When Vehicles Talk, We Should Listen

v2v-communications

The Department of Transportation’s year-long Safety Pilot ‘model deployment’ in Ann Arbor, Michigan is over but the learning curve has just begun. Representing the largest-ever road test of vehicle-to-vehicle (V2V) technology with nearly 3,000 vehicles, the demonstration explored V2V’s many benefits  in real-world situations as vehicles communicated with one another, exchanging real-time information like speed and GPS-derived location. While the main benefit is accident avoidance, the technology is also ‘green’ since it can reduce traffic congestion and save fuel.

This large scale demonstration was successful in showing  interoperability of V2V technology among products from different vehicle manufacturers and suppliers. Thus, from this and years of DOT testing of V2V technologies, DOT and NHTSA (National Highway Traffic Safety Administration) say they will begin taking steps to encourage V2V communication technology in future light vehicles.

With V2V, vehicles share basic safety data 10 times a second. DOT research indicates that safety applications using V2V technology can address a large majority of crashes involving two or more vehicles. With safety data such as speed and location from nearby vehicles, vehicles can identify risks and provide drivers with warnings to avoid rear-end, lane change, and intersection crashesv2v-alert

Vehicle-to-vehicle communications can provide 360-degree situational awareness to avoid  crash situations. For example, those nagging questions – is it safe to pass on a two-lane road, make a left turn across the path of oncoming traffic, or are vehicles approaching a blind intersection – are answered for you, consistently and automatically. In these situations, V2V communications can warn of potential threats hundreds of yards from other vehicles that cannot be seen, often when on-board sensors alone cannot detect the threat. Early indications show real potential to avoid 70 to 80 percent of crashes involving unimpaired drivers.

One challenge comes from the fact that V2V technology uses the 5.9-GHz frequency band also used by Wi-Fi devices. This could potentially cause interference and affect the integrity of V2V safety communications. That’s an important consideration since communication delays of even thousandths of a single second matter when dealing with auto and highway safety. Experts are working with the Wi-Fi industry to see how this spectrum can be safely shared.

v2g-demonstration

This current pronouncement doesn’t address autonomous cars or application in large vehicles like trucks and buses. The demonstration didn’t include any V2V interaction with vehicle controls but rather only warnings to prevent collisions, not involving robotically operated systems like automatic braking or steering as part of an anti-collision strategy. That said, NHTSA is also considering future safety technologies that rely on on-board sensors. Those technologies are eventually expected to blend with V2V technology.

For those concerned with privacy,  V2V technology does not involve exchanging or recording personal information or tracking vehicles. The information sent between vehicles does not identify a specific vehicle,  just basic safety data. The contemplated system also contains several layers of security and privacy protection.

NHTSA will now begin working on proposed regulatory actions that would require V2V devices in new vehicles. The purpose of this initiative is to encourage development of V2V technology and pave the way for market penetration of V2V tech that will represent the next generation of life-saving achievements, enhancing the well-documented protection already seen with safety belts and air bags.