Green Car Journal logo
Michael Berube, Deputy Assistant Secretary for Transportation for DOE’s Office of Energy Efficiency and Renewable Energy.
Michael Berube, U.S. Department of Energy

In the three decades the U.S. Department of Energy has sponsored Advanced Vehicle Technology Competitions (AVTC) more than 27,000 students have participated. The vehicles have looked quite different over the years – from methanol-powered Chevrolet Corsicas in 1988 to hydrogen-powered Ford Explorers in the early 2000s, and performance hybrid-electric Camaros just a few years back. Every transformative stage of technology drives the need to attract new talent to the field, including engineers who fully understand the emerging fields of automotive engineering.

Argonne National Laboratory (ANL) has managed DOE’s AVTC program in partnership with the auto industry for more than 34 years. The program has evolved alongside the global auto industry, adding complexities and nuances to prepare the next generation of leaders to enter the workforce. DOE and ANL recently announced the latest AVTC, along with our partners General Motors and MathWorks, the EcoCAR Electric Vehicle (EV) Challenge starting in fall 2022.

The EcoCAR EV Challenge will build upon the program’s rich history to provide a hands-on educational experience that is empowering students to address the toughest mobility challenges facing our nation. The EV Challenge reflects the changing vehicle market. We need more EVs to overcome the climate crises we face. Transportation makes up the largest share of emissions in the U.S., and over half of those emissions come from passenger vehicles. EVs give us the means to eliminate those emissions. Last year, President Biden set a national goal of getting zero-emissions vehicles to make up half of new car and truck sales by 2030. These budding energy leaders are heeding the call. This challenge will help us build a diverse clean mobility workforce around this soon-to-skyrocket EV market.

Creating an Electric Future

Cadillac LYRIQ luxury electric crossover.

The competition will challenge students to engineer a next-generation battery electric vehicle  that deploys connected and automated vehicle (CAV) features to implement energy efficient and customer-pleasing features, while meeting the decarbonization needs of the automotive industry. General Motors will donate a 2023 Cadillac LYRIQ to each team, challenging them to design, build, refine, and demonstrate the potential of their advanced propulsion systems and CAV technologies over four competition years. Teams will be tasked with complex, real-world technical challenges including enhancing the propulsion system of their LYRIQ to optimize energy efficiency while maintaining consumer expectations for performance and driving experience. As students work on the LYRIQ, they are developing real-world knowledge and skills that will help accelerate the transformation of the auto industry.

More than $6 million from the competition sponsors will be provided to the 15 competing universities, including five Minority Serving Institutions, for students to pursue advanced mobility research and experiential learning. This investment supports the recruitment and retention of underrepresented minority students and faculty to help build an EV talent pipeline that reflects the diversity of America and makes room for more domestic manufacturing to strengthen our energy independence.

15 Universities Participating

EcoCAR Challenge team viewing vehicle undercarriage as they help create an electric future.

Teams will be challenged to identify and address specific equity and electrification issues in mobility through the application of innovative hardware and software solutions, conduct outreach to underserved communities and underrepresented youth to increase awareness about advanced mobility, and recruit underrepresented minorities into STEM fields.

At DOE, we are excited to see what these teams will accomplish in supporting the country’s transition to clean energy and electric vehicles. I encourage you to learn more about the 15 North American universities selected to join the EcoCAR EV Challenge by visiting ecocarevchallenge.org or discovering more about the rich history of AVTCs at avtcseries.org.

Michael Berube is the Deputy Assistant Secretary for Transportation for DOE’s Office of Energy Efficiency and Renewable Energy.

EcoCAR Challenge launch event.

Donnell Rehagen, CEO of Clean Fuels Alliance America
Donnell Rehagen, CEO of Clean Fuels Alliance America

A few years ago, my wife Shelly and I visited Greece. It filled me with wonder to think about how challenging life must have been, and yet the ancient Greeks built massive architectural structures without the modern tools and machines we have today.

When I think about the last 30 years of the biodiesel industry, I am reminded of the Greek God, Sisyphus. In Greek mythology, he pushed a giant boulder uphill for eternity. I’d say our industry, like other alternative fuels, has felt that way a number of times.

However, I’d say fuels like biodiesel, renewable diesel, and sustainable aviation fuel are better represented by Athena. She was known to represent wisdom and the virtues of justice, skill, and victory. We have never let the challenges overtake our spirits. Instead, we have held our heads high and strategized our next moves. At last, we’re reaching a point we had long dreamed of – perhaps even beyond what we initially envisioned. The tables have turned. Our fuels are in demand to help people meet their goals and help America reach a low-carbon future. We’re here and we’re making an impact now – not waiting until decades into the future.

As the biodiesel industry celebrates its 30th anniversary, I am reminded that the soybean farmers, the soybean checkoff, and leaders who founded our organization had great faith, foresight, and fortitude. These humble beginnings in 1992 and the small group of leaders and visionaries who started our industry are the reason our industry, even today, seems like a family – and now a growing family! In 1992, no biodiesel had been produced commercially yet, and today, we produce 3 billion gallons a year of biodiesel and renewable diesel.

Clean Fuels Strategy

The emphasis on carbon reduction across the globe has opened new doors. Net-zero commitments from governments and corporations have raised interest in low carbon fuels like never before. We are making great strides in markets like marine, rail, and aviation that previously had been, at best, neutral to us. Likewise, when considering options to help reduce carbon dioxide and other greenhouse gas emissions from their vehicles and equipment, Original Equipment Manufacturers and fleets are also taking a much deeper look at us.

While electric solutions are still under development, clean advanced biofuels such as biodiesel and renewable diesel are readily available now for use in existing diesel engines. Most OEMs, including Ford, General Motors, Stellantis, Cummins, and many others, currently support the use of 20 percent biodiesel blends in their diesel equipment. However, forward-looking fleets from coast to coast – including several in California, Chicago, Madison, Washington D.C., and New York City – are looking to higher blends of biodiesel, even up to B100, to lower their carbon footprint even more dramatically.

Clean Fuels Alliance America logo

Our vision statement says that “biodiesel, renewable diesel, and sustainable aviation fuel will be recognized as mainstream low carbon fuel options with superior performance and emission characteristics.” There is room for all these fuels at our industry’s family table. In that spirit, the National Biodiesel Board has added another leaf.

This January, we made it official: We are now Clean Fuels Alliance America.

This new brand will transform our image and position us as a proven, innovative part of America’s clean energy mix now and in the future. In the process, we’re inspiring America’s energy and transportation leaders to discover new sources of scalable, cleaner fuels.

Biodiesel remains a foundation of our association. Our country couldn’t be having real conversations about carbon reduction targets today if it weren’t for the work of those in biodiesel.

Athena was known as ‘one who fights in front.’ As Clean Fuels Alliance America, we move to the front, proudly blazing a new path forward in clean energy.

Donnell Rehagen serves as the CEO for Clean Fuels Alliance America, biomass-based diesel’s preeminent trade association. Clean Fuels Alliance America is funded in part by the United Soybean Board and state soybean board checkoff programs.

Steve Whaley of Propane Education and Research Council
Steve Whaley, Propane Education & Research Council (PERC)

Around the nation, fleets are facing more scrutiny than ever before to reduce emissions. Headlines in recent months shout that it’s ‘now or never’ if we want any chance at slowing climate change. If we really want to make a difference on the environment, solutions need to be implemented immediately to start replacing dirty diesel and gasoline vehicles from the road as quickly as possible.

While fleet owners I talk to understand the significance of operating a clean fleet, I also continue to hear the same line, “I can’t be environmentally sustainable if I’m not financially sustainable.” Mistakenly, many fleet owners think that going green has to be an expensive endeavor. While that is true of some alternative fuel options, it’s not the reality for every energy source. Propane autogas is an affordable, clean, and available fuel that’s used by thousands of fleets around the country every day.

