Green Car Journal logo
Karma Gyesera extended range electric car rear view.

Southern California-based Karma Automotive has a new player – the sumptuous Karma Gyesera –the next model in its electrified luxury lineup. Gyesera is positioned as the successor to the Revero, which has served as Karma's high-profile offering since the company acquired this model’s design and technology from the failed Fisker Automotive back in 2014. While many important technology refinements have been made to the Revero along with mild styling updates, the stunning design of the original car has largely remained intact.

The new Gyesera extended range electric vehicle (EREV) arrives at a time when the market for all-electric cars has softened and interest in EREVs is growing significantly. While the Karma Revero was once one of the pioneers in the luxury end of the electrified luxury market, Karma must now compete against a wide field of premium automakers offering their own plug-in and performance hybrids. Gyesera represents a strategic move to stay in the game and prove Karma is a serious player.

Advancing the Formula

Karma Gyesera wheel detail.

Karma is building Gyesera on an evolution of its aluminum space-frame platform, pairing it with bodywork made from aluminum and carbon-reinforced composites to reduce weight. The result is a lighter, more agile grand touring car that should also benefit efficiency. Larger forged billet aluminum wheels with Karma-specific Pirelli tires help reduce unsprung weight and rolling resistance.

Performance sees a clear step forward. The latest version of Karma’s extended-range hybrid powertrain delivers 566 horsepower and 546 lb-ft torque, propelling Gyesera from 0-60 mph in an estimated 4.0 seconds. That’s half a second quicker than the Revero, underscoring the emphasis on both grand touring comfort and sportier dynamics.

Technology-Led Development

Dimensions of Karma Gyesera EREV.

Beyond the car itself, Karma is highlighting a shift in how it designs vehicles. Gyesera is the first model developed under the company’s Intelligent Product Development System, a process that blends traditional engineering with digital twin concepts from the tech sector. By simulating designs virtually and connecting development to real-world data, Karma aims to shorten product development cycles and improve reliability.

This new approach points to the company’s ambition to operate not just as a boutique automaker, but as a tech-driven product company. It also sets the stage for additional models, including the Amaris GT coupe expected in 2026.

Karma Gyesera Design

Rear detail of Karma Gyesera grand touring coupe.

Visually, Gyesera introduces a design language meant to define Karma going forward. A low-slung stance, carbon composite details, and a distinctive “backslash” signature on the fenders create a bold appearance. The company’s distinctive “Target Acquisition” lighting, first shown on the Kaveya concept, makes its production debut here. A vented hood inspired by a comet’s trail adds both functional airflow and a unique styling cue.

The rear design is anchored by a full-width diffuser that emphasizes the car’s athletic proportions. Overall, Karma is aiming for a design identity that blends exclusivity, performance cues, and brand distinction.

Cabin and Connectivity

Karma Gyesera cabin.

Inside, Gyesera takes a restrained approach compared to competitors that dominate the cabin with large screens. A digital instrument cluster and a new Qualcomm-based infotainment system focus on delivering information cleanly rather than overwhelming the space. HVAC functions are integrated into streamlined menus, while conveniences like wireless CarPlay, Android Auto, and wireless device charging are standard.

Expanded over-the-air update capabilities bring added value, offering downloadable features such as custom audio tuning and AI-driven predictive service diagnostics. Premium materials and a simplified design approach reinforce the goal of a modern, uncluttered luxury environment. Slim front seats open up additional legroom for rear passengers, improving practicality without sacrificing the car’s sleek proportions.

Karma Gyesera Outlook

Center console detail in Karma Gyesera electric car.

With an expected starting price of about $165,000 and producing scheduled later this year, the Gyesera competes directly against luxury plug-in models from larger mainstream automakers. Its success will depend on Karma’s ability to distinguish itself through exclusivity, which the Gyesera's lofty price pretty much guarantees. That exclusivity formula, by the way, has been a key element already at work for this automaker. The upcoming Amaris GT Coupe, positioned at roughly $200,000, will further broaden Karma’s small but focused lineup.

Gyesera represents more than just a new model for Karma – it’s a signal of intent. By combining advanced plug-in serial hybrid power, lightweight materials, and software-enabled features, Karma is aiming to stand apart in a crowded segment. Whether this approach will establish Karma as a stronger player in the luxury hybrid space remains to be seen, but the Gyesera sets a new direction that builds on the pioneering foundation of the Revero while charting a logical and exciting path forward.

Karma Gyesera grand touring coupe front view.

Green Car Time Machine - archive articles from Green Car Journal.

Before today’s near-exclusive focus on batteries as an alternative to powering vehicles, there was an a major and ongoing effort to explore options to decrease gasoline use and mitigate emissions. Those fuels were many and varied, ranging from biodiesel and methanol to natural gas and hydrogen. One fuel stood out so dramatically as a seamless drop-in alternative to gasoline that it was embraced by many automakers by the millions in their production vehicles. That fuel – E85 ethanol – prompted a significant effort to establish E85 fueling stations and promote this as a viable alternative fuel. This eventually faded away as momentum for heavily-subsidized battery electric vehicles eclipsed movement toward all other fuel alternatives. But before that happened, Chevrolet’s high-profile Avalanche became a poster child for E85 ethanol and created excitement about this fuel’s future potential. Here, we present this article from Green Car Journal’s extensive archives just as it ran in our Fall 2005 issue.

Excerpted from Fall 2005 Issue: It has a curb weight of more than 2 1/2 tons and is powered by a 295 horsepower Vortec 5300 V-8 engine, yet this full-size sport utility truck can operate on just 15 percent of the gasoline one would expect. No, General Motors didn’t finally pull the mythical 200 mpg carburetor out of the closet; this Chevy Avalanche is one of the General’s growing fleet of E85- capable flexible fuel vehicles.

E85 is a mixture of 15 percent gasoline and 85 percent ethanol. Ethanol is ethyl alcohol, a renewable fuel source typically made from corn. Other widely produced starchy grains like wheat or barley can also be used to make ethanol. The beauty of a flexible fuel vehicle (FFV) is that you aren’t out of luck if you can’t find an E85 station along your route. Flexible fuel means that these vehicles can operate on either E85 ethanol or gasoline and any combination of the two.

In addition to lowering our dependence on petroleum fuel, E85 is a cleaner fuel source with lower sulfur and aromatic hydrocarbon emissions. In fact, the V-8 powered Avalanche is clean enough to earn California’s stringent SULEV (Super Ultra Low Emission Vehicle) rating and a Bin 8, LEV rating from the federal government. As a bonus, photosynthesis in the growing of corn feedstocks helps remove CO2 from the atmosphere. Ethanol does have a lower energy content than gasoline, so overall fuel economy may be slightly less when running on pure E85. However, ethanol proponents are quick to counter this by pointing out the economic benefits of using domestically produced corn as a fuel source, instead of imported oil.

One thing you won’t get with the E85 powered Avalanche is inconvenience. Time spent behind the wheel shows that performance is on par with a standard Vortec 5300 gasoline powered Avalanche. Plus, no driver input is required to switch fuel...the engine runs on any mix of either, seamlessly. The driver and passenger experience is quite normal in every respect. E85 can be hard to find, but the infrastructure is growing, with an estimated 300 fueling stations spread across the country.

Chevrolet Avalanche E85 ethanol flexible-fuel pickup.

The E85-capable Avalanche is just that – capable. This platform is a thoughtful blend of sport utility vehicle and pickup truck, making the Avalanche well suited for a wide variety of missions. What makes the Avalanche unique is the midgate rear cab wall that can be lowered to extend the abbreviated 5.3-foot bed length to more than eight feet. The process of folding the rear seats forward and lowering the midgate takes just moments and greatly increases the flexibility of the Avalanche to function as a full-size pickup. On the inside, the Avalanche can seat either five or six adults, depending on the front seat configuration ordered.

To help promote the use of ethanol in flexible fuel vehicles, General Motors has provided 28 state governments with Chevrolet Avalanche E85-capable demonstration vehicles. The move is designed to raise awareness for E85 as a viable, domestically produced alternative to gasoline. GM is currently the world’s leading producer of ethanol flexible fuel vehicles and offers flexible fuel vehicles for sale in all 50 states. In light of recent world events, ethanol may well gain the momentum needed to become a long-term alternative fuel contender.

Chevrolet E85 ethanol Avalanche pickup.

Polestar 3 electric car driving on the highway.

The midsize Polestar 3 SUV, the latest Polestar model to hit U.S. shores, is distinguished with sculpted styling, a minimalist interior, and loads of tech. It also features a good amount of real-world range and, living up to the automaker’s sporty performance goals, great handling and plenty of power.

The rub: The 2025 Polestar 3 starts at almost $69,000 and can edge close to $100,000 in top performance trim with all the available options. It’s not for the multitudes who live on tight budgets.

Likely rivals for shoppers’ attention include electric SUVs from the likes of Audi, BMW, Mercedes-Benz, and Volvo. You could toss in models such as the Cadillac Optiq, Tesla Model Y, and Genesis Electrified GV70, but they really play in a different segment as compact SUVs.

Rear view of Polestar 3 electric car.

Polestar offers the 3 in three “long range” powertrain choices with option packages to increase the tech, driver assist and comfort, and “gee, look at me” content. The base single-motor, rear-wheel drive version delivers, per the EPA, up to 350 miles of range. None of the competing high-end electric SUVs can match that, although none offer single-motor version, opting instead for 100 percent all-wheel drive lineups.

More powerful but less efficient dual-motor, all-wheel drive versions of the Polestar 3 come in two flavors. The base dual-motor trim boasts a segment-leading 315 miles of range, per the EPA’s rating system. Adding the Performance Pack option drops the Polestar 3 Dual Motor’s rated range to between 279 and 300 miles, depending on tire and wheel size. That’s in the ballpark with the 300-mile Audi Q8 e-tron, 307-mile Mercedes-Benz EQE SUV, 309-mile BMW iX xDrive50, and 310-mile Volvo EX9.

Sizewise, the Polestar 3 sits near the bottom of it pack. While its passenger cabin is roomy, the 3 overall is as much as 5.5 inches shorter than other premium and luxury mid-size electric SUVs. It sits mid-pack in cargo capacity, though, bested by the BMW iX and Audi but leading the EQE SUV and the Volvo EX90. Pricewise, the Polestar starts lower than any likely competitor.

Who is Polestar?

The Swedish EV maker started life as an independent tuning shop for Volvo racers, then was absorbed by Volvo Cars, which has been owned by China’s Zhejiang Geely Holding Group since 2010. In 2017 Geely decided it wanted a stand-along EV makers in its stable to market performance-oriented but premium-level vehicles globally. Polestar was spun off from Volvo to be that company.

It is publicly traded, but a majority of its shares are held by Geely and Geely founder and CEO Li Shufu’s private PSD Investment. Volvo Cars also holds a stake.

Polestar’s first model, the limited production Polestar 1, was a sport coupe with a 600 horsepower plug-in hybrid powertrain and 52 mile all-electric range, the best in the business. It was sold globally, though in very small numbers, from 2019 through 2021 and won praise for its styling and performance. Only about 1,500 of the $150,000 cars were built and just 250 of them made it to the U.S.

