Mitsubishi Motors’ electrification research and development dates back to the 1970s, Still, electrification didn’t represent a noticeable focus at Mitsubishi until the 2009 debut of its i-MiEV (Mitsubishi Innovative Electric Vehicle) in Japan and entry in the U.S. market two years later. The most notable example of Mitsubishi’s electrification effort is now the Outlander PHEV, a popular and award-winning plug-in hybrid variant of the marque’s Outlander SUV that first appeared abroad in 2013 and in the States in 2017. Like most automakers, Mitsubishi fielded interesting concepts over the years to share what might come to be. One that caught our eye was the Eclipse Concept-E, a sleek and artistic rolling rendition of what the next generation Eclipse of the era could become. As much as its styling grabbed our attention, it was the beefy hybrid powertrain that made the concept so compelling. Here’s our report on the innovative Eclipse Concept-E, just as it appeared 19 years ago in Green Car Journal’s Summer 2004 issue.
Excerpted from Summer 2004 Issue: It’s no secret that the sporty compact car craze, born in the shadows of the Southern California street racing underground and now spreading across the nation’s youth like wildfire, has arrived on the automotive scene. Exemplified, and perhaps proliferated, by the movie The Fast and the Furious and its sequel, this new generation of hot rodders has definitely captured the attention of automakers.
As Mitsubishi’s most visible entry into this new automotive sub-genre, the next Eclipse model is crucial to both the company’s image and its appeal to a younger demographic. So imagine our surprise when Mitsubishi's glimpse into the future, the Eclipse Concept-E, showcased a hybrid electric powertrain.
The Concept-E’s front wheels are driven by a parallel hybrid system integrating an electric motor with a 3.8-liter V-6, for a combined 270 horsepower. This is where it gets interesting: Mitsubishi’s innovative E-Boost system channels an additional 200 hp to the rear wheels from a 150 kW electric motor located behind the cabin, powered by lithium ion batteries secreted along the center of the vehicle. E-Boost is activated by aggressive throttle to provide an immediate boost in acceleration, much like a conventional turbo or supercharger, transforming the car into a 470 hp, all-wheel drive terror that raises the hybrid performance bar to new levels.
A look inside reveals further emphasis on the car's hybrid technology, with a decidedly futuristic twist. Centrally placed is a complex, 3D video imaging display that offers simulated gauges, diagnostic information, and interactive displays. The gearshift, looking as much the part of a fighter jet’s sidestick controller as a shifter, connects to a 6- speed transmission that allows for both manual and automated shifting.
The familiar corporate grill sits atop a gaping air intake and between large headlight assemblies featuring unique plasma lamps. The car’s tear drop shaped details, including side glass, door-handle cutouts, and roof profile, pay homage to the second-generation Eclipse that was cherished by the street tuner crowd. But the overall look of this iteration is thoroughly modern and striking. The muscular fender bulges speak of immense power and purpose, not inconsequentially housing wild nine-spoke, 20-inch wheels wrapped by 245/40R20 performance tires up front and 275/35R20 tires at the rear, suspended by independent multi-links at all four corners. It’s a theme well-integrated with the car’s ground hugging lower styling and aggressive stance.
With the Eclipse Concept-E, Mitsubishi has fused the disparate perceptions surrounding high-power, speed, and hybrid technology into a single package. In a youth-driven market that embraces innovation and technology – and times that demand higher efficiency – we hope that Mitsubishi is willing to bring this concept to the showroom and really find out if there’s such a thing as a supercar that’s too fast… and too clean.
People and goods traveling to and from homes, office buildings, stores, stadiums, factories, airports, and the rest of the built environment contribute to the largest single source (27%) of GHG emissions in the U.S. and the fastest growing source of global emissions. Published in January 2023, the U.S. National Blueprint for Transportation Decarbonization outlines important parts of the administration’s long-term strategy for reaching net-zero greenhouse gas emissions by 2050.