As we think about the larger decarbonization effort, it will take a diverse mix of clean energy sources to achieve this goal. Propane autogas’ role in the movement is to ensure energy equity by offering a low-carbon solution to medium-duty (class 3-7) fleet owners without cost-prohibitive barriers. When you factor in the cost of a new vehicle and the costs for fuel, fluids, maintenance, and repairs, propane autogas provides the lowest costs for the lifetime of the vehicle, providing a short return on investment.

Let’s consider just the cost of the fuel itself. As oil prices fluctuate, propane autogas can beat diesel on price per gallon by as much as 50 percent. In most cases, propane autogas suppliers will work with fleet owners to create a mutually beneficial fuel contract that allows fleets to lock in a set price per gallon for a period of time. This is another layer of protection against fluctuating fuel prices and is especially helpful during times of high gasoline or diesel prices like much of the country has experienced in recent weeks.

Propane's Favorable Cost

Plus, propane autogas infrastructure is also affordable. In most cases, propane suppliers will provide the infrastructure equipment to a fleet at no cost in exchange for a mutually beneficial fuel contract. The refueling infrastructure is also designed to scale and can easily adapt to the varying needs of any size fleet.

Fueling a commercial truck with propane autogas.

So, how clean is propane autogas? Today’s engines are 90 percent cleaner than mandated EPA standards, with effectively zero particulate matter emissions and 96 percent fewer NOx emissions than clean diesel engines. The latest propane autogas engine technology is classified as near-zero and has moved the fuel even closer to achieving zero emissions levels.

Low Carbon Footprint

Not to mention, a recent study by the Propane Education & Research Council found propane-powered medium-duty vehicles provide a lower lifetime carbon footprint in the majority of U.S. states when compared to medium-duty EVs that are charged using those states’ electric grid. This is due to the amount of carbon that is produced from each state’s unique energy mix for electricity generation using coal, petroleum, or other primary sources.

While EVs may have zero tailpipe emissions, emissions are generated prior to the wheels turning on the road through the electric grid and the powertrain (chiefly battery manufacturing) production. When comparing the difference in lifecycle equivalent carbon dioxide (CO2eq) emissions of a single medium-duty vehicle, propane autogas on a national average emits 125 tons of CO2eq less than an electric medium-duty vehicle.

Propane autogas fleet trucks.

The study also reviewed the lifetime carbon emissions of a medium-duty vehicle operating on renewable propane – an energy source made from a mix of waste residues and sustainably sourced materials, including agricultural waste products, cooking oil, and meat fats. It has the same chemical structure and physical properties as conventional propane, but because it’s produced from renewable, raw materials, it has an even lower carbon intensity. As the study found, renewable propane medium-duty vehicles currently provide a lower carbon footprint solution than comparable EVs in every U.S. state except Vermont.

As we think about both the immediate need to start reducing emissions today and the long-term goal of providing a better environment for the next generation, propane autogas is a critical energy source that will help to move the needle in both situations. Decarbonization will not be solved overnight. But propane’s role as a clean energy source that can help fleets conquer their financial sustainability will set us on the path to one day reach better environmental sustainability.

Steve Whaley is the director of autogas business development for the Propane Education & Research Council, Propane.com/Fleet-Vehicles

Like most everybody, I see an endless array of delivery vehicles passing by every day and at all hours. While the presence of delivery vans is not a new phenomenon, it’s one that now occurs with increasing regularity because of a preference for buying online and the need to deliver ordered goods to our homes and businesses. These expanded deliveries – largely made with what’s categorized as ‘last mile delivery’ trucks and vans – come at a time when there’s also great concern about carbon emissions, fossil fuels use, and climate change. Thus, the challenge.

The answer is emerging in real time, taking the form of electric last mile delivery vans of all types from standard vans like the electric Ford E-Transit and ELMS Urban Delivery EV, to somewhat larger electric vans like the BrightDrop EV600 and Rivian Electric Delivery Van. Each represents the leading edge of what is surely an emerging and strategically important class of electric vehicle, and they will be joined by many others in the short years ahead.

One high profile examples comes from Amazon, which is expanding its zero-emission operations through a new deal with Stellantis that will find thousands of RAM ProMaster electric vans entering its delivery fleet in 2023. This adds to the online giant’s options as Rivian ramps up to deliver the first 10,000 of the 100,000 Amazon electric delivery van order with the company this year. Other multinational delivery giants aim to decrease their carbon footprint. For instance, UPS has an agreement with Arrival, a European company with a U.S. headquarters and microfactory in North Carolina, for an initial 10,000 electric van order.

An electric Chevrolet van is coming to complement GM’s electric BrightDrop electric van offerings and Mercedes-Benz will be bringing its electric Sprinter, now available in Europe, to our shores. Other major automakers – from Nissan and Toyota to Fiat and Volkswagen – are either selling electric commercial vans in offshore markets or are preparing to do so, though plans for bringing these electric vans to the U.S. are as yet unknown.

Some companies seek early entry into important market segments long before automakers begin offering their own specialized products. Lightning eMotors is a prime example of this. The Colorado-based company, a certified Ford Quality eVehicle Modifier,  has been electrifying a variety of new medium-duty fleet models for years. including the Ford Transit full-size van. Among this company’s many fleet customers for its electric Transit delivery van is the international delivery service DHL Express. While Ford began offering its own E-Transit electric van starting with the 2022 model year, the automaker makes these available in cargo versions only. Lightning eMotors offers fleet customers both cargo and passenger versions of its electric Transit Van in a variety of configurations.

There’s more electric activity unfolding in the commercial market. Electrified light- and medium-duty vans are but one part of the solution, with many of the companies in this space, or about to enter it, also offering or planning to introduce medium-duty electric trucks to augment local and regional zero-emission package deliveries.

What’s important to note is the near-ideal fit all of these electric commercial vehicles present for delivery services, or for that matter as service vehicles for companies with large fleets like cable companies, utilities, and food delivery services, or tradesmen ranging from carpenters and plumbers to painters and electricians. For the most part, all of these vehicles are tasked with operating within a defined region or along specific routes, thus enabling seamless zero-emission operation throughout the workday.

Electric delivery vehicles represent a positive environmental statement for companies integrating them in their operations. Importantly, they are crucial to decreasing carbon emissions on a truly significant scale. Clearly, their time has come.

Andrew Fox, CEO of Charge Enterprises.
Andrew Fox is Founder, CEO, and Chairman of Charge Enterprises

The electric revolution is upon us, the Infrastructure is not.

With the recent signing of the Glasgow Declaration on Zero Emission Cars and Vans at the 2021 United Nations Climate Change Conference, multiple automakers and 33 countries are now officially working toward the goal of making all new cars and vans sold globally zero emission by 2040. ‘Zero emission’ in this case is defined as producing zero greenhouse gas emissions at the tailpipe, as accomplished by electric vehicles, for example.

While much has been reported about the ever-increasing number of EV offerings and the growing interest and demand, there are still major hurdles to mainstream adoption. One of the most pressing is the dire lack of charging infrastructure.

More Chargers Needed

Today, there are less than 2 million EVs in operation within the United States, according to some estimates, and fewer than 100,000 charging stations to service them — nearly a third of them in California. With projections for EVs in operation within the U.S. exceeding 25 million by 2030, the calculus on what it will take to keep those zero-emission vehicles running is staggering: Approximately 13 million EV stations need to be installed by 2030, which equates to 120,000 a month in the United States alone.

The trillion-dollar infrastructure bill just signed into U.S. law does include $7.5 billion earmarked for building out EV charging networks. But given the anticipated growth rate of EVs versus today’s infrastructure, it’s going to take a lot more than that. This is where companies like Charge Enterprises come in.

