Like most kids growing up in the 1960s, my first experience with an electric race car was at a slot car track as a teenager. They were fast…really fast if you used a hopped-up rewind motor capable of smoking competitors off the track.
This was followed decades later with the full-scale, real-life electric cars I witnessed competing in the APS Solar & Electric 500 at Phoenix International Raceway in 1991. They were electric conversions of one type or another, using commercially- available batteries or experimental ones with exotic chemistries, once again reinforcing that racing is where automotive technology is proved on the track, then evolved and adapted for cars on the road.
Segue to 2017, where the process continues in full force. Not only are electrics competing in FIA Formula E racing, but automakers are now signing on in a big way. Audi, Jaguar Land Rover, and Mahindra are competing with factory teams during the 2017 Formula E season and others are sponsoring race teams. It’s no mystery why auto companies are involved in Formula E since electrification is playing an increasingly important role in the automobile’s future.
Now there’s a new twist that combines electric racing with the high-profile competition in developing autonomous cars: the Roborace. Ten teams will use identical autonomous electric race cars with an eye toward earning the checkered flag exclusively through the prowess of artificial intelligence (AI) and their programming skills. No driver required.
The application of increasingly sophisticated AI in our cars is evident in the advanced driver-assist systems being integrated in new models, creating ‘smart’ cars that can respond to emergency situations faster than most drivers. In fact, the processing speed of machines versus humans was recently on the mind of Tesla Motors’ Elon Musk, when he recently shared that the processing speed of machines is so superior to humans that “over time I think we will probably see a closer merger of biological intelligence and digital intelligence.”
What does that mean? Apparently, being human in a future world of AI is not enough because we are so slow. “It’s mostly about the bandwidth, the speed of the connection between your brain and the digital version of yourself, particularly output,” says Musk. His reasoning is that “some high bandwidth interface to the brain will be something that helps achieve a symbiosis between human and machine intelligence and maybe solves the control problem and the usefulness problem.” Yikes. I’m not the first to think ‘cyborg’ after hearing this. I’ll pass…although I will enjoy the benefits of connectivity and driver assistance systems in the meantime.
In a different and certainly more comforting look ahead, we know that plug-in vehicles are a hot item. Would you be surprised to know there are now 39 plug-in models - battery electrics and plug-in hybrids - being sold now or coming during the 2017 calendar year? That's a huge statement for electric drive and that number will certainly grow in the years ahead.
While Tesla models presently claim the greatest battery electric range at an entry point of $84,700, the new $37,495 Chevy Bolt EV stands out as the first battery electric car affordable to the masses with a driving range over 200 miles. Tesla has promised its coming Model 3 will also have a driving range greater than 200 miles at a base price of $35,000.
Without a doubt, the integration of semi-autonomous features and ‘green’ technologies will continue to grow. Welcome to your driving future!
There is a strong push for self-driving autonomous cars sweeping the auto industry. It’s an interesting mix of competing companies merging with both the traditional car brands and the tech industry. The overriding assumption is that taking the driver out of the transportation equation is better for safety and the environment than human involvement in the operation of the vehicle.
Full disclosure right up front: I am not a fan of the idea of a car driving me rather than me driving the car. You see, the reason I fell in love with cars in the first place is rooted in the fact that I love to drive and want to stay connected to the road. And yes, I prefer a manual transmission over an automatic. The idea of climbing in a vehicle and telling HAL 9000 (reference from 2001: A Space Odyssey) where I want to go doesn’t have much appeal to me.
That said, I do like many of the technological advancements that are making self driving cars possible. They can contribute to both safety and efficiency. My favorite of those currently available is adaptive cruise control. With this technology the vehicle maintains a safe distance from the car or truck in front of you when the cruise control is activated. Most allow the driver to set the distance or buffer the car will follow. If you have the cruise control set on 65 and close on a semi that is doing 60 up a grade, the car will automatically slow to the speed of the truck in front of you. If you pull out to pass, your car will accelerate back up to the preset 65 mph speed if no other slower vehicles are ahead. Adaptive cruise control is becoming more and more common and works quite well.
Forward-facing radar is commonly used and sometimes laser and multiple video cameras as well to judge distance and closing speed. This technology can also safely bring the vehicle to a complete stop when approaching a stopped vehicle or other fixed obstruction. Automatic braking technology can be a life saver if a driver is distracted, falls asleep, or is otherwise incapacitated. And to think that is wasn’t all that long ago that antilock braking was the latest innovation, and now it is mainstream!
True autonomous cars, however, must have input from many other sources to know exactly what is happening all around the vehicle. Sensors to the side, for example, are used in modern lane detection and lane change anti-collision systems. These detect objects to the side of the vehicle and some read lane markings on the road. Most give an audible alert first to get the driver’s attention, but some will actually pulse the steering wheel if they think the situation is urgent. Vehicles currently use some of the same equipment to allow production vehicles to park with little driver input other than engaging the system.
A self-driving car needs to sense conditions 360 degrees around its perimeter. Multiple radars, sensors, lasers, GPS, and cameras must all work together for complete situational awareness. It’s a very complex business when you add in the ability to read traffic signals, watch for pedestrians, motorcycles, bicycles, etc. Car-to-car communication is also a key element in making this all work together.
Naturally, this doesn’t come without additional complexity and expense. I look for a future with vehicles that will always have a steering wheel in front of me and at least two pedals at my feet, though three would be better.
When it comes to chips, automakers are all-in. That is, the silicon variety and not those with which you can gamble away a fortune, something auto companies are loathe to do. Traditionally, the risks auto manufacturers undertake are carefully calculated and always rooted in the world of profit and market share. As they look to the future, their chips are increasingly riding on ‘green’ and ‘connectivity.’
Key to this is Silicon Valley, which for decades has been synonymous with the high tech world of consumer electronics, encompassing everything from computers and cellphones to software and apps. Today this storied list has expanded in important and unexpected ways to include technology that’s at the heart of the auto industry’s future. It’s here that auto manufacturers have forged strategic alliances with Silicon Valley icons like Google and Apple, plus noted tech companies like NVIDIA and an array of Silicon Valley start-ups that promise to bring new and exciting functionality to our vehicles.
Striking alliances with tech companies is an important direction for an industry that has been entrenched in its own world for well over a century. It’s so important, in fact, that many auto manufacturers have gone beyond just alliances, establishing dedicated research and development centers in Silicon Valley to tap the undeniable expertise here. We have seen surprising moves in recent times, like Toyota’s short-lived alliance with Tesla to develop the excellent, though quite expensive, battery electric RAV4 crossover a few years back. Sometimes things work out, sometimes not. But ventures like this are important to the journey as a future unfolds that will certainly find advanced electronics playing a major role in the cars we drive, or perhaps, to cars that drive themselves.
