Green Car Journal logo
Rear view of a Ford hydrogen hybrid SUV.

Plug-in electric vehicles. Hydrogen fuel cell cars. Hybrids. Plug-in hybrids. All have come to the fore over the years, and we’ve noted their unique impact on the automotive landscape. While these technologies share similarities in that they all employ different ways of managing electricity to power electric motors, it’s been pretty easy to draw lines between them. But what if those lines were blurred in the interest of creating a new and possibly better answer, like maybe…a plug-in hydrogen hybrid?

Actually, that question was on the minds of creative souls at Ford some 15 years ago. Back then, the automaker explored new paths with its Ford Edge HySeries, a drivable demonstration vehicle unveiled at the Washington, D.C. Auto Show.

Display showing operation of a hydrogen hybrid vehicle.

This Hydrogen SUV Plugs In

The HySeries combined power from the grid by plugging into an electrical outlet, just like an electric car or plug-in hybrid. It used a hydrogen-powered fuel cell to provide electricity, just like other fuel cell vehicles. And it managed its two power supplies via on-board battery storage, just like hybrid and plug-in hybrid cars do today.

Central to the HySeries Drive, both figuratively and physically, was a 336-volt lithium-ion battery pack that powered the electric motors at all times. Electricity from the grid and the fuel cell didn’t get to the wheels without first going through this battery pack. In this single-path flow of power, the power unit – the fuel cell – and the batteries were designed to act in series.

Illustration of a hydrogen hybrid drivetrain.

Series Versus Parallel Hybrid

With the notable exception of a few models like the Chevrolet Volt, in most hybrids the batteries and engine operate in parallel. That is, the engine can still directly send power to the wheels with the battery stepping in to provide boost or take over as necessary. These hybrids do periodically act like a series configuration by using the engine to charge the batteries back up, for instance. The difference is that the HySeries Drive runs exclusively in series mode…thus, the name.

What’s the advantage? In a word, simplicity, according to Ford at the HySeries’ auto show debut. Operating in series streamlined the process by eliminating the extra hardware – and complex management software – of two propulsion systems in favor of a single power flow. By the same token, this made the HySeries Drive remarkably versatile.

Hydrogen fueling inlet in a vehicle.

In the Ford Edge prototype presented here, the fuel cell acted as a range extender, providing electrical power when the batteries ran low on their grid-sourced charge. But that range extender could just as well have been an engine powered by gasoline or some other alternative fuel. The thinking was that any new fuel or propulsion technology could be swapped in as it became available, with the underlying architecture of the HySeries Drive the same in any case.

The Ford Edge with HySeries Drive was designed to demonstrate the logic of this approach. According to Ford, the size, weight, cost, and complexity of this particular drivetrain was reduced by more than 50 percent compared to conventional fuel cell systems at the time. By relying more on the battery pack and the grid-sourced electricity, the demands on the fuel cell system were reduced as well. This meant the Ballard-supplied fuel cell would last longer and less hydrogen would need to be stored on-board.

Ford Edge hydrogen hybrid SUV.

Hydrogen Hybrid Operation

Out on the road, the Edge was designed to drive 25 miles on battery power alone. When the battery pack was depleted to 40 percent charge, the fuel cell turned on and began generating electricity to replenish the batteries. The 4.5 kg of hydrogen stored in a 5,000 psi tank was enough to extend the range another 200 miles, for a total of 225 miles. Ford pointed out that range was highly dependent on driving conditions. In fact, it was also said that careful driving could potentially squeeze more than 400 miles from the fuel supply. Given that on-board hydrogen is now typically stored in 10,000 psi cylinders rather than the earlier 5,000 psi variants of the HySeries’ time, that driving range had the potential to be significantly greater.

Actual fuel economy would depend on the length of a trip. For those driving less than 50 miles a day, the Edge with HySeries Drive would be expected to return a miles-per-gallon equivalent of 80 mpg. Longer drives tapping further into the hydrogen supply would bring combined city/highway equivalent fuel economy down to 41 mpg, still respectable for a crossover SUV. Of course, while the fuel economy rating may have had a gasoline equivalent, the emissions did not. That is, there weren’t any emissions at all…at least not from the vehicle itself.

Ford Edge HySeries hydrogen hybrid.