From on-the-go power banks to micro-mobility and EV charging stations, we design and engineer, select and source equipment, install, and coordinate software selection and if the customer requires, implement remote maintenance and monitoring services. So whether it’s a ChargePoint system or a Blink system, or a third-party charging company, what we do is the infrastructure build-out and ecosystem planning of the site location. Servicing and educating the client is critical in establishing a reliable, safe, scalable and flexible site for future demands.

Blink electric vehicle charging station.

Electric Charging Needs

We are equipment- and software-agnostic, which means that we can provide custom solutions with careful consideration of various business use cases to ensure efficient, effective, design plans that not only satisfy current needs but also account for future scalability, growth, and ever-advancing technology. Our experienced team with nationwide scale offers turnkey engineering, design, equipment and software specifications, planning, sourcing, and installation for EV charging ecosystems.

As important as EV infrastructure is, true global sustainability isn’t confined to how we fuel our mobility. That’s why our recent strategic alliance with the National Community Renaissance, one of the nation’s largest nonprofit developers of LEED certified affordable housing, is such a critical compliment to Charge’s infrastructure solutions for intelligent wireless campuses. This partnership will further align with National CORE’s dedication to providing high-performance affordable housing that integrates energy and sustainability to reduce harmful emissions, making all communities more sustainable, healthy and equitable places to live, work, and play – especially historically disadvantaged communities.

The demand for clean, sustainable charging infrastructure is building,  whether for commercial properties, fleet depots, truck/van centers, retail facilities, auto dealerships, government, or residential. Our strategy is to make it simple for everyone to switch to an EV and other electrified technology. We’re helping accelerate the transition away from fossil fuels toward a fully electric future.

Andrew Fox is Founder, CEO, and Chairman of Charge Enterprises, a portfolio of global businesses specializing in communications and electric-vehicle charging infrastructure.

GM EV1 - the first modern electric vehicle.

It seems we’re well past the tipping point for electric cars now, 25 years after GM’s groundbreaking but short-lived EV1 electric car made its way to the highway. Back then, after daily life with an EV1 during a year-long test and then watching it sadly leave on a flatbed for parts unknown, I knew well the future potential that modern electric vehicles would hold. In the decades since then, automakers have committed to huge investments in expanding their electric vehicle offerings, suppliers have stepped up with new innovations,  and consumers are now interested like never before. Plus, of course, some serious government regulation and incentives are driving the electric car field ahead in ways that only government can.

But there are challenges ahead. It isn’t enough that far better electric cars are being built today with compelling features, attractive designs, and desirable performance and range. Many other elements must fall into place for electric vehicles to become the success story we all hope will come to pass, so addressing key inhibitors of an electric feature is crucial. Let’s take a look at the top 5 reality checks that are top-of-mind.

1) It's All About the Batteries

Back in the 1990s when there was great excitement at the prospect of electric cars, there were also big questions. There was no battery front-runner, though there were many technologies and chemistries at play including advanced lead-acid, nickel cadmium, nickel-metal-hydride, sodium-sulfur, sodium-bromine, zinc-air, lithium-ion, and more. Still, choices had to be made so EV programs could move forward. Ultimately, advanced lead-acid won out for small vehicle programs and the first  generation of GM EV1s, followed by better and more energy-dense electric car batteries like nickel-metal-hydride and lithium-ion.

Today, nickel-metal-hydride and lithium-ion batteries are primarily used for hybrid, plug-in hybrid, and battery electric vehicles. Lithium-ion, or one of its cousins like lithium-polymer, is used for electric vehicles due to its greater energy density and thus longer driving range. However, lithium batteries are costly and additional challenges remain.

Of great concern are instances of thermal runaway issues and a limited number of spontaneous vehicle fires caused by lithium-ion batteries. Some Teslas have suffered from such battery fires, and GM can certainly attest to this unexpected challenge since it has been involved in a recall of all Chevy Bolt EVs made due to potential fire issues, to the tune of about $1.8 billion. Hyundai went through its own recall with the Kona EV for similar issues with its batteries.

Battery technology continues to improve and costs have gravitated downward in recent years, making the cost of building electric vehicles more reasonable, though still considerably higher than building internal combustion vehicles. Yes, there are substantial cost savings realized by owning and driving an electric vehicle. But to truly be a success, at some point there must be truly affordable electric vehicles for everyone to buy, and battery safety issues must be fully resolved.

2) Where to Charge?

The ideal location for electric vehicle charging is at home with a 220-volt Level 2 wall charger. All mainstream electric vehicles support this type of charging, plus significantly slower charging with a portable ‘convenience’ charger plugged in a standard 110-volt household outlet.

Charging up with a 220-volt wall charger is convenient and efficient, with a full charge typically coming in about 2 to 10 hours, depending on the vehicle being charged and the battery’s energy level when you plug in. Simply, if your battery shows 40 miles of range left, it will take considerably longer to fully charge than if 140 miles of range is shown. For convenience, electric vehicle owners typically plug in at home during the evening so there’s a fully-charged EV waiting for them in the morning.

EV owners living in apartments, condos, and elsewhere – including dense urban areas where there may be no garage – need other solutions. To a limited degree, this is being addressed with pay-for-use chargers in common areas or even dedicated outside chargers at assigned parking spaces. Public chargers are also being installed in increasing numbers in urban developments as part of a growing public charging network. In addition, the number of chargers provided at the workplace is seeing greater interest, allowing EV owners to energize their batteries while parked at work.

Charging away from home is becoming easier with a significant expansion of a public charging network by companies like Electrify America, ChargePoint, Blink Charging, EVgo, SemaCharge, Volta, and Tesla. Still, this is a relatively nascent effort with charging opportunities far eclipsed by the abundant and convenient opportunities to refuel gasoline vehicles. Plus, to offer the kind of charging most meaningful to drivers, public chargers must ultimately offer fast-charge capability that enables gaining an additional 80 or 100 miles of range in just 20 to 30 minutes, if an EV is fast-charge capable. This network is growing but far from adequate, especially if it’s to  keep pace with the large number of electric vehicles coming to our highways. Building out a nationwide network of fast chargers is costly since the investment for each is in the neighborhood of $100,000.

3) Focus on the Grid

Many electric vehicle enthusiasts and electric utilities are quick to point out that our existing electrical grid can adequately handle the charging needs of millions of EVs on the road. We’re not so sure. Plus, if the aspirations of EV enthusiasts come to fruition, there will be many more than just a few million EVs on the road in the future.

For years, certain areas of the country have experienced power outages as electricity demand outpaced grid capacity. Heat waves exacerbate this as air conditioning use soars, something made even worse in recent times with record-setting temperatures attributed to climate change. Given the trends pointed out by climate experts, these extraordinary heat waves are likely to increase.

To this point, the California Independent System Operator, which manages electricity delivered through California’s long-distance power lines, issued multiple Flex Alerts last summer. The Flex Alerts included a request for EV owners to charge in the morning and early daytime hours to avoid placing additional load on an already-overtaxed grid. While that request is counterintuitive to the long-held notion that charging EVs overnight is ideal since electrical demand lessens during overnight hours, it may make sense in a state like California that increasingly relies on renewable power as an important, zero-emission component of electrical generation. Simply, renewables like solar and wind-generated power wane at night.

Another challenge to a future of large-scale electric vehicle charging is the increasing frequency and scope that wildfires pose to the reliable delivery of electricity. In California, a long-time leader in encouraging electric vehicles, this could become a particularly vexing issue as the state continues to battle historic wildfires. Because downed powerlines have sparked numerous catastrophic fires here, the state’s electric utilities can – and have – preemptively initiated Public Safety Power Shutoffs that cut power to regions expected to experience high winds that could cause trees to damage electrical lines. No power, no charging.