The Polestar 2, a compact sedan-styled hatchback, launched in 2019 and still is sold in Asia and Europe. U.S. sales of the sporty 2 were curtailed this year in the face of stiff tariffs on vehicles imported from China, where it is built.

Front detail of Polestar 3 electric SUV.

Polestar 3 went on sale in the U.S. earlier this year in dual-motor trim, with the single-motor version launching in April. Models sold in the U.S. are built alongside the Volvo EX90 at Volvo’s South Carolina assembly plant. The 3 will be followed later this year by the Polestar 4, a tall sedan styled midsize SUV that shares most of its powertrain, suspension, and interior with the 3. It will be built in South Korea.

A Polestar 5 sport sedan – the brand’s new flagship model – is slated for 2026 and will be built in South Carolina and/or South Korea. The Polestar 7 compact SUV aimed mainly for the European market and slated to be assembled there is scheduled next, to be followed by the Polestar 6, a 2+2 performance roadster with head-turning design.

Real-World Range

Don’t expect to consistently get EPA estimated range from any Polestar 3 variant unless your accelerator foot is feather light, your driving style rather timid, and you avoid hilly or mountainous terrain and highway driving. Real-world range for most EVs runs 10 to 15 percent below EPA estimates with the variance depending largely on tire size, the weight of cargo (including people) on board, driving style, terrain, and the amount of high speed driving involved. We tested both the single-motor and dual-motor performance versions of the Polestar 3. Our experience is that it manages to stick pretty close to the estimates, running 10 to 12 percent short in most driving conditions.

In in our range test of a single-motor Polestar 3 with 21-inch wheels – the variant EPA rates at 350 miles – our 250-mile round-trip ride covered 140 miles of fast freeway driving in light traffic, plus 70 miles of ambling country lanes and 40 miles of mountain roads. We tried to keep within 10 mph of posted speed limits.

Polestar 3 information display.

Per EPA’s estimate, we should have been draining the battery pack at a rate of 3.27 miles per kilowatt-hour (350 miles/107 kWh usable battery capacity). But country and mountain driving on the first leg of the trip was uphill most of the way, cutting efficiency to just 2.4 miles per kWh. That would have resulted in just under 266 miles of range had we kept going at that pace. We benefitted from an equal amount of downhill motoring on the way back, though, and improved efficiency for that part was a relatively thrifty 3 miles per kWh. For the entire round trip, average consumption was 37.3 kWh per 100 miles. That’s the equivalent of 307 miles of range – 12.2% under the EPA estimate.  

We tested the dual-motor performance version of the Polestar 3 last fall on rain-slicked roads in the area around Jackson, Wyoming. An abundance of caution with someone else’s vehicle kept speeds down, but we did climb about 2,200 feet from Jackson’s 6,240-foot elevation to hit the pass through the Tetons into neighboring Idaho. Overall, we found real range on that trip was pretty much what EPA estimated for the performance version with 22 inch tires.

Polestar 3 Trims and Pricing

All versions of the 2025 Polestar 3 are two-row, five-seat electric crossovers. There’s a lot of Volvo under the skin and in the interior, but Polestar DNA is dominant in the 3’s design and chassis, suspension, and powertrain development.

Its aerodynamic looks derive from the Polestar Precept electric sedan concept that was unveiled in 2020. It’s built on an EV-specific platform developed by Volvo.

The rear-drive Polestar 3 starts at $68,900 under pre-tariff pricing. It has its own powertrain and suspension but otherwise is almost identical in looks and features to the dual-motor trims.

Rear of Polestar 3 SUV.

Standard features include 20-inch alloy wheels, panoramic glass roof, acoustic laminated windshield and rear window, auto-extending flush door handles, power rear liftgate with foot sensor, power adjustable and heated, auto-dimming, and folding frameless side mirrors. Inside are standard heated and power adjustable front seats with extendable thigh bolsters, ambient interior lighting, tri-zone heat-pump climate control, rear touchscreen for climate and seat heating controls, and a 10-speaker audio system.

If your regular driving conditions don’t require all wheel drive and you don’t mind taking a couple of seconds longer to hit 60 from a standing stop, the single-motor version makes a lot of sense.

The dual-motor Polestar 3 starts at $74,800.  It includes all the single-motor variant’s standard features and adds more power, electronic all-wheel drive with torque vectoring, and air suspension with active dampers. The dual motor AWD with Performance Pack jumps to $80,800 and includes everything on the standard dual motor but adds a performance software upgrade that boosts horsepower and torque. It also gets 22-inch alloys with performance tires, special chassis tuning, and gold-color seatbelts, valve caps, and brake calipers.

Available Options

The Plus Pack, priced at $5,500, adds a head-up display, power adjustable steering column, soft-close door mechanism, heated rear seats and steering wheel, heated windshield wiper blades, and a foldable rear cargo bay floor. Also provided is a 25-speaker Bowers & Wilkins audio system with surround sound, Dolby Atmos capability, and active road noise cancellation.

Polestar 3 dashboard.

Available only with the Plus Pack at an additional $5,500 is a combination of animal welfare certified Nappa leather upholstery in three color choices and dark ash wood trim. The Performance Pack, at $6,000 and available only for the dual-motor variant, adds 22-inch alloy and performance tires, a software upgrade that boosts horsepower and torque, sport and performance tuned chassis, and gold-colored seatbelts, brake calipers, and valve caps. A $2,100 Pro Pack option for the single-motor and base dual-motor variants adds specially designed 21-inch wheels, gold-colored valve caps, and black seatbelts with a gold center stripe.

All Polestar 3 variants use a 111-kilowatt-hour battery pack (107 kWh usable capacity) installed under the floor in a so-called skateboard EV platform. For the single-motor version, the battery supplies a rear-mounted motor rated at 299 horsepower and 361 lb.-ft. of torque. Dual-motor variants get an additional motor for the front axle. Combined, they produce a total of 489 horsepower and 620 lb-ft torque. The Performance Pack boosts that to 517 hp and 671 lb-ft.

Polstar says the standard dual-motor version can zoom from zero to 60 mpg in 4.9 seconds. Adding the Performance Pack cuts that to 4.6 seconds – at a cost of $2,000 per tenth of a second. The single motor Polestar 3 get to 60 in a more leisurely but perfectly acceptable 7.5 seconds, per Polestar’s estimate.

Single and Dual Motor Differences

In any configuration there’s a decent amount of power, which is good because the Long-Range Dual Motor Polestar 3 weighs in at more than 2.5 tons in its lightest configuration, and is just 120 pounds short of 3 tons at its heftiest. The single motor version is some 200 pounds lighter than the base dual-motor Polestar 3.

Shifting stalk in Polestar 3 electric car.

The single motor version gets steel coil springs, passive dampers, and a rear motor without torque vectoring. Steering calibration is also a little softer in the single motor model. In our test drive we found it to deliver a comfortable ride and compliant handling, but its suspension couldn’t compensate for rough roads and high-speed corners quite as well as the dual moor variants’ more sophisticated system.

Dual motor Polestar 3s get adaptive air suspension and a rear-biased, electronic all-wheel drive system with torque vectoring that lets the Polestar 3 put its power to the road quite effectively and sure-footedly. All versions get four-piston Brembo front brakes with single-piston Brembos in the rears and they handle the vehicle’s weight with aplomb. A one-pedal drive setting for the Polestar 3’s multi-stage regenerative braking reduces brake-foot fatigue in crowded traffic and can mimic a downshift when turning or carving up a twisty country road.

We didn’t find either version of the Polestar 3 to be unwieldly or unbalanced when tossed around mountain corners or while carving winding roads, but our preference was for the double-motor variants’ air springs and adaptive dampers.

Range and Charging Times

The single motor Polestar 3 with optional 21-inch wheels and all-season tires is EPA-rated at up to 350 miles of range, dropping to 342 miles with the standard 20-inch tires and 333 miles with 22-inchers. Dual-motor versions are rated at 315 miles with 21-inch wheels, 310 miles with the standard 20-inch wheels, and 287 miles with 22-inch wheels.

Polestar 3 charging.

Adding the performance pack gets up to 300 miles of range. The Performance pack with its standard 22-inch alloys and sticky performance tires drops the estimated range to 279 miles. While the smaller 20-inch tires should deliver less rolling resistance and thus more range than the 21-inchers, the 20-inch wheels are made of cast aluminum, which makes them heavier and thus slightly less energy efficient than the forged aluminum wheels used with the 21 inch rubber.

At a DC fast charger, the Polestar can replenish its battery pack at up to 250 kilowatts per hour, good for a 10 to 80 percent recharge in 30 minutes. For home charging, the Polestar, like its competitors, uses an 11 kW Level 2 charging system. With properly sized 240-volt equipment, the Polestar can take a battery from 10 to 100 percent in 11 hours. Both DC and Level 2 charging speeds are competitive in the segment.

Polestar 3 Interior

Polestar 3 has a Scandinavian minimalist interior that would have been avant-garde had it been rolled out a few years ago, before the Hyundai Motor Group set the standard for modern minimalism with its Hyundai and Kia small crossover interiors. 

In the Polestar 3, the dashboard is divided into a padded textile-covered upper section with a textured plastic or optional aluminum or wood-trimmed lower face, divided by a thin strip of LED lighting. The dash houses a 9-inch-wide digital driver information screen and a centrally mounted, vertically oriented 14.5-inch infotainment touchscreen that also serves as a control center for almost all vehicle settings and functions. The only physical switches and knobs are vehicle function and driver display control buttons – unlabeled - on the steering wheel, the shifter, and turn signal stalks on the steering column. A rotary controller for the audio system is located on the center console’s floating bridge.

Rear cargo area in the Polestar 3.

Power-adjustable, sports-styled front bucket seats are set low to maximize headroom and are both supportive and comfortable. The 60/40 split rear seat sits higher than the front seats for improved lines of sight for rear occupants. The bench is divided into three molded seating positions, and while the middle position is narrow, there’s decent rear legroom even for center-seat occupants since below-floor batteries allow a flat floor with decent legroom.

Cargo and Towing

The Polestar 3 has a small-for-the-segment primary cargo bay providing 17.1 cubic feet behinds the rear seats, which we’re told allows carrying along about 15 grocery bags or five airline carry-ons. In contrast, the BMW iX features more than twice the Polestar’s capacity at 35.5 cubic feet with the Mercedes-Benz EQE SUV offering 20 cubic feet. Things improve when the Polestar 3’s rear seat back is folded down as this boosts total interior cargo capacity to 49.8 cubic feet. That’s still the least of the competitive set, though, with the iX boasting 77.9 cubes of maximum interior cargo space that takes the lead.

There’s also a 1.1 cu.-ft. storage area, or “frunk,” under the hood. It’s not large enough to be of much use but will hold a portable charging cord that otherwise would take up open cargo space in the rear. Among likely competitors, the Audi Q8 e-tron has a 2.1-cu.-ft. frunk while the BMW iX and Mercedes EQE SUV do without.

