Green Car Journal logo
Azura ZDZ electric car.

Buyers of Acura ZDX models and all Honda Prologues built after Feb. 26, 2024, will qualify for the full federal $7,500 federal clean vehicles tax credit. Those  who lease will also get the credit in the form of reduced monthly lease payments regardless of the vehicle’s production date. The 2024 Prologue EV will start at under $50,000 while Acura’s ZDX, an electric crossover built on the same platform, will start at just over $65,000.

Honda is offering the Prologue in three trims, two available with single-motor, front-drive or dual-motor, electric all-wheel drive (eAWD) powertrains, and one with dual-motor eAWD as the only powertrain. Acura’s ZDX will come in two trims, one with both rear-wheel drive and eAWD options, the other with eAWD only. The two EVs are the fruit of Honda’s short-lived EV co-development program with GM. They share their underpinnings and batteries with the Chevrolet Blazer and Cadillac Lyriq.

Honda Prologue charging in garage.

Price and Range

The base rear-drive Acura ZDX A-Spec trim will start at $65,745 including a $1,245 destination charge. The eAWD variant will start at $69,745. The eAWD Type S will start at $74,745 and there’s a sport edition with performance wheels and tires for $1,000 more. Acura said the base A-Spec can deliver up to 313 miles of range- slightly more than its Honda Prologue platform mate. The eAWD version comes close at 304 miles. Both Type S variants are rated at 278 miles.

Honda’s base front-drive 2024 Prologue EX will start at $48,795 including a mandatory $1,395 destination fee. The eAWD version, with two motors and more horsepower, jumps to $51,795. The front-drive Prologue Touring starts at $53,095, jumping to $56,095 with eAWD. Prologue Elite, available only with electric all-wheel drive, starts at $59, 295. EPA range estimates are 296 miles for the front-drive EX and Touring, 281 miles for the eAWD EX and Touring and 273 miles for the Elite.

Honda Prologue dash board.

This was originally published on Author John O'Dell is a distinguished career journalist and has a been an automotive writer, editor, and analyst specializing in alternative vehicles and fuels for over two decades.

David Thomas, CDK Global.
David Thomas, Director of Content Marketing at CDK Global.

The common belief that the simpler design of EVs and fewer mechanical parts would prove a detriment to car service providers is slowly changing course. There may not be an oil change but software- and hardware-related issues, along with an array of recalls, have shown EVs will be making repeated stops in the service department.

That’s why CDK Global reached out to dealership and service department leaders across the country and brands that sell EVs to find out where they stand today and what they think of the future. If nothing else, the EV Service: Today and Tomorrow study suggests that the current service model is unlikely to radically change for years to come.

When you look at EV sales and service, there are a lot of conflicting numbers out there. There are two important facts, though, that overshadow the entire conversation that need to be addressed head-on and then simply put aside. Essentially, half of all EVs sold today are Teslas. And half of all EVs, Tesla or not, are sold in California.

These giant figures are why you hear such different attitudes about EVs from traditional automakers and, of course, their franchised dealer networks. Overall, EV sales may be up by 50 percent in 2023 but to a dealer in the Midwest or Southeast, they may be staring at slow-moving inventory and sales in the single digits.

Just 2.5 percent of new car sales at franchise dealers nationwide are EVs. Not surprisingly, 2.4 percent of all repair orders at dealership service departments are for EVs. These numbers may rise as 2023 comes to a close, but it’ll still be far lower than any national number that’s being reported, which includes Tesla sales and, of course, California.

Yet, every respondent in CDK’s survey said they’ve already begun servicing EVs or will within the next two years, and 99 percent said they have at least a portion of their staff trained on EVs. Nearly nine out of 10 (88 percent) has charging stations on site and 64 percent of those respondents have more than one charging station in the service department. The next time you see a story that claims dealers aren’t prepared for EVs, please keep this in mind.

Perceptions vs. Profit

The single finding that I come back to in our study is that dealers are somewhat pessimistic about EVs in the service lane but not about how much money they’ll make. Only 42 percent of service leaders feel positive about the future of EVs. There’s no sugar coating that.

But when you ask this same group where they see revenue going in the next two years, four out of five see both total revenue (79 percent) and EV revenue (78 percent) increasing.