Still, this doesn’t mean that an increasingly ‘smart’ grid can’t support large numbers of electric vehicles or that strategic, system-wide upgrades can’t be made to allow the grid to effectively deal with the challenges of wind, wildfires, and climate change. It does mean we should be aware of the potential for problems and make no assumptions, but rather plan far in advance to ensure that electric vehicle charging can be done consistently and won’t overwhelm the nation’s electrical grid in any way.

4) Understanding EVs

Electric vehicles remain a very small part of today’s new vehicle market – perhaps 3% or so and growing – for a multitude of reasons. Among these are cost, the perception that a battery electric vehicle may not fulfill a driver’s varying needs, and a general hesitation to embrace what many perceive as an unfamiliar and unproved propulsion technology. When enough of your friends and neighbors are driving electric and others see how well EVs fit their driving needs, that’s all likely to change. But we have a long way to go.

There are more people today than ever who have a decent grasp of electric cars and how they work because of the much greater exposure these vehicles have in the general media. That said, there is a greater percentage that really have no clue. That must change if electric cars are to increase market share to the degree that people want and expect. EV education must happen at all levels, and fast.

New car dealers have a unique opportunity to share knowledge of electric cars with would-be buyers, especially if a dealership is committed to the cause and there’s a knowledgeable EV specialist on hand. While a new generation of automakers aiming to exclusively sell EVs have their educational and outreach strategy down, legacy automakers largely do not. Those coming to dealerships are generally prospecting for a new car purchase or lease, now or later. They want to compare models and features, sit behind the wheel, and take a test drive.

While more electric vehicle product is being offered than in previous years, most buyers will not gravitate toward them naturally. What better opportunity than to encourage a first drive of a new electric model? The experience will be enlightening for those who have never been behind the wheel of an electric, with the seamless driving experience and unexpected performance a likely surprise. Leaving a dealership with a greater understanding of electric vehicles and how they work will return rewards, whether in the short- or long-term.

5) If You Build It, They Will Come

If you bet everything on a decision that may drive you past the point of no return, is it the right choice? That depends on the outcome, of course. It worked for Kevin Costner’s character Ray Kinsella in the film Field of Dreams, as he literally bet the farm on blind faith that forces beyond understanding would beckon folks to the baseball diamond in his Iowa cornfield. The movie was compelling and its emotional attraction undeniable. So, too, is the prospect of millions of zero-emission electric vehicles plying our nation’s highways.

We were able to relive Field of Dreams in 2021 as the Yankees and White Sox played a real-life game at a Major League Baseball stadium amid the cornfields, next to the Dyersville, Iowa diamond seen in Field of Dreams. And now we’re living with the very real prospect of an electric vehicle future, with many dedicated people, companies, and institutions focused on making it happen. Still, will that brand of faith work for electric cars?

Amid all the challenges, automakers new and old are betting their future – and possibly ours – that it will.

Robert Barrosa, Senior Director at Electrify America

As we forge ahead in 2021, consumers and businesses alike are feeling a sense of cautious optimism. While the personal, political, and professional anxieties from last year won’t go away with the flip of a calendar, we can share reasons for hope for a brighter year ahead. One of those reasons is around a renewed focus on climate action, specifically around clean transportation through electric vehicles (EVs) and the charging infrastructure to support them. This hope is giving many of us a brighter – and greener – outlook for 2021 and beyond.

It’s exciting to see a growing wave of electric vehicle offerings on the horizon, helping create more interest and demand than ever before. But while new makes and models are inspiring, the industry is reaching an inflection point. Making EVs mainstream will require much more than just the vehicles themselves. The U.S. and the world need significantly more charging infrastructure and a stronger overall charging ecosystem to drive true adoption, things my colleagues and I work toward every day.

Let’s think about existing infrastructure as a starting point. Currently, there are well over a million individual gas pumps across the United States, and almost everybody is familiar with how they operate. For reference, there are less than 100,000 individual public chargers, and most Americans don’t know how to use them. The collective ‘we’ have some work cut out for us.

For EVs to really take off, consumers need to start seeing charging stations much more frequently than they do today. And the charging experience needs to take minutes, not hours. That’s why Electrify America is building the nation’s largest open, ultra-fast DC fast charging network, with chargers capable of up to 350 kW. We’re investing heavily to ensure the EVs of today and of the future will be able to charge faster than ever imagined. By the end of 2021, we expect to install or have under development approximately 800 total charging stations with about 3,500 DC fast chargers, including along two cross-country routes.

One of the many benefits of EVs is the ability to offer drivers multiple options when it comes to powering up. Charging is still a new experience for most, so emphasizing this point has been meaningful in our ongoing EV education and awareness efforts. Offering seamless solutions for home and workplace charging, in addition to continued focus on public ultra-fast charging, is helping to build confidence for any driver or fleet operator interested in making the switch to electric transportation.

As enthusiastic as we are about our progress, we know we can’t create the infrastructure and EV ecosystem needed to ignite this revolution alone. We need industry partners, automakers, utilities, businesses, and government to all come together to accelerate our charging capabilities to help spur future EV adoption – and we’re working with many groups to make that happen. A lack of collaboration can crush this movement, which remains in a hopeful, yet fragile place. More investment and partnerships across the board are what will keep the momentum going to adequately handle a growing number of EVs. That’s why we believe continued investment in charging will drive EV adoption, and that all stakeholders should be fully supporting all charging industry growth.

While lack of public charging remains a main deterrent for EV purchase consideration – an issue we are working hard to address – the true beauty of EVs is that between home, public, and workplace charging options, drivers will actually have more opportunities to power their vehicles than gas-powered cars. And that’s a future worth celebrating.

Dr. Gill Pratt, Chief Scientist, Toyota Motor Corp.

As Chief Scientist for Toyota Motor Corporation, one of my most important responsibilities is to think about how to address climate change using science, data, and facts. When it comes to electrification, my role is to maximize environmental benefits with the limited number of battery cells the world can produce.

Toyota’s way of thinking about this question is strongly influenced by the Toyota Production System (TPS). It forms the basis for how we conserve resources and eliminate waste to maximize the quality, durability, reliability, and value of our products. Based on TPS, we believe that maximum net environmental benefit can be achieved by considering the most limited resource – in this case the battery cell.

Every battery cell is an investment of environmental and financial resources. Carbon is emitted for every battery cell produced. Once built, every battery cell has the potential to produce more benefit than what was invested, or what we call a positive Carbon Return on Investment (CROI). But that CROI is not guaranteed. The result depends on how the battery cell is put to use. The physics of climate change (which accumulates carbon in the atmosphere for decades) and limited battery cell production suggests that we minimize total carbon emissions from all of the world’s vehicles by maximizing the CROI of every manufactured battery cell.

Let’s consider the average U.S. commute of 32 miles roundtrip each day. In this case, a 300 mile range battery will yield a very low CROI. The reason is that the vehicle carries excessive battery capacity and excessive weight that is rarely needed or used. The bulk of the energy stored in the battery cell (and the battery cell’s weight) will be carried around most of the time for no purpose, consuming extra energy for its transport, and wasting the opportunity to use that energy for more benefit to the environment. In TPS terms, we consider this to be a waste of transport and inventory. Put another way, that same battery capacity could be spread over a handful of plug-in hybrid vehicles (PHEVs), each of which would utilize most, if not all, of the battery capacity while rarely using its internal combustion engine (ICE). In this case, the overall CROI is higher for the same number of battery cells.

As another example: If a battery cell in a battery electric vehicle (BEV) is recharged by a high-carbon intensity powerplant, the CROI of that cell will be small compared to one recharged by a renewable energy powerplant. So in this case, consider a situation of two cars – one ICE-type and one BEV, and two geographic locations – one with renewable power and the other with high-carbon intensity power. More net CROI will be derived by operating the BEV in the area with renewable power and the ICE in the geography with non-renewable power than the other way around.