Polestar says the “3” can haul up to 220 pounds on its roof and dual-motor versions can tow up to 3,500 pounds. That tow rating is adequate for a small utility trailer but comes in less than the 5,500 pound rating of the BMW iX or the 4,000 pound rating of the Audi Q8. The Mercedes isn’t tow-rated in the U.S. The single-moor Polestar 3 is rated to tow up to 2,000 pounds.

Infotainment and Connectivity

Polestar uses an Android Automotive operating system for its infotainment centers. We’ve found it to be one of the most user-friendly interfaces around, especially for those who prefer to use voice commands, which are executed in everyday language after a “Hey Google” wakeup call.  The built-in Google Play Store makes downloading new apps to the system easy. There’s 5G connectivity available, along with Google Maps with a 3-year constant internet connectivity plan at no charge.

Connectivity is enhanced with four USB-C ports – two for each seating row – and a 120-volt outlet in the rear cargo bay. Wireless phone and Bluetooth phone connectivity are standard as are Android Auto and Apple CarPlay compatibility. If there’s a drawback to the infotainment setup it’s that it is also control central for almost all vehicle adjustments and functions. This requires drivers who like to adjust drive modes, cabin temperature, and the like while underway to shift their eyes from road to screen far too often.

Audio is handled with a 10-speaker system. A 25-speaker Bowers & Wilkins sound system with Dolby Atmos surround sound and headrest speakers is an option. Three external speakers broadcast a warning tone at low speeds so that pedestrians, cyclists, and others can hear the otherwise silent EV as its draws near.

Safety and Driver Assistance

Polestar 3 charging app.

As a new model on a new platform, the Polestar 3 hasn’t yet been crash-tested by the National Highway Traffic Safety Administration (NHTSA) or the nonprofit Insurance Institute for Highway Safety (IIHS). It has received a 5-star safety rating in the European NCAP crash test program.

Polestar 3 is equipped with an impressive array of advanced safety and driver assistance technologies, all integrated via a centralized computer running on software developed by Volvo Cars. The driver assistance and safety systems use a variety of imaging systems to monitor external surroundings and conditions, monitor driver alertness, and even report in-car movement to help prevent accidentally leaving pets or children in a parked car.

Standard safety and driver assist features on the 2025 Polestar 3 include front collision avoidance and mitigation with braking and steering assist, pedestrian and cyclist detection, blind spot and rear cross traffic alert, rear collision mitigation, and driver alertness monitoring. Adaptive cruise control featuring full stop-and-go functionality along with lane keeping and centering with lane departure warning are also standard fare.

Final Thoughts

The Polestar 3 stands out for its unfussy good looks, user-friendly operating interface, and sporty ride, though its cargo bay isn’t as useful as some because of the rearward sloping roofline.

We certainly hope Polestar’s challenges don’t prove fatal. It has lost money every year since it was spun off from Volvo, had to delay production of the 3 for almost a year because of software issues, and hasn’t yet managed to achieve widespread name recognition in the U.S. Still, its vehicles are world-class EVs and the Polestar 3 belongs on any premium performance SUV shopper’s must-test list.

Philipp Kampshoff is a senior partner and global co-leader of McKinsey’s Automotive & Assembly practice.
Philipp Kampshoff, McKinsey Center for Future Mobility.

An anti-EV narrative is emerging around battery electric vehicles in the U.S.: “the market is slowing” and “the EV tipping point is years away and may never arrive.”

Like many narratives, there’s an element of truth. EV sales aren’t increasing as quickly as a few years ago. And there are headwinds with the removal of some federal incentives that were pushing EV sales and charging infrastructure. But this misses a larger point we see in the McKinsey Center for Future Mobility’s annual Consumer Pulse survey. There is a lot of strength in the EV market, especially if you include transition vehicles like plug-in hybrids and extended-range EVs (EREVs).

A Dynamic EV Market

What do the sales say? In the first quarter of 2025, automakers sold 374,841 electric vehicles in the U.S., including battery-electric vehicles (BEVs), plug-in hybrid (PHEV), and fuel-cell electric vehicles. That was 9.6 percent of the overall light-vehicle market. The two quarters before that, EV sales eclipsed 10 percent of the market. Year over year, EV sales increased by 9 percent, compared with a 5.6 percent for overall car sales.

This was a slower increase than the last few years, to be sure. In 2021, the EV market nearly doubled. In 2022 and 2023, it grew by 62 percent and 35 percent. On the other hand, just five years ago, EV market share was 2 percent. Now it’s 10 percent.

There are headwinds. U.S. automakers continue to struggle with making EVs profitable. Consumer EV subsidies will end Sept. 30. In the short term, we’re seeing a bump in sales as consumers who were on the fence rush to buy before the deadline. Over the longer term, there is going to be far less government support and funding for public infrastructure. That’s a challenge, but it also may make it more straightforward for private investors. Improving availability and reliability of public chargers will be up to them alone.

Slowdown Now, Growth Coming

Yet, even with the US slowdown, the International Energy Agency predicts EVs will account for 40 percent of global auto sales by 2040, versus 20 percent in 2024. As longtime auto journalist Mike Colias says in his new book, “InEVitable: Inside the Messy, Unstoppable Transition to Electric Vehicles,” the forces pushing legacy automakers toward electrification – Tesla and the Chinese – aren’t letting up.

“As messy as the EV story is today, automakers can’t afford to rip up their EV strategies,” Colias says.

Patrick Hertzke, McKinsey Center for Future Mobility
Patrick Hertzke, McKinsey Center for Future Mobility.

Perhaps the biggest determinant if EV momentum will see a resurgence is the availability of much more affordable EVs (like we see e.g., in China). Given the still high battery cost this is difficult, and with the subsidies going away that challenge just got bigger.

An important question is what’s next? Will the electric vehicle market forever be a niche, or is slowing sales growth a mere bump in the road?

According to our models, the U.S. policy changes will slow down rather than stop the shift to electric vehicles. We think the adoption curve could be pushed out by five years or more. Recent regulatory changes also give U.S. automakers more time to get EVs profitable and more powertrain flexibility to focus on hybrids, plug-in hybrids, and extended-range EVs. They will need to be adaptable, and they will need to spread capital investments across multiple electrified powertrains with flexible platforms.

The McKinsey Consumer Pulse survey, which hails from our Center for Future Mobility, has some other important information for the industry trying to adapt to the new landscape. We have been polling consumers going back to 2016 to measure how attitudes are changing each year. This year’s survey included about 26,000 car owners around the world. What we’re seeing should give confidence to those who are rooting for more electrification.

First, there’s not a lot of backsliding among people who actually own BEVs. More than three-fourths of BEV owners say their next car will be battery-electric. Of the 24 percent who say they’ll switch, 5 of 8 say they’ll go with a plug-in hybrid, not gasoline. Only 1 percent say they’ll never go back to electric.

Second, while the growth of the overall EV market is slowing in the U.S., results vary widely by region. In California, Washington and Oregon – states where there have been major investments in infrastructure – EV adoption rates are on par with Europe. Other states on the East and West Coasts are seeing much more rapid EV adoption. For example, 19 percent of Maryland vehicle owners say their next car will be a BEV, even though the electric-vehicle market share is just north of 12 percent today.

By contrast, there are some states with a larger rural population mix where fewer than 4 percent of consumers say their next vehicle will run on batteries alone. This underscores the huge difference between urban, suburban, and rural consumers. Overall in U.S. urban areas, 51 percent say their next vehicle will be BEV or PHEV. In rural areas, it’s 18 percent.

A third differentiator is age. The younger the consumers, the more likely they will shift to electric soon. For Gen Z, 47 percent say they’ll buy a BEV or PHEV next. For Millennials, it’s 45 percent. It drops to 22 percent for Generation X and 21 percent for the Baby Boomers.

PHEVs Play an Important Role

The most important finding may be the role that PHEVs are playing in the electric transition. Because of their smaller battery packs, they’re cheaper than BEVs. And since they run on gasoline when their EV-only miles are used up, there’s no range anxiety. But this taste of battery power acts like a gateway drug. Once they realize battery power can meet most of their needs, they keep going. Households that were holding onto a second, gasoline-powered car are ready to give it up for their next vehicle.

Another class of vehicle that may serve as a bridge is known as an extended-range EV, or EREV. These are similar to PHEVs, but instead of having an engine that can put the vehicle in motion, an EREV’s gas engine serves only as a generator to charge the battery pack. EREVs like the Ramcharger are coming to the U.S., with more electric-only range and total driving range than a typical PHEV. In China, where they’re more common, twice as many consumers say their next vehicle will be an EREV than say they’ll buy a conventional gas-powered vehicle.

The EV market is replete with plug-in vehicles.

The biggest determinant of EV sales over the long term will depend on the availability of much more affordable electric vehicles, the kind that are available in China today. For now, U.S. automakers will breathe a sigh of relief, gaining several years, and at least one product cycle more, to make EVs more profitable. They also know there is increasing risk of falling further behind Chinese OEMs who now sell more than 50 percent ‘new energy vehicles’ domestically and are building massive capacity for global EV exports with high tech content per vehicle at affordable prices.

The EV Market is Evolving

What’s the bottom line? The full picture isn’t one of a stagnant U.S. market. It’s one of a market that is changing in significant ways. Key states and regions are already at the tipping point for EVs while others will continue to be slow to adopt. Important demographics like urban and young consumers are going electric. If PHEVs and EREVs become more common, that taste of electrification may accelerate changing attitudes and expectations.

Beyond the market slowdown and the removal of incentives, we can see signs of continued movement toward hybridization and electrification. It confirms what we have long known: consumers still have plenty of voice in the market’s actions.

Philipp Kampshoff is a senior partner and global co-leader of McKinsey’s Automotive & Assembly practice, based in Houston, and Patrick Hertzke is a partner and co-leader of McKinsey’s Center for Future Mobility, based in Boston.

Interior of the Hyundai NEXO hydroven vehicle.

Hyundai has been involved in hydrogen vehicle research and development for nearly three decades now, a nod to the company’s vision that hydrogen may well play an important part in our motoring future. That future seems more plausible given the vast deposits of extractible geologic ‘natural’ hydrogen recently discovered in the U.S. and around the world. The hydrogen NEXO fuel cell vehicle has been Hyundai’s most recent standard bearer in this realm since its debut in 2019.

The Korean automaker’s latest advancement is the debut of its second generation NEXO hydrogen fuel cell electric vehicle, a nameplate that debuted at the Consumer Electronics Show as a replacement to the Tucson FCEV back in 2019. The all-new 2026 NEXO improves on its predecessor in important ways, not the least of which is its ability to drive a projected 400 miles courtesy of an improved fuel cell, higher output motor drive system, larger hydrogen tank, and bigger battery.