Much of this is likely due to warranty work, which has always been profitable for dealers, but the latest wave of EVs have proven to require a bit more than most anticipated. Indeed, 89 percent of the service leaders CDK surveyed expect EV warranty volume to increase in the next two years.

EV service at dealership.

EV Service Not Much Different

Two of the primary reasons people choose a dealer over an independent mechanic or chain for service is for the factory-trained technicians and OEM-supplied parts.

When you look at the EVs from traditional OEMs today, and in the next few years, there are few, if any, options for service outside of a dealership.

Service retention falls quickly when a new car ages out of its warranty, but for EVs that may not be the case. And in many areas across the country, there simply won’t be another option for many years. That could be why 77 percent of service leaders said they expect retention to remain the same or increase for EVs.

Now, will independent shops eventually be able to invest in the advanced equipment, additional lifts, safety gear, and training that dealers already have to fix EVs? Yes. But this is one area where traditional dealers have a leg up on the competition, and they need to ensure they prove their value during this transitional moment.

Service departments will focus more on tire maintenance with the demise of oil changes to keep customers coming in and many respondents agreed on their importance. And while there are fewer moving parts in an EV, there’s more technology that’ll require skilled labor to address. Not everything will be solved by an over-the-air update.

EVs will need service and maintenance, and the infrastructure for it is already in place at the dealership.

David Thomas is Director of Content Marketing at CDK Global, a leading provider of cloud-based software to dealerships and original equipment manufacturers across automotive and related industries.

Mike Hornby, VP of Stanadyne.
Michael Hornby, Global Vice President of Product Engineering at Stanadyne.

The propulsion challenges facing society are complex and multi-dimensional. Decarbonization is at the core of these challenges and, unfortunately, there is no singular fuel type or technology solution to solve them all. Regardless, the transportation segment requires decarbonization – and it requires it yesterday. This truth and its aggressive timetable are why the internal combustion engine is part of the larger solution to reduce lifecycle carbon emissions to address climate change trends.

Regulating tailpipe carbon will not solve the problem of carbon dioxide alone. Reducing the carbon intensity of electric grids will take time. Electric vehicles and plug-in hybrids are great solutions for certain applications, but also need time to reach critical mass. In the meantime, we continue to rely on liquid fuels for combustion engines in conventional vehicles, hybrids, and plug-in hybrids for many on- and off-road applications. Therefore, low-carbon intensity fuels in conjunction with powertrain electrification/hybridization is needed.

Hybridization and low-lifecycle carbon intensity fuels can work together to contribute to a low-net carbon future. The internal combustion engine is ready to use low- and zero- carbon fuels to quickly move down sustainable fuels pathways, power hybrids, and enable more rapid vehicle electrification.

Any decarbonization strategy needs to utilize longer-term low carbon fuels / renewable fuels. The immediate impact of drop-in alternative fuels on legacy vehicle fleets is too great to be dismissed, especially with an existing delivery infrastructure. Industry and legislators alike need to realize it is not always about net zero. Having low-carbon content across a broad scale has a significant decarbonization impact across all transportation sectors. Low-carbon fuels offer decarbonization benefits today as we prepare for the future.

Stanadyne, a leading global fuel and air management systems supplier, is continuing to develop engine innovations enabling the efficient and economic use of low-carbon and future fuels. This continued investment is necessary, as future fuels are propulsion technology drivers with fuel system challenges still needing solutions. As we head down low-carbon fuel pathways, some fuels are thermodynamically challenging with their lower heating values. This and other characteristics make them challenging to use. Their lubricity and viscosity also can be issues, which affect engine start-stop functions and maintaining high fuel delivery pressures for cleaner combustion.

Hyper-Collaboration & Hybrids

Vehicle display in a hydrogen low carbon vehicle.

Consumers, vehicle manufacturers, and propulsion systems providers want diesel performance and total cost of ownership, but with a low-carbon fuel without the shortcomings, difficulties, and reduced range. There is a growing impatience for fuel delivery solutions to be developed. Automakers have stated a need for “hyper-collaboration” with suppliers to develop and implement clean propulsion options to meet state and federal legislation.