Finally, if a battery cell ends up in a long-range BEV whose price puts it beyond the budget of a consumer, or in a street parked vehicle that must use high-rate chargers that lower the battery cell’s life, the CROI will again be smaller than what is possible, versus placing the battery cell into, for example, a PHEV.

BEVs are an important part of the future of electrification. But we can achieve greater carbon reductions by meeting customer needs and circumstances with a diversity of solutions. Wasted CROI harms the environment because there is a limited supply of battery cells, and the cost of production to the planet and to the producer is not zero. Given this fact, how and where battery cells are actually used and charged are critically important.

In summary, given limited battery cell production and significant environmental and financial costs, the way to maximize CROI is to target battery cells into diverse vehicle types – hybrid vehicles, plug-in hybrid vehicles, battery electric vehicles, and fuel cell vehicles that match customer needs and circumstances, and maximize the CROI for every battery cell. This strategy is similar to running a factory efficiently in the Toyota Production System, where efficiency is maximized by eliminating waste at each stage of production and maximizing the benefit derived from every resource and cost. And it forms the basis for Toyota’s belief in this result.

Here’s the thing about plug-in hybrid electric vehicles (PHEVs): You get the benefits of a battery electric vehicle for driving a certain number of zero-emission miles, with the versatility of a gas-electric hybrid without range limitations. There’s no secret to it, and it’s that simple. But PHEV ownership does take some thought, and some effort.

The thought part is straightforward. If you’re in the market for a PHEV and your intent is to drive electric as much as possible, then part of the decision making is choosing a new plug-in hybrid model offering a battery electric range that fits your driving patterns. Some plug-in hybrids offer battery electric range as low as 14 to 19 miles, with a great many featuring electric range in the low to high 20s. Some raise that number up to 42 or 48 miles of battery electric driving, like the Toyota Prius Prime and Honda Clarity PHEV, before requiring a charge or the addition of  combustion power. Many families find the electric range of Chrysler’s Pacifica Hybrid to be entirely workable at 32 miles, with its total 520 miles of driving range reassuring for any driving need.

The effort in owning a PHEV is that you need to install a 240-volt home wall charger and commit to using it to gain maximum benefit. Really, that’s no different than an all-electric vehicle, with the exception that an electric vehicle must be charged to function, while a PHEV will continue operating with the aid of combustion power once batteries are depleted. Both can be charged with a 120-volt convenience charger plugged into a standard household outlet, but that’s rarely a good option since the charging time at 120 volts is so long, while charging at 240 volts is comparatively short. The goal in achieving maximum benefit, of course, is to keep a PHEV charged in any event so you’re operating on battery power whenever possible.

What range do you really need? If your daily driving or commute is about 20 miles – as is the case for so many – then choose a PHEV with a battery electric range offering that capability, or more. Drivers with longer average daily drives should choose a PHEV with greater all-electric range. If you charge every night and wake up with a fully-charged battery ready for your day’s regular activities, you’ll likely find trips to the gas station unnecessary until longer drives are needed. In those cases, there’s nothing to think about because the transition from battery to combustion power happens seamlessly behind the scenes, with no driver action required. Yes, you’ll want to keep gas in the tank for those eventualities, but if your daily use fits within your rated electric range then fill-ups will be infrequent.

From my perspective, the ability to drive electric most of the time with the ability to motor on for hundreds of additional miles without thought is a win-win. I’ve been doing this for years with a variety of PHEV test cars, and more than a year-and-a-half now over 30,000 miles in a Mitsubishi Outlander PHEV. As much as possible, my driving is electric with zero localized emissions, as long as I’m consistent about plugging in at night and my charger isn’t required for another test car. I’m driven to do that not only because driving with zero emissions is the right thing to do, but also because electricity offers a cheaper cost-per-mile driving experience. If you’re on a utility’s electric vehicle rate plan and charge at off-peak hours, there’s even more money to be saved. And let’s not forget the blissful and effortless convenience of charging at home, right?

Any claim that PHEVs won’t deliver their desired environmental benefit is based on assumptions that drivers won’t plug in. That isn’t likely, given that PHEV drivers have paid, sometimes significantly, for the privilege of having a plug-in capability. The notion may have its roots in an unrelated alternative fuel story years ago, when we witnessed the phenomena of motorists driving flexible-fuel E85 ethanol/gasoline vehicles without ever fueling up with E85 alternative fuel. That occurred because of a loophole that allowed automakers to gain significant fuel economy credits by offering flexible-fuel vehicles without any consideration whether drivers would ever fuel up with E85 ethanol. Those vehicles were sold at no premium by the millions, with most drivers unaware their vehicle had an alternative fuel capability or whether E85 fueling stations were nearby.

But this is different. While you have the option to use public charging stations, and that’s a nice benefit enjoyed by many EV and PHEV owners, if you do this right there will be a plug in your garage that requires no effort at all to keep your PHEV charged up. Consider, too, that if a buyer spends the extra money for the plug-in hybrid variant of a popular model, there’s clearly an incentive to plug in most of the time to make the most of one’s PHEV investment.

PHEVs will be with us a long while because they are a sensible solution for many who wish to drive electric, and when used as intended they represent a logical pathway for the all-electric future many envision. There’s no doubt that the increasing number of plug-in hybrids coming now, and in the years ahead, will aim at greater electric driving range than the models that came before them. More choices and greater range will provide an even more compelling reason to step up to a plug-in hybrid for the daily drive.

Since the launch of Green Car Journal in 1992, it’s been clear to me that environmental compatibility isn’t just a passing phase. Today, the most forceful drivers of change are the need to mitigate carbon emissions and reduce mankind’s potential impacts on our global climate. But long before that, there were other imperatives already prompting a rethinking of mobility and how it was affecting our collective lives.

Urban areas were often choked with smog, the result of far too many vehicles on the road,  with levels of tailpipe emissions that would be unthinkable today. Major cities across the country were in non-compliance with air quality standards. Smog alerts recommending limited outdoor activity were an unfortunate and regular occurrence in major cities and regions. I lived this growing up in the greater metropolitan L.A. area, as the smog from Los Angeles migrated some 50 miles eastward and stopped at the San Gabriel Mountains two miles from my home, causing the mountain range to magically disappear in the haze every summer.

Still, there were bright spots amid the haze. California launched its Low Emission Vehicle Program in 1990, mandating cleaner vehicles in the years ahead. Part of this landmark program was the Zero Emission Vehicle Mandate that helped accelerate electric vehicle research and development, and ultimately drove auto manufacturers to get serious about vehicle electrification.

An important part of Green Car Journal’s mission over the years has been to explain the benefits and characteristics of ‘green’ cars of all types, regardless of their approach to better environmental impact. In the end, the goal has always been to present an overview of the directions, technologies, and fuels being explored, dive down into specifics, and enable readers to make up their own minds on what’s important based on what they learn.  

A complementary part of this has been the Green Car Awards, starting with the magazine’s annual Green Car of the Year® award first presented at the L.A. Auto Show in 2005. Green Car Journal editors conduct significant research every year to review the universe of new models to consider as the ‘best-of-the-best’ that exhibit commendable environment performance. Through an extensive vetting process, the field is narrowed down to five finalists for each award category. The goal has remained the same since that first award program in 2005 – recognize vehicles that significantly raise the bar in environmental performance and exhibit environmental leadership.

When it comes to positive change, leadership is important. A new direction acknowledging the automobile’s impact on our environment is important. New and better choices that speak to our future are important. These are among the compelling reasons why the Green Car Awards exist.