NEXO Hydrogen Vehicle Design

Longer, taller, and wider than the model that came before it, the all-new NEXO features a more chiseled appearance and improved aerodynamics for efficiency. Exterior design cues include bold lines, horizontal groove patterns, an arch-shaped cross section, distinctive HTWO headlamps, and four “dot” lamps within the grille that distinguish NEXO as a hydrogen fuel cell model. An extensive suite of driver assistance and active safety systems is provided. Six color choices will be available including Ocean Indigo Matte, Ecotronic Gray Pearl, Creamy White Pearl, Amazon Gray Metallic, Goyo Copper Pearl, and Phantom Black Pearl.

NEXO is designed to be more than just a sustainably powered vehicle. Its interior is replete with sustainable materials including bio-process leather, bio plastics, recycled PET fabric, bio paint, bio PU slab foam, and recycled automotive plastic waste. The spacious cabin’s design theme aims to impart the comfort of home through features like soft padding with patterns while also reinforcing its high-tech nature with a curved information display, dashboard-integrated digital side mirror displays, and an island-type center console with a 120-volt AC outlet powered by the vehicle’s high voltage battery.

Hydrogen Vehicle Performance

Front detail of the Hyundai NEXO hydrogen vehicle.

Greater overall performance is delivered with a new power electronics system that increases NEXO’s total power output from its previous 184 horsepower to a new 258 horsepower rating. Battery output has doubled to 80 kW while hydrogen stack output has increased 16 percent to 110 kW. All this delivers improved 0-62 mph (0-100 km) acceleration in just 7.8 seconds, a 1.4 second improvement from the previous generation NEXO.

While available to global markets later this year, in the States the hydrogen NEXO will be available only in California. Price will be released closer to the NEXO’s launch date.

Robert Lee, Preesident of LG Energy Solution North America
Robert Lee is President of LG Energy Solution North America

The electric vehicle (EV) industry in the United States stands at a pivotal moment. What once seemed like a rapid and inevitable shift from internal combustion engine (ICE) vehicles to battery-powered alternatives has become a more complicated and uneven transition. A few years ago, automakers predicted EVs could account for 50 percent – or even 100 percent – of new-vehicle sales by the early 2030s. While we’re still bullish on the mass adoption of electrification, not just in personal transportation but also the energy storage systems and other industries, those initial forecasts face a reality shaped by economic, technological, political, and social hurdles.

Economic Headwinds

Government policy has played a major role in the EV sector’s growth – and its recent turbulence. Subsidies, emissions targets, and infrastructure investments in recent years have spurred significant momentum. However, the new administration has re-evaluated EV tax credits while easing emissions standards and renewing support for fossil fuels.

Adding to the disruption are proposed 25 percent tariffs on vehicles, batteries, and components imported from Canada and Mexico, two crucial parts of the North American EV supply chain which has been optimized for more than 30 years. The potential for tariffs to upend established supply networks has led many manufacturers to delay or reconsider investments. This turbulence threatens not only EV growth but also the broader automotive sector, which depends on global sourcing and long-term planning.

While we are fully committed to U.S. battery cell manufacturing and onshoring as much of the supply chain as possible, there are still crucial elements of our supply chain that we source from abroad. Most artificial graphite is still processed in China – not because this is a difficult technology to master, but given that this is a low-tech, energy-intensive process that makes more sense to do in a country that has lower, government-subsidized energy costs.

It wouldn’t be impossible to onshore this process, but we’d first have to explore broader conversations as an industry and country about what elements of manufacturing are the most strategic, high-value, and worthy of bringing into our communities.

An Ebb in EV Adoption

At the consumer level, EV adoption is proving slower and more complex than early forecasts suggested. High upfront costs, persistent range anxiety, inconsistent public charging infrastructure, and general consumer skepticism continue to act as barriers. Some industry analysts describe the slowdown as a natural, temporary “ebb,” common in technological transitions. Still, without major shifts in technology, infrastructure, and policy, achieving earlier market share projections looks increasingly unrealistic.

Until we help enable more affordable EV choices for customers, the industry will have to adjust to expectations and strategies to match the market’s more gradual pace.

Amid the instability, LG Energy Solution continues to be a key player. We’ve invested heavily across North America, with eight battery plants either completed or underway, including joint ventures with major global automakers such as General Motors, Honda, Hyundai, and Stellantis. We also have three wholly-owned cell-makings plants in Holland and Lansing, Michigan, along with Queen Creek, Arizona.

Despite our presence in the industry, we still face the same headwinds as the broader market: rising material costs, supply chain disruptions, and uncertain demand. Building massive battery capacity is a bet on sustained EV growth – a bet that, while logical in the long run, carries substantial short- and medium-term risks.

Addressing Core EV Challenges

Mass EV adoption will require more than a steady battery supply and affordable vehicle choices that meet customers’ range requirements. Critical technological and infrastructure challenges must be solved. Industry studies point to several areas for development, including:

We, like other industry leaders, continue to invest in R&D to improve battery chemistry and formulas that balance cost and energy density. We’re also interested in helping expand charging infrastructure, where compatibility and reliability issues remain hurdles for EV drivers.

However, scaling public charging infrastructure, especially in rural and underserved areas,  requires significant investment that private companies alone cannot deliver. Federal, state, and local governments play essential roles in filling these infrastructure gaps.

Battery manufacturing at LG Energy Solution facilates an EV transition.

The Affordability Gap

Affordability remains another major barrier to EV adoption. Although the price gap has narrowed – ICE vehicles averaged about $48,000 in 2024 compared with $56,000 for EVs – the difference remains significant for many consumers. Federal tax credits and automaker discounts have helped, but with incentives under political scrutiny, affordability concerns could deepen.

Part of this is on us as an industry to give customers a good reason to embrace EVs. Faster, cheaper, better products always win in the marketplace. We’ve achieved two of these elements with EVs, and you could realistically argue that China, with its more mature and developed EV market, is already there. I believe that as we make EVs more affordable – think $30,000/300-mile range vehicles – mass adoption will inevitably follow.

Tariffs add further pressure. If imposed broadly, tariffs on critical minerals, battery components, and finished vehicles could raise costs at a time when lower prices are essential to broader EV adoption. While automakers and suppliers develop contingency plans to manage supply disruptions, there is no substitute for a stable, cooperative trade environment when it comes to building a resilient EV ecosystem.

Long-Term Outlook

Despite current challenges, the long-term outlook for EVs remains strong. Governments globally continue pushing for cleaner transportation, consumers are becoming more comfortable with EVs, and technological advancements are steadily improving battery performance and reducing costs.

Still, the path forward will likely be slower and more uneven than early projections suggested. In fact, some smaller or less diversified players may struggle or exit the market. Industry consolidation among battery makers, automakers, and suppliers seems increasingly likely.

As the battery cell and related industries consolidate in the next few years, LG Energy Solution is in an advantageous position as an established company with mature technology, a high and consistent production yield rate, and more than 70,000 battery-related patents across the spectrum of different chemistries, form factors, and other technology. We plan to ride out the current storm, and we’re actually seeing more interest from potential OEM partners who appreciate that we’re a safe long-term bet.

LG Energy Solution’s investments position it to navigate volatility and competition. However, success will depend not just on existing scale but on continuous innovation, cost control, partnerships, and political flexibility.

Shaping the Future of Mobility

LG is actively involved in the EV transition.

Beyond battery production, LG Energy Solution is exploring broader opportunities in the future of urban mobility. In Detroit, for example, the company has supported early discussions about creating EV-exclusive zones that could serve as test beds for new urban transportation models. While these ideas are still in development, they illustrate the increasingly complex ecosystem that EV suppliers must engage with – one that includes cities, utilities, tech firms, and real estate developers.

Still, real transformation will require broad collaboration. Transforming urban areas into EV-friendly environments demands regulatory changes, infrastructure investments, consumer education, and cross-sector coordination on an unprecedented scale.

When it comes to capital-intensive industries like batteries and complex technology that offers long-term but perhaps not immediate payoffs, some government support is helpful to spur adoption and seed investment and growth. Make no mistake, we do not believe that subsidies like the 30D and 45X credits from the IRA are a long-term solution, but they have both played an essential role in getting this vital, strategic industry established in the U.S.

It’s also important to note that LG Energy Solution was investing in U.S. battery production long before the advent of the IRA, and we will continue to do so, even in a changing political environment as we believe in the long-term prospects of the technology in this market.

The Road Ahead

The EV transition is not a straight path; It is a complex evolution filled with fits and starts, shaped by shifting political winds, economic uncertainties, and technological hurdles. We are helping to drive this transformation, but the industry’s success will depend on efforts far beyond those of any single company.

With careful planning, public-private cooperation and a willingness to adapt to changing realities, the vision of a sustainable, electrified future remains within reach. The question is not whether the transition will happen – but how quickly, how smoothly, and who will still be standing when it does.

Robert Lee is President of LG Energy Solution North America.

2025 RAM REV electric pickup driving on trail.

RAM has been around as a distinct brand for some 14 years now, having split from its former identity as a Dodge nameplate in 2009. Since then, RAM has focused solely on pickup trucks and work vans with considerable success, especially with regard to its pickup truck line, which has won Green Car Journal’s Green Truck of the Year™ award three times in recent years. Now RAM has revealed details on its highly anticipated next act in the pickup realm, the all-electric RAM 1500 REV.

Building on the excitement generated by the wild electric RAM Revolution concept shown earlier this year, the 2025 RAM REV rides on the automaker’s all new STLA Frame optimized for full-size electric vehicle models with a body-on-frame design. This high strength steel frame is wider in the middle to accommodate battery packs while affording protection between the frame rails. It also features additional protection beneath courtesy of a full-length underbody belly pan.

2025 RAM REV electric pickup hood scoop.

RAM 1500 REV Power Options

This electric RAM pickup is especially noteworthy in that it boasts specs surpassing those of Ford’s F-150 Lightning and upcoming Chevrolet’s Silverado EV. REV will offer two EV powertrain options, with the base package featuring a standard 168 kWh battery pack projected to deliver a driving range of up to 350 miles. A more powerful option brings a 229 kWh battery pack with a targeted range of 500 miles, a feature sure to resonate with pickup buyers whose primary concerns are range and functionality. Normal and one-pedal driving capabilities are built in and regenerative braking comes as a matter of course.

Power won’t be a problem. We know the optional 229 kWh battery pack variant will offer a targeted rating of 654 horsepower and 620 lb-ft torque. Power ratings for the standard 168 kWh battery pack variant have yet to be disclosed. The REV’s projected towing capacity is said to be up to 14,000 pounds, with a payload capacity up to 2,700 pounds.

2025 Ram 1500 REV electric pickup chargeport.

Fast Charges in 10 Minutes

Charging is handled through the REV’s charge port located at the driver’s side front fender. Illuminated LED lighting and an audible chime lets a driver know that the truck is plugged in and charging. The charge port accommodates Level 1 and Level 2 AC charging connectivity on top and DC fast charging connectivity at the bottom of the charging interface. Drivers should expect the usual overnight charging experience if they have a 240-volt Level 2 wall charger at home. Those on the move can take advantage of the REV’s fast-charge capability at public fast chargers. If an 800-volt DC fast charger is available then the REV can add up to 110 miles of range in just 10 minutes while charging at up to 350 kW.