The blueprint was developed jointly by the U.S. departments of Energy, Transportation, Housing and Urban Development, and the Environmental Protection Agency – a notable level of coordination reflecting the urgency and the complexity of transitioning to a clean, carbon-free transportation sector. Three comprehensive strategies will guide policy decisions going forward and also help illustrate some of the ways the built environment can support transportation decarbonization: mobility that is convenient; efficient; and clean.
Even the greenest buildings imaginable induce travel demand, so owners, property managers, and developers of the built environment have both a strong interest in, and an opportunity for, accelerating the transition to zero-carbon mobility.
The U.S. Green Building Council’s (USGBC) suite of sustainability certification tools offers a playbook for those owners, managers, and developers to leverage their buildings to support the adoption of smarter mobility solutions.
LEED (Leadership in Energy and Environmental Design), the most widely used green building rating system across the globe, recognizes that green buildings are located, designed, and operated to maximize people’s access to active, public, shared, and electric transportation. Alongside tools for microgrids (PEER), parking structures (Parksmart), and existing building assets (Arc performance platform), USGBC and Green Building Certification Inc. (GBCI) programs offer a variety of ways to reduce transportation-related carbon emissions.
Local and regional land use planning is inextricably linked with travel demand and emissions. Communities that coordinate land use and transportation planning by prioritizing walkable and transit-oriented development can enable a more healthy and equitable transportation system that improves convenience and reduces vehicle miles traveled (VMT).
It’s not just about bikes anymore. Micromobility, especially e-bikes, are increasing the appeal of active travel to new users. Green buildings are designed for multimodal access, encouraging occupants who choose to walk, bike, or use micromobility.
EV sales in the U.S. is expected to grow tenfold by 2030, and all of those cars and trucks will need spaces to plug in. As adoption accelerates, equitable distribution of EV charging infrastructure is an important consideration. Meanwhile, a looming charging infrastructure gap could pose a significant obstacle for the EV transition.
Siting charging stations in workplace, retail, and multi-unit residential buildings is a critical part of meeting future charging demand. EV ready building codes are helping to “future proof” new commercial and residential buildings – installing EV charging infrastructure during new construction is up to 75% less expensive than retrofitting an existing building. Networked charging stations enable intelligent load sharing and energy management, further reducing infrastructure costs for developers, owners, and local jurisdictions.
The global transition to clean transportation and EVs will be complex and highly dependent on decarbonization of electricity generation. Fortunately, the International Energy Agency (IEA) recently published a policy guide for Grid Integration of Electric Vehicles that provides a framework for maximizing managed charging. As noted above, commercial buildings and parking structures are ideal for siting smart, networked charging stations. Additional passive (time-of-use signals) and active measures (demand response, load shifting, bidirectional charging) are key strategies for grid integration.
Travel induced by the built environment are a challenging source of Scope 3 GHG emissions to manage. Programs and tools, like Arc, assess the building performance, helping owners and managers of existing building assets measure, inventory, and reduce emissions through investments in sustainable transportation infrastructure and TDM.
The road to net-zero emissions is a long one that requires more than installing EV charging stations. It will require investments in our infrastructure and reimagining the way we build our communities to ensure convenient, healthy, and carbon-free mobility.
U.S. Green Building Council’s Kurt Steiner is a Transportation Planner/LEED Specialist and Paul Wessel is Director of Market Development, https://www.usgbc.org/.
There I was, doing my best to pilot a car around a test track in Sweden without the aid of a steering wheel. My job in this 1992 exercise: Negotiate the twists and turns ahead in an experimental Saab 9000 equipped with a steer-by-wire system and an aircraft-like sidestick controller, similar in concept to that used in Saab fighter jets like the JAS 39 Gripen.
