviting cabin with three rows of seats that can accommodate up to seven. Front seats feature standard heating, cooling, and massage features, while the second row comes with heated seats. Both rear rows are fully foldable, with the rearmost row entirely removable to create additional space for adventures. The ID. Buzz features a pair of power sliding side doors, sliding windows in the cabin, an optional sunroof that can be darkened, and a spacious rear hatch. Three interior color ‘worlds’ are available including mid-century modern-vibed Copper, moody dark themed Moonlight, and coastal-themed Dune.

Two power choices are available for the ID. Buzz, with a rear-mounted electric motor offering 282 horsepower or dual motors producing 330 horsepower. A 91 kWh lithium-ion battery energizes both versions. The rear-drive ID. Buzz features an EPA estimated 234 mile driving range with the all-wheel drive two-motor variant delivering a 231 mile range. It’s worth noting that the ID. Buzz comes with the ability to tow via a manually-retractable tow hitch that’s cleverly hidden behind the rear bumper when not in use.

Three versions of the ID. Buzz will be offered at launch including the entry-level Pro S at $59,995; the Pro S Plus at $63,495 to $67,995; and the 1st Edition at $65,495 to $69,995. The higher figure for the latter pair comes with dual motor all-wheel drive. Fans of this iconic electric microbus/van will find the ID. Buzz hitting North American highways later this year.

VW ID. Buzz electric van plugged in.
Dodge Daytona Charger electric vehicle in garage.

There’s an all-new Dodge Charger Daytona hitting the streets of America. This storied name channels echoes of of the past with the mind’s eye visualizing the rare, wildly-winged 1969 Dodge Charger Daytona of the muscle car era, a model that raced in NASCAR and was available only in small numbers to well-monied car enthusiasts. While the 2024 Charger Daytona is a bit more civilized than its namesake of 55 years ago, it is equally dramatic in its own way.

Back in the day, muscle cars were a dominating force on dragstrips and, more importantly, on the highways of America. These go-fast models delivered the whole package for car enthusiasts – exciting looks with stripes, scoops, and a stance with attitude, their mere presence tantalizing the senses with a low engine rumble at idle, a throaty roar at speed, and if you were the one behind the wheel, an adrenaline rush like no other.

Dodge Charger Daytona EV

Dodge Daytona Charger rolling chassis showing batteries.

They also sucked gas on an epic scale with their four-barrel, six-pack, and sometimes dual-quad carburetors. High horsepower small- and big-block engines were high-compression to eke the most power from the air-fuel mixture fed to combustion chambers, which meant more expensive high-octane premium fuel. Muscle cars, and really most cars of the era, had tailpipe emissions that were nothing to brag about. Still, these were iconic hot rods that defined an era.

While the performance-infused Daytona designation has been used sporadically by Dodge since, this is different. Stellantis has read the tea leaves well and the all-new Dodge Charger is not only fast and formidable, but also headlined by two fully electric variants, the Daytona R/T and Daytona Scat Pack. This move ensures the Charger’s claim as the world’s quickest muscle car, and the most powerful.

Choice of Electric and Gas Variants

Dodge Daytona Charger instrument panel.

That doesn’t mean the automaker has abandoned the high horsepower gas engines that have powered this model over the years. Car enthusiasts who wish that familiar experience can opt for the Charger SIXPACK 3.0-liter twin turbo Hurricane engine in either Standard Output or High Output versions.

Specs for the electric Charger Daytona models surpass those of the gas versions, with the electric Daytona R/T besting the SIXPACK S.O. with 496 horsepower vs. the gas version’s 420. The Daytona Scat Pack does even better by delivering an electrified 670 horsepower vs. the gas high output engine’s 550, a bump of 120 ponies overall. The Daytona R/T is expected to deliver 317 miles of driving range with the more powerful Scat Pack a shorter, but still substantial, 260 miles.

Fast With a Performance Sound

Brembo brakes are used on the Dodge Charger Daytona.

Acceleration is impressive, with the Daytona Scat Pack expected to close a 0-60 mph sprint in just 3.3 seconds while earning a quarter-mile elapsed time of 11.5 seconds. Performance is enhanced in Daytona models with a PowerShot feature that provides an additional 40 horsepower boost for up to 15 seconds when needed. Stopping power is bolstered with 16-inch Brembo vented rotors and distinctive red six-piston calipers up front and eight-piston calipers at the rear. All Charger models are four-wheel drive. Driver-selectable Auto, Eco, Sport, and Wet/Snow drive modes allow tailoring the driving experience, with the Scat Pack adding Track and Drag modes for good measure.

Serene silence is not the hallmark of the new Daytona as it is in other electrics. Rather, Daytona R/T and Scat Pack sound the part of earth-pounding muscle cars with their all-new Fratzonic Chambered Exhaust that replicates a Dodge Hellcat exhaust profile, with sound intensity tied to performance. Drivers can alternatively select a ‘stealth’ sound mode if that’s more to their liking…but what’s the fun in that?

Dodge Charger Daytona Styling

Overhead view of a 2024 Dodge Daytona Charger.

All this power and performance would be academic if not packaged in an athletic form, and the new Dodge Charger does pull that off with a pure uninhibited muscle car presence. Its lines are sharp, evolved, and definitively true to the breed, featuring an appealing profile and a powerful widebody stance. This muscle car’s appealing ‘hidden hatch’ design is accentuated by a black painted flowing roofline that can be made more dramatic with an optionally available full-length glass roof. We particularly like that the front end is not closed off in a snout like so many electric cars, but rather features stylishly understated openings above and below the bumper fascia.

Inside is a driver-centric cabin featuring an instrument cluster with either a 10.25- or optional 16-inch screen, along with a center 12.3-inch touch screen angled toward the driver. A forward-looking flat top/flat bottom steering wheel design features an array of controls for popular functions and also includes paddle shifters for rapidly adjusting regenerative braking settings on the fly. The center console features a pistol-grip shifter and start button. Standard seating is cloth and vinyl with either black or red Nappa leather available as an upgrade. Rear seats can be folded flat for additional cargo capacity. As expected, a full suite of advanced safety and driver assist systems are standard or available.

Pricing and Availability

Rear taillights on a Dodge Charger Daytona EV.

Two-door coupe versions of the 2024 Charger Daytona R/T and Scat Pack feature an MSRP of $59,595 and $73,190, respectively, and begin production this summer. Four-door variants of the electric models will start production in the first half of 2025 with two- and four-door gas Charger SIXPACK models coming later that year. Pricing for these will be disclosed closer to their release.