There are many technology pathways to achieve low- and net-zero carbon emissions. However, hybrid powertrains powered by low-carbon intensity fuels are one of the fastest tracks to decarbonization development and deployment. Alcohol, hydrogen, propane, compressed natural gas, dimethyl ether (DME) and other sustainable low-carbon intensity fuels can energize these small displacement, high-energy output, high speed engines. High-pressure fuel delivery systems operating at twice the flow help overcome alternative fuels’ low energy content. Many systems already can handle biodiesel and other drop-in renewable fuels currently available in the market.

Accelerating Engine Innovation

Powertrain and fuel system innovation are key to a sustainable future. Stanadyne is accelerating engine innovation with its growing portfolio of renewable and future fuel complaint products. Our breakthrough direct injection liquid propane system, hydrogen direct injection design platform, and high-pressure direct injection pump and injector advancements are driving internal combustion engine decarbonization.

A low-carbon approach isn’t exclusive to fuels. Stanadyne takes a lifecycle approach by designing products for remanufacturing to support a circular internal combustion engine economy. More than two decades of remanufacturing expertise at scale and quality has kept 15 million pounds of waste out of landfills.

Compete, Complement, Co-exist

Advanced internal combustion technology will continue to be a dominant part of the fuel and technology mix for decades to come. New engine designs and fuels, like hydrogen and e-fuels, will drive decarbonization. As zero emission technologies continue to emerge, expect a world where engine technologies and fuels compete, complement, and co-exist.

Michael Hornby is Global Vice President of Product Engineering at Stanadyne

Green Car Time Machine - archive articles from Green Car Journal.

Plug-in hybrids are expected to play an increasingly important role in the mission to decarbonize transportation. While many think that interest in PHEVs is a recent phenomenon, that’s not the case since the concept has been intermittently explored throughout automotive history. Real momentum gathered soon after mass-market gas-electric hybrids hit our shores over two decades ago, with some envisioning a huge benefit in evolving hybrids to enable driving exclusively on battery power. Here, we share an article focused on this vision from the Green Car Journal archives, just as it ran 18 years ago.

Excerpted from Fall 2005 Issue: It’s hard to imagine a more gripping state of affairs at the start of the 21st century. A cloud of smog hangs over our cities while the threat of global warming looms ever larger. Oil prices are rising to record highs and while there’s no imminent danger of running out of petroleum, no one knows how long supplies will last. For a final dramatic touch, most of that oil sits beneath the powder-keg that is the Middle East.

A hydrogen hero is on the way, but many worry that we don’t have time to wait, unsure of what happens if oil supplies drop off and we’re caught without a safety net. A growing chorus is clamoring for a near-term solution, something that can be implemented now to significantly reduce oil consumption. The stage has been set for plug-in hybrids.

How Plug-In Hybrids Work

The plug-in hybrid is an evolution of the ‘conventional’ hybrid vehicle. Plug-in hybrids function the same way, assisting the engine with battery power or electric energy captured during deceleration, but take the idea a step further. Increased battery capacity allows plug-ins to rely more on electricity and less on gasoline, extending electric-only driving range and delivering even better fuel economy. The extra electric power is drawn from the electrical grid by plugging into power outlets while a vehicle isn’t being driven.

The virtue of the plug-in hybrid comes to light with some statistics. A majority of Americans live within 20 miles of their jobs and most trips are less than 20 miles long. With an electric-only range of up to 60 miles, daily drives to work in a plug-in hybrid might not require any gasoline at all as long as the battery is recharged each night. For longer trips, the vehicle reverts back to conventional hybrid operation. If plug-in hybrids are ever designed and built from the ground up, rather than being converted from existing models like we’re seeing today, an even smaller engine could improve fuel economy at every stage.

Prius Hybrid a Good PHEV Platform

Though the Toyota Prius is not a plug-in hybrid, it serves as a good platform for a conversion. The California Cars Initiative, a non-profit organization, first built one to show it could be done. The conversion turned out to be so promising that some companies are looking to make a for-profit business out of it.

Engineering firms EnergyCS and Clean-Tech have joined forces to form EDrive Systems, which is developing a conversion kit for the second-generation Toyota Prius. The kit removes the stock Panasonic nickel-metal-hydride (NiMH) battery and replaces it with a Saphion lithium-ion battery from Valence. The new battery adds 170 pounds to the Prius, but also makes about 9 kWh instead of the original's 1.3 kWh. That means there's much more electrical power available to drive the car.