The first few passes around the track were focused and intense, the car jinking far too actively in response to the inputs interpreted from my painstakingly measured efforts with the controller. I was clearly on unfamiliar ground here, quite literally and figuratively since this was my first time on this Swedish test track. But I was determined to get this right, and eventually I did, gaining a sense of the steering and confidently working the stick to turn into a curve, find the apex, and power out smoothly. Then my right-seat observer, a Saab tech with keyboard and display screen in front of him, adjusted sensitivity settings and the car was jinking again. Ahh…part of the learning process.
Segue ahead some 30 years – quicker than Tom Cruise graduated from piloting Top Gun’s F-14 Tomcat to Top Gun: Maverick’s F/A-18E Super Hornet – and I’m in an auto-aircraft setting once again. This time I’m in the driver’s seat of an electric Lexus RZ test car equipped with advanced steer-by-wire technology, pondering the steering yoke in front of me.
Coming but not yet available, the steer-by-wire system in this Lexus was calling to me, offering an opportunity to pilot this car around a cone course where expectations were reasonably high that some of the orange pyramids ahead would be sacrificed to the cause, at least initially. But I was not about to repeat my experience with the sidestick controller those many years back, no sir. This would be different.
Unlike Tesla’s addition of yoke steering in some Model S and Model X variants, a move that has reportedly caused some driver difficulties during tight turns, Lexus has given this much more thought and a serious dose of elegant engineering. For one, Lexus doesn’t just swap out a round steering wheel for a cooler-looking yoke. In a simple swap, a yoke makes tight turns requiring hand-over-hand steering more of a challenge. However, the yoke in an RZ is not simply a swap, but rather an integral part of a sophisticated steer-by-wire system.
In its steer-by-wire system, there is no mechanical connection at all between the yoke and the car’s rack and pinion steering. It’s all wiring and software backed up by triple redundancies. Software interprets steering input at the yoke and delivers this information to a motor controlling the pinion gear, steering the wheels. What’s important is that the system is speed sensitive and smart, providing a continuously variable steering ratio depending on driving conditions and inputs. The result is confident driving with much less steering wheel travel required than one might expect. Plus, no hand-over-hand steering needed ever, even during very tight turns. Driving this system did require dialing in to its operating nuances, but I figured this out quickly and no cones were harmed during testing.
As I wrapped up this day’s steer-by-wire mission, I reflected on yet another auto-aircraft memory from years past. Back in the 1990s when GM introduced its swoopy, teardrop-shaped EV1 electric car, the automaker shared that the car’s groundbreaking 0.19 drag coefficient was the same as an F-16 Fighting Falcon, wheels down. The aircraft reference wasn’t surprising since GM had acquired Hughes Aircraft a few years earlier and the automaker was benefiting from a huge aircraft/aerospace brain trust. PR being what it is, we’re not sure if the F-16 aerodynamics comparison was actually accurate but it sure sounded impressive, and it gave us a good point of reference as to how slippery the EV1 really was during the time.
In the ever-changing realm of advanced vehicles and their affinity for aircraft and aerospace tech, what’s next on the agenda? I’ve already experienced Tesla’s “autopilot” and other automakers’ advanced driving tech so check that off the list, until newer iterations come to the fore. I have also driven blindfolded in a test environment during the early years of autonomous driving development…but that’s a story for another time. Maybe a flying car? I think I’ll wait on that.
Perhaps the most well-known benefit of switching to an electric vehicle is the environmental impact due to the elimination of tailpipe emissions compared to an internal combustion engine (ICE) vehicle. But what isn’t as obvious is that they can also be less expensive over the operating lifecycle.
Why? For starters, we tend to focus on fuel prices, yet one thing that often gets overlooked is the reduced maintenance costs electric vehicles can offer. The U.S. Government's Office of Energy Efficiency and Renewable Energy estimates that scheduled maintenance costs for light-duty battery electric vehicles are about 6 cents per mile, compared to 10 cents per mile for a conventional vehicle. Someone buying a passenger car for private use is less likely to worry about maintenance, but for large fleet managers these cost savings can be meaningful over time.