Green Car Journal editor/publisher Ron Cogan was editor of Hot Rod’s Musclecar Classics in the mid-1980s.

Ford Mustang Mach-E Rally driving on a dirt track.

We’ve driven plenty of Mustangs over the years and have owned several, including a 1966 Mustang back in the day and a pristine 2005 Grand Am Cup-themed Mustang GT that resides in the garage now. The latter combustion pony car shares garage space with a charging electric car  most of the time, representing a scenario that’s likely to become a fixture of life for many multi-car households in our unfolding mobility future – an EV for most daily driving and a combustion car or hybrid available for good measure.

Playing to this, electrification strategies have varied among the world’s major automakers, from a bit of dabbling with EVs to going all-in with battery electric models. Time will tell which strategy works out best in an era where electrification’s benefits and challenges are often still weighed intently before buyers make their move to go electric, though buyers in growing numbers are doing so these days.

Xray diagram of 2024 Ford Mustang Mach-E Rally.

Ford Mustang, Electrified

Ford is solidly positioned in the ‘all-in’ category. Along with its electric F-150 Lightning pickup and E-Transit commercial van, perhaps its most high-profile move has been its evolutionary – or perhaps revolutionary – Mustang Mach-E that debuted in late 2020,  the electrified stable mate of the legendary gas-powered Mustang.

The Mach-E successfully trades on the Mustang nameplate and carries on distinct Mustang design cues like a long hood and tri-bar taillights, though it is decidedly different with a unique sweeping roofline and coupe/liftback design. While some Mustang afficionados might take issue with the nameplate being applied to a crossover model, it’s really a moot point. The fun factor is there and it’s a Mustang in spirit if not in silhouette.

2024 Ford Mustang Mach-E Rally exterior.

All New Mach-E Rally

As expected, the Mach-E continues to evolve with an expanding number of model choices and battery options, including the new dual motor Mach-E GT that we recently drove in the Pacific Northwest. What really got our attention, though, was Ford’s Mustang Mach-E Rally we piloted around the track at the Dirtfish Rally School in Snoqualmie, Washington, just outside of Seattle.

The Rally gets all the content and performance attributes of the GT with additional benefits and features added for its mission. This adventurous model is a departure from the norm for Mach-E, literally, with that departure focused on off-pavement action far from stoplights, traffic, and the hustle of daily life. Our experience test driving for 4 Wheel & Off-Road magazine many years ago means we have a deep appreciation for that kind of opportunity.

Chargeport on a 2024 Ford Mustang Mach-E Rally electric car.

Special RallyCross Features

The all-wheel drive Mach-E Rally comes specially prepared for the job, with MagneRide suspension featuring an inch higher riding height than the standard Mach-E, RallyCross-tuned shocks and springs, and powertrain calibration and traction control tuned for the rugged and uneven surfaces of dirt-track and rallycross driving. Aluminum underbody shielding provides protection from the hazards and grime inherent in this kind of off-pavement driving.

Power is abundant with the Mach-E Rally’s 480 horsepower delivered by front and rear motors, with an available RallySport drive mode enhancing linear throttle response. Selecting this mode also sets more aggressive damping for improved handling and enables additional yaw for bigger slides, all important in dirt-track driving. Acceleration is impressive with the Rally’s 700 lb-ft torque enabling a 0-60 mph sprint is just 3.4 seconds. Its 91 kWh lithium-ion battery delivers an estimated 265 mile range.

Rear detail of 2024 Ford Mustang Mach-E Rally electric car.

Distinct Mach-E Rally Look

Form follows function with the Mach-E Rally, as it is also distinguished with special body moldings,  an aggressive rear liftback spoiler, rally-style fog lights, black painted roof, and eye catching graphics that add to its appeal. Power is delivered to the road via 19-inch gloss-white wheels equipped with Michelin CrossClimate 2 tires ideal for navigating loose surfaces. All this comes at a cost of $59,995, some $20,000 over the base model and six grand more than the Mach-E GT.

Driving the Mach-E Rally at Dirtfish was exhilarating. This specially equipped model exhibited exceptional capabilities and a seriously fun-to-drive nature at speed, which was expected given its rallycross nature. What’s really impressive is the degree to which the Mach-E Rally accomplishes this without sacrificing comfort or capabilities on the street, where most drivers will likely spend most of their time behind the wheel.

Display with driving modes.

Off Roading in a Mustang?

So, let’s just share a fundamental: There’s no circumstance in which either of our personal Mustangs would have ventured off-pavement, at least not willingly and not for an extended drive, unless we happened upon a washed-out road and it was our only way home. But the 2024 Mustang Mach-E Rally? Well, that’s another story…and it’s a really good one.

Now that we’ve been behind the wheel of a Mach-E Rally on Dirtfish Rally School’s dirt, gravel, and wet course, our Mustang horizons have expanded. We can say with confidence that heading off the beaten path in a Mach-E Rally is not only a reasonable option, it’s one likely to be calling out to Rally owners with some regularity. After all, while the road ahead may be straight and true, often enough there will be a new adventure awaiting on dirt roads less traveled just a turn of the wheel away.

Green Car Journal publisher Ron Cogan with a Ford Mustang Mach-E Rally electric car.
Parked VW ID.7 electric car charging.

VW will launch its 2025 ID.7 electric sport sedan in the U.S. in two trim levels and in both rear- and all-wheel drive formats. Typically, a two-trim strategy provides a more basic entry-level model and a mid- or top-range premium version. But since the VW ID.7 is being marketed as a ‘near luxury’ sedan, its base Pro S trim should come very well-equipped. The Pro S Plus will offer even higher levels of posh, adding 20-inch alloys, adaptive ride damping, front premium massage seats with heating and cooling, and an upscale 700-watt, 14-speaker Harman/Kardon sound system.

Rear-drive versions of the 2025 ID.7 will use a single motor mounted on the rear axle rated at 282 horsepower and 402 lb-ft torque. All-wheel drive versions will have two motors – one on each axle – capable of delivering a maximum of 335 horsepower. Both will use an 82 kWh lithium-ion battery pack. Those are the same powerplants installed on the three upper ID.4 electric crossover trims for the 2024 model year. VW is holding back on revealing range estimates for the ID.7 until closer to launch, but the streamlined sedan should deliver a few miles more than the boxier ID.4, which is rated – for 82 kWh battery versions – at 292 miles for rear-drive models and 263 miles for all-wheel drive versions.