This is happening already with an increasingly sophisticated array of on-board electronics incorporated into new car models. As you might expect, much of this is showing up in higher-end vehicles first as technology costs are absorbed into the price of aspirational vehicles already expected to command a higher point of entry. As technology costs decrease, advanced systems like these tend to move down-market to more affordable vehicles. We’re already seeing this happening in real time.
In addition to the on-board systems we tend to take for granted today – such as navigation, back-up display, satellite radio, and Bluetooth cellphone integration – there’s a new generation of sought-after features that use a vehicle’s integrated cameras and sensors to perform wondrous tasks. Adaptive cruise control that automatically maintains a safe distance from the car ahead is one of these.
Beyond that is the latest generation of such systems with a stop-and-go function capable of automating the boring task of driving in urban gridlock. Lane minder systems that warn if you stray outside your lane are being enhanced with automated features that nudge you back where you belong. Automated parking is yet another popular feature in electronics-rich models. This is just the start as technologies like pedestrian avoidance systems make their way into new models, plus technology that automatically brakes or slows your car at intersections if another vehicle comes into your path.
All this is coming together to make our vehicles more fuel efficient, convenient, and safer as we drive toward a more connected future. Strap in because big changes are ahead.
Diesel haters seem to be overly anxious to pile-on and shout ‘death to diesels’ these days. It’s human nature to take offense at being fooled and the diesel market certainly is paying the price of the recent emissions scandal. Serious deception took place and it’s far from forgotten, even as corrections are underway or being explored. The green car market is very competitive so it’s not surprising that some supporting alternative transportation technologies are quick to point the finger.
Allen Schaeffer, Executive Director of the Diesel Technology Forum, responded to a story entitled “The Dirty Truth About Clean Diesel” in The New York Times with the following statement, which the Times ran in its Opinion pages. “Here are the facts about diesel straight from the Environmental Protection Agency and California Air Resources Board: Clean diesel technology and fuels have reduced particulate matter and nitrogen oxide emissions by more than 98 percent, and sulfur content by 97 percent. The American Lung Association cites clean diesel fleets as one of the two primary reasons for improved air quality in the United States.”
Personally, I’ve owned a diesel powered Ford pickup for many years and its overall capability and economy are simply hard to replace. Consider that nearly every product we touch on a daily basis – from the food on our table to the consumer products we all rely on – are harvested and/or transported by diesel powered trucks, trains, and ships. Diesel is an important part of our infrastructure and without it the cost of all goods and services would certainly increase.
I don’t mind admitting I’m still a fan of advanced diesel. I find it discouraging that just as smaller next-generation diesel passenger vehicles were gaining momentum in the North American market, this distrust has many questioning diesel’s place in the automotive landscape. As far as the driving experience goes, it is tough to beat the satisfying torque that a modern diesel delivers. When combined with advanced transmissions they are quite fun to drive.
With EPA federal rules requiring significantly better fuel economy and lower CO2 emissions by 2025, next-generation diesel should be a key player in achieving these goals. A primary advantage of diesel has always been superior fuel economy. A diesel will generally deliver 30 percent higher fuel economy than a comparable gasoline model. That huge bump in mileage also brings a significant decrease in CO2 emissions.
Plus, it’s important to note that the more advanced diesels on the road, the greater the potential use of even cleaner-burning biodiesel, a renewable diesel fuel replacement that has experienced significant growth over the past decade.
The road back to diesel acceptance will likely come first in the light truck and sport utility vehicle market with more light-duty diesel pickups and luxury SUVs moving forward. Good examples are the recent introduction of the 5.0-liter V-8 Cummins turbo diesel in the new Nissan Titan and 2.8-liter Duramax four-cylinder turbo diesel in the mid-size Chevy Colorado and GMC Canyon. Want something a little more exotic? Land Rover and Range Rover are now offering models with their Td6 next-generation diesel, with other automakers also introducing newer, more efficient, and cleaner diesel models as well.
We hope to see lower-priced, high mileage next-generation diesel models in the near future to fill the void in the small car market.
Some cars leave an impression that lasts a lifetime. The Ford Mustang is one of those cars for me. As a kid, I was blessed with a dad who always had something unique in the driveway, from a Morris Minor to a Triumph Herald. None were exotic or expensive, but they were fun and more than a little quirky.
So, when the first generation Mustang came out, Dad had to have one and in the summer of 1964 there was a 1964 1/2 Mustang convertible in our driveway. It was copper with a white interior and white top. Powered by a 289 V-8 and a ‘three-at-the-knee shifted manual transmission. Detroit was producing big iron at the time and this car seemed lean, efficient, and mean. Many happy hours were enjoyed in that first generation Mustang.
When Ford offered to let me drive a 2015 Mustang not long ago, I was understandably thrilled. Then I read the specs. The car would be a four-cylinder with an automatic transmission. No, really?
If you want to know how far the automotive industry has advanced in the last 50 years, go drive the new 2.3-liter EcoBoost four-cylinder Mustang. For those of us of a certain vintage let me clarify, this is not a Pinto engine. This 2.3 is a beast. The first time I pushed the start button, the raspy growl made it clear that the EcoBoost means business. This engine, produces 310 horsepower and 320 lb-ft torque. At just 137.5 cubic inches it’s less than half the displacement of Dad’s 289 V-8.
For perspective, consider that this new four-cylinder also makes more horsepower than the 2005 Mustang GT 4.6-liter V-8 of just 10 years ago. EcoBoost uses smaller, more efficient engine designs aided by turbocharging to do more with less. It’s not a new idea, but Ford has been refining it for years with impressive results. The 2.3 Mustang engine uses a twin-scroll turbo with split exhaust runners to feed immediate boost. It produces low-end power more like a V-6 or V-8 than a four, delivering a very satisfying driving experience.
I’ve always preferred manual transmissions, but the six-speed auto in the Mustang was quite nice. It can be manually shifted with paddle controls on the steering wheel for more control and fun.
The best part about this whole equation is that the EcoBoost engine is lighter than V-6 and V-8 counterparts. That makes all vehicle dynamics simply work better. Everything from acceleration to handling and braking are improved. The car literally feels lighter and is more nimble, which makes it a joy to drive.
Now for the ‘green’ part. The EcoBoost Mustang has an EPA highway fuel economy rating of 32 mpg. This car is quick and will spring from 0-60 mph is 5.6 seconds. But we also decided to push it in the other direction and see how it would do in economy cruise mode. At legal speeds, mid-to upper 30 mpg averages are easily obtainable. You can use this car as a daily commuter and not break the bank.