Some careful software tweaks are made to handle the extra power of the hardware. The EDrive system takes advantage of a built-in ‘EV mode’ that forces the Prius to run purely on electric power until speeds reach 33 mph. This ensures that no precious fuel is sapped until the computer deems it absolutely necessary. According to EDrive, in a stock Prius, the batteries would only provide about one mile in this mode; the company’s converted plug-in Prius extends that range to as much as 35 miles.

Drive System for Plug-In Hybrids

To further hold off engine intervention, the computer is told the battery is full until the actual state of charge dips below 20 percent. This bit of misinformation forces Toyota’s Hybrid Synergy Drive to inject as much electric power as possible into the drive system. After the battery is about 80 percent depleted, the EDrive Prius carries on like a normal hybrid and maintains the charge of the battery as needed. Once the EDrive Prius is parked, it’s plugged into an external 110-volt charger that can replenish a fully depleted battery in about seven to nine hours.

Experimental battery pack for plug-in hybrids.

An additional dash-mounted readout precisely meters fuel consumption and displays how far the throttle pedal can be depressed before prompting the engine to start up. It’s a useful tool because driving style matters. Aggressive driving and 75 mph cruising will yield 70-80 mpg, say the EDrive folks, while relatively mellow driving earns well over 100 mpg. Low speed city driving and cruising at 55 mph can reportedly push fuel economy closer to 200 mpg. And when the battery is depleted after 50-60 miles of driving, fuel economy reverts back to the roughly 45-50 mpg of the stock Prius.

EDrive Systems hopes to sell its conversion kit for $10,000 to $12,000 in early 2006. At this cost, EDrive’s market is limited to those with the bucks to support making such a statement, but it’s a start.

Others Working on Plug-In Hybrids

The Prius is not the only vehicle lending itself to plug-in conversion. DaimlerChrysler is working with the Electric Power Research Institute (EPRI) to build 40 plug-in hybrid versions of its Sprinter commercial van for use in demonstration fleets. Electric boost comes from a 70 kW motor positioned between the transmission and clutch, which is fed by a 14 kWh NiMH battery stowed beneath the cargo floor.

Drivers of the plug-in Sprinter hybrid can push a button to put the vehicle in electric-only mode, which is good for a range of about 19 miles. When not selected, the hybrid’s electronic controller alternates power between the vehicle’s diesel engine and electric motor to optimize fuel economy, or combines the two when power demands are high. This plug-in variant is designed for recharging on Europe’s 230 volt network, a task that takes about six hours for a fully depleted battery.

Valence battery for plug-in hybrids.

The stock Sprinter, with its small, 4- cylinder diesel engine, is already quite the efficient hauler with fuel economy as high as 30 mpg. Converted to a plug-in hybrid, DaimlerChrysler says fuel economy improves anywhere from 10 to 50 percent, depending on use. That means up to 45 mpg from a commercial delivery vehicle – simply unheard of in its class. So far, DaimlerChrysler is the only automobile manufacturer producing its own plug-in hybrids.

California Cars Initiative

One of the most notable forces behind the rising profile of the plug-in is Felix Kramer and his Palo Alto-based California Cars Initiative. The group is mobilizing support from fleets, government agencies, and private buyers in an attempt to break the vicious cycle that plagues many new technologies: Motorists won’t buy plug-ins on a large scale unless the price is right, and the price won’t come down until automakers are convinced there will be buyers.

Not content to wait around for the manufacturers, Kramer is looking at other ways to put plug-in hybrids on the road. The plan is to utilize venture capital, set up a Qualified Vehicle Modifier company that could work with automakers in a fully certified capacity, and convert existing hybrid models without voiding original vehicle warranties. In Kramer’s mind, conversion possibilities include Ford’s Escape Hybrid and models using Toyota’s Hybrid Synergy Drive such as the Prius, Highlander Hybrid, Lexus RX400h, and other upcoming models.

The potential of the plug-in hybrid in reducing emissions and oil dependency has put environmentalists and conservative think-tanks in an unusual position: They’re on the same side. Set America Free, the Center for Security Policy, and others have joined electric vehicle die-hards in calling for mass production of plug-in hybrids. Support from former Secretary of State George Shultz and former CIA director James Woolsey lends considerable credibility to the cause.