As innovative as Ford’s HySeries Drive was, it was not totally unique. Also in 2007, Chevrolet showcased its Volta concept using GM’s E-Flex System, which later evolved into the Chevrolet Volt powertrain. Both Ford and GM approaches relied on a large lithium-ion battery pack operating in series with a separate power source that charged batteries when they ran low. Notably, both systems offered plug-in capability. While the HySeries incorporated advanced hydrogen fuel cell power, the Chevy Volta did not, though GM did share this was a future possibility. Rather, the Volta, like the production Chevrolet Volt to come, used a 1.0-liter gasoline engine as its range-extender,

Birth of the Plug-In Hybrid

What we saw in the Ford Edge with HySeries, the Chevrolet Volta, and other concepts to follow was the underlying development of a drivetrain showcasing a new propulsion category carving its place into the mainstream – the plug-in hybrid vehicle. At the same time, both GM and Ford seemed eager to link their conception of the plug-in hybrid to the trek toward hydrogen-based transportation, which at the time was the official long-term goal of these two major automakers and others. In this sense, the plug-in hybrid would conceptually follow the conventional hybrid as another intermediary step on the path to hydrogen power.

Rear view of the Ford HySeries hydrogen hybrid vehicle.

Of course, to expect such a simple, linear progression – gasoline, hybrid, plug-in hybrid, hydrogen – is, and was, naïve. But that’s the core challenge with predicting the future of any industry, or of life in general, for that matter. Emergent and divergent technologies, parallel paths, and new alternatives are guaranteed along the automobile’s evolutionary path. In particular, we have seen that in recent years with the breakout of all-electric vehicles into the automotive mainstream, in numbers that were not envisioned by most at the time the HySeries was revealed.

With the HySeries-equipped Edge, Ford presented a surprisingly realistic look at how HySeries Drive – or something like it – could one day take to the road. It sat on the cutting edge of a broad trend away from petroleum-burning internal combustion and toward electrically-powered transportation, a trend that is accelerating today.

Paying today’s crazy-high gas prices bring on some pretty serious reactions and a certain amount of denial. Many wonder when this will end. Some get angry. Others suck it up and just pay the price, figuring it will return to a reasonable cost at some point. Many are considering electric cars for the first time. But what can you do about it right now to cut your gas bill, in real time, with the car you’re driving?

The thought of boycotting your local gas stations is a pleasant thought but won’t work unless you’re already driving electric. You still need to get the kids to school, go grocery shopping, and get business done. You need some real options that make sense and can be done pretty easily.

Here are some strategies that come to mind. None involve dumping your car and getting a new one. We know that’s not always possible, especially today with unreasonably high car prices due to current conditions. You need to keep driving your everyday ride but just have to do something about the high gas costs that are wrecking your budget. So, consider giving these tips a shot.

YOUR ACTION PLAN

1. Start here: Don’t drive as much. Really, this isn’t as painful as it sounds. We’ve grown accustomed to our cars providing mobility on demand. That’s  a good thing when it isn’t hurting our wallets or contributing to growing oil dependency. It’s not so good today. So plan ahead. Combining your day’s errands into sequential trips one after another is a great strategy. This is an easy way to save fuel, cut your gas bill, and lessen your carbon footprint. It will also decrease tailpipe emissions by eliminating unnecessary cold-starts when your car’s emissions control system is least effective.

2. Ease off on the pedal. Okay, maybe you’re not really hot rodding your way down the street. But chances are good you’re not thinking about taking it easy from one traffic light to the next. Light accelerator pressure and a conscious effort to avoid quick starts and stops do make a difference in fuel economy, sometimes a pretty big one. Give it a try. While you’re at it, smooth out your pedal pressure at highway speeds as well by using your cruise control whenever appropriate.

3. Feeling the need for speed? Let it go. It’s easy to creep past posted speed limits without thinking about it. That’s especially on urban highways where traffic often tends to move well beyond 65 mph. We’ve found some freeways regularly flowing at 80 mph and sometimes more. The problem is that fuel efficiency diminishes rapidly above 60 mph. The EPA points out that each 5 mph driven above that speed has the net effect of costing you about 20 cents more per gallon.

Filling up with gasoline.

4. Do you need premium? If you’re filling up on mid-grade or premium fuel, check to see if you really need to do this. Some high-compression engines do require higher octane fuel to run properly. In fact, serious engine damage could result from using a lower grade fuel than is specified in your owner’s manual. But if you don’t need premium fuel you shouldn’t be filling up with it. Premium fuel costs about 20 to 40 cents more per gallon but doesn’t provide better performance in engines designed to run on regular. If you’re fueling up with premium and don’t need to, you’re essentially pumping cash out your tailpipe. Not a pleasant thought, is it?

