Green Car Journal logo

2016-chevy-impala-bi-fuel-34-front-lead

  1. Alternative fuels have been an important focus at GM over the past 25 years. The 2016 Chevrolet Impala Bi-Fuel is the latest model to offer the ability to seamlessly run on compressed natural gas (CNG) or gasoline. Natural gas is the cleanest-burning of all fossil fuels and emits fewer greenhouse gas emissions than conventionally powered vehicles. Plus, natural gas is an abundant resource in the U.S. and costs significantly less per gallon equivalent than gasoline.

2016-chevy-impala-bi-fuel-instruments

  1. Gas or CNG? Dual fuel capability solves the range anxiety that occurs with vehicles running solely on an alternative fuel. Impala drivers can choose to run on CNG or gasoline with a dashboard switch. The system seamlessly switches to gasoline once CNG is depleted. Fuel gauges are provided for both fuels.

2016-chevy-impala-bi-fuel-apple-carplay

  1. Connectivity is well looked-after in the Impala Bi-Fuel, which offers OnStar with 4G LTE connectivity and Wi-Fi hotspot plus wireless smartphone charging. Chevrolet’s MyLink infotainment system and Apple CarPlay integrate smartphone functions onto an eight-inch color touchscreen that allows calling up features like music and navigation apps.

2016-chevy-impala-bi-fuel-filler

  1. Fueling convenience is provided with both the gasoline fuel inlet and CNG pressure fitting located behind a common fuel filler door. Fueling with natural gas at a CNG pump takes about the same amount of time as refueling with gasoline.

2016-chevy-impala-bi-fuel-vvt-powerplant

  1. Bi-fuel operation requires the Impala’s 3.6-liter dual-fuel V-6 to be equipped with hardened valves and valve seats to enhance durability when running on CNG. Special regulators, filters, and high pressure fuel lines are also used. Driving range is an EPA estimated 119 miles on CNG and 368 miles on gasoline.

Well, this should be no surprise. Reuters reports what we’ve suspected all along because there’s a long history of this happening: Low gasoline prices are negatively impacting the sale of alternative fuel vehicles including those running on natural gas and electricity.

Not surprisingly, with lower gasoline prices comes a decided uptick in purchases of larger and lower efficiency vehicles, especially SUVs. Beyond personal transportation, the commercial sector is also being hit hard because the cost differential involved in buying large natural gas trucks presently fails to pencil out well compared to conventionally powered models.

Is this a trend? Only short term, really. Green Car Journal editors have noted such occurrences over the past two decades and the trend has always ebbed and flowed with varying fuel prices, incentives, and other factors. While the long-term prospects for battery electric vehicles hinge on lower cost batteries in the future, hybrids and high efficiency conventional vehicles are here to stay.

It is an exciting time to be involved with the auto industry, or to be in the market for a new car. The auto industry has responded splendidly to the challenge of new emission, fuel economy, and safety standards. The public is offered a greater than ever selection of vehicles with different powertrains, lightweight materials, hybrids, and electric drive vehicles across many platforms. We see increasing numbers of clean diesel vehicles and natural gas is making a resurgence, especially in the heavy-duty sector.

alan-lloydThe positive response by the auto industry to the ever-tightening pollutant emission and fuel economy standards includes tactics such as the use of aluminum in the Ford F-150 and the increased use of carbon fiber by BMW, among many innovations introduced across many models and drivetrains. These evolutionary changes are a major tribute to the automobile engineers who are wringing out the most they can in efficiency and reduced emissions from gasoline and diesel engines. I view this evolutionary change as necessary, but not sufficient to meet our greenhouse gas goals by 2050.

New car ownership is currently down in Europe and is leveling off in the U.S. For global automotive manufacturers, however, this trend is offset by the dramatic growth in places like China and India. The potential for dramatic growth in the developing world is clearly evident: In the U.S., there are about 500 cars per thousand people, compared to about 60 and 20 in China and India, respectively.

How can these trends be reconciled with the environmental and health concerns due to climate change and adverse air quality in the developing world? The evidence for climate change accumulates by the day. Hazardous air quality in many major cities in China has drawn global attention, providing a visual reminder of how far the developed world has come and how much environmental protection needs to be accelerated in the developing world. Damaging air pollution is increasingly seen as a regional and even worldwide challenge. Dramatic economic growth in many developing countries is generating pollution that knows no boundaries. Air pollution from China, for example, fumigates Korea and Japan and is even transported across the Pacific to impact air quality in California and other Western states.