ED Drive Systems will produce plug-in hybrids.

Plug-In Hybrids and Government

Despite this clamoring, the U.S. government has yet to respond in a big way. An amendment to the massive energy bill recently approved by President Bush allocates a relatively tiny $40 million for hybrid vehicle development, some of which could go toward plug-in hybrids...but there’s no guarantee.

This leaves local government to take charge. The City of Austin, Texas, with help from its municipal utility Austin Energy, has become the first city to develop an incentive plan for plug-in hybrids. ‘Plug-In Austin’ is looking to raise $50-$100 million to provide rebates on plug-in hybrid purchases for public and private use, as well as for running an educational campaign to generate consumer interest. Austin is one of 10 cities that will begin testing DaimlerChrysler’s Sprinter plug-in hybrid next year.

The ‘Plug-In Austin’ campaign is designed to expand to other communities around the country. Representatives from Austin Energy are approaching the nation’s 50 largest cities in an effort to encourage them to replicate Austin’s program. Already, Seattle City Light in Washington state has shown interest in offering customers incentives to buy plug-in hybrid vehicles in the Puget Sound region. Across the country and across the political spectrum, the plug-in hybrid is winning fans.

Professor Andy Frank at the University of California, Davis is an ardent proponent of plug-in hybrids and, having built plug-in prototypes since 1972, is also one of the most experienced. Rather than an intermediary step to hydrogen, Professor Frank believes the plug-in hybrid could be an end in itself. A plug-in hybrid with a 60 mile electric range, like the ones Frank and his students build, reportedly uses only 10 percent gasoline and 90 percent electricity on an annual basis. “That 10 percent of gasoline could be replaced by biofuels,” says Frank, taking an interesting direction that could find gasoline use eliminated altogether.

$7,000 Additional Cost for PHEVs

The possibilities don’t end there. “We have the capability, for the first time, of integrating the electric grid with transportation,” explains Frank. The electrical grid right now has enough excess capacity to support half the nation’s vehicle fleet if they were converted to plug-in hybrids, says Frank. The energy is domestically produced, the infrastructure already exists, and, though much of our electricity today comes from coal-burning powerplants, renewable and non-polluting sources such as wind and solar power could play a larger role. “People don’t think of plug-ins as alternative fuel cars, but they are,” says Frank. “You could be running your car on solar or wind power.”

At less than a dollar per gallon during off-peak hours, when most plug-ins would be recharged, plug-in hybrid drivers would be paying a lot less in fuel costs. As for the extra up-front cost, Frank points to a UC Davis study that shows how automakers could build plug-in hybrids by adding only $7,000 to the price of a $20,000 car. So why isn’t this already happening? Some in the auto industry maintain that battery technology isn’t ready yet, a claim that Frank and others dismiss. More significantly, Frank asserts there’s a general reluctance to invest, with struggling giants in the industry unwilling to take risks unless convinced there’s a good chance that a sizeable return will result.

“What I’m trying to demonstrate is that if a bunch of students can do it, the car companies should be able to do even better.” Andy Frank, the California Cars Initiative, the City of Austin, and many others feel it’s up to them to take the lead in getting the word out and generating demand. With the success they’ve met, and the wide-ranging benefits that plug-ins put within reach, there’s every reason to believe that at least some in the auto industry are paying very close attention.

Damian Breen, founder of Environmental Communications Strategies.
Damian Breen, founder of Environmental Communications Strategies.

In June, the CEO of German manufacturer MAN Truck & Bus SE (MAN), Alexander Vlaskamp, told Austrian Newspaper Der Standard that:“E-mobility is coming now. The technology is mature and most efficient. In our estimation 80 or even 90 percent of logistics trucks will be electrically powered…If hydrogen is to be used, it must be green. And we see today that hydrogen is far too expensive (and) therefore, hydrogen will only be used in a small segment in Europe, such as for special transport.”

I became aware of this pronouncement through a friend in the U.S. trucking industry, who attached the article to an e-mail, saying, “So, hydrogen is dead!” Even as someone who has never been afraid to hold strong opinions on technology, I remember reading my friend's e-mail and thinking, “Well, that’s a bit extreme isn’t it?” Then I took some time to read Mr. Vlaskamp’s full interview and, in fairness, what he said is nuanced. He is not saying all hydrogen is too expensive or that the technology doesn’t work. He is simply pointing out that the cost of ‘green’ hydrogen as a fuel is too high for his customers to do their business.