MORE MONEY SAVING TIPS

5. Pressure can be a good thing. Check your tire pressure weekly and keep your tires aired up to the recommended psi. This is so simple you’d assume everyone does this regularly. Not so. And that’s too bad since tires with low pressure create greater rolling resistance that can cost you up to 3 percent in fuel efficiency. Tires heat up while you drive, so checking pressure while hot will give an artificially high reading. Make a habit of checking tire pressure before driving when your tires are cold. You might also consider buying more fuel efficient low rolling resistance tires the next time your car is ready for new treads.

Tire pressure is important for best mpg.

6. Cash or card? This is an obvious one. Gas stations typically have prices posted for regular, mid-grade, and premium fuel. Two sets of prices are often shown, one for cash and one for credit/debit cards. You’ll often note that the cash price is significantly lower, often 20 cents per gallon less than if you use a card. So, you know what to do.

7. Shop around. Like any business, gas stations have competition. It’s often the case that gas prices can vary by as much as 50 cents per gallon, maybe more in a geographical area. We’re not suggesting that you waste gas by trolling for the lowest price, but do pay attention to posted prices as you go about your daily drives. You’ll see which stations tend to offer the lowest gas prices. One of the best ways to price shop is with a free service like GasBuddy that allows you to search online for your area’s lowest gas prices. Make the process even easier by downloading the app so you can check on price fluctuations on your phone whenever it’s convenient during your travels.

Driving electric is becoming increasingly important to a growing number of new car buyers today. While efficiency and zero-emission driving are high priorities, so is performance, especially in the view of those accustomed to brands like BMW that have long been noted for delivering a spirited driving experience. It’s no surprise that this automaker’s new 2022 BMW iX xDrive50 continues the tradition.

Performance is achieved through a combination of lightweight construction and BMW’s fifth-generation eDrive technology. The iX body is made up of an aluminum spaceframe overlaid with a body shell that combines carbon fiber reinforced polymer (CFRP), thermoplastics, high-strength steel, and aluminum. Further weight reduction is found in the construction of the chassis, with extensive use of aluminum in suspension components and the front and rear axle subframes.

Two BMW iX Choices

An all-wheel-drive powertrain positions an electric synchronous motor at each axle, fed by a 111.5 kWh lithium-ion battery pack located low in the floor. EPA rates the iX at up to 86 combined MPGe with a driving range from 305 to 324 miles, with the best range achieved by the iX equipped with 20 inch wheels and tires. The 2023 iX M60 is not yet rated but BMW expects it to net up to 280 miles on a charge. Enhancing the iX’s range are several modes of regenerative braking selectable by the driver.

Power is impressive. The $83,200 iX features a combined 516 horsepower and electric all-wheel drive, plus exhilarating acceleration that delivers a 0-60 mph dash in 4.4 seconds. Performance is even better in the soon-to-come $105,100 iX M60, which combines 610 horsepower, a whopping 811 lb-ft torque, and launch control to compress the model’s 0-60 time to just 3.6 seconds.

The iX rides on suspension comprised of front control arms and a five-link rear, damped by lift-related shock absorbers that adjust firmness in relation to suspension travel. An optional adaptive suspension includes electronically controlled shocks and a two-axle air-suspension with automatic leveling that can be raised nearly an inch for extra ground clearance, or lowered almost a half-inch at higher speeds to improve aerodynamics and stability.

Tech-Rich BMW Cabin

Inside, the iX interior features a hexagonal steering wheel and BMW’s new Curved Display, which groups driver information and infotainment screens behind a single panel of glass angled around the driver. The Curved Display, and many other iX features and amenities, is controlled by the new iDrive 8 operating system, “designed with a focus on dialog-based interaction using natural language and touch operation,” says BMW. Both Apple CarPlay and Android Auto are integrated into the iX, as is 5G connectivity and the ability to receive over-the-air software updates.

The list of electronic amenities and advanced driver-assistance features aboard the BMW iX is extensive and ranges from cloud-based navigation to parking and back-up assist. Five cameras, five radar sensors, and 12 ultrasonic sensors provide data for the SAV’s safety systems, which include front collision warning, cross-traffic alert with braking, blind-spot detection, lane-departure warning, active cruise control, and lane keeping assistant.

Both AC and DC charging are available with the combined charging unit in the iX, which allows charging at 11 kW from an AC wall unit and up to 200 kW using a DC fast charger. Launched with the iX debut last month, BMW is offering 2022 BMW EV customers two years of free 30-minute charging sessions at 3,000 Electrify America public charging stations nationwide, a valuable addition to electric BMW ownership.