How the VW ID.7 Stacks Up

Sedans have been phased out by many automakers in the U.S. market and electric sedans are even rarer, so the ID.7 won’t have a lot of direct competition. Midsize premium electric sedans in the ID.7’s anticipated price range are the Hyundai Ioniq 6, which is likely to be the prime competition, plus the Tesla Model 3, lower trim levels of the BMW i4, and some trim levels of the Ford Mustang Mach-E, a crossover with some sedan-like styling characteristics.

The ID.7 may be the roomiest of the bunch. At 195.3 inches, it is longer than any of the others and just .75 inches shorter than the ID.Buzz van. The ID.7 also has a longer wheelbase – an indicator of cabin legroom – than any likely competitor except the Mach-E, which, at 117.5 inches, beats the VW electric sport sedan’s wheelbase by a scant half an inch. Driving range varies among likely competitors’ rear-wheel-drive models, from 256 miles for the base BMW i4 with a 66 kWh (usable) battery to an extended range of 310 miles for the Ford Mustang Mach-E with an 88 kWh (usable) battery.

Key VW ID.7 Features

The ID.7 is expected to come to market with a sporty, EV-modern interior with a flat dash hosting a centrally mounted, 15-inch infotainment touchscreen that will be control central for most vehicle functions. Backlit sliders beneath the screen will provide cabin temperature and audio volume controls, and there’s a touchpad on the left side of the dash with headlight and defroster controls. A head-up display will show drivers most of the info they need, projected directly onto the lower portion of the windshield, but there’s also a small digital driver info screen behind the flat-bottom steering wheel. The shifter is located on the steering column, leaving the center console clean and open.

To make up for the paucity of physical controls and to make it easier for drivers to use the vehicle’s functions – like selecting drive modes – without taking their eyes off the road to stare into the infotainment screen, VW has developed a voice command system that can be used to do more than change audio channels and make phone calls. Drivers will be able to use to it set those drive modes, set up the navigation system and driver-assist systems such as lane-keeping mode, and even adjust the in-dash vents for the climate system.

While VW hasn’t supplied most vehicle measurements yet, the company did disclose that the ID.7’s primary cargo area behind the fold-down second-row seats measures a spacious 18 .8 cubic feet. Among potential competitors, only the Tesla Model 3 and Mustang Mach-E have more.

VW ID.7 electric car chargeport.

Safety and Driver Assist Systems

ID.7 will use VW’s IQ.Drive advanced driver assist system as standard equipment. It features hands-on-wheel semi-autonomous driving in some circumstances. Also standard across the line will be automated Park Assist Plus for parallel and perpendicular parking. We expect standard safety and driver assist systems for the ID.7 to include full-range adaptive cruise control, front collision mitigation, blind spot monitoring, lane departure warning and lane keeping assist, and more. The ID.7 hasn’t yet been crash-tested by either the National Highway Traffic Safety Administration (NHTSA) or the Insurance Institute for Highway Safety (IIHS). But the ID.4, with which the ID.7 shares a platform, has received top crash safety ratings from both.

Pricing is also to come and won’t be revealed until closer to the ID.7's launch in the third quarter of this year.

VW ID.7 close of up front wheel.

This was originally published on thegreencarguy.com. Author John O'Dell is a distinguished career journalist and has a been an automotive writer, editor, and analyst specializing in alternative vehicles and fuels for over two decades.

Azura ZDZ electric car.

Buyers of Acura ZDX models and all Honda Prologues built after Feb. 26, 2024, will qualify for the full federal $7,500 federal clean vehicles tax credit. Those  who lease will also get the credit in the form of reduced monthly lease payments regardless of the vehicle’s production date. The 2024 Prologue EV will start at under $50,000 while Acura’s ZDX, an electric crossover built on the same platform, will start at just over $65,000.

Honda is offering the Prologue in three trims, two available with single-motor, front-drive or dual-motor, electric all-wheel drive (eAWD) powertrains, and one with dual-motor eAWD as the only powertrain. Acura’s ZDX will come in two trims, one with both rear-wheel drive and eAWD options, the other with eAWD only. The two EVs are the fruit of Honda’s short-lived EV co-development program with GM. They share their underpinnings and batteries with the Chevrolet Blazer and Cadillac Lyriq.

Honda Prologue charging in garage.

Price and Range

The base rear-drive Acura ZDX A-Spec trim will start at $65,745 including a $1,245 destination charge. The eAWD variant will start at $69,745. The eAWD Type S will start at $74,745 and there’s a sport edition with performance wheels and tires for $1,000 more. Acura said the base A-Spec can deliver up to 313 miles of range- slightly more than its Honda Prologue platform mate. The eAWD version comes close at 304 miles. Both Type S variants are rated at 278 miles.

Honda’s base front-drive 2024 Prologue EX will start at $48,795 including a mandatory $1,395 destination fee. The eAWD version, with two motors and more horsepower, jumps to $51,795. The front-drive Prologue Touring starts at $53,095, jumping to $56,095 with eAWD. Prologue Elite, available only with electric all-wheel drive, starts at $59, 295. EPA range estimates are 296 miles for the front-drive EX and Touring, 281 miles for the eAWD EX and Touring and 273 miles for the Elite.

Honda Prologue dash board.

This was originally published on thegreencarguy.com. Author John O'Dell is a distinguished career journalist and has a been an automotive writer, editor, and analyst specializing in alternative vehicles and fuels for over two decades.

Nissan Ariya EV parked by water.

Nissan’s LEAF electric vehicle was groundbreaking when it was introduced in the 2011 model year and has maintained an honored spot in the Nissan lineup, but it’s on its way out. Until the time comes for a replacement, Nissan fans in search of a zero-emission option needn’t worry. There’s another choice in the new Nissan Ariya EV.

The Ariya is built on Renault-Nissan’s CMF-EV platform, also utilized by the European-market exclusive Renault Megane E-Tech Electric. It has the same exterior dimensions as the Nissan Rogue yet the same interior dimensions as the larger Murano, owing the larger space to the absence of a front trunk (“frunk”), along with a clever space-saving design.