A handy feature is the RAM 1500 REV’s bi-directional vehicle-to-vehicle, vehicle-to-home, and vehicle-to-grid charging capability. With the use of a 7.2 kW on-board power panel mounted in the bed or a 3.6 kW power panel in the front trunk (frunk), this feature is very helpful during power outages in homes, or for individuals who will potentially use their truck to power equipment. It can also be used to charge your everyday devices if necessary.

RAM 1500 REV electric pickup.

Sporty RAM 1500 REV Styling

REV’s exterior styling lets us know this truck is electric without moving beyond the burly and commanding nature of the brand. A blend of elegance and toughness shows that RAM’s designers certainly didn’t want buyers forgetting what RAM stands for, while also conveying their vision for the future. To that end, the front fascia of this electric pickup features a sporty nature with its muscular hood and low grill. The look is accented with aptly named ‘tuning fork’ LED headlights and unique EV-specific RAM badging. At the rear we find a set of angular LED taillights that span a portion of the tailgate, and are specific to the RAM 1500 REV. RAM is boldly shown at the center of the tailgate and, like the front end, uses an exclusive lettering style to show us that this RAM is indeed electric.

Styling along the REV’s flanks remains quite similar to the current RAM truck with the exception of a flush-mounted chargeport at the driver’s side front fender and unique REV. Familiar lockable ‘RAM Boxes’ are available and positioned beneath the bed rails on either side of the pickup box and feature a handy 115-volt outlet. These boxes are also illuminated to facilitate easy access under low light conditions.

Interior view of the 2025 Ram 1500 REV electric pickup.

Premium and High Tech Interior

Inside, the blend of practicality and luxury is seamless with premium materials like carbon fiber, metal, and leather with tech peppered throughout. Ample passenger room is built in and functionality is enhanced with second row seats that can fold up for additional cargo capacity. Optional 24-way power adjustments are available for the front seats, including three memory settings and massage capability. Also optional is a 23 speaker Klipsch Reference Premiere audio system.

The REV cabin features a central 14.5 inch touchscreen, 12.3 inch digital instrument display, and a 10.25 inch digital screen mounted in front of the passenger seat. These screens utilize the automaker’s Uconnect 5 system that allows access to eight EV-specific functions across all screens, and entertainment functionality for the passenger screen. The REV also features a configurable head-up display capable of showing an array of selected information beyond vehicle speed, such as turn-by-turn navigation, speed limit, Lane Departure, Lane Keep Assist, and adaptive cruise control. A Uconnect 5 mobile app supports remote start and touchless door lock/unlock functions.

Front passenger screen in the 2025 Ram 1500 REV electric pickup.

Showcasing many industry-leading specs and visionary style, the RAM 1500 REV is shaping up to be a model in demand when sales begin in advance of its likely arrival at dealers toward the end of 2024. Of course, RAM will continue offering its popular gas-powered pickups to a willing market even as it dives ever deeper into electrification. In the meantime, the 2025 REV shows us that RAM aims to be a serious contender in the electric pickup truck competition.

Toyota Crown sedan with rear hatch open.

Rather than following the industry’s massive trend toward models powered exclusively by batteries, Toyota is confident there’s a better way forward. Its strategy is to optimize the use and environmental impact of batteries by offering a diversity of electrified vehicles consumers will actually buy and drive in great numbers, thus leveraging the potential for carbon reduction. This clearly plays to the automaker’s strength: hybrids and plug-in hybrids. There’s the all-electric Toyota bZ4X, of course, and other battery electric Toyota models to come. Just don’t expect that’s all the world’s largest automaker will be offering in the short term.

Enter the 2023 Toyota Crown sedan, this automaker’s newest hybrid. Toyota’s all-new Crown is somewhat of a milestone since so many automakers are killing off their sedans in favor of uber-popular crossover SUVs. In many cases, those crossovers are less SUV than mildly oversized hatchback, but that’s the auto industry for you. The Crown is a sophisticated looking sedan that doesn’t pretend to be something it is not, though it does offer a few twists.

Rebirth of a Model

The Crown has an interesting history, first debuting in 1955 as Toyota’s first mass production passenger vehicle before making its way to the States three years later, distinguished as the first Japanese model here on our shores. It had a 17 year run before it was retired from Toyota’s U.S. showrooms.

Now it’s back in all new form as a full-size, four-door sedan available in XLE, Limited, and Platinum grades. While it is a sedan measuring in just a bit larger than Toyota’s popular Camry, the Crown also integrates a slightly taller roofline, thus the ‘twist.’ This taller roof flows rearward into an elegant sportback design, accented by thin blade-style rear taillights. The front features blade running lights, sharp headlights, and a distinctively imposing grille design that’s come to signify Toyota and Lexus products these days. Its sides are handsomely sculpted and accented by large alloy wheels and wheel well cladding.

Hybrids Power the Toyota Crown

Beneath the hood resides one of two available hybrids, no surprise since this a Toyota and hybrids are its game. The more efficient of the two-motor hybrid models is powered by a fourth-generation, 2.5-liter Toyota Hybrid System (THS) that Toyota says should net an estimated 38 combined mpg. It connects to an electronically controlled continuously variable transmission.

Those looking for higher performance may opt for the Platinum grade, which comes standard with a  2.4-liter turbocharged HYBRID MAX powerplant, the first application of this more powerful Toyota hybrid system in a sedan. Delivering power to the road through a direct shift six-speed automatic transmission, the HYBRID MAX boasts 340 horsepower for spirited performance and offers a Toyota-estimated 28 combined mpg. All grades come with electronic on-demand all-wheel drive. A plug-in hybrid variant is said to be coming but details are not yet available.

Sedan With a Premium Feel

The Crown’s cabin is designed to deliver a premium feel, featuring nicely bolstered front seats with 8-way power adjustment, intelligent controls, and wireless Qi charging with an array of readily accessible ports to accommodate today’s electronic devices. A Multi Information Display ahead of the driver provides the usual instrumentation along with selectable functions, including hybrid information that coaches eco-driving for netting maximum efficiency. In addition, a 12.3-inch center Toyota Audio Multimedia display features Apple CarPlay and Android Auto integration and is audio and touch capable.

Upholstery is either Softex and black woven fabric or leather, depending on grade. A panoramic moonroof standard on Platinum and Limited grades lends an additional feel of openness to the cabin. LED ambient lighting adds to the interior’s ambiance and upscale feel. Significant effort has been devoted to creating a relaxed and quiet cabin environment through extensive placement of sound-deadening materials throughout plus the use of acoustic glass.

Toyota Crown Safety

Toyota Safety Sense 3.0 is standard across all grades to enhance safety on the road. This includes such desired features as pre-collision with pedestrian detection, dynamic radar cruise control, lane departure alert with steering assist, blind spot monitor, and rear cross traffic alert. Other assist features such as automatic high beams, road sign assist, rear seat passenger reminder, and hill start assist control are also standard fare for all versions of the Crown. Those stepping up to the Platinum trim level also get Toyota’s advanced park system that identifies available parking spots and allows automated parallel and reverse/forward perpendicular parking.

Toyota’s Crown is a timely addition to this automaker’s lineup, giving fans of the brand a new, more exciting sedan option just as the more conservative Avalon sedan is heading off into the sunset. Pricing has not yet been announced but we figure the Crown will start somewhere in the neighborhood of the low $40,000s. We also expect this new model to be a hit for Toyota, serving the automaker well  as it hones its hybrid and plug-in hybrid strategy while continuing to evolve its future electrified product line.

2023 Toyota Crown headlight detail.
2022 Hyundai Tucson plug-in hybrid on highway.

The Hyundai Tucson has long been a popular choice for those desiring the functionality of a crossover SUV at a reasonable price. Making the case even stronger now is an expanded list of Tucson offerings highlighted by plug-in hybrid and enthusiast-oriented N Line models that have joined the line’s gas-powered and electric hybrid variants.

Conventionally-powered Tucsons are equipped with a 2.5-liter engine delivering 180 hp and 195 lb-ft torque, delivering 26 city/33 highway mpg. PHEV and hybrid Tucson models share a 1.6-liter, turbocharged and direct-injected inline four-cylinder gas engine. These are equipped with Hyundai’s Continuously Variable Valve Duration technology that optimizes valve opening duration to improve power, efficiency, and emissions. The hybrid gets a 59 horsepower electric motor and 1.5 kWh lithium-ion battery that brings 226 total system horsepower and up to 38 city/38 highway mpg.

2022 Hyundai Tucson PHEV charging.

PHEV Has Bigger Battery, More Power

With the addition of the plug-in hybrid’s 90 hp electric motor and a larger 13.8 kWh lithium-ion battery, total system horsepower increases to 261 hp and 258 lb-ft torque. EPA rates the Tucson PHEV’s electric-only range at 33 miles and fuel economy at 80 MPGe, with a 35 mpg combined city/highway mpg rating running on gasoline. Hyundai says the model’s onboard 7.2 kW charger will allow charging the battery in less than two hours when connected to a 220-volt Level 2 charger.

The remainder of the Tucson PHEV’s drivetrain consists of a six-speed automatic transmission with steering wheel-mounted paddle shifters and a standard HTRAC AWD system with selectable drive modes. All Tucson models, including the PHEV, have a maximum tow rating of 2,000 pounds. The PHEV’s curb weight is a few hundred pounds higher than the conventional and hybrid models, so its payload capacity is commensurately less, rated at 1,012 pounds for SEL models and 1,166 pounds for Limited versions.

2022 Hyundai Tucson PHEV front end detail.

A Better-Driving Hyundai Tucson

A higher level of driving dynamics is delivered to match the Tucson’s sporty new exterior design. The AWD PHEV and hybrid models are built with Hyundai’s e-handling technology that, under certain road conditions and driving inputs, applies an incremental amount of electric motor torque to the wheels. This enables the e-handling system to affect vehicle weight transfer – and therefore the tire’s contact patch – to improve cornering.

Tucson models are equipped with a number of safety technologies as part of Hyundai’s SmartSense Safety Feature suite. Standard safety features on both the SEL and Limited models of the Tucson PHEV include Forward Collision-Avoidance Assist, Blind-Spot Collision-Avoidance Assist, Lane-Keeping Assist, Driver-Attention Warning, and Rear Cross-Traffic Collision-Avoidance Assist. Limited models add such features as blind-view and surround-view monitors and Remote Smart Parking Assist.

2022 Hyundai Tucson PHEV interior.

Hyundai Tucson Tech

The Tucson PHEV’s interior amenities vary depending on model. Both SEL and Limited are equipped with Apple CarPlay and Android Auto capabilities and have USB charging points for front and rear passengers. Stepping up to the Limited adds a 10.25-inch digital instrument cluster and 10.25-inch color touchscreen (SEL has an 8-inch screen), a Bose premium sound system, and wireless device charging.

Prices start at $25,800 for the standard 2.5-liter powered Tucson with the hybrid coming in at $29,750 and the plug-in hybrid $35,400.