Green Car Journal has been documenting the evolution of light-duty, personal use transportation over the past three decades. A lot has changed over the years, with fuel efficiency now reaching previously-unexpected levels and electric cars achieving surprising momentum. While environmentally friendly vehicle choices have expanded greatly, the same can’t be said of commercial transportation. But there is significant movement in the form of electric trucks and potentially commercial vehicles running on hydrogen.

Today, legacy truck makers and smaller start-ups alike see the imperative to clean up commercial transportation. Chalk it up to increasing government regulation and the recognition that mitigating carbon emissions and climate change must be resolved on all levels. Not to mention, in these days of extraordinarily high fuel prices and petroleum supply volatility there is even greater reason to look toward new and cleaner answers for motor vehicles of all classes. Larger commercial vehicles are now part of the momentum.

Volvo VNR electric trucks are on the road.

Better Electric Trucks

Green Car Journal’s prestigious Green Car Awards™ have been recognizing new vehicle models exhibiting laudable environmental achievement for the past 17 years. Deserving light-duty vehicles were recognized in eight popular categories earlier in the 2022 model year auto show season. Now, it’s time to turn attention to the next frontier: medium- and heavy-duty commercial trucks.

While the mind’s eye can conjure images of large diesel trucks emitting plumes of soot from years past, this has been changing for the better through the application of advanced emissions technologies and alternative fuels. Now, there’s movement afoot to remake the image of medium- and heavy-duty trucks through electrification. The result? Silent, zero-carbon, powerful trucks running exclusively on batteries and electric motors, charging up in lieu of fueling with liquid hydrocarbons.

There’s no better example of this than Volvo’s zero-emission VNR Electric, a battery powered model that’s been undergoing trials through the Volvo LIGHTS (Low Impact Green Heavy Transport Solutions) program over the past several years, conducted in partnership with the South Coast Air Quality Management District and a dozen other organizations. The result is the new production Volvo VNR Electric, Green Car Journal’s 2022 Commercial Green Truck of the Year™.

The Class 8 Volvo VNR Electric, based on Volvo Trucks’ popular VNR model, aims to provide a sustainable transportation strategy to fill local and regional distribution, pickup, and delivery needs. Power is provided by a 455 horsepower electric motor featuring 4,051 lb-ft peak torque that’s coupled to a two-speed I-Shift automatic transmission. Top speed is 68 mph. It’s available with six-battery pack options that provide up to a 275 mile driving range and comes with fast-charge capability that enables gaining up to 80 percent state-of-charge within 60 to 90 minutes. The VNR Electric is available in five straight truck and tractor configurations.

Product of Excellence Winners

There’s significant competition out there in the evolving field of ‘greener’ commercial trucks with environmental leadership exhibited in many high-profile ways. The following models are standouts being honored with Green Car Journal’s 2022 Green Car Product of Excellence™ award.

Freightliner eCascadia: This Class 8 electric truck is intended for short haul or last-mile delivery, regional deliver, and drayage. It features 500 horsepower and a 250 mile range.

International eMV: An electrified version of International’s proven MV medium-duty truck, the eMV features 215 continuous horsepower, a 135 mile range, and DC fast-charge capability.

Kenworth T680E: Available as a Class 8 tractor or straight truck, the zero-emission T680E features 536 horsepower, 1623 lb-ft torque, and a 150 mile electric driving range.

Lion Electric Lion6: The Lion6 is a Class 6 urban electric truck featuring 335 horsepower, 1800 lb-ft torque, a 252 kWh battery, and a driving range of up to 200 miles.

Mack LR Electric:  The next-generation Mack LR Electric is a Class 8 truck aimed at refuse and recycling duty. It has a 376 kWh battery and twin electric motors producing 448 horsepower.

Nikola Tre BEV: Nikola’s Tre BEV is an all-electric Class 8 tractor for regional applications featuring 645 horsepower, a 753 kWh battery pack, and an operating range up to 350 miles.

Peterbilt 579EV: The 579EV is a Class 8 Day Cab configuration intended for short haul and drayage operations. It features 536 electric horsepower, a 396 kWh battery, and 150 mile range.

SEA Hino M5 EV: Sea Electric’s Hino truck-based M5 EV Class 5 electric truck integrates the company’s electric SEA-Drive Power System to provide 110 horsepower and a 200 mile range.