Another costly issue for fleets is unscheduled repairs caused by breakdowns. According to the Deepview True Cost Second Owner Study by predictive analytics and data company We Predict, unplanned repair costs for electric commercial vans are on average 22 percent lower compared to internal combustion engine equivalents after three years on the road. The reason for this is that electric vehicles have fewer mechanical parts than internal combustion engine vehicles. This is significant because reductions in repairs also mean more time on the road for busy delivery fleets. In a world where downtime is death for fleets, keeping vehicles on the road is critical to meeting the ever-increasing demand for last-mile deliveries.
Meanwhile, in March 2022, CNBC reported that diesel fuel was already costing over $5 (USD) per gallon nationally, with gasoline hitting $6 (USD) in some parts of the country. So there can be important fuel cost savings to be made for fleets that switch to electric vans. In fact, BrightDrop estimates fleet owners will save over $10,000 (USD) per vehicle per year in fuel and maintenance when switching to one of our Zevo 600 electric vans, compared to its diesel equivalent. Let’s take a closer look.
Why do we expect electric vehicles will need less maintenance? Moving parts are a big part of it, because it’s the moving parts that most often encounter problems. Standard internal combustion engine vehicles usually have over 2,000 moving parts in the drivetrain, while electric vehicles tend only to have about 20. For example, a battery electric vehicle has no timing or fan belt and no alternator. Additionally, an electric vehicle also lacks many of the complex non-moving parts that often fail in internal combustion engines, such as oxygen sensors, spark plugs, and catalytic converters. A 2020 CarMD Vehicle Health Index assessment of the top 10 most popular car repairs in America found replacing a catalytic converter was the most common, while replacing an oxygen sensor came second. According to Forbes, only one of these top ten repairs could ever happen to an electric vehicle (and it was the cheapest to fix at $15). The lack of moving parts also means that repairs on electric vehicles can be less complicated.
Additionally, electric vehicles usually don’t use transmissions, meaning that the common (and expensive) issue of damage to gears is not an issue. Many electric vehicles also use regenerative braking to repurpose expended energy back into the batteries. In addition to electricity savings, regenerative braking can also increase the life (and therefore reduce spending on replacing) of conventional brake parts, due to minimal use. Finally, electric vehicles don’t use engine oil and, although they do use engine lubricants, these rarely require a refill or change.
Electric vehicles can be cheaper to maintain and repair than their ICE or diesel alternatives. They also can be kept on the road longer by reducing the frequency of unplanned repairs, as well as reducing the amount of labor that would otherwise be spent dealing with these problems. All of these benefits take time to accrue. They can only be realized if fleet managers take a ‘total cost of ownership’ perspective that considers all costs over the lifetime of a fleet.
Perhaps the biggest concern that electric vehicle buyers have is that the battery will degrade over time, ultimately requiring an expensive replacement. We believe that such concerns can be overhyped or misplaced. Battery range has improved markedly in recent years, and all BrightDrop vehicles adhere to or exceed federal regulations, which require that electric vehicle batteries are covered by warranty for a minimum of eight years or 100,000 miles, whichever comes first.
Now is the time to switch fleets to electric vans. It's an opportunity not only to help reduce vehicle emissions, but also to help realize potential cost savings.
Steve Hornyak is Chief Commercial Officer and Executive Director at BrightDrop
If we view the automobile’s history of environmental improvement in modern times – say, from the 1990s to present day – there is an important perspective to be gained. It has never been just about electric vehicles. That’s simply where we’ve ended up at present due to an intriguing alignment of influences and agendas, from technology advances and environmental imperatives to gas prices and political will.