Green Car Journal’s Green Car Awards, the annual awards program honoring the year’s most standout  new ‘green’ models, was presented at the Virtual Greenbuild Conference + Expo in November  this year. The 2021 virtual awards program was an innovation during an unusual year, amid the postponement and cancellation of international auto shows where the Green Car Awards typically take place.

Over the years, these high-profile awards have grown along with the expanding field of ‘green’ cars on the road. They now recognize not only the magazine’s signature Green Car of the Year, but also exceptional models that speak to families, city dwellers, luxury buyers, pickup enthusiasts, and those requiring the functionality of an SUV. All provide the traditional touchstones of safety, quality, value, style, and performance, plus that fun-to-drive quality important to most drivers. What they add are greater efficiency, lower carbon and tailpipe emissions, petroleum reduction or displacement, or operation on battery electric power.

GREEN CAR OF THE YEAR

This year’s candidates for 2021 Green Car of the Year reflect the auto industry’s transition toward electrification, even as it continues to make internal combustion ever-more efficient. Three of this year’s finalists, the Mustang Mach-E, MINI Cooper SE, and Volkswagen ID.4, drive exclusively on zero-emission battery power. The BMW 330e is a plug-in hybrid that drives up to 23 miles on battery power and hundreds more as a hybrid. The Hyundai Elantra is offered with either an efficient gasoline engine or a gas-electric hybrid achieving up to 50 miles per gallon.

Rising to the top of the field is Green Car Journal’s 2021 Green Car of the Year, Ford’s all-new Mustang Mach-E, a model that boasts an instantly-recognizable name and heritage, while breaking new ground as an all-electric crossover featuring up to 300 miles of range. Performance is part of the package, as is unmistakable style and all the latest advanced electronics.

The 2021 Green Car of the Year® is selected by a highly-respected jury comprised of energy and environmental leaders including Mindy Lubber, president of CERES; Jean-Michel Cousteau, president of Ocean Futures Society; Dr. Alan Lloyd, president emeritus of the International Council on Clean Transportation and senior research fellow at the Energy Institute, University of Texas at Austin; Clay Nesler, interim president of the Alliance to Save Energy; and Matt Petersen, president and CEO of Los Angeles Cleantech Incubator and advisory board chair of Climate Mayors. Rounding out the Green Car of the Year jury is celebrity auto enthusiast Jay Leno and Green Car Journal editors .

LUXURY GREEN CAR OF THE YEAR

At a more premium price point, 2021 Luxury Green Car of the Year finalists also illustrate the momentum achieved by electric drive in the new car vehicle field. Four of these premium vehicles are all-electric models – the Audi e-tron Sportback, Polestar 2, Tesla Model Y, and Volvo XC40 Recharge. The fifth, the Lincoln Corsair Grand Touring, is the plug-in hybrid variant of Lincoln’s Corsair compact crossover that combines gas-electric hybrid and all-electric driving.

Honored as this year’s Luxury Green Car of the Year is the Polestar 2, a groundbreaking model from Polestar on many levels. This all-new premium vehicle is only the second of this new auto brand’s model offerings, and the first to be all-electric. This zero-emission, two-door fastback looks to the future even as it foregoes futuristic styling, instead choosing to offer an understated yet elegant and sophisticated design, tasteful appointments, and a nearly 300 mile range on battery power.

URBAN GREEN CAR OF THE YEAR

Urban environments pose their own unique challenges – tight spaces, often crowded streets, and hard-to-find parking. Here, smaller vehicles with a compact physical footprint and easy maneuverability are always top choices. The 2021 Urban Green Car of the Year award recognizes vehicles especially well-suited for life in the city. Top choices for this year’s award are the Hyundai Venue, Kia Seltos, Kia Soul, MINI Cooper SE, and Nissan Versa. Four are conventionally-powered – three of them crossover SUVs and one a compact sedan – with the fourth, the MINI Cooper SE, an all-electric crossover.

Taking top honors for 2021 Urban Green Car of the Year is the all-electric MINI Cooper SE. Standing out as an ideal vehicle for the city, the Cooper SE is compact in stature and big on features. Its represents what this brand all about: An iconic look, great maneuverability, and driving fun wrapped in a small package. Plus, electric power means zero localized emissions and no trips venturing out to the gas station in a crowded urban environment.

FAMILY GREEN CAR OF THE YEAR

While any model can serve family duty, those offering extra versatility and thoughtful family-friendly features are high on many shopping lists. Today, driving ‘green’ has also become a priority. Minivans have always been a solid choice, but these days three-row crossover SUVs can also do the job as family hauler. Finalists for 2021 Family Green Car of the Year are the Chrysler Pacifica Hybrid, Honda Odyssey, Kia Sorrento Hybrid, Toyota Highlander Hybrid, and Toyota Sienna. The Kia Sorrento Hybrid and Toyota Highlander Hybrid crossovers drive on efficient hybrid power. Honda’s Odyssey minivan features an efficient V-6 with variable cylinder management. The Toyota Sierra is exclusively a hybrid-powered minivan, while the Chrysler Pacifica Hybrid minivan also offers plug-in hybrid power.

Standing out as Family Green Car of the Year is the Toyota Sienna, a minivan that seeks to set the standard for modern family haulers. The stylish and fuel-efficient Sienna offers premium sedan-like style, admirable hybrid fuel efficiency, and a thoughtful blend of family-desired features along with driver-centric characteristics not always associated with minivans. It shows Toyota’s keen grasp of how to make a modern minivan that not only serves up family functionality, but also premium car style and appeal.

GREEN SUV OF THE YEAR

The hottest segment in the automotive field today is the SUV, either full-size or compact, traditional or crossover, two-row or three, conventional, hybrid, or plug-in. There are no shortage of choices, which makes narrowing the field to five outstanding finalists no small challenge. The top five finalists emerging this year for Green SUV of the Year are the Audi Q5 55 TFSI e, BMW X3 xDrive 30e, Jeep Wrangler 4xe, Toyota RAV4 Prime, and Toyota Venza. Four of these –from Audi, BMW, Jeep, and Toyota – are plug-in hybrids with an all-electric driving range from 18 to 42 miles, and additional hundreds of miles on hybrid power. Toyota’s Venza is an all-wheel drive, tech-rich hybrid with exceptional fuel efficiency.

Taking top honors for the 2021 Green SUV of the Year title is the Jeep Wrangler 4xe,  an SUV that’s different in many ways from others in its class. To some, it’s an SUV in the traditional sense with high functionality and loads of versatility that’s perfect for the diversity of everyday life. But to others, it’s that, plus a means of escape, heading toward the city one day and then driving the path less taken on another, a path often rough, unpaved, and pointed towards adventure.

GREEN TRUCK OF THE YEAR

This year’s Green Truck of the Year finalists embody all the workhorse capabilities expected of a modern pickup while offering passenger car-like comfort, advanced on-board electronics, and levels of fuel efficiency unheard of in pickups of just a decade ago. Pickups honored as finalists for Green Truck of the Year are the Chevrolet Colorado, Chevrolet Silverado, Ford F-150, Jeep Gladiator EcoDiesel, and RAM 1500. All offer diverse powertrain choices, from gasoline and diesel internal combustion to variations of mild- and full-hybrid power.

Powering its way to well-deserved recognition as 2021 Green Truck of the Year is the Ford F-150, a pickup long distinguished as the best-selling model in the nation and a champion of innovation. Beyond its wide array of configurations, powertrain choices, payload capacities, and towing capabilities, it now adds such innovations as an efficient PowerBoost hybrid powerplant, fold-flat ‘sleeper’ seats, and an available Pro Power Onboard output system with outlets that allow the truck to function as a mobile generator at worksites or campsites.

The Green Car Awards™ program, presented annually since 2005, is an important part of Green Car Journal's mission to showcase environmental progress in the automotive field.

The driving range of electric vehicles is becoming less of an issue as they surpass 200 miles or greater, approaching the distance between fill-ups of some internal combustion engine vehicles…or maybe the bladder capacity of their drivers. However, the time it takes to recharge an EV is still a negative attribute.

Generally, EVs charge at a fairly slow rate. A 240-volt Level 2 home or public charger will charge a Chevy Bolt from depleted to full in about 4 1/2 hours, providing a range of about 238 miles. That’s a far cry from 5 minutes to fill a gas tank. It’s significantly slower when charging a Bolt with a Level 1 charger using a household’s standard 120-volt power since this adds only about 4 miles an hour!

Of course, charging companies and automakers are working together to expand the small-but-growing network of fast chargers in key areas of the country, allowing EVs to gain up to 90 miles of charge in around 30 minutes. Tesla claims that its Supercharger stations being upgraded to Version 3 can charge a Tesla Model 3 Long Range at the rate of about 15 miles a minute, or 225 miles in just over 15 minutes under best conditions.

If current technology EVs become popular for mid- to long-range travel, gasoline stations, truck stops, and public charging stations equipped with Level 2 and even somewhat faster chargers run the very real risk of becoming parking lots.

Photo: EVgo

When it comes to charging EVs, charging times come down to kilowatts available. The best Tesla V3 charger is rated at 250 kilowatts peak charge rate. Now, much research is being done here and in other countries on what is called Extreme Fast Charging (XFC) involving charge rates of 350-400 kilowatts or more. The U.S. Department of Energy is sponsoring several projects aimed at reducing battery pack costs, increasing range, and reducing charging times.

There are several challenges for XFCs. First, when lithium-ion (Li-ion) batteries are fast charged, they can deteriorate and overheat. Tesla already limits the number of fast charges by its standard Superchargers because of battery degradation, and that’s only at 120-150 kilowatts. Also, when kilowatt charging rates increase voltage and/or amperage increases, which can have a detrimental effect on cables and electronics.

This begs the question: Is the current electrical infrastructure capable of supporting widespread use of EVs? Then, the larger question is whether the infrastructure is capable of handling XFC with charging rates of 350 kilowatts or more. This is most critical in urban areas with large numbers of EVs and in rural areas with limited electric infrastructure.

The answer is no. Modern grid infrastructures are not designed to supply electricity at a 350+ kilowatt rate, so costly grid upgrades would be required. Additionally, communities would be disrupted when new cables and substations have to be installed. There would be a need for costly and time-consuming environmental studies.

One approach being is XFC technology being developed by Zap&Go in the UK and Charlotte, North Carolina. The heart of Zap&Go's XFC is carbon-ion (C-Ion) energy storage cells using nanostructured carbons and ionic liquid-based electrolytes. C-Ion cells provide higher energy densities than conventional supercapacitors with charging rates 10 times faster than current superchargers. Supercapacitors and superchargers are several technologies being considered for XFCs.

According to Zap&Go, the C-Ion cells do not overheat and since they do not use lithium, cobalt, or any materials that can catch fire, there is no fire danger. Plus, they can be recycled at the end of their life, which is about 30 years. Zap&Go's business model would use its chargers to store electric energy at night and at off-peak times, so the current grid could still be used. Electrical energy would be stored in underground reservoirs similar to how gasoline and diesel fuels are now stored at filling stations. EVs would then be charged from the stored energy, not directly from the grid, in about the same time it takes to refuel with gasoline.