A Pair of Powertrains

Nissan provides two powertrain choices. The standard powertrain setup is a single-motor, front-wheel-drive option producing 238 horsepower and 221 lb-ft torque. If buyers wish to upgrade, Nissan offers a 389 horsepower, 442 lb-ft torque dual-motor configuration that also boasts Nissan’s e-4ORCE all-wheel-drive system. This system is loosely related to the racetrack-dominating Nissan GT-R’s ATTESA E-TS torque split all-wheel-drive configuration. 

As for batteries, Nissan offers two of those as well. The entry-level battery is a 63 kWh liquid-cooled lithium-ion battery with an EPA-estimated range of 216 miles. The second, more powerful option is an 87 kWh lithium-ion battery which is also liquid-cooled and offers an EPA-estimated range up to 304 miles. The Ariya is capable of charging from 20 to 80 percent in about 40 minutes using a fast charger via its front fender-mounted charge port. 

Front end detail of the Nissan Ariya EV.

Nissan Arriya EV Design

Exterior and interior design were at the forefront of the Ariya’s conception. Nissan uses many traditional and modern Japanese techniques, combining them into a rather unique finished product. The front end of the Ariya exhibits what Nissan describes as chic and timeless Japanese futurism, or iki, exemplified by its Bullet Train-inspired fascia. Its slim, four-LED V-Motion headlights are underlined by thin LED running lights, darting diagonally into the translucent front grille. Underneath this see-through cover is an example of Kumiko, a traditional Japanese pattern. Large, functional air scoops sit in front of both wheels with a diffuser-inspired gloss-black central air intake situated at the bottom of the front end.

At the sides, the Ariya assumes a more sporty appearance, but still captures some of the minimalistic elegance that Nissan has tried to convey. Cleverly designed wheels take air and push it away from the body while in motion to minimize drag. A sleek, low roofline is painted gloss-black to create a floating look.

Overhead view of the Nissan Ariya EV.

Traditional Japanese Influences

At the back, Nissan angled the rear end a bit more than most SUVs to further its sporty appearance. A large roof spoiler comes down almost to the middle of the rear window. A thin LED rear light spanning the entirety of the rear hatch is present, with a design that hints at the Nissan Z. Another air diffuser-inspired design is seen at the bottom of the rear bumper. 

Inside the Ariya, Nissan has again employed traditional Japanese design. The door panels all have an embossed paper lantern-inspired pattern around the speaker-surround and armrest. HVAC vents are hidden in the dashboard, powered by haptic-touch buttons built into the dash beneath a convex 12.3-inch infotainment screen. Along with this screen is a connected 12.3-inch digital gauge cluster with easy to locate drive mode selections. Nissan has provided plenty of rear legroom and the Ariya is capable of folding the second-row seats completely flat, providing a maximum 60 cubic feet of cargo room with the second row folded. 

Nissan Ariya EV instrument panel.

High Tech Nissan Ariya EV

Arriya integrates Nissan’s newest driver assistance platform, ProPILOT Assist 2.0. Included in this iteration is a hands-on system that aids drivers with staying in their lane, changing lanes, and exiting highways. ProPILOT Assist 2.0 also allows drivers to take their hands off the wheel, as long as the drivers eyes are squarely on the road ahead. Nissan Safety Shield 360 is also present, offering High Beam Assist, Blind Spot Warning, and Pedestrian Detection, among others. 

While coming at a cost some $15,000 higher than Nissan’s longstanding LEAF, the $43,190 Ariya crossover is more spacious, quite stylish, and offers significantly longer driving range that can top 300 miles. Overall, it represents a solid choice for buyers looking to upgrade their everyday driving experience to a zero-emission crossover from one of the industry’s EV pioneers.

Driver's compartment in a Nissan Ariya EV.
EV total energy meter.

Range estimates are important for electric vehicle drivers, especially when traveling long distances along routes with sparse fast charge infrastructure. Even though EVs do provide range information, drivers do not have much useful real-time information on how environmental conditions of the drive,  or elevation changes of the route, are affecting the vehicle's energy use.

For example, short term miles per kilowatt-hour (miles/kWh) or watt-hour per mile (Wh/mile) information is strongly affected by the slope of the road and recent speed changes. However, this is very difficult to use for range estimation, especially on an unfamiliar route, and does not provide much useful feedback to the driver so they can adapt to current conditions. 

The fundamental concept of the Total Energy Meter system here is that there are actually three important energy storage mechanisms, which may be intuitively thought of as ‘batteries.’ The first is the potential energy a battery stores from elevation changes. Second is the kinetic energy a battery stores from the vehicle’s speed and mass. Third is the chemical battery that stores the electrical energy.

Total energy meter measures three forms of energy.

The Total Energy in these three batteries accurately represents the energy available to the vehicle. Altitude and speed changes merely transfer energy between the three batteries, so the Total Energy consumption represents energy actually being dissipated to the environment by aerodynamic drag, friction, electrical losses, and climate control.

With real-time Total Energy Wh/mile information, a driver can easily adjust their vehicle’s speed and climate settings to stay within an energy budget and achieve a desired range, even in difficult environmental conditions such as hilly terrain, high winds, rain or snow, and extreme temperatures.

How the Total Energy Meter Works

It may be useful to consider the following energy equivalents for a ‘typical’ 2000kg, 260Wh/mi (@65mph) EV: The EV traveling at 65mph has 234Wh of kinetic energy, which represents 0.9 miles of range; On a road with 3.0% down slope the EV will coast at 65mph with no power; The potential energy of a 1000m elevation change is 5.45kWh, which represents 21 miles of range.

In order to provide accurate range prediction in varying driving conditions, it important to determine the energy that is truly being lost to the environment in the form of friction, aerodynamic drag, electrical losses, and auxiliary loads, and not to contaminate this with energy that is merely being transferred between the vehicle’s ‘batteries.’

Total energy meter for electric vehicles.

Vehicle instrumentation that calculates the true energy use (Wh/mi) using the total of the 3 ‘batteries’ can be used to extrapolate accurate range estimations from the most recent few miles of driving. It can also provide the driver with meaningful real-time feedback on their driving choices (such as speed,  climate control, cargo racks, and tire pressure) that can be easily interpreted to ensure that a desired range is attained. 

An EV with total energy metering will indicate an energy use (Wh/mi, to be preferred over the mi/kWh shown by some) that remains relatively constant whether the vehicle is on a level road, climbing a grade, or descending. The Wh/mi number will accurately reflect the effect of driving speed, headwinds, temperature, rain, and A/C load on the vehicle’s actual power dissipation even over hilly terrain. As the effects of speed changes (kinetic energy) are properly accounted for, the short term energy use, averaged over only a fraction of a mile, is quite a smooth function during city driving.

