The evolution of the auto industry has been no less than amazing. I have witnessed this first-hand while documenting the advent of ‘green’ cars over two decades at Green Car Journal and at Motor Trend before that. We had electric cars back in the 1990s as we do now, battling for acceptance, with other alternative fuels also jockeying for position amid an expansive field of conventional vehicles. Things change, things stay the same…although the numbers have improved for electrics.
While not particularly ‘green’ in earlier years, the automotive field did show early inclinations toward efficiency, particularly after the Arab oil embargo of the 1970s and oil disruptions of the 1980s. That was short lived as gasoline disruptions eased and gas was again plentiful and cheap. It was the 1990s, though, when industry and consumer interest in ‘green’ kicked into high gear.
The advancement of ‘green’ vehicles has largely been driven by the State of California, which has long required new vehicles to run cleaner than those meeting federal standards, a nod to the state’s epic half-century battle with urban smog. California has led the way in recent times with its milestone low emission vehicle program and its requirements for ever-cleaner running cars meeting seemingly impossible emissions goals. All this led to more stringent federal standards and, along the way, internal combustion vehicles with near-zero tailpipe emissions. It also hastened the introduction of hybrids and battery electric cars.
Early on, interest in greener cars was primarily driven by concerns such as tailpipe emissions, air quality, and petroleum dependence, the latter focused on resource depletion, the environmental cost of petroleum production, and significant dependence on imported oil. But that has evolved. The release of multiple studies singling out CO2 emissions as a major contributor to climate change added yet another reason to demand cleaner cars, with carbon emissions now a focal point. New regulations requiring much higher fuel economy in the years ahead – accomplishing the multiple goals of reducing petroleum use and lowering CO2 emissions through higher efficiency – have helped change the dynamic as well, as have the shockingly high gas prices seen late last decade. Together, they created the perfect storm for ‘green’ cars.
The cumulative result of regulations and incentives – plus an auto industry increasingly looking at ‘green’ not only as a requirement but as a market advantage – is a field of greener choices at new car showrooms. We now have internal combustion vehicles with near-zero emissions. A growing number of vehicle models are hybrids, plug-in hybrids, and battery electric cars with a few gaseous fuel models as well. The vast majority, however, are conventional vehicles that are worlds better than those of the past – gasoline and clean diesel models that achieve 35, 40, and 45 mpg or better with 50+ mpg clearly on the horizon.
While electric vehicles are often the topic du jour, it’s evident that new car buyers want the ability to pick their path to a greener driving future, choosing the vehicle, powertrain, and fuel that make them comfortable in their daily journeys. It has been satisfying to witness the auto industry’s decades-long evolution that’s now enabling consumers to do just that.
We are all enamored by the advanced technologies at work in vehicles today. And why wouldn’t we be? The incredibly efficient cars we have today, and the even more efficient models coming in the years ahead, are testament to a process that combines ingenuity, market competitiveness, and government mandate in bringing ever more efficient vehicles to our highways.
It’s been a long and evolutionary process. I remember clearly when PZEV (Partial Zero Emission Vehicle) technology was first introduced in the early 1990s, a breakthrough that brought near-zero tailpipe emissions from gasoline internal combustion engine vehicles. That move was led by Honda and Nissan, with others quickly following. Then there were the first hybrids – Honda’s Insight and Toyota’s Prius – that arrived on our shores at the end of that decade. Both technologies brought incredible operating efficiencies that drastically reduced a vehicle’s emissions, increased fuel economy to unexpected levels, or both.
Of course, there were first-generation battery electric vehicles in the mid-1990s that foretold what would become possible years later. That first foray into EV marketing was deemed by many a failure, yet it set the stage for the advanced and truly impressive EVs we have today. Those vehicles may not yet be cost-competitive with conventionally powered vehicles due to very high battery costs, but that doesn’t diminish the genius engineering that’s brought them to today’s highways.
Even conventionally-powered cars today are achieving fuel efficiency levels approaching that of more technologically complex hybrids. Who would have imagined popular cars getting 40 mpg or better, like the Dodge Dart, Chevy Cruze, Mazda3, Ford Fiesta, and many more in a field that’s growing ever larger each year?
VW and Audi have proven that clean diesel technology can also achieve 40+ mpg fuel efficiency while providing press-you-back-in-your-seat performance, and importantly, doing this while meeting 50 state emissions criteria. That’s saying something considering diesel has historically had a tough go of it meeting increasingly stringent emissions standards in California and elsewhere. Yet, with elegant engineering by these automakers and their diesel technology supplier Bosch – plus this country’s move to low-sulfur diesel fuel late last decade – ‘clean’ diesel was born.
I would be remiss if I didn’t mention natural gas vehicles. There was a time when quite a few automakers were exploring natural gas power in the U.S., but that faded and left Honda as the lone player in this market with its Civic Natural Gas sedan. Now others are joining in with dual-fuel natural gas pickups and vans, benefitting from advanced engine technologies, better natural gas tanks, and a sense that with increasing natural gas reserves in the U.S., demand for natural gas vehicles will grow. As Honda has shown with its Civic, it’s possible to operate on this alternative fuel while also netting admirable fuel efficiency.
All this advanced powertrain technology is important. It makes air quality and petroleum reduction goals achievable, even ones like the ethereal 54.5 mpg fleet fuel economy average requirement that looms for automakers by 2025. There’s no doubt that advanced technologies come at a cost and reaching a 54.5 mpg average will require the full range of efficiency technologies available, from better powerplants and transmissions to greater use of lightweight materials, aerodynamic design, and answers not yet apparent. But I’m betting we’ll get there in the most efficient way possible.