The fastest charging would work best if C-Ion cell batteries are installed in an EV, replacing Li-ion batteries. EVs with Li-ion batteries could also be charged, but not as quickly. Alternatively, on-board XFC cells could be charged in about five minutes, then they would charge an EV’s Li-ion batteries at a slower rate while the vehicle is driven, thereby preserving the life of the Li-ion battery. The downside is that this would add weight, consume more room, and add complexity. Zap&Go plans to set up a network of 500 ultrafast-charge charging points at filling stations across the UK.

General Motors is partnering with Delta Electronics, DOE, and others to develop XFSs using solid-state transformer technology. Providing up to 400 kilowatts of power, the system would let properly equipped electric vehicles add 180 miles of range in about 10 minutes. Since the average American drives less than 30 miles a day, a single charge could provide a week’s worth of driving.

The extreme charging time issue might be partly solved by something already available: Plug-in hybrid electric vehicles (PHEVs). As governments around the world consider banning or restricting new gasoline vehicles in favor of electric vehicles, they should not exclude PHEVs. Perhaps PHEVs could be designed so their internal combustion engines could not operate until their batteries were depleted, or their navigation system determines where they could legally operate on electric or combustion power.

The Kona, Hyundai’s newest and smallest crossover, serves up a pleasing design and welcome functionality. It is offered with a choice two gasoline engines that net up to 33 highway mpg, and also as a battery electric vehicle.

Styling cues are a bit different on the Kona Electric, but subtle except for its distinctive closed grille. Silver side sills, unique 17-inch alloy wheels, and badging also differentiate the electric variant. Kona Electric sales are initially being focused on California and select states that have adopted California’s Zero Emission Vehicle (ZEV) program.

Hyundai Kona Trim Levels

The Kona is available in three trim levels – SEL, Limited, and Ultimate. Kona SE and SEL models are powered by a 147-horsepower, 2.0-liter four-cylinder coupled to a six-speed automatic transmission. This combo achieves an EPA rating of 28 city/32 highway mpg. Kona Limited and Ultimate trim levels are powered by a 175-horsepower, turbocharged 1.6-liter four-cylinder with a seven-speed, dual-clutch automatic transmission. Here,  EPA numbers are 27 city/33 highway mpg. Front-wheel drive is standard with all-wheel drive an option for both powerplants.

Powering the Kona Electric is a 201 horsepower, permanent-magnet electric motor driving the front wheels. Energy is provided by a 64 kWh lithium-ion polymer battery that delivers an impressive EPA estimated 258 mile range. Offshore markets also get a base electric version with a smaller 39.2 kWh battery that’s good for about 186 miles, but that configuration is not offered in North America. The Kona Electric earns a combined EPA efficiency rating of 120 MPGe. Acceleration is quite good with a 0-60 mph sprint taking 7.6 seconds. Kona Electric’s top speed is electronically limited at 104 mph.

Quick Charge Options

When connected to a fast-charge 10 kW Combined Charging System, the battery pack can be recharged from a depleted state in about 54 minutes. It takes 75 minutes to recharge with a more common 50 kW CCS fast-charge system. With more readily-available Level 2 (240-volt AC) public or home charging and the Kona’s onboard 7.2 kW charger, replenishing a depleted battery takes about 10 hours. The charge port is located in the front fascia just below the driver’s side headlight.

There are a host of driver assist features available. Hyundai SmartSense safety technologies standard on all trim levels include Forward Collision-Avoidance Assist, Driver Attention Warning, and Lane Keeping Assist. Optionally available are Rear Cross-Traffic Collision Avoidance Assist, Blind Spot Collision Warning, High Beam Assist, Rear View Monitor, and Smart Cruise Control.

The gasoline-powered Kona has an MSRP of $19,990, while the Kona Electric is offered at a base price of $36,450.

Part of Honda’s Clarity triple-play – along with the hydrogen-powered Clarity Fuel Cell and more mainstream Clarity Plug-In Hybrid – the Clarity Electric is a model that clearly cuts its own path.

It does not aim to be part of the ‘200 mile club,’ the latest generation of uber-electrics that claim a battery electric driving range greater than 200 miles between charges. It also does not cultivate efficiencies through a compact form designed to eke the most from every electron. Nor is it exceptionally lightweight, another common nod to the need for making the most of the battery power carried on board. In fact, there is little about the Clarity Electric that makes us think of other all-electric vehicles…save for the fact that it runs exclusively on zero-emission battery power, of course. This mid-size, five-passenger battery electric vehicle aims to be in a league of its own.

First of all, let’s discuss driving range, which is EPA rated at 89 miles between charges while delivering a combined 114 MPGe (miles-per-gallon equivalent). Yes, that’s more limiting than that of the 200+ mile club, but there’s a reason. Honda designed the Clarity Electric with the needs of commuters in mind…those who want their daily drive to be in a highly-efficient, zero-emission electric car with a sophisticated look and premium feel. And they designed it so it was significantly more affordable than premium competitors offering higher-end electric models with features similar to those of the Clarity. Currently, the Clarity Electric is offered at a $199 monthly lease in California and Oregon where this battery-powered model is available.

Honda figures that an approach focused on commuters is a sweet spot for the Clarity Electric. Its range fits the needs of most commutes and its price is certainly justifiable for a commuter car, and a luxurious one at that, with fuel costs substantially less than conventionally-powered models. Plus, most households have two cars at their disposal, sometimes more. Having a Clarity Electric as a primary commuter car with a conventional gasoline or hybrid vehicle also in a household’s stable covers all bases.

Honda gave a lot of thought to the cabin design with welcome touches throughout. We especially like the ‘floating’ design of the center console with its array of integrated controls and flat storage tray beneath, with 12-volt and USB outlets. The dash features a handsome suede-like material and an 8-inch touchscreen display elegantly integrated into the dash. Deep cupholders feature flip-up stays for holding smaller drinks. Side door pockets are large enough to accommodate water bottles. The trunk offers plenty of room and is illuminated when the trunk lid is remotely or manually unlatched. At night this allows you to immediately note what’s inside through the trunk lid’s clear back panel before opening…something we’ve really come to appreciate over time.

Driving the Clarity Electric is a satisfying experience, with this sedan both well-mannered and responsive. Power is delivered by a 161 horsepower electric motor energized by a 25.5 kWh lithium-ion battery that can be charged in about three hours with a 240 volt charger, or in as little as 30 minutes with a public DC fast-charge system to an 80 percent state-of-charge. While its primary job may well be to handle everyday driving needs and negotiate traffic, it also delivers plenty of fun on twisty canyon roads with flat cornering and confident steering. It’s quick, like almost all electrics are because of instant torque delivered at launch, providing very satisfying acceleration.

Also appreciated is the Clarity’s handy Apple CarPlay integration and its Honda Sensing suite of driver-assist technologies. Among these are important features like adaptive cruise control with low-speed follow, forward collision warning, collision mitigation braking, lane departure warning, and road departure mitigation.

The Clarity Electric has served us well on our daily drives over the course of Green Car Journal’s ongoing long-term test. Its use supports what Honda envisioned for this efficient electric car. It has been ideal for around-town duty, area trips within its range, and daily commutes. Its thoughtful and sophisticated – dare we say futuristic – design and very satisfying drive experience are appreciated every day we’re behind the wheel.

With the growing market acceptance of electric vehicles in the U.S. comes an unprecedented auto industry focus on delivering these vehicles to consumers. Today nearly all major auto manufacturers and a handful of boutique automakers offer a growing lineup of electrified models.

When considering the purchase of an electric vehicle, the task of home charging is second in importance only to an electric’s driving range. How long will a charge take, and how often will it be needed? The cost associated with enabling home charging is also top-of-mind since using public or workplace chargers is a plus, but nothing beats the conveniences of overnight charging at home.

There’s an affordable and easy answer to these home EV charging concerns with the AV TurboCord Dual, developed by AeroVironment and available as part of Webasto’s EV Solutions product line. TurboCord Dual presents a portable transformable solution that aims to promote convenient electric vehicle charging using the two most common electrical outlets found in homes.

AV TurboCord Dual is a portable EV charging solution enabling both 120 or significantly faster 240 volt charging as needed through a quick clip-release adapter interface. It does not require hardwired installation to facilitate dual voltage charging, but rather connects to a standard 120 volt household outlet or 240 volt outlet.

While there is much competition in the home charging segment, there’s a lot to like about the AV TurboCord for its compact size,  portability, and ease of operation. TurboCord Dual will look familiar to anyone who has used AV public charging stations in much of the U.S. Simply open the charge port on your EV of choice, look for the pulsing light on the business end of the TurboCord, and you’re charging. When the unit stops blinking, you’re done.

TurboCord  Dual delivers a great solution for battery electric and plug-in hybrid vehicles alike, either at home or on the road. A handy carrying case easily stores the charger, power cord, and chargeport connector. AV TurboCord is available online or from your local building center.

沃尔沃全新XC40外观Volvo’s smallest crossover features an aggressive design that’s a bit of a departure for the automaker, even as it retains the fundamental styling cues that say ‘Volvo.’ The first model built on the automaker’s Compact Modular Architecture, the new XC40 is offered as either a T4 front-wheel drive or T5 all-wheel drive and in three trim levels. The XC40 looks deceptively small but has plenty of cargo and passenger capacity for longer trips. A plug-in hybrid and possibly an all-electric model are likely in the future.

Inside, the stylish cabin aims for an uncluttered look while still providing all the amenities SUV buyers desire. Functionality is a top priority, which the XC40 provides in intelligent ways with features like spacious door bins that accommodate a laptop or tablet, easily accessible under-seat drawers for stashing wallets or other necessities, and even a trash bin for cleaning up clutter. The front storage compartment holds a wireless charge pad for smartphones. Other welcome features include a standard 9-inch Sensus Connect touchscreen and an available panoramic sunroof that provides loads of available light.

New Volvo XC40 - interiorAll XC40s are powered by a 2.0-liter, turbocharged four-cylinder Drive-E engine. In the T4 this engine is rated at 187 horsepower and 221 lb-ft torque. Engine output increases to 248 horsepower and 258 lb-ft torque in the all-wheel drive T5. Both connect to an eight-speed automatic transmission. Manual gear shifts are possible with the Volvo’s shift lever or, alternatively, via steering wheel shift paddles on the R-Design model.

Standard on all XC40s are Automated Emergency Braking with Pedestrian Detection, Forward-Collision Warning, Lane-Keeping Assist with Lane-Departure Warning, Automatic High-Beam Headlamps, Driver-Attention Monitor, and Traffic-Sign Detection.  A self-parking feature, front and rear parking sensors, and Blind-Spot Monitoring with Rear Cross-Traffic Alert can be added as part of the Vision package.

New Volvo XC40 - 360 cameraVolvo offers Pilot Assist as a part of a Premium package. This is essentially adaptive cruise control with a semi-autonomous driving mode. It keeps the XC40 within its own lane and maintains a set speed and distance behind the vehicle ahead. Unlike some other near-self-driving systems, Pilot Assist requires the driver to keep his hands on the steering wheel at all times…perhaps not a surprise considering Volvo’s longstanding focus on safety.