It’s an interesting and compelling contrast to look back 50 years to the first Mustang, and even 10 years to the last generation Mustang. But what I love most is that this iconic car still has swagger and will stir emotions. I’ll take that over an automotive appliance any day.
Connected car technologies are transforming the automotive industry much like smart phone apps revolutionized the mobile phone sector. A new generation of aftermarket products are helping tech-savvy drivers reduce accidents, lower insurance costs, save fuel, and plan routes more effectively.
Cars and trucks have become mobile computing platforms and the tech transformation is accelerating. By 2020, it has been estimated that 75 percent of the world’s cars will have the technology to connect to the internet and to each other via Wi-Fi. Studies by the U.S. Department of Transportation estimate that these connected-car technologies could reduce the number of collisions by 80 percent.
For companies such as Intelligent Mechatronic Systems (IMS), based in Waterloo, Ontario, the data that can be collected by connected-car technologies is a valuable resource that can help drivers save money and improve their driving skills. IMS’ DriveSync platform can collect data through automaker-installed systems, aftermarket devices, or smartphone apps. This data, in turn, is analyzed in real-time and the results are delivered as actionable information. It can also be used as a coaching tool for young drivers to improve driving skills, or as a fleet management system that helps commercial operators reduce fuel consumption and insurance costs. A number of North America’s leading insurance companies offer drivers lower premiums if they install DriveSync and share the data.
During a presentation at the company’s head office, founder and CEO of IMS, Dr. Otmar Basir, said that the platform is “all about transforming your car from a dumb machine into a smart appliance. DriveSync is a platform for greener, safer, more human-centric driving.”
The speed of consumer acceptance and the demand for more and more internet-connected technologies surprises even some industry veterans. High tech has become a product differentiator in the fiercely competitive automotive marketplace.
“What makes a car different today is not the steel but the technology,” said Bob Moran, CEO and founder of Weather Telematics, during an interview at the company’s head office in Ottawa, Ontario. “Cars used to be about steel and rubber. Now, what matters is intelligence and connectivity.”
Weather Telematics applies advanced meteorological science to real-world driving needs. It combines real-time data from a vehicle’s sensors with up-to-the-minute weather-related information drawn from an array of internet-based sources to provide drivers with accurate intelligence about immediate road conditions.
This is not a ‘40 percent chance of rain in your region’ type forecast, but information about the specific conditions the driver will face on that particular highway within the next mile or across a particular route programmed into the GPS system. Moran calls it ‘now-casting,’ not weather forecasting. “This is hyper-local weather advice,” Moran said. The overriding goal is to use these technologies to save lives and reduce greenhouse gas (GHG) emissions.
“Weather risks in transportation – rain, fog, snow – contribute to 10,000 deaths every year in the U.S. alone and traffic congestion wastes 2.9 billion gallons of gas annually,” Moran said. “We provide drivers with a new kind of technology that can help them mitigate those safety risks and reduce fuel consumption.”
The growing market for next-generation automotive technologies is drawing more companies into the industry. Ontario, Canada is one of the few jurisdictions in the world with world-class clusters in both automotive production and information technology and has nearly 100 companies now involved in connected-car technologies – and that is very good news for both sectors.
The number of vehicles on the road worldwide is expected to double from 1 billion to 2 billion by 2035, and embracing these technologies can make our roads safer and reduce GHG emissions.
Stephen Thompson is the Senior Economic Officer and Consul for Ontario International Trade and Investment, based in San Francisco
There are many outspoken and polarizing proponents of the various fuels and technologies at play today. This has been the case for several decades now and isn’t likely to disappear anytime soon. Many electric car enthusiasts do not see a future for internal combustion or even hydrogen fuel cell vehicles. Hydrogen proponents point out that fuel cell vehicles make more sense than battery electrics since hydrogen generally offers greater driving range and fuel cell vehicles can be refueled in under five minutes, while battery electrics cannot. Biodiesel enthusiasts point out the obvious benefits of this biofuel and even as this fuel gains momentum, wonder why support isn’t stronger. Natural gas advocates see huge and stable supplies of this clean-burning fuel now and in our future, without the truly significant commitment to natural gas vehicles this should bring. And those behind internal combustion vehicles achieving ever-higher efficiency simply wonder what the fuss is all about when conventional answers are here today.
So in the midst of all this, where are we headed? Simple. In the right direction, of course.
As I was writing about these very fuels and technologies some 25 years ago, it wasn’t lost on me that the competition for dominance in the ‘green’ automotive world of the future would be hard-fought and long, with many twists and turns. As our decades-long focus on the ‘green car’ field has shown us, the state-of-the-art of advanced vehicles in any time frame is ever-changing, which simply means that what may seem to make the most sense now is likely to shift, and at times, shift suddenly. This is a field in flux today, as it was back then.
When Nissan powered its Altra EV back in 1998 as an answer to California’s Zero Emission Vehicle mandate, it turned heads with the first use of a lithium-ion battery in a limited production vehicle, rather than the advanced lead-acid and nickel-metal-hydride batteries used by others. Lithium-ion is now the battery of choice, but will it remain so as breakthrough battery technologies and chemistries are being explored?
Gasoline-electric hybrids currently sell in ever-greater numbers, with plug-in hybrids increasingly joining their ranks. Conventionally-powered vehicles are also evolving with new technologies and strategies eking levels of fuel efficiency that were only thought possible with hybrid powerplants just a few years ago.
What drives efficiency – and by extension determines our future path to the high efficiency, low emission, and more sustainable vehicles desired by consumers and government alike – is textbook evolution. Cars are adapting to meet the changing needs of future mobility and the imperative of improved environmental performance. Some of these evolutionary changes are predictable like lightweighting, improved aerodynamics, friction reduction, and enhanced powertrain efficiencies. Other answers, including the fuels that will ultimately power a new generation of vehicles, will be revealed over time.
So here’s to the cheerleaders who tell us quite vocally that their fuel, technology, or strategy is the answer to our driving future. One of them may be right. But the fact is, the evolutionary winner has yet to be determined.
A steady stream of advanced powertrains, new fuel-efficient systems like stop/start, and more alternative fuels have helped raise fuel economy to new heights in recent years, but the latest breakthrough in energy-efficient cars may surprise you: safety technology.
You got it. Safety equals green. New safety systems are fuel economy game-changers, because fewer crashes mean less congestion, less fuel use, and fewer carbon emissions.