One of the motivations to go hybrid is the promise of significantly higher fuel efficiency. This has never been lost to us at Green Car Journal, though it did take quite a few years to catch on with car buyers in general since the very first Honda and Toyota hybrids were introduced here more than two decades ago, followed by the first gas-electric SUV, the Ford Escape Hybrid.

Today, the reasons to opt for a hybrid are more evident than ever. In the midst of historically high gas prices, we seriously appreciate that the Ford Escape Hybrid we drive every day is amazingly fuel efficient. Even though we complain like everyone else whenever we fill up now, we gripe perhaps a bit less because we know our Escape is consistently delivering its promised 41 mpg combined fuel economy. As many know quite well, EPA fuel economy estimates lend an idea, but not a promise, of what actual fuel efficiency expectations should be for any given model. In this case it’s spot on based on a lot of miles on the road.

Escape Plug-In Hybrid Delayed

We feel compelled to point out that the Escape, which Ford introduced as an all-new generation in the 2020 model year, is a bit of a tease. True, Ford made waves at its introduction by offering a pair of EcoBoost four-cylinder engines, an efficient hybrid, and promising a plug-in hybrid. But the ever-changing automotive field that’s been hugely impacted by the pandemic and a persistent silicon chip shortage upended lots of plans, including the rollout of the new Escape and in particular the Escape PHEV.

To wit: Whatever the reason – though the pandemic likely had as much to do with it as anything – the abundance of new-generation Escapes on Ford dealer lots was significant in 2020 and 2021. Loads of 2020 Escapes were still being heavily promoted and discounted well into the 2021 model year, with the same occurring with 2021 models when 2022 Escapes were on sale. That meant some pretty sweet deals for those on the hunt for a new crossover SUV.

That’s all changed now that the chip shortage has become entrenched, new car availability tightened considerably, and prices shot upward across the board. Amid this changing backdrop, the highly-anticipated 2020 Escape PHEV variant never happened. The aforementioned challenges and a battery issue delayed the planned plug-in hybrid intro here until late in the 2021 model year.

When the all-new, fourth-generation Escape debuted it did so with a lower and smoother look and a distinctively more car-like front end than earlier iterations. A bit longer and wider with a slightly lower roofline, the popular crossover features slightly more interior space with additional rear legroom and up to 37.5 cubic feet of useable stowage behind the rear seats. A Panoramic sunroof is available on specific models like the Escape Hybrid Titanium we drive daily.

High MPG Hybrid Power

Gasoline and standard hybrid variants of the Escape are offered with front- and four-wheel-drive, while the plug-in hybrid comes exclusively with front-wheel drive. Our Escape Hybrid test car’s combustion part of the power equation is a  2.5-liter Atkinson cycle four-cylinder engine. This engine is augmented with two electric motors that bring total combined system power to 200 horsepower. A PowerSplit electronic continuously variable transmission (CVT) transfers power to the road. The hybrid is energized with a 1.1 kWh lithium-ion battery pack positioned under the floor.

Start-stop engine technology enhances efficiency, though we’ve found it to be a bit abrupt under certain conditions, like when backing out of a driveway on brief battery power and then shifting into drive. Every time, we’ve found the changeover from electric to combustion power happens within seconds of moving forward and feels more noticeable than we’d like.

Being the car enthusiasts that we are, there’s always a yearning to eke more performance from many of the most efficient vehicles we test drive. But honestly, the Escape Hybrid hits a pretty impressive sweet spot. Acceleration and overall performance are just what you need in an efficient compact SUV, with its 200 horsepower delivered confidently and seamlessly whenever needed for passing or just a bit of fun on twisty roads.

Big Features in a Smaller SUV

Inside, this compact SUV strikes a good balance of comfort and economy of space, the latter expected in a crossover in this segment and the former not always delivered in smaller SUVs. In this case, the Escape Hybrid feels like a good fit. There’s plenty of seating and elbow room up front and a good amount of space for rear seat passengers. Of course, squeezing three adults in the back is possible since this is a five-seater, but we’ll bet that most families will have at least a few younger passengers in the rear so three side-to-side adults riding along will be a rarity. Legroom in the back is reasonable though things can get cramped if tall folks are up front and seats are adjusted considerably back. Adding comfort to the rear are 60/40 split back seats offering limited recline and the ability to slide rearward to add extra legroom when needed.