The 2019 XC40 serves up 23 city and 33 highway mpg, at a starting cost of $33,700. Another option is Care by Volvo, an innovative subscription service that includes use of a new XC40 Momentum ($600 per month) or R-Design ($700 per month) for a maximum of 15,000 miles per year. Insurance, maintenance, and road-hazard protection are included, plus the opportunity for the lessee to upgrade to a new XC40 each year for the same all-inclusive monthly payment. A subscription lasts for 24 months.

沃尔沃全新XC40外观

Nissan's all-new, sixth-generation Altima has been extensively redesigned with greater refinement and efficiency, along with a more aerodynamic body boasting an impressive 0.26 drag coefficient. Distinctive styling cues include a more aggressive front facia with a V-motion grille and streamlined boomerang lights.

Inside there is a standard 7-inch driver display and a NASA-inspired zero gravity seat that enhances comfort and fights fatigue. Apple CarPlay and Android Auto come standard. Every 2019 Altima also comes equipped with a standard 8-inch multi-touch color display, Bluetooth hands-free phone system, streaming audio via Bluetooth, hands-free text messaging assistant, and Siri eyes free voice recognition. Some remote features are also accessible through NissanConnect Services’ Amazon Alexa Skill and Google Assistant Action.

Power is provided by a naturally aspirated, 2.5-liter four-cylinder engine producing 188 horsepower. There’s also an all-new, 2.0-liter turbocharged four-cylinder engine with 248 horsepower on tap. The world’s first production variable compression engine, this 2.0-liter powerplant enables compression ratio to adjust from 8:1 to 14:1  by continuously raising or lowering piston reach for performance or greater efficiency. Both engines connect to an Xtronic continuously variable transmission. Paddle shifters are available with the SR grade.

Every 2.5-liter Altima is now available with Intelligent All-Wheel Drive with a 50:50 torque split in most situations, a first for a Nissan sedan and something that remains a relative rarity in this segment. Front-wheel drive 2.5-liter models are rated at 28 city/39 highway mpg.

Unique in the class, Nissan’s ProPILOT Assist helps drivers stay centered in the lane, navigate stop-and-go traffic, maintain a set vehicle speed, and maintain a set distance to the vehicle ahead.  To activate the system, a driver simply pushes the blue ProPILOT Assist ON button, then sets the Intelligent Cruise Control when the desired speed is reached, similar to a conventional advanced cruise control system. It uses a forward-facing camera, forward-facing radar, sensors, and an electronic control module.

Along with ProPILOT Assist, also new for 2019 is Rear Automatic Braking that helps a driver by detecting and warning of objects while backing up, and if necessary applying brakes to help avoid a collision. Other safety and convenience features include standard Automatic Emergency Braking, Intelligent Forward Collision Warning, and Intelligent Driver Alertness 3 on all grades.

Intelligent Around View Monitor is standard on the Altima Platinum. Safety Shield 360 includes Automatic Emergency Braking with Pedestrian Detection, Rear Automatic Braking, Lane Departure Warning, radar-based Blind Spot Warning, Rear Cross Traffic Alert, and High Beam Assist (HBA). A new Traffic Sign Recognition system provides the most recent speed limit information.

The 2019 Nissan Altima offers a base cost of $23,900, a point of entry approachable for a great many buyers seeking a fun-do-drive, stylish vehicle offering laudable fuel efficiency and some of the most advanced technology available in its class.

Our drive of the 2019 Lexus ES 300h, the hybrid variant of this automaker’s all-new, seventh-generation ES sedan, was accommodating as expected from this luxury brand with welcome performance. During our drives we found turn-in sharp and precise. Considering front-to-rear weight distribution is heavy over the front wheels, the suspension compensates well and the car feels well-balanced.

Built on Lexus’ new Global Architecture-K platform, the ES enjoys a 2.6-inch increase in length, 1.8-inch increase in width, and wider front and rear tracks compared to the model it replaces. It also offers a two-inch longer wheelbase at 113 inches and a more spacious rear compartment.

The luxury sedan’s most striking angle is its profile that shows low hood and roof lines. From the front it’s the automaker’s unmistakable spindle grill that dominates, enhanced by slim L-shaped LED projector headlights.

The ES 300h layout is front engine, front wheel drive with power derived from a 2.5-liter 4-cylinder engine, plus an electric motor mated to an all new hybrid transaxle. This delivers 215 total system horsepower. A six-speed automatic transmission with paddle shifters is electronically controlled and continuously variable.

Powering the electric motor is a nickel-metal-hydride battery that's more power dense and compact than its predecessor, allowing it to be relocated from the trunk to beneath the rear seat, thus adding welcome trunk space. This fourth-generation Hybrid Drive System enables accelerating from 0-60 mph in 8.1 seconds and provides a nearly 600-mile driving range, plus excellent combined 44 mpg fuel economy.

Inside is a well-appointed cabin that’s tranquil and free of exterior noise. New suction-type ventilated cooling seats kept us as comfortable and entertained as any in the new movie theaters. There are lots of choices for interior personalization with three color schemes available, four trims, and three material options for the seats. The car’s standard audio has 10 speakers, and to please audiophiles there’s the optional Mark Levinson audio with 1800 watts and 17 speakers.

Of course, the ES 300h offers all the latest driver assistance systems plus an array of convenience features like Apple CarPlay, and it will be Amazon Alexa-enabled for Android phones and iPhones. Outstanding fuel consumption, a striking design, and first-class amenities make the new Lexus ES 300h a real contender for today’s premium car buyers. 

The price of entry for the conventionally powered 2019 Lexus ES is $39,500, with the ES 300h hybrid just $1,810 more at $41,310. 

Our drive of the new generation 2018 Nissan LEAF quickly reinforced this is a whole-new animal, a new generation of the venerable electric car intended to capture the imagination and, not coincidentally, market share in the increasingly competitive electric vehicle field.

We have history with the LEAF. Green Car Journal first experienced the original LEAF’s capabilities in a technology demonstrator designed to share what Nissan had in mind for its groundbreaking, soon-to-come production electric vehicle. At Nissan’s behest, we tested the automaker’s LEAF-destined electric drivetrain in its EV-12 test mule back in 2009 at Nissan’s global headquarters in Yokohama, Japan. We later witnessed the LEAF’s unveiling, clearly showing Nissan’s willingness to push the envelope for electric cars with an edgy design.

This image has an empty alt attribute; its file name is 2018-Nissan-LEAF-Test-Mule-1024x576.jpgWe were impressed. So much so, in fact, that Green Car Journal honored the LEAF with the magazine’s 2010 Green Car Vision Award™ in Washington DC, ahead of its introduction to the market. Nissan’s insight into what electric vehicle buyers desired has indeed proved visionary over the years. Testament to this is the LEAF’s standing as the world’s leading affordable, mass production EV since its launch.

The all-new generation Nissan LEAF aims to expand on this success with new styling and a 50-percent increase in driving range. It also features a full suite of Nissan Intelligent Mobility technologies. This all-electric model is more attractive with excellent aerodynamics that result in a low 0.28 drag coefficient. Improved aerodynamics not only means a quieter ride but also contributes to greater range. That’s an important consideration in electric cars with near-silent drivetrains that don’t mask outside noise.

This image has an empty alt attribute; its file name is 2018-Nissan-LEAF-Rear-1-1024x576.jpgThe new Leaf features a 150-mile driving range between charges compared to the previous generation’s 100 miles. This is an important milestone that serves to overcome potential ‘range anxiety.’ Why 150 miles rather than shooting for the 200+ mile range like the Chevy Bolt EV and Tesla Model 3? It’s all about balancing price with functionality. Simply, Nissan aimed at providing an affordable price point under $30,000 for the LEAF. That meant delivering the range it figured would fit the driving needs of most drivers while keeping battery costs within reason. It’s a sound strategy.

A more powerful 40 kWh lithium-ion battery pack features improvements and revised chemistry that bring a 67 percent increase in energy density. Nissan designers have located the low-slung battery pack and other heavy components to the middle of the chassis to enhance the car’s center of gravity and handling. Fun fact: Using vehicle-to-home systems, the LEAF’s battery can store a home’s surplus solar energy while parked during the daytime and use it to help power a home in the evening.

This image has an empty alt attribute; its file name is Nissan-LEAF-Underhood-1-1024x576.jpgLEAF’s electric powertrain features a 147-horsepower electric motor that’s well-suited to the model. It provides 38 percent more horsepower than the previous version with 26 greater torque for improved acceleration. Acceleration is crisp with more than enough power at the ready for all the driving situations we encountered on twisty roads and Interstates. Intelligent Ride Control delivers more precise motor torque control during cornering. This also reduces vibration while improving ride quality and steering control. Electric power steering software has been tweaked for improved steering feel. The LEAF’s steering torsion bar is also stiffer for better feedback and more linear response to steering inputs.

Nissan’s e-Pedal slows down the car via regenerative and friction braking when a driver’s foot lifts off the accelerator. This delivers electricity to the battery while essentially providing braking force without using the car’s brake pedal. It even brings the car to a complete stop. We found that driving with e-Pedal kept our LEAF tester in place while stopped on a steep hill without requiring a foot on the brake pedal. Notably, e-Pedal allows drivers to go without using the brake pedal 90 percent of the time.

2018 Nissan LEAF interior.LEAF’s ProPILOT cruise control conveniently maintains a constant distance to the vehicle ahead.  If that vehicle stops, ProPILOT automatically applies brakes to also bring the LEAF to a full stop. It remains stopped even with your foot off the brake. Driving resumes when ProPILOT is activated with the touch of a switch or light pressure on the accelerator. The system also helps keep the LEAF centered in its lane at speeds between 19 and 62 mph. Other LEAF driver-assist technologies include Intelligent Lane Intervention, Lane Departure Warning, Intelligent Emergency Braking, Blind Spot Warning, Rear Cross Traffic Alert, and Intelligent Around View Monitor with moving object detection.

The new LEAF’s interior has a more luxurious and high-end look. Its dashboard is dominated by a seven-inch display for infotainment and the navigation system, if so equipped, plus Nissan's Safety Shield state-of-charge and power gauge. Another seven-inch screen faces the driver in place of conventional dials. Apple CarPlay and Android Auto are included on LEAFs with the higher-spec infotainment/navigation system.

This image has an empty alt attribute; its file name is 2018-Nissan-LEAF-Charging-1024x576.jpgToday’s electric car market is different than that of the past. There are more choices in a growing number of vehicle classes and this makes it tougher for automakers to compete. Nissan aims to not only compete in the electric car field but dominate globally as it has in recent years.

The LEAF’s status as a true world car is underscored by widespread availability like the previous-generation LEAF. It’s also reinforced by Nissan’s global manufacturing capabilities with assembly plants in Japan, England, and in Smyrna, Tennessee. Offering the all-new LEAF at a base price of $29,990 here in the U.S. is a strategy that should bode well for Nissan in today’s increasingly competitive electric vehicle market.