Recently in a white paper on autonomous vehicles, the National Highway Traffic Safety Administration (NHTSA) noted that “Vehicle control systems that automatically accelerate and brake with the flow of traffic can conserve fuel more efficiently than the average driver. By eliminating a large number of vehicle crashes, highly effective crash avoidance technologies can reduce fuel consumption by also eliminating the traffic congestion that crashes cause every day on our roads.”
NHTSA is referring to a new generation of energy-saving, life-saving technologies on our roads – and often these systems are money-saving and time-saving, too.
Real-time navigation in cars helps drivers keep their eyes on the road while diverting them around traffic. The Texas Transportation Institute estimates that, in 2011, congestion in 498 metropolitan areas caused Americans to travel 5.5 billion hours more and buy an extra 2.9 billion gallons of fuel, for a congestion cost of $121 billion.
Adaptive cruise control is a new driver assist that automatically keeps a safe distance from the car ahead, keeping traffic running smoothly. A report by MIT estimates that a 20 percent reduction in accelerations and decelerations should lead to a 5 percent reduction in fuel consumption and carbon emissions.
The Federal Highway Administration estimates that 25 percent of congestion is attributable to traffic incidents, around half of which are crashes. Sophisticated automatic braking technology helps drivers avoid crashes, and fewer fender benders improve fuel economy since drivers spend less time idling in traffic.
In the future, autonomous cars may enhance road safety while giving us a leg up on fuel efficiency. After analyzing government data, Morgan Stanley observed, “To be conservative, we assume an autonomous car can be 30 percent more efficient than an equivalent non-autonomous car. Empirical tests have demonstrated that level of fuel savings from cruise control use/smooth driving styles alone. If we were to reduce the nation’s $535 billion gasoline bill by 30 percent that would save us $158 billion.”
With all these benefits, clearly the traditional definition of ‘fuel economy’ is restrictive and counter-productive. We can achieve much more with a broader view. Here’s how.
The federal government established a national fuel economy/greenhouse gas program with the ambitious goal to nearly double fuel economy by 2025. Our compliance is based on the fuel efficiency of what we sell, not what we offer for sale. While consumers have more choices than ever in energy-efficient automobiles, if they don’t buy them in large volumes, we fall short. So we will need every technology available to make this steep climb.
We can still squeeze more fuel savings from safety and congestion-mitigation technologies, but these systems reduce fuel use in ways not apparent in government mileage tests so the government doesn’t consider them towards meeting federal standards.
The federal government should recognize the real-world fuel economy improvements from these safety technologies. In fact, the government can encourage their deployment by allowing automakers to count the demonstrated fuel economy benefits of these safety technologies towards meeting their compliance with the federal fuel economy program.
While automakers don’t advocate speeding, we are urging regulators to put the pedal to the metal on this priority. More rapid adoption of these new technologies will help keep drivers safer, avoid traffic congestion, save time, save money, and reduce fuel use.
Mitch Bainwol is president and CEO of the Alliance of Automobile Manufacturers, www.autoalliance.org
Today, consumers in California can drive and lease the first wave of commercially available fuel cell electric vehicles (FCEVs) in the U.S, and additional models are promised from several leading automakers in the next few months and years.
Of equal importance, today’s FCEV drivers can fill-up at any of nine hydrogen fueling stations in the Los Angeles and San Francisco areas, with 50 stations expected to be operational by the end of 2015.
What does this mean? For the fuel cell and hydrogen industry, and for those who will benefit from FCEVs, the time has come to talk about these vehicles in the present tense. A new game clock is running; the long-envisioned fuel cell future is indeed underway.
Fuel cells generate electricity through a hydrogen-based chemical process, not combustion. The process is silent, with no moving parts, and because there is no combustion there are no tailpipe emissions; the only byproducts are heat and water vapor.
FCEVs can run on hydrogen generated from renewable sources including biogas, wind and solar power, as well as from more traditional fuels like America’s abundant natural gas.
Moreover, as consumers in California are discovering, FCEVs are the only zero-emission vehicle (ZEV) technology that replicates today’s driving experience and convenience with a 300 to 400 miles or greater driving range and rapid fill-up of three to five minutes.
FCEVs SUPPORT ENERGY, ENVIRONMENT, ECONOMIC SECURITY
FCEVs will be part a diverse mix of vehicle types that allow American consumers to fulfill a wide range of driving needs. It only takes a quick look at recent headlines to see why the commercial arrival of FCEVs is so important for America.
With traditional energy-exporting regions of the world in turmoil, America is looking more and more to domestic energy sources. Hydrogen can be produced virtually anywhere in the country from many conventional and renewable energy sources. The nation already produces nine million metric tons of hydrogen annually, enough to fuel 30 to 40 million FCEVs.
Environmental concerns from clean air to global warming also help explain why FCEVs are so important. In 2013, governors of eight states signed a Memorandum of Understanding (MOU) agreeing to put 3.3 million zero-emission vehicles (ZEVs) on the road within 12 years. More recently, NESCAUM (the nonprofit association of air quality agencies in the Northeast) developed a plan to begin implementing the ZEV vision defined by the MOU.
Fuel cells and hydrogen energy are the last clean energy technologies in which the U.S. is the global manufacturing leader. Nearly half of all jobs in the industry involve high-skill manufacturing, and when the infrastructure development, sales, and service jobs are added, the job potential is very significant.
CHALLENGES AND OPPORTUNITIES
Despite recent progress, the path to America’s hydrogen future faces many uncertainties, but most analysts agree the chief concern is how to develop the nation’s crucial hydrogen infrastructure. To help address this issue, in 2013 a public private collaboration, H2USA, was co-launched by the U.S. Department of Energy and industry. H2USA’s mission is to promote the commercial introduction and widespread adoption of FCEVs across America, and its members include state governments, automotive companies, fuel cell and hydrogen energy technology suppliers, energy companies, national laboratories, and trade associations.
Through the combined efforts of its members, H2USA is developing real-world approaches to address the technical, financial, and societal issues surrounding hydrogen infrastructure.
America faces a very bright fuel cell future, but it will take hard work and strong planning to fulfill the FCEV promise. Today FCEVs are no longer at the curb; they have entered the on-ramp and are preparing to merge into the mainstream of American driving.
And I can tell you, the FCEV industry is already thinking about the passing lane.
Morry Markowitz is President & Executive Director of the Fuel Cell and Hydrogen Energy Association, www.fchea.org
Safety has long been a hot topic in debates over increasing fuel efficiency, but this is less so today. In 2002, Senator Trent Lott warned of ‘purple people-eaters’ (read: silly-looking golf carts) taking over the market if CAFE standards were raised; Mr. Lott now drives a Mini Cooper. Effective occupant protections are proliferating, and U.S. vehicle fatalities continue to decline.