Fair enough, Vlaskamp knows his customers, and trucking has and will always be a bottom-line driven industry. However, he goes on to state that there is already enough electricity in Austria to deal with the trucking fleet transition, and that to support the 30 percent of trucks in Europe going electric by 2030, 20,000 fast-charging stations will be needed, at a cost of several billion euros! This is where he loses me and quite a few others, as we will see below.

Here in the U.S., as the battle over the California Air Resources Board (CARB) Advanced Clean Fleets (ACF) regulation spills over into Congress, companies and truckers are faced with impossible choices. Do they wait to see if the bills introduced by Rep. John Joyce (R-PA) in the House of Representatives and/or Sen. Markwayne Mullin (R-OK) in the Senate, forestall CARB’s rule, or do they start to plan for the zero-emission future now? They haven’t got much time to figure it out; CARB’s rule goes into effect for the first trucks in 2024. One thing is certain: Europe’s second-largest truck manufacturer muddying the waters regarding technology choices won’t help anyone! To try and make sense of whether hydrogen is an option for U.S. trucking, I decided to talk to three experts in the field.

Batteries Can't Do It All

Dr. Tim Lipman is an energy and environmental technology, economics, policy researcher and lecturer with the University of California, Berkeley. His research focuses on electric-drive vehicles, fuel-cell technology, combined heat and power systems, biofuels, renewable energy,  and hydrogen-energy systems infrastructure. When I spoke to Tim about the MAN CEO’s thoughts on hydrogen and electric trucks, he had this to say: “Batteries can’t do it all, that is for certain, and I think everyone is underestimating the level of effort needed to get the grid ready for transportation electrification.” He pointed to the fact that fast-charging infrastructure for trucks might require megawatts of power, and whether that power is drawn directly from the grid or from on-site battery storage, it will not be cheap. He also stated that the engineering and technology challenges for charging sites could be significant, given the geographic locations of California’s truck parking sites relative to the grid, the anticipated load growth from truck charging, and the capacity of certain electrical feeder lines. Tim believes these challenges and their costs have already made several public bus fleets (subject to a separate CARB zero- emission rule) reverse course on battery-electric buses in favor of hydrogen fuel cell electric buses.

Hydrogen Cost Will Come Down

On the costs of hydrogen, currently retailing somewhere between $16 to $36 per kg, Dr. Lipman was very clear that it is too high. He points to the war in Ukraine, and the entry of California refiners into the low-carbon fuel standard (LCFS) credits program, as being significant contributors to the current cost issue. The Ukraine war has caused the costs of natural gas, a raw material for the steam reformation of hydrogen, to rise sharply; and the conversion of some California refineries to renewable fuels has halved the payments available for LCSF credits from CARB for the sale of hydrogen. However, he believes that the recent announcement of $7 billion in federal grant funding to establish regional clean hydrogen hubs in 16 states will have a big impact on driving down costs. Because of his involvement in California’s successful application to the U.S. Department of Energy for one of these hubs, Tim was reluctant to give his thoughts on how much hydrogen could retail for, simply saying that the hubs will make hydrogen a lot cheaper.

Finally, Tim took some time to explore the comments on ‘green’ hydrogen by MAN’s CEO, noting that it might be more helpful to look at the fuel’s production and carbon intensity. Tim explained that the term ‘green’ hydrogen means production of the gas from the electrolysis of water using renewable electricity. This pathway is preferred by many in the environmental movement, as it dispenses with the steam reformation of methane completely. Hydrogen from any form of methane is viewed by some as a bait and switch strategy by a fossil fuels industry, the currently leading producer of U.S. hydrogen, seeking to extend the use of natural gas.

Low Carbon Hydrogen Production

However, Tim pointed out that other production methods, such as the steam reformation of bio-gas (i.e. methane created from animal manure or wastewater bio-digestors) could be less carbon intensive than ‘green’ hydrogen. This is due to the fact that the releasing of bio-gas directly to the atmosphere has a much more detrimental impact on climate than converting it to hydrogen. Therefore, if we look to carbon intensity and climate impacts as our north star (and don’t get hung up on the hydrogen color wheel), investing in these other low-carbon production methods could increase hydrogen supply and bring down costs significantly. This certainly would change the economics of the fuel dramatically for Mr. Vlaskamp and his customers.