It will take a revolutionary change to provide personal mobility without unacceptable energy and environmental consequences. As a recent National Academy of Sciences (NAS) document states, it is likely that a major shift to electric drive vehicles would be required in the next 20 to 30 years. Electric drive vehicles, coupled with renewable energy, can achieve essentially zero carbon and conventional pollutant emissions. The NAS report also predicted that the costs of both battery and fuel-cell electric vehicles would be less than advanced conventional vehicles in the 2035-2040 timeframe.

This transition will not occur overnight and we will be driving advanced conventional vehicles for many years to come. In a study for the International Council on Clean Transportation, Dr. David Greene calculated that the transition could take 10 to 15 years, requiring sustained investment in infrastructure and incentives in order to achieve sustained penetration. While this investment is not inexpensive, it is projected that the benefits of this investment will be 10 times greater than the costs.

So where do we stand today on electric vehicles? We are seeing an unprecedented number of hybrid, plug-in hybrid, and battery electric vehicles across many drivetrains and models. There were about 96,000 plug-in electric vehicles sold or leased in the U.S. last year and more than 10 new PEV models are expected this year. While the sales fall short of some optimistic projections, it is an encouraging start after many years of more hope than delivery. The FC EV is expected to see significant growth after the initial limited introduction of fuel cells in the 2015-2017 timeframe by five major automobile companies.

It will take many years of sustained increasing penetration into new car sales to make this revolution a success. It is indeed a marathon and not a sprint. The challenge is how to ensure sustained sales of electric drive vehicles in the face of the many attributes of advanced technology conventional vehicles.  Electric drive vehicle drivetrains have an affinity with the increasing amount of electronics on board the vehicle, which might ultimately yield very interesting, capable, and competitive vehicles.

I have little doubt that if we are serious about our energy, environmental, and greenhouse gas goals the revolution in technology will occur. All the major automobile companies seem to recognize this in their technology roadmap, which includes advanced conventional vehicles, plug-in hybrid vehicles, battery and fuel cell electric vehicles.

In conclusion, the next 20 years promise to be equally as challenging and exciting as the last 20 years. I have little doubt that the automobile engineers are up to the task ahead, but whether we have the political fortitude to stay the course to achieve the necessary air pollution and GHG reductions is far less certain.

Dr. Alan Lloyd is President Emeritus of the nonprofit International Council on Clean Transportation (ICCT). He formerly served as Secretary of CalEPA and Chairman of the California Air Resources Board.

the-icct-logo

 

2015 bi-fuel CNG Chevrolet ImpalaWhile drivers in many other countries can choose from dozens of passenger car models operating on compressed natural gas (CNG), that’s not the case here. We have one: Honda’s Civic Natural Gas.

That changes with the coming 2015 Chevrolet Impala Bi-Fuel Sedan. Like the Civic, the alternative fuel Impala comes straight from the manufacturer – in this case Chevy – without the extra step of fuel conversion by an outside vehicle modifier. Current natural gas pickups and vans from Chevy, Ford, GMC, and Ram are sent to aftermarket suppliers for installation of natural gas components.

CNGBiFuelChevyImpalaReveal04.jpg

The new bi-fuel Impala will be able to run on either gasoline or CNG, addressing the range anxiety issue associated with dedicated vehicles that run exclusively on an alternative fuel. It also allows owners to use the least expensive fuel at the time of fill-up. The system seamlessly switches from natural gas to gasoline if the CNG tank is depleted. Drivers can also choose to run on their fuel of choice with a dashboard switch. Total range with both fuels is an expected 500 miles.

Making a bi-fuel Impala requires changes to the 3.8 liter V-6 engine so it can burn either fuel, plus the addition of regulators, filters, high pressure gaseous fuel lines, and a CNG fill receptacle. A large CNG tank is added in the trunk and does reduce cargo capacity. The system is factory-engineered and fully warranted.