Manufacturers are improving fuel efficiency through a host of strategies that include reducing vehicle weight by removing unnecessary material and substituting lighter materials, which in turn permits downsizing of the engine and other components. Ford, for example, has indicated its intention to reduce the weight of its vehicles by 12 percent on average by 2020. As a rule of thumb, each 10 percent reduction in body weight can lower fuel consumption by 6 percent when component downsizing is taken into account. None of this means changing vehicle dimensions – there’s no need to sacrifice protective crush space to get a more fuel-efficient ride, especially when today’s CAFE standards require smaller vehicles to meet tighter fuel efficiency targets.
At this point, weight reduction is one of the least expensive approaches to saving fuel. Composites such as carbon fiber-reinforced polymers remain expensive for the time being, but lightweight steel, aluminum and other plastics are pressed into service in vehicle configurations that frequently yield net cost reductions. The need to retool and to master challenges such as joining dissimilar materials mean the transition to lighter vehicles is gradual. But there appear to be few obstacles to a long-term trend toward substantially lighter vehicles. The trend will be especially helpful to the adoption of electric vehicles, for which downweighting is critical due to its implications for sizing costly batteries.
There may be a limit to prudent downweighting, but as the fleet turns over and collisions between vehicles of widely disparate weights occur less frequently, any such limit would shift as well. Moreover, as drivers accept increasing automation of vehicle controls, in particular collision prevention, driving around surrounded by a couple tons of metal will begin to feel very 20th century.
I was changed by the 1990 introduction of the GM Impact electric car prototype at the Los Angeles Auto Show, then again by the amazing array of electric, hydrogen, and ‘green’ vehicles I witnessed at the 1991 Tokyo Motor Show. I knew that 'green' cars would be important. So, for 25 years now, this has been my focus at Green Car Journal and also at GreenCarJournal.com, plus an additional six years while feature editor at Motor Trend.
Covering this field for 25 years lends an invaluable perspective that’s important to understanding not only where we’ve been, but where we’re headed. There’s plenty of ‘green’ car news to share these days so it’s important to place it in context…and yes, that comes again with perspective and having been there while this all unfolded.
It has been enlightening to document the early research and development of the vehicles we take for granted today. While there is no crystal ball for predicting the automobile’s future, I’ve long been fascinated by researching patents for advanced and alternative fuel vehicle technologies because this does reveal what automakers and their technology suppliers have in mind for the years ahead.
Several decades ago, many of these vehicles and technologies were but ideas to potentially pursue, the subject of technology deep dives I attended, or opportunities that allowed driving advanced technology test mules on the track at automakers’ proving grounds.
Two of these experiences in the 1990s come readily to mind – driving a Japanese-market Toyota Crown sedan outfitted with an early gasoline-electric hybrid drive and a Geo Storm equipped with a prototype battery electric powertrain. These powerplants evolved to become the Hybrid Synergy Drive powering Toyota’s Prius and the electric drivetrain powering the GM EV1. The production versions were worlds better than the early prototype powertrains, lending the perspective to see just how far the technology had come.
Early developmental electric drive vehicles were often quirky and unexpectedly noisy in myriad ways, with high-pitched motor controller frequency noise and gear whine very apparent against a near-silent background devoid of internal combustion. The first natural gas vehicle prototypes often suffered from an annoying high-volume gaseous fuel injector clatter. Developmental hydrogen fuel cell vehicles sacrificed loads of space for large and cumbersome fuel cells and hydrogen storage. High efficiency diesel vehicles of decades past were unacceptably loud and emitted soot. Gasoline cars with high fuel economy were small, often lacking the creature comforts consumers expect and an illustration that sacrifice was required to achieve efficiency. Accomplishing extremely low tailpipe emissions often came at the expense of performance.
Drive an electric, natural gas, hydrogen fuel cell, high mpg gasoline, or high efficiency diesel personal-use vehicle today and they are quiet, usually quick, and ‘normal’ in all respects. A great many conventional internal combustion vehicles are now near-zero emission…not that you’d know it because they achieve this so seamlessly. We have great ‘green’ vehicles today because a lot has transpired over the past 25 years. Perspective.
I am confident that all of these vehicles, technologies, and fuels will play an important part in our motoring future. If the past 25 years are any indication, the vehicles we’ll be driving in the years ahead will be just amazing.
It is an exciting time to be involved with the auto industry, or to be in the market for a new car. The auto industry has responded splendidly to the challenge of new emission, fuel economy, and safety standards. The public is offered a greater than ever selection of vehicles with different powertrains, lightweight materials, hybrids, and electric drive vehicles across many platforms. We see increasing numbers of clean diesel vehicles and natural gas is making a resurgence, especially in the heavy-duty sector.
The positive response by the auto industry to the ever-tightening pollutant emission and fuel economy standards includes tactics such as the use of aluminum in the Ford F-150 and the increased use of carbon fiber by BMW, among many innovations introduced across many models and drivetrains. These evolutionary changes are a major tribute to the automobile engineers who are wringing out the most they can in efficiency and reduced emissions from gasoline and diesel engines. I view this evolutionary change as necessary, but not sufficient to meet our greenhouse gas goals by 2050.
New car ownership is currently down in Europe and is leveling off in the U.S. For global automotive manufacturers, however, this trend is offset by the dramatic growth in places like China and India. The potential for dramatic growth in the developing world is clearly evident: In the U.S., there are about 500 cars per thousand people, compared to about 60 and 20 in China and India, respectively.
How can these trends be reconciled with the environmental and health concerns due to climate change and adverse air quality in the developing world? The evidence for climate change accumulates by the day. Hazardous air quality in many major cities in China has drawn global attention, providing a visual reminder of how far the developed world has come and how much environmental protection needs to be accelerated in the developing world. Damaging air pollution is increasingly seen as a regional and even worldwide challenge. Dramatic economic growth in many developing countries is generating pollution that knows no boundaries. Air pollution from China, for example, fumigates Korea and Japan and is even transported across the Pacific to impact air quality in California and other Western states.
It will take a revolutionary change to provide personal mobility without unacceptable energy and environmental consequences. As a recent National Academy of Sciences (NAS) document states, it is likely that a major shift to electric drive vehicles would be required in the next 20 to 30 years. Electric drive vehicles, coupled with renewable energy, can achieve essentially zero carbon and conventional pollutant emissions. The NAS report also predicted that the costs of both battery and fuel-cell electric vehicles would be less than advanced conventional vehicles in the 2035-2040 timeframe.