Hyundai-XCIENT hydrogen fuel cell truck on the road.

I also spoke with Dr. Matt Miyasato, Vice President of Strategic Growth and Government Affairs for FirstElement Fuel, the largest retailer of hydrogen fuel stations in the world. Prior to joining FirstElement Fuel, Matt served as Deputy Executive Officer and Chief Technologist at the South Coast Air Quality Management District. Matt was taken aback by the MAN CEO’s comments, stating: “This is really premature! There is no silver bullet, and we are going to need all the solutions.”  Matt went on to say that electricity is a great solution for fleets traveling shorter routes (up to 40 miles), with fixed hubs that are well supplied with electricity and a duty cycle that allows for overnight charging. However, he too cautioned regarding the ability to install the charging infrastructure, even in the best of circumstances. He expressed concern with the existing grid infrastructure, the possible need for battery banks to charge multiple vehicles, the huge amount of electricity needed, and the rate at which vehicles can charge. In fact, Dr. Miyasato’s main objection to Mr. Vlaskamp’s comments was that they totally discounted the needs of many drivers and fleets. For some truckers, the time required to recharge batteries is simply not practical or cost effective. Time is money in the trucking business, and extensive wait times to recharge trucks won’t cut it.

Consider All Technologies/Fuels

That’s not to say that the hydrogen infrastructure is perfect. Matt did own up to issues related to the cost of the fuel and the ability to permit, roll out, and maintain stations. However, he also noted that no one had yet built an electrical retail infrastructure for long-distance truck routes (those over 200 miles), whereas his company planned to launch their first truck fueling station in Oakland, California, in December 2023. He said, “With what we know today about costs and engineering, it would be very short-sighted to write off any technology path at this point.”

Finally, I spoke with Jaimie Levin, Director of West Coast Operations and Senior Managing Consultant for the Atlanta-based Center for Transportation and the Environment (CTE). Jaimie previously worked as Director of Environmental Technology at the Alameda-Contra Costa Transit District (AC Transit) where he oversaw the alternative fuels deployment program. He currently heads up the NorCAL ZERO advanced technology demonstration project, which is bringing 30 Hyundai Xcient fuel cell electric trucks into service at the Port of Oakland in northern California. These Class 8 vehicles have a range of between 400 and 500 miles and a payload capacity of 39,000 lbs. This project is in the road trials phase, with 10 trucks currently deployed hauling steel from the port to California’s Central Valley.

Critical Factors for Truckers

Jaimie stated that the current crop of Class 8 battery-electric trucks, while working fine in the hub model described by Dr. Miyasato, were “really working against what truckers need.” He cited four critical factors for truckers – range, payload capacity, fueling speed, and resiliency. On range, Jaimie states that trucks with variable routes can’t have limits. They need to be able to do whatever route and distance are required by a job. On payload, he cited the total weight limits on the California and national highway system as being a serious issue for battery-electric trucks. The weight of current battery trucks that can travel 250 miles could be as much as 2,000 lbs. more than their diesel counterparts. In an industry where payload is ‘the’ thing, that would reduce carrying capacity and profit. On fueling speed, Jaimie stated that truckers can’t wait around for an hour for their rig to charge up. Costs and deadlines simply won’t allow it. Lastly, on resiliency, he talked about the strain put on California’s grid in the last few years by wildfires, extreme heat, and public safety power shutoff events. He notes that in trucking, you can’t have uncertainty on whether you can refuel your vehicle or not. An excellent point, considering that 77 percent of California communities rely solely on trucking for the movement of their goods.On the cost of fuel, Jaimie reiterated that it needs to come down, citing the same factors previously noted, and hopes that the hydrogen hubs will impact prices. On the cost of the trucks themselves, he believes that the economies of scale will have a big impact on driving down the total cost of ownership, making them comparable to diesel, but agrees that the initial cost of the truck itself will remain high.

I have spent some time looking at the future of battery technology – including lighter weight and faster charging options - and I discussed this with all three experts. While they see the new offerings as solving some issues with current battery trucks, they believe that they do not move the needle on power availability and the cost of infrastructure to charge electric trucks.