When offered more usable energy feedback, there is the potential that a driver may learn to optimize their driving efficiency and enjoy enhanced vehicle utility with reduced energy consumption, battery degradation, and range anxiety.

The Elevation Measurement Problem

Most EVs already have GPS, and this provides altitude information. The short term error of the GPS altitude can be several meters, especially in urban or mountain environments. For 4 percent accuracy of the total energy Wh/mi over a specific distance, for example quarter mile, the altitude must have less than 0.5m error. Another measurement method is required for short term accuracy.

A practical solution has been to use a sensitive longitudinal accelerometer to measure the slope that the vehicle is driving on. For the same accuracy as above, the slope needs a precision of 0.12 percent, or a few mm over the wheelbase. As the sensor must be mounted to the chassis (not the road surface!), the variations of the suspension loads and tire deflections introduce errors greater than desired.

The complete solution has been to use the GPS altitude data (which has excellent long term precision), averaged over several miles, to adjust the accelerometer null used in the total energy calculation. It is interesting to note that the time integral of  (accel * mass * speed) is the sum of the potential and kinetic energies, exactly what is needed for the total energy meter system.

There is another detail that needs to be considered when deciding where to mount the accelerometer in the chassis. The location should minimize the cross coupling between the lateral g generated in turns to the desired measurement of longitudinal acceleration. Fortunately most EV s only steer the front wheels, so a location above the rear axle ensures that the lateral g forces are orthogonal to the longitudinal axis of the vehicle. Lower in the chassis is also preferable, as pitch oscillations have less effect.

System Integration

The EV total energy meter is not just a theoretical discussion. A prototype was developed during the last year and has been implemented in a Hyundai Kona EV. The system has been tested in a wide variety of driving conditions.

The prototype uses a Windows tablet PC with a Bluetooth link to the vehicle’s OBDII port to get battery state of charge (SOC), volts, amps, and motor rpm. This is combined with accelerometer data and GPS altitude to calculate and display energy use information. As the software in the tablet is not linked to the NAV system, the user manually enters the destination altitude for the range calculation.

For an OEM implementation, the only additional hardware requirement over what is currently in most EV s is the accelerometer, which can use a $2 sensor chip and needs to be connected to the vehicle CAN bus. The vehicle dashboard computer could handle the data processing and display.

User Interface

The prototype system display is for engineering test and evaluation, but much of the basic functionality could be applied to a consumer oriented implementation. This view of the touchscreen shows the range display tab.

The calculated remaining range can either be based on the “E.use” Wh/mi evaluated over the last x miles (“eval dist” user select), or on a target Wh/mile number entered by the user. The target Wh/mi mode has proven valuable when it is important to ensure a desired range is attained; as long as measured energy use is kept below the target, the range requirement will be met. 

Note how the blue Wh/mi trace is not affected by altitude changes (red), but does reflect the effect of different driving speeds (white), from 65 mph freeway driving to 35 mph on a twisty mountain road. Both the trip average of 170Wh/mi “trip E” and the 157Wh/mi “E use” were well below the target 210Wh/mi “set targ” at this point in the drive, so the remaining range number would be indicating an increasing margin to the destination.  The range calculation is based on the 280m “dest alt” that is set manually. During the drive, shown cruise control was used extensively to maximize efficiency and to generate smoother data records.

An Open Source Invitation

This presentation of the EV Total Energy Meter is an invitation for this concept to be used by OEMs and anyone else as an open source technology to enhance EV products and promote more efficient transportation. The same concept could also be applied to fueled vehicles, substituting gal/mi or $/mi for Wh/mi.

Side view of electric BMW i5 Series sedan.

The BMW 5 Series has proved to be a huge success for the Bavarian automaker since its introduction in 1972. The all-new eighth generation 5 series carries on this tradition with its many innovations and improvements, and a few welcome surprises. Offering five trim levels including the base 530i, mid-range 530i xDrive, and the 540i xDrive, those surprises come in the form of two electric models in the series– the i5 eDrive40 and the range-topping i5 M60 xDrive. 

Gas-powered models receive a pair of updated engines. The 530i and 530i xDrive are powered by a 2.0-liter TwinPower four-cylinder producing 255 horsepower and 295 lb-ft torque. The 540i xDrive receives a refreshed 3.0-liter inline-six cylinder fitted with the same TwinPower turbo and a 48-volt mild hybrid system, which delivers a combined 375 horsepower and 398 lb-ft torque.

BMW 5 Series Power

The hallmark of this new generation 5 Series is the inclusion of all-electric models with strong power and efficiency numbers. The i5 eDrive40 features 335 horsepower and 317 lb-ft torque at the ready with an electric motor driving the rear wheels. The sport-focused i5 M60 xDrive ups those numbers considerably, with its maximum power output of 590 horsepower and 605 lb-ft torque delivering a 0-60 mph sprint in a reported 3.7 seconds. Two electric motors power the all-wheel drive i5 M60 xDrive, one at the rear and another at the front.

Both electric models use an 84.3 kWh battery that provides a range of 295 miles for the i5 eDrive40, and 256 miles for the i5 M60 xDrive. The battery includes BMW’s Combined Charging Unit, allowing Level 2 AC charging up to 11 kW and the ability to charge from 10 to 80 percent in about 30 minutes. BMW’s selectable MAX RANGE system enables drivers to further increase their i5’s range in low-battery situations. 

Rear view of electric BMW i5 Series sedan.

Signature BMW Design

The exterior of the new eighth generation 5 Series takes BMW’s sporty past and infuses it with the automaker’s current design form. BMW’s omnipresent, signature kidney grille makes its expected appearance and takes center stage on the 5 Series’ front end. A long, sloping with muscular lines ties into a steeply angled windshield to create a sleek and uninterrupted line continuing through the roofline. The flanks of the i5 see a much more refined and minimalist approach with inset door handles and a subtle body crease near the rocker panels. 

At the rear, BMW has redesigned the model’s taillights with a more understated look, presenting a thin appearance with two slim red LED bars running across the taillight.` Turn signals and reverse lights are nestled in between. A downward-sloping trunk decreasing the gradient from the rear window and roofline makes the i5 appear very streamlined. 