This transition will not occur overnight and we will be driving advanced conventional vehicles for many years to come. In a study for the International Council on Clean Transportation, Dr. David Greene calculated that the transition could take 10 to 15 years, requiring sustained investment in infrastructure and incentives in order to achieve sustained penetration. While this investment is not inexpensive, it is projected that the benefits of this investment will be 10 times greater than the costs.
So where do we stand today on electric vehicles? We are seeing an unprecedented number of hybrid, plug-in hybrid, and battery electric vehicles across many drivetrains and models. There were about 96,000 plug-in electric vehicles sold or leased in the U.S. last year and more than 10 new PEV models are expected this year. While the sales fall short of some optimistic projections, it is an encouraging start after many years of more hope than delivery. The FC EV is expected to see significant growth after the initial limited introduction of fuel cells in the 2015-2017 timeframe by five major automobile companies.
It will take many years of sustained increasing penetration into new car sales to make this revolution a success. It is indeed a marathon and not a sprint. The challenge is how to ensure sustained sales of electric drive vehicles in the face of the many attributes of advanced technology conventional vehicles. Electric drive vehicle drivetrains have an affinity with the increasing amount of electronics on board the vehicle, which might ultimately yield very interesting, capable, and competitive vehicles.
I have little doubt that if we are serious about our energy, environmental, and greenhouse gas goals the revolution in technology will occur. All the major automobile companies seem to recognize this in their technology roadmap, which includes advanced conventional vehicles, plug-in hybrid vehicles, battery and fuel cell electric vehicles.
In conclusion, the next 20 years promise to be equally as challenging and exciting as the last 20 years. I have little doubt that the automobile engineers are up to the task ahead, but whether we have the political fortitude to stay the course to achieve the necessary air pollution and GHG reductions is far less certain.
Dr. Alan Lloyd is President Emeritus of the nonprofit International Council on Clean Transportation (ICCT). He formerly served as Secretary of CalEPA and Chairman of the California Air Resources Board.
Electric drive vehicles of all types are increasingly in the news, often led by a near-nonstop focus on Tesla and its Model S, Model X, and planned Model 3 battery electric vehicles. People want electric cars. Some feel they need them, or more accurately, that we all need them. It has been so for quite some time.
I was one of those pushing hard for electric vehicles in the 1990s, driving prototypes on test tracks and limited production models on the highway as I shared their benefits on the pages of Green Car Journal and Motor Trend before that. It was an exciting time filled with hope that battery breakthroughs would come, bringing full-function EVs offering the same driving range as conventional vehicles.
Expectations were high that a public charging infrastructure would expand to make topping off batteries convenient. New ideas like 15-minute rapid charging and battery swap stations would allow drivers of all model EVs the ability to renew on-board energy in the time it takes to enjoy a cup of coffee, enabling them to head back on the road in short order with a full battery charge. Importantly, there was an expectation that EVs would be affordable, both to manufacture and to buy.
If only this unfolded as expected, automakers would commit to developing battery electric vehicles of all types to meet the needs of an emerging market. But things have not unfolded as expected.
California’s Zero Emission Vehicle mandate drove the electric car surge in the 1990s and it’s a huge influence today. While less refined than electric models we have now, electrics of the 1990s like the Toyota RAV4 EV, Nissan Altra minivan, and Honda EV Plus were quite well engineered. Then there was GM’s EV1. Sleek, sexy, and fun, it provided a daily driving experience unparalleled in the field, something I came to appreciate well during the year I drove an EV1.
The challenge then was the same as now: cost. The EV1 was so costly to build with such massive losses there was no business case for it to continue, and so it ended, as all other electric vehicle programs of the 1990s ended, for the same reason.
Early on, Volvo had the foresight to challenge the status quo. While evaluating ways to meet California’s impending ZEV mandate, the automaker concluded there was no way to do this realistically with a vehicle powered exclusively by batteries. In 1993, I test drove Volvo’s answer – its high-tech Environmental Concept Car (ECC) that added a high-speed turbine-generator to an electric drivetrain, thus creating what we now call a range-extended electric vehicle (think Chevy Volt). Sadly, the ECC’s high cost turbine-generator meant this innovative car never saw production. But it was at the leading edge of a movement that brought us hybrids and range-extended electric cars. Today, even BMW – a high-profile champion of electrics with its innovative i3 – understands the importance of offering a range-extended variant with a gas engine-generator for those who prefer the convenience of longer range.
In answer to the chorus of Tesla enthusiasts sure to raise their voices, I am aware that Tesla is committed to all-electric vehicles and the range of the $70,000-$95,000 Model S (before the addition of popular options) is substantially greater than its competitors. The coming Model X electric crossover is expected to be in the same aspirational category as the Model S with a price suitable for premium buyers. The company's planned Model 3, presumably a vehicle accessible to the masses at a price Tesla says will be about $35,000, is said to be three years away. That's a good thing since significant battery cost reductions will be required to make this Tesla-for-the-masses electric an affordable reality. Will three years be enough? Achieving battery cost reductions of the magnitude required is no sure bet and, as history has proved, battery technology advances move at their own pace.
One stock analyst recently quoted in a major newspaper article shared that Tesla has the ability to reduce battery costs by nearly half in the coming three to five years. Of course, the backstory is that this ‘ability’ is really but a ‘potential’ based on batteries that do not yet commercially exist. The past 25 years are replete with examples of major government and industry efforts aimed at developing energy-dense, safe, and affordable electric car batteries that deliver the range and cost expectations of auto manufacturers and consumers. Over these years there have been many incremental improvements in battery design and chemistry, a slew of failures, and pending ‘breakthroughs’ that have often been promoted only to have expectations and actual production sidelined for a plethora of reasons du jour.
As just one recent example, Panasonic's 2009 announcement of a lithium-ion battery breakthrough using a silicon alloy cathode was accompanied with a claim it would be manufactured in 2012. Many positive reports on electric vehicles take into account this very ‘breakthrough’ and others like it, with the considerable cost reductions that would follow. Yet, Panasonic did not begin mass production of this battery technology in 2012. According to a Panasonic spokesman, the company’s work on developing high-capacity battery cells using a silicon-based negative electrode is ongoing. Hopefully, developments like these will lead to the kind of mass production that could bring long-hoped-for battery performance and cost reductions. Perhaps this will come to pass with a mass effort by Tesla through its proposed $5 billion battery ‘Giga Factory,’ and perhaps not. But after 25 years of following battery development I have learned not to count on claims or development, but rather actual production and availability in the real world.
Tesla continues to develop its Supercharger quick-charge network and has potential plans for a battery swap system, both exclusively compatible with its own vehicles. An innovative and expanding infrastructure for battery electrics will be required for their ultimate success and these are very positive moves, although only for those with a Tesla product and not electric vehicle owners as a whole.