2015 bi-fuel CNG Chevrolet Impala

About a year ago, I gathered all our employees for a meeting and proceeded to make one bold statement, and an even bolder prediction. I shared my deep conviction that we were at the forefront of a historic opportunity within the automotive, trucking, and transportation industry. My prediction: We were on the verge of experiencing near vertical technological innovations within our industry and the next 10 years would usher in dramatic change. So far, so good!

brian-olsonChange and the rapidity of change are hard to predict, but not so when we can turn to the evidence around us and identify well-defined trends and plausible technological pathways. Never before has society experienced such spectacular innovations within the transportation industry. Just in the past five years, the industry has spiritually ushered in battery powered roadsters, plug-in-hybrids, natural gas powered vehicles, fuel-sipping new engine technologies, and never-before seen intelligent electronics andeighting materials. It is hard to believe companies are actually testing vehicles that will drive by themselves. Unreal! And here is the best part – technological breakthroughs and industry advancements will become even more pronounced. The transportation industry is poised to experience Moore's law of near vertical change. The foundation has been set. Everything can and will be challenged.

Traditional drivetrain technologies and fuels have quickly been put on notice. The internal combustion engine is being re-invented. Gasoline and diesel are no longer the only games in town. New powertrain technologies are multi-faceted and incorporate multiple energy sources. Transcending it all are alternative fuels such as natural gas, which is emerging as the smart choice to an environmentally conscious society, economically driven consumer, and job-creation minded country.

Natural gas vehicles will become as permanent as they will be fashionable. This is very predictable and exciting. Every macro-trend and technological advancement points to accelerated adoption of this cheaper, cleaner, and home-grown fuel to run our vehicles. A new generation of technology advancements enables radical growth and broad-scale adoption of natural gas vehicles - innovative direct-injection and engine technologies, ultra light-weight composite materials and advanced processes, unique adsorbent storage materials, and refueling methodologies never before seen or used. These innovations are setting the foundation for real change – a vertical change.

We can all let our imaginations run wild and dream about the future of automotive technology – but that future is now. We are in the midst of a historic transformation within this industry.

My company, Quantum Technologies, has been a leader in advancing alternative fuel storage technologies over the past two decades, hard at work innovating solutions to store compressed hydrogen at 10,000 psi for fuel cell vehicles or deploying high strength carbon composites for natural gas storage tanks. Case in point, we recently introduced the next generation fuel tanks (Q-Lite™) using ultra-lightweight and lower-cost materials. These advancements are impressive and enabling. While gaseous fuel storage technology has progressed steadily over the past 10 years, advancements over the next five years will be more remarkable. Dramatic change in any industry opens up an abundance of opportunities to shape the future.

The next generation compressed gas fuel storage systems will be defined by advances in materials, high precision manufacturing processes, and optimized topology with built-in diagnostics. Future compressed fuel tanks will be dematerialized, lighter in weight, and volumetrically efficient, storing gases in ways and pressures that were not possible five years ago.

My meeting with the employees was not overly long, but rather direct and pointed. Although they were keenly aware of our company's contribution to these emerging technologies and took pride in reflecting on their own pioneering accomplishments, I finished with one last thought: Companies that are merely reactionary to the technological changes may not survive. Successful companies will need to anticipate the future of change, shape it, and lead it!

Brian Olson is CEO of Quantum Fuel Systems Technologies Worldwide, a company specializing in the development and production of natural gas storage systems and the integration of advanced vehicle control systems and drivetrains.

Quantum Logo comp dk bk

In the 1990s amid all the activi­ties surrounding electric vehicles, there were natural gas vehicles (NGVs) being sold by automakers, pri­marily pickups and vans aimed at fleets. It was a good start for natural gas.

Unfortunately, the changing whims of federal regulations and alternative fuel implementation saw these well-executed light-duty trucks fall by the wayside, leaving only Honda in the factory-pro­duced NGV market with its natural gas Honda Civic sedan.

Now that’s changing. Ford, GM, and Ram Truck have new natural gas vehicle offerings that are better than ever. Plus, major independent companies are ret­rofitting new fully-certified pickup and van models to natural gas in increasing numbers. Clean Energy Fuels subsidiary BAF, for example, recently completed its 20,000th NGV conversion.

Ford has developed F-250 and F-350 trucks equipped with the Westport WiNG Power System. These Super Duty pickup trucks feature this advanced, integrated, bi-fuel system on Ford’s 6.2 liter V-8 gasoline engine so it can oper­ate on either CNG or gasoline.

What’s really surprising is the natural gas range of these pickups. Behind-the-wheel experience with a bi-fuel Super Duty pickup has achieved a natural gas driving range greater than 300 miles with an expected total driv­ing range of 650 miles on both CNG and gasoline.