In the early years of the Green Car Awards, there were relatively few truly worthy vehicles to be considered. But change, though slow, has been ongoing. Now our cities and streets benefit from an ever-growing number of vastly more efficient, lower emission, and environmentally positive vehicle choices powered by advanced or electrified powerplants. Today, ‘green’ cars have come into their own through design, innovation, and consumer desire. That last part is crucial. Auto manufacturers have done a good job of bringing an increasing number of advanced and electrified vehicles to market. They have invested heavily, even subsidizing some models’ real cost along the way, to make them approachable to buyers.  But a serious and sustained desire for these vehicles had been lacking…until now.

Thankfully, the tipping point for ‘green’ cars is now behind us. While not all new car buyers are in the market for a high efficiency, hybrid, plug-in hybrid, or electric vehicle, the numbers are no longer small, and they’re growing significantly. Interest and demand are up. Consumers are eager to know more and they want to understand which vehicles, and manufacturers, are leading the field. And we’re proud that our annual Green Car Awards help deliver this critical information.

It’s no surprise that the move toward electrics is also being driven by growing consumer interest in vehicles that address the challenges of greenhouse gas emissions and climate change. Those who don’t see this this transition aren’t paying attention. However, taking this as a sign that the imminent end of the internal combustion vehicle is upon us assumes too much. The numbers and trends do not bear this out.

While our focus here is on all ‘greener’ vehicles offering lower emissions, higher efficiency, and greater environmental performance, we give significant focus to electrification on GreenCarJournal.com because, to a large degree, this represents our driving future. There are many electrified vehicles now on the market that have met with notable success, particularly gasoline-electric hybrids. In fact, hybrids have become so mainstream after 20 years that most people don’t look at them differently. They simply embrace these vehicles as a normal part of their daily lives, enjoying a familiar driving experience as their hybrids deliver higher fuel efficiency and fewer carbon emissions.

Less transparent are electric vehicles of all types because they have a plug, something that’s not familiar to most drivers. This includes plug-in hybrids that really are seamless since they offer both electric and internal combustion drive. The challenge is especially pronounced for all-electric vehicles that drive exclusively on batteries.

A recent survey of consumers and industry experts by JD Power underscores this. Even as the overall survey indicated most respondents had neutral confidence in battery electric vehicles, many said their prospect for buying an electric vehicle was low. They also had concerns about the reliability of battery electric vehicles compared to conventionally powered models. Clearly, there’s work to be done in educating people about electric vehicles, and it will take time.

Overall, automakers do a good job of providing media with the latest information on their electrification efforts, new electric models, and electrified vehicles under development. That’s why you’ll read so much about electric vehicles in mainstream media and learn about them on the news.

What’s less evident is that consumers truly learn what they need to know about plug-in vehicles at new car showrooms. Car dealerships are critical even in an era where online car buying is starting to gain traction. Showrooms are still where the vast majority of new car buyers shop for their next car, and the influence salespeople have on a consumer’s purchase decision is huge.

The JD Power study illustrates consumers’ lack of understanding about the reliability of electric vehicles…even though reliability is a given since electrics have far fewer moving parts to wear and break than conventional vehicles. Dealer showrooms can help resolve this lack of understanding with readily-available materials about electric car ownership, a sales force willing to present ‘green’ options to conventional vehicles, plus adequate stock of electrified vehicles – hybrid, plug-in hybrid, and battery electric – to test drive.

Sales trends tell us that conventional internal combustion vehicles will represent the majority of new car sales for quite some time. More efficient electrified vehicles will continue to make inroads, but not at the pace many would like, even at a time when greater numbers of electric models are coming to market. In the absence of forward-thinking dealerships willing to invest in change, an enthusiastic sales force eager to share the benefits of electrics, and auto manufacturers willing to incentivize dealers to sell electric, this promises to be a long road. It’s time to change this dynamic.

First thing: Have you driven an electric car? If you’ve lived with one for a time, then you likely have some solid ideas of your EV’s best features. Those who have just done a few test drives or haven’t driven electric at all could use some illumination. So here you go.

1. Hey, speed racer! Most electric cars boast pretty impressive acceleration from a stop. Unlike an internal combustion engine, electric motors generate 100 percent of their torque right out of the gate, which means your launch from standing still can be much more aggressive than you would imagine. We’re not saying you should do this as a matter of course…just that it’s kinda fun to know that capability exists.

2. Charging is way cool. Really. There’s nothing like parking your car for the night, plugging in, and starting the next day with a full ‘tank’ of energy on board. Just imagine life without the need to stop at a gas station. If you’re able to sign up for an electric vehicle rate plan from your electric utility, then set your charging to take place at non-peak hours overnight. You’ll have a full charge in the morning at the least possible cost. Plus, an ever-expanding network of public chargers is available for charging away from home, and while many now require a fee, a great many still provide energy for free. So, benefit from the kindness of strangers.

3. Electric vehicles are quiet, so enjoy your solitude. In the early days of EV development during the 1990s, there were unexpected noises to contend with like gear whine, high frequency noise from motor controllers, and such mundane things as the sound of tires contacting pavement and wind rushing past the windshield. Really. The familiar sound of internal combustion that normally masks the everyday sounds of motoring was notably absent. Over the years electrics have been engineered with better and quieter controllers, additional soundproofing, and other engineering measures to create the quiet EVs we have today. Experience the Zen.

4. EVs are extraordinarily efficient so you’ll be saving money every mile you drive, compared to driving on gas. The exact amount varies since gasoline and electricity costs differ by state, region, and city. A recent analysis by the Department of Energy indicated the national average for a gallon of gas was $2.74 compared to $1.21 for an ‘eGallon.’ DOE’s calculations factor the cost of fueling with gas compared to a similar vehicle that runs on electricity. The difference is even more dramatic in California, where I recently fueled up with standard grade gas at $4.59 per gallon. I was glad to get behind the wheel of an electric at the earliest possible opportunity.

5. Driving electric is like being in an immersive game. You have an extraordinary level of influence over your car’s efficiency with instrumentation providing continuous feedback on your driving and how this is affecting range. That’s not as critical in an EV with a 250-mile range capability as it is in one that can go only 90 miles on a charge, but that doesn’t matter. You’ll find yourself intrigued by your car’s instant feedback on energy usage, battery status, and distance-to-empty. There will be times when you will consciously (or unconsciously) adjust acceleration, speed, and downhill coasting to eke out more miles on that constantly recalculating distance readout, since more efficient use of on-board energy adds miles in real-time. Backing off the accelerator early and coasting up to a red light to maximize regenerative braking that feeds energy to the batteries is also human nature for an EV driver. Game on!

When Tesla began selling its long-awaited $35,000 Model 3 early this year, there was no doubt a collective sigh of relief on the part of Tesla fans who had waited three years for this to happen.

This price tag is important since the Model 3 has been widely-promoted as a $35,000 ‘everyman’s electric vehicle’ affordable to the masses, even as the cheapest models available were uplevel, higher content variants initially priced at $49,000. That cost moved down to $46,000 and ultimately $43,000 before Tesla made the leap to its latest $35,000, slightly decontented base model. At that price it’s doubtful that Tesla makes a profit, and in fact it wasn’t long ago when Tesla CEO Elon Musk said the company would lose money on the Model 3 at that price point.

Still, the promised base model is here and we can celebrate that. But it’s not an entirely happy story for some – no doubt many, many thousands – who were expecting something more.

When the Model 3 was introduced in April 2016, anticipation had been building a long time already for an affordable long-range electric car from Tesla. For fans of the marque who couldn’t pony up the substantial bucks for a premium-priced Model S or Model X, the $35,000 Model 3 was their answer. The problem is, a great many buyers understandably assumed that the bottom-line cost would be much lower.