A Premier Interior

Inside the i5 is a new experience as well. Chiseled lines and premier surfaces, expected of BMW, are abundant. Hidden HVAC vents are placed strategically throughout the interior with leather-free seating surfaces available. The most noticeable new feature is q 14.9-inch infotainment screen and 12.3-inch digital gauge cluster. Both screens meet to create an uninterrupted and impressive digital display. An in-car gaming console, which BMW dubs the AirConsole, makes its appearance in the i5, allowing users to choose from 20 games to play while the car is stationary. A new BMW Operating System 8.5 controls all functions within the i5 and accommodates over-the-air updates. 

The BMW 5 Series has always been a strong model. Positioned in the midst of BMW’s sedan lineup, the 5 Series has historically delivered the sportiness of the 3 Series with a dash of refinement and the calm nature of the 7 Series. This new generation is no different. Deliveries of the new 5 Series are set to begin in fall 2023 at an entry price of $57,900.

Side view of electric Honda e:Ny1.

Honda recently unveiled its e:Ny1 electric crossover, the first EV model based on the automaker’s all-new e:N Architecture F platform. The oddly named e:Ny1 is important because it shares Honda’s evolving EV design language and shows a direction that includes electrifying smaller and lighter models. That said, the Honda e:Ny1 holds less importance to drivers in the U.S. since it will be sold exclusively in Europe and Japan. Still, given the overall similarity of this Honda EV to the automaker’s HR-V, it isn’t a stretch to imagine a similar electric model destined for our shores.

Holding to Honda’s usual tradition, the e:Ny1 blends both a conservative and reserved appearance with splashes of chiseled and chunky sportiness peppered throughout. At the front, the e:Ny1 features slim and flat headlights that wrap in from the front fenders with angular LED running lights at the top. Separating the headlights is a matte-finished panel with charging status lights, and below that we find a large chargeport port door that’s well integrated into the overall front end design. Two discrete LED fog lights are located at the bottom of the bumper, with a thin strip of chrome beneath that runs the width of the front fascia. 

Front detail of the electric Honda e:Ny1.

Honda e:Ny1: Compact, Sleek, Stylish

The Honda e:Ny1 features a high belt line and flanks that are sleek and smooth save for a creased line along the top and bottom of the doors. Black side-mirror caps, wheel arches, and window trim reveal sporty undertones, reinforced by thin-spoke alloy wheels with black accents. At the rear, a subtle roof spoiler extends slightly above the rear window, curving in at the sides. A red LED light bar runs the width of the rear hatch with two slim taillights at either end. A single, sharp body line runs just beneath with a typeface Honda badge.

A stylish and techy interior greets the driver. While Honda has yet to divulge details about the array of onboard systems to be featured in the e:Ny1, we do note the inclusion of a 10.2 inch digital instrument cluster facing the driver and a 15.1 inch portrait-style infotainment screen at the center of the dash. The infotainment screen is split into three sections with navigation and related applications at the top, entertainment and vehicle functions mid-screen, and climate information and selections at the bottom. Colored LED accents are inset in the doors and dashboard, with two-tone stitching adding a sporty touch to the dash and door upholstery. The center console, window switch panels, and steering wheel showcase gloss black-finished accents. Leather upholstery on all seating surfaces is 50 percent thicker and treated to increase softness for added passenger comfort.

Stylish cabin of the Honda e:Ny1 electric car.

Nicely Appointed Cabin

Rear seating in the e:Ny1 is very similar to that of the HR-V but without the ability to fold the rear seats flat, which impacts total available cargo area and limits carrying capacity to 11.3 cubic feet. The cargo area itself is also very similar to the HR-V, although employing a new smart-close capability that allows activating the self-closing hatch and walking away before it begins closing.

Power ratings are adequate with the e:Ny1 producing 201 horsepower and 229 lb-ft torque using a single-motor driving the front wheels. A 68.8 kWh battery pack is said to deliver a European WLTP drive cycle range estimate of 256 miles. Because of the fundamental differences in how WLPT and EPA testing measures EV range, that number would likely translate to about 200 miles of electric driving here in the States. Fast-charging via the car’s front-mounted chargeport is said to replenish the battery from 10 to 80 percent in about 45 minutes, somewhat slower than many other EVs at similar price points. 

Rear view of the electric Honda e:Ny1 electric car.

The Honda e:Ny1 is set to be delivered to dealers in Europe and Japan late this year, with pricing expected to begin at a USD equivalent of about $40,000. 

Rear view of Volkswagen ID.7 electric car driving on highway.

VW unveiled its ID.7 electric car concept in January of this year, sporting a vivid QR code-themed electro-luminescent paint job that caused quite a stir in the automotive world. Back then, we couldn’t make much of the styling due to that vibrant QR camouflage. Now though, the production ID.7 has been revealed.

The ID.7 shares its roots with the growing Volkswagen ID line that was introduced in 2019 with the release of the small Volkswagen ID.3 electric car, followed by other ID models sold in offshore markets and the ID.4 sold here in the States. The ID.7, along with the rest of the ID line, utilizes the Volkswagen Group’s MEB platform designed specifically for electric vehicles.

Side view of the Volkswagen ID.7 electric car.

ID.7 Electric Car Has Style

One word comes to mind when looking at the Volkswagen ID.7: sleek. There’s a definite flow to the exterior design, starting with the subtle sportiness of the front end and front fascia that’s accented by an angular low-mounted black grille. Discrete LED running lights visually connect the ID.7’s LED headlights together, separated only by a VW badge at the center.

Along the sides of the ID.7, one notices an angular and flowing design with a crisp body line cutting across the lower quarter of the car, accented by a smooth, curved body line through the center of both doors and another finishing at the top of the doors, just under the windows. A slim, white color accent runs the length of the roofline above the windows and comes to an end near the rear deck. Adding to the car’s subtle sportiness is a black roof and black under-trimming that runs the entirety of the car. A large and angular wheel design with a dash of black on the inner spokes is standard on the ID.7.

Overhead view of Volkswagen ID.7 electric car.

A Pair of Powertrain Choices

At the rear is a black honeycomb-inspired rear light bar that spans the width of the trunk. A slim, continuous red reflector strip is present near the bottom of the rear end, nestled in the black under-trimming. The sedan-like ID.7 is technically a hatchback, but it’s hard to notice upon close inspection. The rear window meets the trunk lid almost instantly and a small integrated trunk lid spoiler adds to the sweeping design. 