Ron Cogan is editor and publisher of Green Car Journal and editor of CarsOfChange.com
Over the years I’ve driven many battery electric vehicle prototypes and all production EVs in the U.S., spending a year living with a GM EV1. I have also spent time behind the wheel of many electric car conversions from small and hopeful new EV companies ranging from U.S. ElectriCar to those founded by entrepreneurs like Malcolm Bricklin and Miles Rubin. Test drives took place on highways and test tracks on multiple continents, sometimes for short drives out of necessity and sometimes for weeks at a time. Electric cars were my beat as feature editor at Motor Trend in the 1990s, by choice. I’ve been a vocal advocate for electric cars since the first issue of Green Car Journal 20 years ago…sometimes very vocal.
Time has a way of tempering not only perspective but expectations. One example: Over two decades of following battery development, I recall clearly the high expectations many have had that battery breakthroughs would come. Affordable and energy-dense batteries would be the enabling technology that could encourage full-function battery electric cars to market, making them cost competitive with internal combustion and readily displacing cars that for 100-plus years have relied on petroleum, a commodity that has grown costlier and in tighter supply.
That battery breakthrough has yet to occur. Yes, we have batteries with better chemistry and advanced designs. But they don’t represent the breakthrough that’s been widely anticipated and they remain quite expensive, so much so that battery electric cars must still be federally subsidized because of their high battery cost and retail price. In a normal world, a compact electric SUV should not cost $50,000, nor should a four-door electric sedan be $40,000, or a small electric hatchback priced over $30,000. Yet they are. And yes, there are a few electrics priced under $30,000, but as internal combustion models they would typically be priced $10,000 to $15,000 less while offering greater functionality.
It’s understandable why electric cars are being pushed so hard. Historically, EVs have spoken to a lot of needs. States have included them in State Implementation Plans as a way to show how their state would meet air quality standards under the Clean Air Act. Electric utilities see them as a pathway to selling electricity as a motor fuel. Government agencies often view electric vehicles as a panacea for (you choose) improving air pollution, mitigating petroleum use, decreasing CO2 emissions, and enhancing energy security. Automakers realize the dramatic impact that electric propulsion can have in helping achieve increasingly higher fleet fuel economy averages in coming years. Thrifty and eco-minded consumers understand the value of a smaller environmental impact by driving oil- and emissions-free, at a low cost per mile.
I remain an electric car enthusiast. But as a seasoned auto writer and industry analyst I’m also obliged to focus on reality. Today’s reality is that if we’re to make a real difference in petroleum reduction and environmental impact, battery EVs are not the short-term answer. While important and deserving of continuing development and sales, they are just one part of the solution, along with advanced gasoline, alternative fuel, hybrid, plug-in hybrid, and extended-range electric vehicles that create on-board electricity to provide full functionality. That’s the way forward.
Ron Cogan is editor and publisher of Green Car Journal.
The auto field has seen interesting twists and turns over the years as it has explored the use of alternative fuels and advanced technologies to improve environmental performance. I have witnessed the ebb and flow of focus on fuels ranging from hydrogen, methanol, ethanol, propane, and natural gas to battery electric, gasoline-electric hybrid, plug-in hybrid, and fuel cell technologies.
While electric drive is a primary focus among automakers and others for some obvious reasons, it’s just as obvious that plug-in electric vehicles, with their costly batteries and often substantial incremental price, are not likely to displace internal combustion engine vehicles in the mass market anytime soon. These vehicles are important. But their commercialization in mass market numbers is a process that will unfold over many years, perhaps decades.
It’s important to reflect on the mission at hand. If our goal is to resolve America’s near-total dependence on petroleum – and specifically the oil we import from far-away nations at great cost to our economy and our energy security – then we should be thinking about fuels that can make a realistic difference in the short- to mid-term, at affordable cost. Clearly, an important focus is also emissions reduction, as it has been for several decades as we’ve sought to improve the air quality in our cities, plus the imperative of decreasing CO2 greenhouse gas emissions.
Natural gas seems an ideal answer. This fuel can be used seamlessly in internal combustion engines that have been designed or modified for its use. It is the cleanest-burning
fossil fuel so creating extremely low emission vehicles is not only possible, it’s being done today with great success. In internal combustion engines, reducing CO2 emissions corresponds directly with higher fuel efficiency. Thus, using natural gas fuel in the increasingly efficient mass-market vehicles being required by government regulation in the years ahead will provide multiple benefits.
And, of course, let’s not forget that our domestic reserves of natural gas are significant. Shifting reliance from a fuel in short domestic supply – petroleum – to an abundant domestic fuel is important economically and strategically. It’s something we should be focusing on now, not at some point in the future when government decides it’s an expedient or politically useful answer.
If you think this is a relatively new line of thought, you would be wrong. T. Boone Pickens, known best for the current ‘Pickens Plan’ that urges a transition to natural gas transportation, was encouraging NGV use two decades ago when foreign oil imports then accounted for more than half of the U.S. federal trade deficit.
We have also been highlighting the benefits of NGVs and the use of natural gas as a motor fuel since our first issues of Green Car Journal in 1992. In the 1990s, we were reporting on production NGVs available for sale at the time like the Chevy Silverado and GMC Sierra pickups, Chevy Corsica and Caprice sedans, Chevy G30 cargo and passenger vans, Dodge B-Series Ram van and wagon, Dodge Caravan and Plymouth Voyager minivans, Ford Crown Victoria sedan, and the Honda Civic GX.
This diversity of light-duty natural gas models faded years ago as attention focused on other potential answers. It’s time to refocus once again in ways that allow greater choices of natural gas vehicles and enable widespread use of a domestically available fuel. America will be stronger because of it.
Ron Cogan is editor and publisher of Green Car Journal and editor of CarsOfChange.com