Hydrogen is far from done in terms of being a fuel for heavy-duty trucks, but its cost needs to come down quickly! Also, issues with the electric infrastructure and the location of California’s truck parking will hinder the rollout of battery-electric vehicles. This means neither technology is perfect and neither meets the needs of every trucking duty cycle. So, rather than trying to pick the winner in this technology horse race, truckers will need to explore their options based on their own unique locations and business needs. This won’t be easy but eliminating technologies out of hand makes no sense at this point.

Damian Breen is the founder of Environmental Communication Strategies and former Deputy Executive Officer of the Bay Area Air Quality Management District in California.

VW ID.4 electric car at charger.

Manufactured in Tennessee on Volkswagen’s MEB modular world electric car platform, the 2021 VW ID.4 presents a new and compelling all-electric SUV that enters a segment presently dominated by Tesla, Chevrolet, and a select few others. What ID.4 brings to the battery electric SUV segment that Tesla doesn’t is price, coming in at a base cost of $39,995, some $10,000 less than Tesla’s Model Y.

For this, electric vehicle buyers get SUV hatchback utility, three-foot legroom in all seating positions, and ample luggage capacity for 5 adults. VW estimates ID.4 driving range at 250 mile on a full charge, and additionally points out that an additional 60 miles of range is attainable in just 10 minutes from a public DC quick-charge station.

Powertrain and Battery Module

Sporting a stature similar to that of Honda’s CR-V, the Volkswagen ID.4 rides on a steel-framed architecture featuring strut-like front suspension and multi-link suspension with coil-over shocks at the rear. This, combined with a long wheelbase and short overhangs, promises a smooth ride dynamic. Braking is handled by front disk and rear drum brakes.

A single permanent magnet, synchronous electric motor directs power to the rear wheels. The ID.4 produces 201 horsepower and 228 lb-ft torque that’s expected to deliver a 60 mph sprint in about 8 seconds. Electricity to power the motor is provided by an air-cooled, frame-integrated 82 KWh lithium-ion modular cell battery. An onboard 11KW charger enables three charge modes via standard 110-volt household power, 220-volt Level 2 charging, or DC fast charging. Typical charging with a home wall charger or public Level 2 charger will bring a full charge in 6 to 7 hours.

Volkswagen ID.4 interior.

ID.4 Controls and Features

A minimalistic yet futuresque cabin with segment leading cabin volume rounds out ID.4’s architecture. Features include a driver-centric, touch sensitive steering wheel and a view-forward 5.3-inch ID information center that replaces conventional gauges. Vehicle operation is through steering wheel-mounted switches, with infotainment, climate control, device connectivity, navigation, and travel information accessed through a 10.3 inch touchscreen monitor. A 12 inch monitor is available with the model’s Statement Package.

Topping the list of features is expanded voice command and a communicative dash-integrated ID light bar. ‘Intuitive Start’ driver key fob recognition enables pre-start cabin conditioning capability. Base model upholstery is ballistic cloth with leatherette seat surfaces optional.

Volkswagen’s IQ Drive driver assist and active safety suite features travel assist, lane assist, adaptive cruise control, front and rear sensors, emergency assist, blinds spot monitoring, rear traffic watch and more. All this comes standard along with Pro Navigation, a heated steering wheel and front seats, wireless phone charging, and app connectivity for compatible devices. 

Two ID.4 Trim Levels Offered

The ID.4 EV is available in six colors and two trim levels, Gradient and Statement, for personalization. The optional Gradient package features a black roof, silver roof trim, silver accents, and silver roof rails along with 20-inch wheels to complete the upscale look. Looking forward, while rear-wheel drive is the choice today, Volkswagen is already talking up an all-wheel drive variant for early 2021 along with a lower-priced base model. 

As the world’s largest automotive group, Volkswagen has the capacity to change the ever-expanding electric-car landscape. Looking at the style and utility of VW’s all-new ID.4, you can sense the renewed “people’s car” direction of the brand that accompanies the automaker’s commitment to electrification. VW says it’s aiming at selling 20 million electric cars based on the MEB electric car platform by model year 2029. Certainly, the potential for selling in truly significant numbers is reinforced by ID.4 pre-orders selling-out in just weeks, it’s safe to say.