Over the years, auto manufacturers and their suppliers, technology companies, energy interests, and innovators of all stripes have been hard at work striving to define mobility’s future. Fuels in their crosshairs have included ethanol, methanol, hydrogen, natural gas, propane autogas, biofuels, synthetic fuels, and of course electricity. Lest we forget, cleaner-burning gasoline and diesel have been part of the evolution as well.
As a nation, we have always approached this challenge with an open mind and a determination to explore what’s possible, and what makes sense. Rather than declaring a winner, for decades the approach has been to keep our options open as we define the best road ahead for environmental progress. Now, by government fiat and funding, battery electric cars have essentially been declared the winner.
This is troubling. As a die-hard auto enthusiast and auto writer my entire adult life – and a member/supporter of the Sierra Club for decades – I have developed some strong and well-grounded perspectives on cars, their environmental impact, and the future of mobility. My advocacy for electric cars is genuine and well-documented over the 30 years I have been publishing Green Car Journal, and before that through my writing as feature editor at Motor Trend. Honestly, it’s hard not to be a fan of EVs after a year of test driving GM’s EV1 and then spending many tens of thousands of miles behind the wheel of other battery electric cars over the years. Yet, I now sit back and wonder at the ways things seem to be unfolding.
As expected, electric vehicles took a high profile at the increasingly important CES show in Las Vegas and this attention will certainly continue at upcoming auto shows. News of innovations, strategic alliances, and all-new electric models proliferate today, showing how dynamic this field has become and underscoring the nonstop media attention that EVs enjoy. But progress does not mean electric vehicles should be our singular focus.
There are significant risks with an all-in electric car strategy. Not the least of these is that by deemphasizing the importance of petroleum and the potential use of other alternative fuels in the near-term – crucial components in fueling the national fleet as we appear to be heading toward an electrified future – we risk the stability of our economy and our national security.
Yes, sales of electric vehicles have surged in the midst of extraordinarily high gas prices and heightened concern about climate change. However, history shows us that gas prices spike, drop, and then remain at levels that find drivers once again becoming complacent. This predictable script should provide incentive to make smart moves like diversifying our energy sources as we build the necessary infrastructure for an increasingly electrified world, rather than bet it all on EVs. So many of the elements for the EV’s success remain unclear or continue to pose significant challenges.
If interest in electric vehicles is decoupled from high gas prices and surging because of the urgent need to mitigate carbon emissions, then we will see electric vehicle sales continue to rise, perhaps dramatically. But if increased interest and sales is largely tied to the high cost of gas, then a lot of regulators, environmental interests, and EV-leaning consumers – plus of course automakers that have gone all-in with electrics – are set for a serious reckoning.
All this isn’t to diminish the importance of electric vehicles. Rather, it’s a call to be mindful of the challenges ahead and look at the bigger picture. We should encourage electric vehicles – whether powered exclusively by batteries, a combination of internal combustion and battery power, or perhaps hydrogen – in every reasonable way possible. In particular, hybrids and plug-in hybrids must play an increasingly larger role in the years ahead. We have come a long way over the past 30 years, and we have a long road ahead in the effort to decarbonize transportation and mitigate its impact on climate change. We need to keep at it, aggressively, and we need to prepare.
Let’s just not make assumptions that all will go according to plan. California’s decision to ban the sale of gasoline cars by 2035, in particular, will certainly find unexpected obstacles on the way to that aspirational milestone. It happened before with California’s Zero Emission Vehicle mandate more than two decades ago, which failed to realize its goal of 10 percent electric vehicle sales by 2001. Beyond California, similar hurdles will exist in other ‘green’ states like Oregon, Washington, and Vermont that have now adopted California’s 2035 gasoline vehicle sales ban, along with other ‘green’ states that will surely follow California’s lead.
There’s a lot going right for electric vehicles today. But there’s also a wide array of continuing challenges that face EV proliferation. These range from persistently expensive batteries, high vehicle prices, and sold out EV production runs to shortages of essential materials, a nascent nationwide charging infrastructure, and a national grid woefully unprepared to reliably charge tens of millions of electric cars. Then there’s the question of whether consumer EV purchases will continue to accelerate or weaken in tandem with lower gas prices.