Battery electric vehicles priced at levels accessible to everyday buyers will continue to grapple with cost and marketing challenges until a battery breakthrough comes. This is illustrated by Fiat Chrysler Automobiles CEO Sergio Marchionne's comment earlier this year that the company is losing $14,000 on every one of the Fiat 500e electric cars it sells. Is it so different for other automakers also selling EVs in limited numbers and in constrained geographic locations? Not inconsequentially, to bolster the market battery electric cars will also require continuing federal and state incentives that combined typically total $10,000 or more. Hopefully, innovative thinking and real technology and cost breakthroughs will emerge in the years ahead.
In the meantime, gasoline-electric hybrids and plug-in hybrid models, plus range-extended electric vehicles that combine all-electric drive with an on-board electric generator, are providing functionality for everyone even as battery-only electric cars fight hard to establish their place in the automotive market. Let's hope that mass-market, nationally-available models like BMW's innovative i3 electric car change this dynamic sooner than later.
What does Silicon Valley, California have in common with Leipzig, Germany? They are both home to the most innovative, technically advanced, and possibly the most significant cars of the 21st century. The Tesla Model S and the BMW i3 are the cars that have defied experts who said they couldn't be built. While the key innovations for each of these cars are different, the innovative spirit is the same.
With the Model S, Tesla created a breakout electric car out of mostly existing technology. What Tesla did better than other new entrant was put it together, what Silicon Valley calls ‘systems integration,’ into a remarkable package. With obsessive attention to detail and high standards for performance and styling, Elon Musk has emerged as the Steve Jobs of the auto industry and proven countless naysayers wrong.
With the i3, BMW created an affordable car out of an innovative material, carbon fiber, or technically speaking, ‘carbon fiber reinforced plastic.’ BMW has found a way to apply its manufacturing know-how to bring what was once an exotic material for supercars and fighter jets to an everyday car. Driven to not make just a ‘me too’ electric car, Ulrich Kranz, the father of the i3, has created a breakthrough car that, like the Model S, is receiving enthusiastic reviews from auto critics for its performance.
In the 20th century, the automobile shaped the world. In the 21st century, the world will shape the automobile. Today’s cars are a major source of urban air pollution, global warming emissions, and oil dependency.
Fortunately, there are those in the auto industry – like Mr. Musk and Dr. Kranz – who understand it doesn’t have to be this way. Technology innovation combined with visionary leadership can reinvent the automobile. Tesla’s Model S and BMW’s i3 prove that being more in balance with today’s global realities does not mean sacrificing what makes the auto industry great.
Location-efficient affordable housing is key to sustainability. Kalos, the Greek word for ‘beautiful,’ may be the name of an 83 unit affordable housing project in San Diego, California, but it also describes the ‘green’ car capacity the developer, Community HousingWorks, plans for the project as part of its pursuit of LEED platinum certification. We have partnered with Community HousingWorks for nearly nine years now and helped the organization green the Kalos project starting a few years ago. This partnership builds on Global Green’s leadership to advance the greening of affordable housing in the U.S. over the last 18 years.
What’s remarkable about the Kalos development is not just that it is LEED Platinum. It is the inclusion of sustainable transit options. Car-sharing innovator Car2Go will park two electric-powered SmartCars at electric car charging stations. For a $35 one-time fee, Kalos residents will then have the opportunity to access an on-site alternative to first, or second, car ownership. Given that California car ownership runs over $9,000 per year, transportation costs are the second highest monthly expense for low-income families after rent. Car2go’s SmartCars will dramatically expand transportation access for Kalos residents.
The two publicly accessible electric vehicle charging stations are incorporated into the alley entrance of the project. ECOtality, a leader in clean electric transportation and storage technologies, will provide the stations – and federal incentives will further reduce costs.
The leadership of Community HousingWorks, and other organizations who look at sustainability beyond the building envelope, is important to helping improve the environment and lives of low income families. The benefits are many: providing a public amenity in the rapidly gentrifying North Park neighborhood; integrating green, sustainable means of transportation in a low-income housing complex; providing more options for residents who need them; and, serving as an example of green, affordable housing development. Kalos it truly is.
The evolution of the auto industry has been no less than amazing. I have witnessed this first-hand while documenting the advent of ‘green’ cars over two decades at Green Car Journal and at Motor Trend before that. We had electric cars back in the 1990s as we do now, battling for acceptance, with other alternative fuels also jockeying for position amid an expansive field of conventional vehicles. Things change, things stay the same…although the numbers have improved for electrics.
While not particularly ‘green’ in earlier years, the automotive field did show early inclinations toward efficiency, particularly after the Arab oil embargo of the 1970s and oil disruptions of the 1980s. That was short lived as gasoline disruptions eased and gas was again plentiful and cheap. It was the 1990s, though, when industry and consumer interest in ‘green’ kicked into high gear.
The advancement of ‘green’ vehicles has largely been driven by the State of California, which has long required new vehicles to run cleaner than those meeting federal standards, a nod to the state’s epic half-century battle with urban smog. California has led the way in recent times with its milestone low emission vehicle program and its requirements for ever-cleaner running cars meeting seemingly impossible emissions goals. All this led to more stringent federal standards and, along the way, internal combustion vehicles with near-zero tailpipe emissions. It also hastened the introduction of hybrids and battery electric cars.
Early on, interest in greener cars was primarily driven by concerns such as tailpipe emissions, air quality, and petroleum dependence, the latter focused on resource depletion, the environmental cost of petroleum production, and significant dependence on imported oil. But that has evolved. The release of multiple studies singling out CO2 emissions as a major contributor to climate change added yet another reason to demand cleaner cars, with carbon emissions now a focal point. New regulations requiring much higher fuel economy in the years ahead – accomplishing the multiple goals of reducing petroleum use and lowering CO2 emissions through higher efficiency – have helped change the dynamic as well, as have the shockingly high gas prices seen late last decade. Together, they created the perfect storm for ‘green’ cars.
The cumulative result of regulations and incentives – plus an auto industry increasingly looking at ‘green’ not only as a requirement but as a market advantage – is a field of greener choices at new car showrooms. We now have internal combustion vehicles with near-zero emissions. A growing number of vehicle models are hybrids, plug-in hybrids, and battery electric cars with a few gaseous fuel models as well. The vast majority, however, are conventional vehicles that are worlds better than those of the past – gasoline and clean diesel models that achieve 35, 40, and 45 mpg or better with 50+ mpg clearly on the horizon.