Until recently, the federal tax credit for a Tesla was $7,500. Add in state incentives that could vary from $1,000 to $5,000 or more, and buyers were looking at an all-electric Tesla Model 3 they could acquire for a very approachable, conventional vehicle-like price as low as net $25,000. While the cost of a typical Tesla has always been beyond the reach of most buyers, a bottom line transaction of 25 grand was considered do-able by many.

There were an estimated 200,000 reservations for the Model 3 within a day of its unveiling accompanied by $200 million or so in deposits, a number that has continued to grow to surpass 400,000 reservations over time. Deliveries of higher-priced, uplevel Model 3s began in mid-2017, with qualified buyers enjoying the generous $7,500 tax credit. However, it has taken so long to get to a deliverable $35,000 Model 3 that the federal tax credit for Teslas has been a reduced $3,750 for the first half of 2019, then $1,875 for the second half, then at year’s end…done.

Why is this happening? To its credit, Tesla has cumulatively sold over 200,000 electric vehicles (Models S, X, and 3). This number triggers a federal tax credit phase-out according to a predefined schedule set for all makers of electric vehicles. The federal incentive’s strategy is that once an automaker has momentum for its electric vehicles by achieving greater than a 200,000 sales volume, there is no further need for a subsidy.

To those who lament the loss of federal EV subsidies and feel it unfair, consider this: The program was never intended to last forever, but rather help more environment-friendly electric vehicles gain traction in a market that has been dominated by internal combustion for well over a century.

Tesla surpassed 200,000 electric car sales and has achieved impressive momentum. Its electric Model 3 became the best-selling luxury car in the U.S last year. By all measures, for Tesla the federal tax subsidy’s story is ‘mission accomplished.’

ron-cogan-capitol-hillI drive an electric vehicle every day as part of my job testing cars. It’s not a new thing. In fact, this has been part of the drill here at Green Car Journal since the publication’s launch in 1992…way ahead of the electric car curve.

Back then I was testing electrics like the Honda EV Plus, Nissan Altra EV, Toyota RAV4 EV, Ford Ranger EV, and many more electrics from automakers and wanna-be specialty companies with their eye on a developing electric car market. I was also driving electric prototypes, some that never came to fruition and others, like the GM Impact, that did.

At the time I had the memorable experience of driving GM’s EV1 electric sports car for a year. I’ll never forget it. It was sleek, bright red, and fast. It seemed to coast forever when you lifted off the accelerator. Being a Gen 1 car equipped with advanced lead-acid batteries rather than the nickel-metal-hydride batteries that came in Gen 2, mine was also pretty range limited. In fact, it delivered about 50 real-world miles of driving between charges, less than the 60 to 95-mile range capability projected at the time. I didn’t care. The EV1 was amazing to drive and served my needs commuting to work and running errands around town. If I needed to travel farther than its range capability, well…I took another car.

And that’s the thing about electric cars some 20 years later. While the latest crop of battery electric vehicles here or coming soon offer 200-plus miles of all-electric driving – which many consider the number needed for EVs to effectively compete in the mass market – most offer far less. At the low range of sub-200 mile electric cars you have the Smart EV at 58 miles and at the upper end the new Nissan LEAF at 150 miles, with all the rest falling somewhere in between. Does offering less than 200 miles of driving range mean some electrics are no longer relevant in an evolving world where range is the next Big Thing?

gm-ev1-side-1Not at all. In fact, the decision making for buying/leasing an electric car is no different than when buying any new car. The bottom line is: Does it fit your needs? There are the usual considerations like cost, performance, safety, quality, and passenger capacity. Once those cuts are made, in the electric world it comes down to driving range. If your daily commute and around-town driving is about the average at 30 miles or so and you charge daily, then any electric model is suitable for the job. Charging at home overnight and getting an additional charge at work or from a public charger while shopping works all the better for extending your overall range. Occasional longer distance drives aren’t an issue if there are multiple cars in your household, which is the norm.

If your daily needs are closer to the limits of an electric model’s range, then opting for a range extended electric car might make sense, rather than one operating exclusively on batteries. The Chevrolet Volt and BMW i3 REx are two such examples that lend range flexibility.

Don’t get me wrong. Longer-range electric cars are wondrous things, and they’re coming. But EVs with more modest range can also be a good fit depending on need and circumstance.

driving-range-1

ron-cogan-capitol-hillCharging your electric vehicle used to be an easy thing, at least in many areas where electrification has long been promoted. Public chargers were installed in high-profile areas like shopping centers, parking garages, and at the workplace. For the longest time, it wasn’t unusual to see these chargers go unused for long periods of time. Green Car Journal editors experienced this first-hand for many years during our daily travels with plug-in test cars.

Often enough, ours was the only electric vehicle plugged in at a bank of four chargers at a local commercial center in our city. It was the same story in the parking garage downtown. But that’s changed, signifying both the positives and the challenges of a plug-in vehicle market that’s gathering momentum, and numbers. These days those chargers are often occupied when we pull up. Like most places, there simply don’t seem to be enough chargers to go around.

Many have heard about incidents at Tesla Supercharger sites, places where you can top off 80 percent of your battery charge in 30 minutes and then be on your way. The problem is, not everyone plugs in and then moves on. Superchargers, and chargers in general, are often located in areas where businesses are nearby so the experience is convenient and there’s something to do while charging. Tesla, in fact, has hinted that it’s taking this further and exploring Supercharger sites with food and amenities for those charging up their cars.

To be sure, not everyone stops for a 30 minute cup of coffee while charging. Shopping experiences in nearby stores can take much longer than that, and if all chargers are being used with others waiting to top off before continuing their journey, long waits are a problem. At times that leaves EV drivers frustrated with those who leave their car plugged in long after their needed charge is complete. The result? An interesting phenomenon in recent years called ‘charge rage.’

charging-at-two-chargersThis isn’t unique to Superchargers or to public charging sites. Workplaces can have similar experiences as employees in increasing numbers step up to battery electric and plug-in hybrids. They’re encouraged to do so not only to drive ‘greener,’ but also to benefit from shorter commutes in states that allow solo EV drivers in high occupancy vehicle (carpool) lanes. That privilege alone has spurred many commuters to go electric. Time isn’t just money. It’s also…time. Spending a half-hour less each way during the daily commute is worth more than money in many respects. And once the commute is done, it’s time to charge.

Most companies offering chargers have limited numbers and often site these in favorable parking areas close to the workplace, further encouraging employees to go electric. It’s good for a company’s image and it’s the right thing to do. That said, expecting employees to free up a charger after a few hours and move their car farther out in an expansive parking lot is asking a lot, human nature being what it is.

charging-bankConsider, too, charging sites at public parking garages adjacent to convention centers and other venues. Those who plug in while attending a conference of expo aren’t likely to return after an hour or two to unplug and move to another less convenient parking spot. With a limited number of charging spots available, other EV drivers counting on a range-extending charge aren’t likely to be pleased if all charging spots are taken.

Yes, there’s change afoot. Charging companies, automakers, utilities, and both state and local governments are striving to install an exponentially larger number of public chargers to alleviate the problem and keep pace with the growing number of plug-in vehicles on the road. But it hasn’t been fast enough…certainly not at a pace that’s keeping up with the larger number of electric vehicles on the road today.

charging

Drivers have long been promised perks like free public charging, access to carpool lanes with a single occupant in an electric vehicle, and favorable parking with charging available, all to encourage them to go step up to a battery electric or plug-in hybrid vehicle. While not disappearing, these perks are getting harder to realize. And that’s not a good thing for the electric vehicles and the industry as a whole.

ron-cogan-capitol-hillWill electrified vehicles dominate our highways in the future? It’s a question on the minds of many these days as an increasing number of battery electric and plug-in hybrid models come to new car showrooms. The answer is not an easy one, especially since there’s the potential that future CAFE (Corporate Average Fuel Economy) requirements could be modified. CAFE has been a driving force in the accelerated research and development in plug-in vehicles and new model introductions.