General Motors has been offering Chevrolet Express and GMC Savana CNG cargo vans with its Vortec 6.0-liter V-8 engines modified to operate on CNG only. It has now added dual-fuel CNG Chevrolet Silverado HD and GMC Sierra 2500 HD commercial pickup trucks to its natural gas choices for fleets and consumers.

Priced $11,000 above the base vehicle, the GM pickups’ CNG and gasoline tanks have a com­bined range of 650 miles. The bi-fuel pickups use a CNG dual-fuel delivery and storage system developed and installed by supplier IMPCO.

Dodge Truck builds its new Ram 2500 Heavy Duty CNG pickup on the assem­bly line rather than having the final stages of conversion completed off-site by a contracted converter. The pickup is powered by a specially modified 5.7-liter HEMI V-8 that runs on natural gas by default and then automatically switches over to gasoline when the on-board CNG supply is exhausted.

The bi-fuel Ram pickup  incorporates two compressed natural gas storage tanks and an eight gallon fuel tank for gaso­line, providing a combined 367 mile driv­ing range. This formerly fleet-only vehi­cle is now being sold to retail customers.

This is all good news. Natural gas vehicles offer reduced CO2 and tail­pipe emissions, achieve fuel efficiency nearly identical to gasoline counter­parts, and use a domestic fuel that can cost a third less per gallon-of-gasoline equivalent.

Natural gas pickup choices are growing with the addition of a CNG powered pickup from Ram Truck. The dual-fuel Ram 2500 Heavy Duty CNG pickup, offered exclusively as a Crew Cab 4x4 model on a 169-inch wheelbase, is designed to run on either compressed natural gas or gasoline.

The transition from natural gas to gasoline is handled automatically. Unlike the natural gas pickup offerings from Ford and GM that are available to both fleets and consumers, the fully assembly line-built Ram CNG pickup will initially be offered exclusively to fleets at an MSRP of $47,500, plus a $995 destination charge.

To run on both fuels, the Ram HD CNG’s 5.7-liter HEMI V-8 is modified with redesigned cylinder heads, CNG compatible valves and valve-seat materials, a second CNG-specific fuel rail and CNG injectors, new spark plugs, and a new powertrain control module. A pair of 4.6 cu.-ft. CNG tanks located in the 8-foot pickup bed hold the gasoline gallon equivalent of 18.2 gallons. They are fueled through a CNG filler connection located next to the standard gasoline fuel neck, accessed through the Ram’s fuel filler door. An 8 gallon gasoline tank adds 112 miles of range to the pickup’s 255 range on natural gas.

Keeping track of fuel level is straightforward with a CNG-specific gauge adjacent to the conventional gasoline gauge in the instrument cluster. The CNG pickup’s considerable functionality is retained with a 1,580 lb. payload rating, 7,650 lbs. of towing capability, and a 4 ft., 8-in. usable cargo bed length.

 

Powered by propane autogas (LPG), the Maxximus LNG 2000 has set three new world records at South Georgia Motorsports Park, according to Fisher Island, Florida-based Centaur Performance Group. These latest record attempts follow additional world records set in January with the car running on liquefied natural gas (LNG).

The project, headed by financier Bruce McMahan and Indianapolis-based designer Marlon Kirby, set its latest records on LPG with the car achieving 0-60 mph in 2.6 seconds, 1/4 mile ET of 10.28 seconds, and 1/4 mile speed of 134 mph. The records set in January running on LNG were 0-60 mph in 1.96 seconds, 0-150 mph in 9.21 seconds, 1/4 mile ET of 9.63 seconds, and 1/4 mile speed of 159.9 mph. The car was driven by Marlon Kirby. The company points out that these achievements make the Maxximus the fastest powered supercar ever created using both LNG and LPG.

The Maxximus LNG 2000 uses self-pressurizing fuel tanks and is capable of running on propane autogas, liquefied natural gas, or compressed natural gas with on-demand adjustments. The car features a carbon fiber body.

Massive power is provided by a 1600+ horsepower twin-turbocharged, all-aluminum 7.0-liter V-8 with gaseous fuel injectors, boost reference gaseous regulators, and cryogenic chilled intercoolers. Amazingly, Centaur says the Maxximus is also 50-state emissions legal.