It’s one thing to devise ambitious goals and quite another to make them law, especially when so many assumptions are in play. Given all this, is a wholesale shift to electric cars and a ban on the sale of gasoline vehicles even possible just a dozen years from now? As a long-time automotive analyst and EV enthusiast, I have serious doubts.
Manufactured in Tennessee on Volkswagen’s MEB modular world electric car platform, the 2021 VW ID.4 presents a new and compelling all-electric SUV that enters a segment presently dominated by Tesla, Chevrolet, and a select few others. What ID.4 brings to the battery electric SUV segment that Tesla doesn’t is price, coming in at a base cost of $39,995, some $10,000 less than Tesla’s Model Y.
For this, electric vehicle buyers get SUV hatchback utility, three-foot legroom in all seating positions, and ample luggage capacity for 5 adults. VW estimates ID.4 driving range at 250 mile on a full charge, and additionally points out that an additional 60 miles of range is attainable in just 10 minutes from a public DC quick-charge station.
Sporting a stature similar to that of Honda’s CR-V, the Volkswagen ID.4 rides on a steel-framed architecture featuring strut-like front suspension and multi-link suspension with coil-over shocks at the rear. This, combined with a long wheelbase and short overhangs, promises a smooth ride dynamic. Braking is handled by front disk and rear drum brakes.
A single permanent magnet, synchronous electric motor directs power to the rear wheels. The ID.4 produces 201 horsepower and 228 lb-ft torque that’s expected to deliver a 60 mph sprint in about 8 seconds. Electricity to power the motor is provided by an air-cooled, frame-integrated 82 KWh lithium-ion modular cell battery. An onboard 11KW charger enables three charge modes via standard 110-volt household power, 220-volt Level 2 charging, or DC fast charging. Typical charging with a home wall charger or public Level 2 charger will bring a full charge in 6 to 7 hours.
A minimalistic yet futuresque cabin with segment leading cabin volume rounds out ID.4’s architecture. Features include a driver-centric, touch sensitive steering wheel and a view-forward 5.3-inch ID information center that replaces conventional gauges. Vehicle operation is through steering wheel-mounted switches, with infotainment, climate control, device connectivity, navigation, and travel information accessed through a 10.3 inch touchscreen monitor. A 12 inch monitor is available with the model’s Statement Package.
Topping the list of features is expanded voice command and a communicative dash-integrated ID light bar. ‘Intuitive Start’ driver key fob recognition enables pre-start cabin conditioning capability. Base model upholstery is ballistic cloth with leatherette seat surfaces optional.
Volkswagen’s IQ Drive driver assist and active safety suite features travel assist, lane assist, adaptive cruise control, front and rear sensors, emergency assist, blinds spot monitoring, rear traffic watch and more. All this comes standard along with Pro Navigation, a heated steering wheel and front seats, wireless phone charging, and app connectivity for compatible devices.
The ID.4 EV is available in six colors and two trim levels, Gradient and Statement, for personalization. The optional Gradient package features a black roof, silver roof trim, silver accents, and silver roof rails along with 20-inch wheels to complete the upscale look. Looking forward, while rear-wheel drive is the choice today, Volkswagen is already talking up an all-wheel drive variant for early 2021 along with a lower-priced base model.
As the world’s largest automotive group, Volkswagen has the capacity to change the ever-expanding electric-car landscape. Looking at the style and utility of VW’s all-new ID.4, you can sense the renewed “people’s car” direction of the brand that accompanies the automaker’s commitment to electrification. VW says it’s aiming at selling 20 million electric cars based on the MEB electric car platform by model year 2029. Certainly, the potential for selling in truly significant numbers is reinforced by ID.4 pre-orders selling-out in just weeks, it’s safe to say.