Two power choices will be available with early models featuring single motor rear-wheel drive and dual motor AWD coming later. The base power option will deliver 286 horsepower and 402 lb-ft torque with energy from a 77.0 kWh battery pack. A larger 86.0 kWh battery option will also be offered, though VW doesn’t yet specify horsepower and torque numbers for this. Volkswagen identifies the ID.7’s range at 382 miles on the more optimistic European WLTP testing cycle, so expect something more like 300 miles of range here with the smaller battery, and up to 350 miles with the larger battery, once EPA testing takes place. The ID.7 is fast charge-capable and drivers should expect the ID.7 to charge its battery from 10 to 80 percent in about 25 minutes using a public fast charge station.

Chargeport on the Volkswagen ID.7 electric car.

Driver-Centric Experience

Inside the ID.7 is an attractive and contemporary interior. Volkswagen’s usual formula for its interior design is minimalist yet fully functional, and the ID.7 is no exception. Taking center stage is a 15-inch infotainment screen designed to appear as if it's floating. Ahead of the driver sits a small, horizontally-oriented display indicating vehicle speed, charge level, and range.

Synthetic leather and recycled materials are used throughout the interior. Front seats feature generous side and back bolstering. Optional for the ID.7 are adaptive Climatronic ‘wellness seats’ that are heated and cooled, massage capable, and feature a drying function, the latter something we haven’t seen in an EV to date. A large center console with ample storage separates the front passengers. Climate vents are plentiful and seamlessly integrated into the dash architecture. Another hallmark of the ID.7’s interior is the optional panoramic SmartGlass roof, which has the ability to turn from transparent to opaque using an electrochromic charge, controlled by touch or voice control.

Instrument panel in the Volkswagen ID.7 electric car.

Tech Rich ID.7 Electric Car

Tech is in abundant supply in the ID.7. The 15-inch infotainment screen handles nearly all functions and features an aesthetically pleasing backlit touch slider at the bottom for navigating between selections. ID.7 also incorporates Volkswagen’s IDA voice assistant. Most operations can be handled by using the IDA, including panoramic roof operation and navigation, among others. An array of driver assist functions are offered including Travel Assist, a semi-autonomous driving feature supporting lane changing at speeds above 55 mph, keeping a preset distance from the vehicle ahead, and maintaining a set speed. The car can also park itself using VW’s We Connect ID smartphone app. An available Harman Kardon option to the standard sound system showcases 14 speakers, along with a centrally-located speaker in the dashboard and a 12-inch subwoofer in the rear cargo area. 

The Volkswagen ID.7 is entering the EV world at a time when Tesla dominates the all-electric sedan market, so Tesla is clearly in this model’s sights. While pricing for the ID.7 won’t be disclosed until closer to the model’s on sale date, expect it to be at a competitive level that makes the ID.7 an attractive and feature rich option to Tesla’s Model 3.

Instrument display as you drive electric.

You know the drill. Get in the car, commute to work, run your usual errands, and at regular intervals stop at the gas station to fill up. It’s a routine that’s been ingrained in the driving psyche for decades. If you want to simplify, then consider a move from gas and instead drive electric. Driving an EV is not a panacea to life’s constant demands but all in all, it calls for less of your time and attention. Here are a few reasons why driving an electric vehicle may be for you.

EVs Can Enhance Convenience

How much is your time worth? Charging an EV’s battery can conveniently be done at home with a garage charger, through a growing public charging network, and increasingly at workplace chargers. Those regular trips to gas stations? Cross them off your list, forever. Another benefit that can save time – and frustration – is the ability for solo EV drivers to use high occupancy vehicle (HOV/carpool) lanes in some states, which can shave plenty of time off a commute.

It's Cheaper to Drive Electric

Electricity is a far cheaper way to fuel a car than gasoline. In fact, electric motors are so much more efficient than internal combustion engines, the most efficient electric vehicle today nets an EPA combined city/highway rating of 140 MPGe. The savings don't stop there. If you charge at home, additional savings can be realized by signing up for an electric utility’s favorable electric vehicle rate plan, then timing a charging session during a plan’s specified hours.

Less Maintenance Required

Vehicle maintenance is key to a healthy vehicle. Tune-ups keep a typical car running its best over the long haul, making the most efficient use of the gas it consumes and optimizing combustion so it produces fewer tailpipe emissions. One of the important benefits of an electric vehicle is that maintenance needs and costs are significantly diminished. Simply, there are far fewer moving parts in an EV than a conventional internal combustion vehicle, which means there’s less to take care of and fewer appointments needed for service.

Get a Subsidy to Drive Electric

Electric vehicles today are almost universally more expensive than those powered by traditional internal combustion engines. But if you want one, the federal government – along with many states, electric utilities, and other sources – can make it easier to buy an EV with generous subsidies of many thousands of dollars. The most valuable of these subsidies comes from the recently passed Inflation Reduction Act of 2022, which offers a potential clean vehicle tax credit up to $7,500 if you buy a new plug-in electric vehicle and up to $4,000 on a qualifying used EV.

Polestar 2 driving on highway.

Status Comes with the Territory

Driving an EV makes a statement. We’ve seen this over time as Toyota’s Prius hybrid made its way to U.S. highways just over 20 years ago and was embraced by environmentalists and celebrities. The instantly recognizable profile of the Prius was part of the attraction, which shouted, “Look, I care about the Earth!” To many, that was reason enough to drive a Prius. To a whole lot of others it was just kind of obnoxious. Thankfully, today’s expanding field of eco-friendly electric vehicles offer a different approach. Some feature futuristic design cues that push the envelope in a positive way, but most are so mainstream you have to look for EV badging. Either way, your immediate circle of influence will recognize that you’re driving an electric vehicle and that confers positive status.

Toyota bZ4X electric car.

Behind the wheel of Toyota’s new bZ4X electric vehicle, I’m given to a bit of reflection as to why this car has come to be. After all, Toyota is a specialist in hybrid vehicles and is noted for its focus and leadership here, not battery electric cars. But these days Toyota is feeling the pressure – actually, lots of it – to bring all-electric vehicles to a wanting market.

In between Toyota’s hybrid offerings and its emerging focus on electric vehicles are the  automaker’s plug-in hybrids that blend characteristics of the two. The Toyota brand has a pair of these now – the RAV4 Prime offering 42 miles of electric driving and 640 miles total range, and the Prius Prime offering 25 miles on battery power with a total driving range of 600 miles. We expect other models to join in soon enough.