Automakers as a whole have said the current CAFE requirement of 54.5 mpg by 2025 cannot be achieved without a serious emphasis on electrification and the efficiencies these models bring. Thus, there has been an undeniable momentum for plug-ins underway as witnessed by the 39 battery electric and plug-in hybrid models from 20 automotive brands available in the U.S. market during calendar year 2017.

It has been a long path to get to this point since modern electrics emerged in the early 1990s. Along the way, early battery electric vehicles have been constrained by the limitations imposed by the very nature of battery electric propulsion. Simply, batteries are very heavy and costly, which result in two distinct penalties – greater weight that saps overall efficiency and high production costs that either make these vehicles expensive to buy, or require automakers to absorb much of these costs.

Those were the issues in the 1990s and, not coincidentally, these remain the issues today. Battery electric cars in 2017 are an order of magnitude better than those of a few decades back. But driving range and cost remain significant challenges. Plug-in hybrids are another matter.

Since these offer both all-electric driving and hybrid operation after batteries are depleted, there is no ‘range anxiety’ – the concern that a battery electric vehicle’s battery power could be insufficient for daily driving needs. Automakers are into plug-in hybrids in a big way and this has become a very competitive part of the automotive landscape.

So what does our driving future hold? There are nearly 40 plug-in vehicles for sale this year and that’s a big statement. Most major automakers have thriving electric research and development programs underway with electric model launches of one type or another in the pipeline. We will see an expanding offering of plug-in hybrids with battery electric models featuring greater driving range, as witnessed by the benchmarks being set by Chevrolet and Tesla and the new commitment to electrics by Volvo.

One wild card is that internal combustion continues to achieve surprising efficiency gains, at reasonable cost compared to electrics. That means the combustion vehicles we’ve had on our roads for more than a century will continue to ply our highways for some time to come, at approachable cost and without the need for the federal and state incentives that now help motivate buyers to go electric.

Still, there’s a growing desire for the emissions and inherent efficiencies of electric drive so there’s every reason to expect this interest to increase. We don’t yet know if plug-in vehicles of one stripe or another will dominate the market in the years ahead. But what is clear is that electrification is poised to play a major role moving forward.

ron-cogan-capitol-hillLike most kids growing up in the 1960s, my first experience with an electric race car was at a slot car track as a teenager. They were fast…really fast if you used a hopped-up rewind motor capable of smoking competitors off the track.

This was followed decades later with the full-scale, real-life electric cars I witnessed competing in the APS Solar & Electric 500 at Phoenix International Raceway in 1991. They were electric conversions of one type or another, using commercially- available batteries or experimental ones with exotic chemistries, once again reinforcing that racing is where automotive technology is proved on the track, then evolved and adapted for cars on the road.

Segue to 2017, where the process continues in full force. Not only are electrics competing in FIA Formula E racing, but automakers are now signing on in a big way. Audi, Jaguar Land Rover, and Mahindra are competing with factory teams during the 2017 Formula E season and others are sponsoring race teams. It’s no mystery why auto companies are involved in Formula E since electrification is playing an increasingly important role in the automobile’s future.

Now there’s a new twist that combines electric racing with the high-profile competition in developing autonomous cars: the Roborace. Ten teams will use identical autonomous electric race cars with an eye toward earning the checkered flag exclusively through the prowess of artificial intelligence (AI) and their programming skills. No driver required.

The application of increasingly sophisticated AI in our cars is evident in the advanced driver-assist systems being integrated in new models, creating ‘smart’ cars that can respond to emergency situations faster than most drivers. In fact, the processing speed of machines versus humans was recently on the mind of Tesla Motors’ Elon Musk, when he recently shared that the processing speed of machines is so superior to humans that “over time I think we will probably see a closer merger of biological intelligence and digital intelligence.”

What does that mean? Apparently, being human in a future world of AI is not enough because we are so slow. “It’s mostly about the bandwidth, the speed of the connection between your brain and the digital version of yourself, particularly output,” says Musk. His reasoning is that “some high bandwidth interface to the brain will be something that helps achieve a symbiosis between human and machine intelligence and maybe solves the control problem and the usefulness problem.” Yikes. I’m not the first to think ‘cyborg’ after hearing this. I’ll pass…although I will enjoy the benefits of connectivity and driver assistance systems in the meantime.

In a different and certainly more comforting look ahead, we know that plug-in vehicles are a hot item. Would you be surprised to know there are now 39 plug-in models - battery electrics and plug-in hybrids - being sold now or coming during the 2017 calendar year? That's a huge statement for electric drive and that number will certainly grow in the years ahead.

While Tesla models presently claim the greatest battery electric range at an entry point of $84,700, the new $37,495 Chevy Bolt EV stands out as the first battery electric car affordable to the masses with a driving range over 200 miles. Tesla has promised its coming Model 3 will also have a driving range greater than 200 miles at a base price of $35,000.

Without a doubt, the integration of semi-autonomous features and ‘green’ technologies will continue to grow. Welcome to your driving future!

 

todd-kaho-leftThere is a strong push for self-driving autonomous cars sweeping the auto industry. It’s an interesting mix of competing companies merging with both the traditional car brands and the tech industry. The overriding assumption is that taking the driver out of the transportation equation is better for safety and the environment than human involvement in the operation of the vehicle.

Full disclosure right up front: I am not a fan of the idea of a car driving me rather than me driving the car. You see, the reason I fell in love with cars in the first place is rooted in the fact that I love to drive and want to stay connected to the road. And yes, I prefer a manual transmission over an automatic. The idea of climbing in a vehicle and telling HAL 9000 (reference from 2001: A Space Odyssey) where I want to go doesn’t have much appeal to me.

That said, I do like many of the technological advancements that are making self driving cars possible. They can contribute to both safety and efficiency. My favorite of those currently available is adaptive cruise control. With this technology the vehicle maintains a safe distance from the car or truck in front of you when the cruise control is activated. Most allow the driver to set the distance or buffer the car will follow. If you have the cruise control set on 65 and close on a semi that is doing 60 up a grade, the car will automatically slow to the speed of the truck in front of you. If you pull out to pass, your car will accelerate back up to the preset 65 mph speed if no other slower vehicles are ahead. Adaptive cruise control is becoming more and more common and works quite well.

Forward-facing radar is commonly used and sometimes laser and multiple video cameras as well to judge distance and closing speed. This technology can also safely bring the vehicle to a complete stop when approaching a stopped vehicle or other fixed obstruction. Automatic braking technology can be a life saver if a driver is distracted, falls asleep, or is otherwise incapacitated. And to think that is wasn’t all that long ago that antilock braking was the latest innovation, and now it is mainstream!

True autonomous cars, however, must have input from many other sources to know exactly what is happening all around the vehicle. Sensors to the side, for example, are used in modern lane detection and lane change anti-collision systems. These detect objects to the side of the vehicle and some read lane markings on the road. Most give an audible alert first to get the driver’s attention, but some will actually pulse the steering wheel if they think the situation is urgent. Vehicles currently use some of the same equipment to allow production vehicles to park with little driver input other than engaging the system.

A self-driving car needs to sense conditions 360 degrees around its perimeter. Multiple radars, sensors, lasers, GPS, and cameras must all work together for complete situational awareness. It’s a very complex business when you add in the ability to read traffic signals, watch for pedestrians, motorcycles, bicycles, etc. Car-to-car communication is also a key element in making this all work together.

Naturally, this doesn’t come without additional complexity and expense. I look for a future with vehicles that will always have a steering wheel in front of me and at least two pedals at my feet, though three would be better.