While electric vehicles are often the topic du jour, it’s evident that new car buyers want the ability to pick their path to a greener driving future, choosing the vehicle, powertrain, and fuel that make them comfortable in their daily journeys. It has been satisfying to witness the auto industry’s decades-long evolution that’s now enabling consumers to do just that.
We are all enamored by the advanced technologies at work in vehicles today. And why wouldn’t we be? The incredibly efficient cars we have today, and the even more efficient models coming in the years ahead, are testament to a process that combines ingenuity, market competitiveness, and government mandate in bringing ever more efficient vehicles to our highways.
It’s been a long and evolutionary process. I remember clearly when PZEV (Partial Zero Emission Vehicle) technology was first introduced in the early 1990s, a breakthrough that brought near-zero tailpipe emissions from gasoline internal combustion engine vehicles. That move was led by Honda and Nissan, with others quickly following. Then there were the first hybrids – Honda’s Insight and Toyota’s Prius – that arrived on our shores at the end of that decade. Both technologies brought incredible operating efficiencies that drastically reduced a vehicle’s emissions, increased fuel economy to unexpected levels, or both.
Of course, there were first-generation battery electric vehicles in the mid-1990s that foretold what would become possible years later. That first foray into EV marketing was deemed by many a failure, yet it set the stage for the advanced and truly impressive EVs we have today. Those vehicles may not yet be cost-competitive with conventionally powered vehicles due to very high battery costs, but that doesn’t diminish the genius engineering that’s brought them to today’s highways.
Even conventionally-powered cars today are achieving fuel efficiency levels approaching that of more technologically complex hybrids. Who would have imagined popular cars getting 40 mpg or better, like the Dodge Dart, Chevy Cruze, Mazda3, Ford Fiesta, and many more in a field that’s growing ever larger each year?
VW and Audi have proven that clean diesel technology can also achieve 40+ mpg fuel efficiency while providing press-you-back-in-your-seat performance, and importantly, doing this while meeting 50 state emissions criteria. That’s saying something considering diesel has historically had a tough go of it meeting increasingly stringent emissions standards in California and elsewhere. Yet, with elegant engineering by these automakers and their diesel technology supplier Bosch – plus this country’s move to low-sulfur diesel fuel late last decade – ‘clean’ diesel was born.
I would be remiss if I didn’t mention natural gas vehicles. There was a time when quite a few automakers were exploring natural gas power in the U.S., but that faded and left Honda as the lone player in this market with its Civic Natural Gas sedan. Now others are joining in with dual-fuel natural gas pickups and vans, benefitting from advanced engine technologies, better natural gas tanks, and a sense that with increasing natural gas reserves in the U.S., demand for natural gas vehicles will grow. As Honda has shown with its Civic, it’s possible to operate on this alternative fuel while also netting admirable fuel efficiency.
All this advanced powertrain technology is important. It makes air quality and petroleum reduction goals achievable, even ones like the ethereal 54.5 mpg fleet fuel economy average requirement that looms for automakers by 2025. There’s no doubt that advanced technologies come at a cost and reaching a 54.5 mpg average will require the full range of efficiency technologies available, from better powerplants and transmissions to greater use of lightweight materials, aerodynamic design, and answers not yet apparent. But I’m betting we’ll get there in the most efficient way possible.
Ron Cogan is editor and publisher of Green Car Journal and editor of CarsOfChange.com
About a year ago, I gathered all our employees for a meeting and proceeded to make one bold statement, and an even bolder prediction. I shared my deep conviction that we were at the forefront of a historic opportunity within the automotive, trucking, and transportation industry. My prediction: We were on the verge of experiencing near vertical technological innovations within our industry and the next 10 years would usher in dramatic change. So far, so good!
Change and the rapidity of change are hard to predict, but not so when we can turn to the evidence around us and identify well-defined trends and plausible technological pathways. Never before has society experienced such spectacular innovations within the transportation industry. Just in the past five years, the industry has spiritually ushered in battery powered roadsters, plug-in-hybrids, natural gas powered vehicles, fuel-sipping new engine technologies, and never-before seen intelligent electronics andeighting materials. It is hard to believe companies are actually testing vehicles that will drive by themselves. Unreal! And here is the best part – technological breakthroughs and industry advancements will become even more pronounced. The transportation industry is poised to experience Moore's law of near vertical change. The foundation has been set. Everything can and will be challenged.
Traditional drivetrain technologies and fuels have quickly been put on notice. The internal combustion engine is being re-invented. Gasoline and diesel are no longer the only games in town. New powertrain technologies are multi-faceted and incorporate multiple energy sources. Transcending it all are alternative fuels such as natural gas, which is emerging as the smart choice to an environmentally conscious society, economically driven consumer, and job-creation minded country.
Natural gas vehicles will become as permanent as they will be fashionable. This is very predictable and exciting. Every macro-trend and technological advancement points to accelerated adoption of this cheaper, cleaner, and home-grown fuel to run our vehicles. A new generation of technology advancements enables radical growth and broad-scale adoption of natural gas vehicles - innovative direct-injection and engine technologies, ultra light-weight composite materials and advanced processes, unique adsorbent storage materials, and refueling methodologies never before seen or used. These innovations are setting the foundation for real change – a vertical change.
We can all let our imaginations run wild and dream about the future of automotive technology – but that future is now. We are in the midst of a historic transformation within this industry.
My company, Quantum Technologies, has been a leader in advancing alternative fuel storage technologies over the past two decades, hard at work innovating solutions to store compressed hydrogen at 10,000 psi for fuel cell vehicles or deploying high strength carbon composites for natural gas storage tanks. Case in point, we recently introduced the next generation fuel tanks (Q-Lite™) using ultra-lightweight and lower-cost materials. These advancements are impressive and enabling. While gaseous fuel storage technology has progressed steadily over the past 10 years, advancements over the next five years will be more remarkable. Dramatic change in any industry opens up an abundance of opportunities to shape the future.
The next generation compressed gas fuel storage systems will be defined by advances in materials, high precision manufacturing processes, and optimized topology with built-in diagnostics. Future compressed fuel tanks will be dematerialized, lighter in weight, and volumetrically efficient, storing gases in ways and pressures that were not possible five years ago.
My meeting with the employees was not overly long, but rather direct and pointed. Although they were keenly aware of our company's contribution to these emerging technologies and took pride in reflecting on their own pioneering accomplishments, I finished with one last thought: Companies that are merely reactionary to the technological changes may not survive. Successful companies will need to anticipate the future of change, shape it, and lead it!
Brian Olson is CEO of Quantum Fuel Systems Technologies Worldwide, a company specializing in the development and production of natural gas storage systems and the integration of advanced vehicle control systems and drivetrains.