A Timely EV Introduction

So why the bZ4X battery electric vehicle? Because it’s time, and also because it’s a critical link to Toyota’s ‘Beyond Zero’ (bZ) future and an array of battery electric, plug-in hybrid, and hybrid Toyota models in the pipeline. The automaker is serious about this. To support its growing electrification effort, Toyota has announced massive investments in battery manufacturing for its electrified vehicles, including $3.8 billion alone for a new battery manufacturing facility in North Carolina.

Toyota has made some earlier forays into the electric vehicle field in the States, but it’s been a while. The automaker fielded its first RAV4 EVs here from 1997 to 2003 in response to California’s zero emission vehicle mandate, and then a newer generation RAV4 EV from 2012-2014, developed with Tesla. It’s been hybrids and plug-in hybrids ever since, plus of course the Toyota Mirai hydrogen fuel cell electric vehicle, though most don’t view that model as a battery electric vehicle competitor at this time.

Toyota bZ4X electric vehicle and night skyline.

Toyota bZ4X Design

Segue eight years ahead from Toyota’s last battery electric vehicle experience and here we are with the bZ4X. It’s been worth the wait. What we have in the bz4X is a stylishly modern intro to Toyota’s coming line of battery electric vehicles, sized similarly to a RAV4 but just a bit longer and lower. Its body design features disparate elements like a distinctly flat ‘hammerhead’ front fascia combined with sharp angles, pronounced fenders, sculpted sides, and a flowing roofline. All come together nicely as an appealing whole…a design not too conservative, and not leaning too far into the future.

Low-profile headlamps are accented by a dark contrast band that flows from the front fenders and across the front end. Matching contrasts are found at the rear fenders as well, with black accented rocker panels running from well to well. At the rear, the bZ4X innovates with a pair of aerodynamic roof extensions at either side of the upper hatch, lending the impression of a future-esque roofline spoiler. The bottom of the glass features a slight lip-of-a-spoiler with a thin fender-to-fender running light below, along with distinctive angular taillamps.

Toyota bZ4X cabin.

Familiar Cabin, With a Twist

Inside is a comfortable and modern interior featuring all the necessary elements for a satisfying driving experience, leaning a bit towards the spartan side. While much is familiar to the breed, there are design elements that align with the forward-thinking theme embodied by the car’s distinctive exterior. In particular, we’re thinking of the dashboard and instrument panel design ahead of the driver, which features an unusually long expanse between the steering wheel and MMI information display. Additional information and multimedia features are presented in a 12-inch widescreen display in the center dash position. Driver and passenger seats are comfortably bolstered for support and plenty of room is provided both front and rear, with rear legroom what one would expect in this size of vehicle. A panoramic roof is optional.

The bZ4X is well-equipped with the advanced driver assist features expected in today’s new models. It features the first use of Toyota’s latest TSS 3.0 Safety Sense suite, which includes advancements like improved pre-collision with guardrail, daytime motorcyclist, and low-light cyclist detection, and enhanced lane recognition. Other tech features include cloud-based navigation offering real-time traffic information and parking space availability, over-the-air software updates, and a digital key feature enabling drivers to lock, unlock, and start their bZ4X with their smartphone.

Rear seats in Toyota bZ4X electric car.

Single or Dual Motor Models

Drivers can choose single- or two-motor bZ4X variants. The former achieves an EPA estimated 119 combined MPGe with a 252 mile driving range, and the latter a combined 104 MPGe with a 228 mile range. Output for the single front-wheel drive model is 201 horsepower with the two-motor AWD version adding just 13 additional horsepower to the total. Energy is supplied by 71.4 and 72.8 kWh lithium-ion batteries, respectively. Both versions deliver a fun driving experience with confident ride and handling, quick torque at the ready, and plenty of power for anyone’s every day driving needs. With the dual-motor version delivering a 0-60 mph romp in the mid-seven second range, acceleration is brisk but does not approach the performance realm of some electric vehicles.

Toyota’s bZ4X is clearly an important introduction for this automaker that reinforces its continuing journey towards electrification. However, it does not mean that Toyota is convinced battery-powered vehicles are a proper all-inclusive strategy. The world’s largest automaker has been clear that it is not ‘all in’ with electric cars in the same way as some of its high-profile competitors, and the company has caught a lot of heat because of this. Rather, Toyota’s well-reasoned take is that multiple approaches exist to solving the interconnected issues of personal transportation and environmental sustainability.

A Balance of Electric Offerings

Electrification is a big part of this. It’s just that Toyota’s strategy does not embrace a tunnel-vision approach in which all roads lead to a plug, or a model without a gas cap. Some take form as hybrid, plug-in hybrid, hydrogen fuel cell, and yes, even battery electric vehicles. There is a balance here because one is needed since not everyone’s needs are the same.

An earlier Green Car Journal perspective shared by Toyota’s chief scientist, Dr. Gill Pratt, adds food for thought. Considering the finite resources available for worldwide battery cell production, and the carbon emitted in their production, charging, and use over time, it’s important they are used in the best way possible. Optimum use achieves a higher carbon return on investment (CROA) as cells are used closer to their full potential. EVs with large battery packs regularly making use of their range potential make sense and offer a higher return.

Toyota bZ4X charge port.

Best Use of Battery Cells

In Dr. Pratt’s illustrations, however, a fully electric vehicle with hundreds of miles of range primarily driving a short daily commute offers a poor return, since the majority of the cells are unneeded most of the time and are simply carried along as dead weight. Using this same number of cells in numerous plug-in hybrid models requiring smaller battery packs would offer a much more favorable carbon return, if these PHEVs are driven in ways that make best use of their more limited battery electric range.

This isn’t to say that plug-in hybrids are an inherently better choice than electric vehicles, or the other way around. It just means that needs vary, and pairing needs with an electrified vehicle’s capabilities makes the most environmental sense.

With hybrids and plug-in hybrids covered in the Toyota lineup, the missing link – the all-electric bZ4X – is now here to fill the need. Those seeking a crossover SUV offering expected zero-emission driving range, eye-catching style, and a comfortable and confident driving experience should look into Toyota’s new electric crossover. At a base price of $42,000, it provides what the brand promises – quality, thoughtful design, and user-friendliness, and no doubt the satisfying ownership experience the Toyota brand is known to deliver. Plus, of course, zero emission driving every mile you travel.