Escape Hybrid offers an array of desired comfort, infotainment, and driver assist systems to enhance safety and the driving experience. Our Titanium model includes a 12.3-inch digital instrument cluster and center 8-inch touch screen display. Ford Co-Pilot360 features include Adaptive Cruise Control with Stop-and-Go, Lane-Centering, Evasive Steering Assist, and Voice-Activated Navigation. Wi-Fi for up to 10 mobile devices is provided through FordPass Connect. We found USB connections in the front console to be handy, along with the 110-volt AC outlet located in the rear seat area below the center console’s air register. For everyday drives when the weather turns colder, we especially like the heated steering wheel and front seats, which come up to temperature surprisingly fast.

Our considerable time behind the wheel of the Escape Hybrid has found us appreciating its welcome compact SUV functionality, satisfying performance, and comfortable ride. It has proved to be an enjoyable and dependable daily ride that lends some comfort during these times of exceptionally high gas prices. An additional benefit is that the Escape Hybrid runs on less pricy regular grade gas and its combined gas-electric power provides a 550 mile driving range that means fewer fill-ups…something that’s just fine by us.

Photography by Sheree Gardner Cogan

VW ID.4 electric car at charger.

Manufactured in Tennessee on Volkswagen’s MEB modular world electric car platform, the 2021 VW ID.4 presents a new and compelling all-electric SUV that enters a segment presently dominated by Tesla, Chevrolet, and a select few others. What ID.4 brings to the battery electric SUV segment that Tesla doesn’t is price, coming in at a base cost of $39,995, some $10,000 less than Tesla’s Model Y.

For this, electric vehicle buyers get SUV hatchback utility, three-foot legroom in all seating positions, and ample luggage capacity for 5 adults. VW estimates ID.4 driving range at 250 mile on a full charge, and additionally points out that an additional 60 miles of range is attainable in just 10 minutes from a public DC quick-charge station.

Powertrain and Battery Module

Sporting a stature similar to that of Honda’s CR-V, the Volkswagen ID.4 rides on a steel-framed architecture featuring strut-like front suspension and multi-link suspension with coil-over shocks at the rear. This, combined with a long wheelbase and short overhangs, promises a smooth ride dynamic. Braking is handled by front disk and rear drum brakes.

A single permanent magnet, synchronous electric motor directs power to the rear wheels. The ID.4 produces 201 horsepower and 228 lb-ft torque that’s expected to deliver a 60 mph sprint in about 8 seconds. Electricity to power the motor is provided by an air-cooled, frame-integrated 82 KWh lithium-ion modular cell battery. An onboard 11KW charger enables three charge modes via standard 110-volt household power, 220-volt Level 2 charging, or DC fast charging. Typical charging with a home wall charger or public Level 2 charger will bring a full charge in 6 to 7 hours.

Volkswagen ID.4 interior.

ID.4 Controls and Features

A minimalistic yet futuresque cabin with segment leading cabin volume rounds out ID.4’s architecture. Features include a driver-centric, touch sensitive steering wheel and a view-forward 5.3-inch ID information center that replaces conventional gauges. Vehicle operation is through steering wheel-mounted switches, with infotainment, climate control, device connectivity, navigation, and travel information accessed through a 10.3 inch touchscreen monitor. A 12 inch monitor is available with the model’s Statement Package.

Topping the list of features is expanded voice command and a communicative dash-integrated ID light bar. ‘Intuitive Start’ driver key fob recognition enables pre-start cabin conditioning capability. Base model upholstery is ballistic cloth with leatherette seat surfaces optional.

Volkswagen’s IQ Drive driver assist and active safety suite features travel assist, lane assist, adaptive cruise control, front and rear sensors, emergency assist, blinds spot monitoring, rear traffic watch and more. All this comes standard along with Pro Navigation, a heated steering wheel and front seats, wireless phone charging, and app connectivity for compatible devices. 

Two ID.4 Trim Levels Offered

The ID.4 EV is available in six colors and two trim levels, Gradient and Statement, for personalization. The optional Gradient package features a black roof, silver roof trim, silver accents, and silver roof rails along with 20-inch wheels to complete the upscale look. Looking forward, while rear-wheel drive is the choice today, Volkswagen is already talking up an all-wheel drive variant for early 2021 along with a lower-priced base model. 

As the world’s largest automotive group, Volkswagen has the capacity to change the ever-expanding electric-car landscape. Looking at the style and utility of VW’s all-new ID.4, you can sense the renewed “people’s car” direction of the brand that accompanies the automaker’s commitment to electrification. VW says it’s aiming at selling 20 million electric cars based on the MEB electric car platform by model year 2029. Certainly, the potential for selling in truly significant numbers is reinforced by ID.4 pre-orders selling-out in just weeks, it’s safe to say.