Green Car Journal logo

The MINI E was a pretty cool car based on the MINI Cooper two-door hardtop, fun to drive and pretty attention-getting with its unique, yellow electric plug graphics. We were sorry to see it go and really expected to see a production version introduced shortly after the MINI-E’s 2009/2010 field trials came to an end…but that wasn’t to be.

More recently, MINI has been offering its Cooper SE Countryman ALL-4, a plug-in hybrid model featuring gasoline engine power and 18 miles of all-electric driving. It’s not all-electric, but does champion MINI’s continuing interest in electrification. Now, after a long wait by MINI fans, the follow-up all-electric 2020 MINI Cooper SE has arrived.

The earlier Mini E’s battery pack replaced the rear seat, making it a two-seater. Contrasting this is the T-shaped battery pack in the new MINI Cooper SE that’s located beneath the rear seat and runs between the front seats. Thus, the Cooper SE remains a four-seater without compromising passenger or luggage space. While the MINI E had a range of about 100 miles on its 35 kWh lithium-ion battery, the Cooper S E improves on this a bit with an EPA estimated range of 110 miles with power from a smaller 32.6 kWh battery. It’s also energy efficient with an EPA rated 108 combined MPGe (miles per gallon equivalent).

Powering  the Cooper SE is a synchronous electric motor featuring 181 horsepower and 199 lb-ft torque.  Since maximum torque is available from standstill, the front-drive Cooper SE accelerates from zero to 60 mph in a brisk 7.3 seconds. To prevent slip during launch, the electric traction control system was integrated into the MINI’s primary electronic control unit (ECU), enabling computer control to shorten the time between wheel slippage and system response.

Four driving modes are offered. The default MID setting brings comfort-oriented steering characteristics, while a GREEN mode results in greater efficiency to increase range. GREEN+ disables features like heating, air conditioning, and seat heating to further increase range. SPORT mode, as you would expect, provides more sporty driving.

A driver can control the car’s degree of regenerative braking to increase or decrease deceleration intensity. A stronger regen setting can be selected if one-pedal driving is preferred. With aggressive regen, a Cooper SE begins decelerating as soon as a driver’s foot is lifted from the accelerator, enabling the car to be slowed at low speeds without using the hydraulic brakes. The softer regen setting is available for those who prefer a more conventional driving and braking feel.

Cabin heating is provided by an energy-efficient heat pump system that collects waste heat from the motor, drive controller, high-voltage battery, and outside temperatures. The result is 75 percent less energy use than a conventional electric heating system, thus saving all-important battery power to gain additional driving range. On hot or cold days, cabin temperature can be pre-conditioned by activating heating or cooling through the MINI Connected Remote App on a smartphone. The app also displays battery state-of-charge, available range, and energy consumption statistics. A map shows nearby public charging stations.

Standard equipment includes either Connected Navigation or Connected Navigation Plus, depending on the trim level. Connected Navigation includes a 6.5-inch central touchscreen. It enables Real Time Traffic Information to help a driver navigate around traffic congestion, along with Apple CarPlay and the internet platform MINI Online. Connected Navigation Plus includes an 8.8-inch color screen and adds wireless cellphone charging.

Speed, remaining range, battery charge level, and power demand are shown on a 5.5-inch digital instrument cluster screen behind the steering wheel. Also shown are navigation directions, selected MINI driving modes, status of driver assistance systems, and traffic sign detection.

The Cooper SE can be charged with a 120 volt AC household outlet or quicker with a 240 volt Level 2 wall or public charger, the latter taking about 3 1/2 hours from depleted to full charge. When 50 kW Level 3 fast-charging is available, the Cooper SE can be charged to 80 percent battery capacity in only 35 minutes. Charging is via a charge port above the right-hand rear wheel, the same location where you refuel a conventional MINI.

MINI’s Cooper SE is what fans of the marque have been waiting for. It’s packed with technology and promises a fun driving experience, at a reasonable base price of $29,900. Sign us up!

The 2020 Karma Revero GT is a major remake that delivers a new model substantially more refined than the original Karma Revero, which evolved from an existing series hybrid sedan. Externally, all of the Revero GT’s body panels have been restyled, including the doors. Most noticeable are the new grille and front fascia that present quite a departure from the Revero’s original and rather massive grillework.

Besides a more modern look, weight has been reduced by more than 500 pounds, an important move since this is one heavy grand touring car weighing in at some 5,050 pounds total. Optional carbon fiber wheels shave off an additional 55 pounds. Inside, there are new seats, center console, and an all-new infotainment system.

There are also big changes in the drivetrain. A turbocharged 1.5-liter three-cylinder engine, sourced from the BMW i8, replaces the previous GM-sourced 2.0 liter engine originally used in the Revero series hybrid. Two electric motors drive the rear wheels through a single speed transmission. Combined power output has noticeably increased from 403 to 535 horsepower, with a beefy dose of 550 lb-ft torque at the ready. All this brings an impressive 0-60 mph sprint in just 4.5 seconds. In a departure from the norm, the exhaust for the Karma GT’s three-cylinder engine is located behind the front wheels.

A lighter 28-kWh battery pack is configured to run down the spine of the car. This nickel-manganese-cobalt lithium-ion pack provides a battery electric range of up to 80 miles, an impressive gain over that offered by the 2019 Revero. With the 280 mile range afforded by electricity from the car’s gasoline engine-generator, overall driving range comes in at 360 miles. EPA rates the 2020 Karma Revero GT at 26 combined mpg and 70 MPGe when driving exclusively on battery power.

Drivers can choose between Stealth, Sustain, and Sport modes to tailor the driving experience. Stealth is for all-electric driving. Sustain mode uses the BMW range-extender engine to supply electricity to the rear motors, preserving power from the battery pack for later use. Sport mode maximizes performance by combining the power from both the engine-generator and battery pack. Three levels of regenerative braking can be selected using steering wheel paddles.

A Karma Revero GTS is planned for introduction later in 2020. Here, torque will be increased to a massive 635 lb-ft for even greater performance. The GTS variant will also feature electronic torque vectoring and Launch Control to handle all that torque. In addition, a planned battery upgrade is expected to provide up to 80 miles of all-electric driving.

Porsche has entered the electric vehicle market in a big way with its long-awaited Taycan, known for some time by its concept name, the Mission E. While Porsche has had plug-in hybrids in its model line for some time, this is the marque’s first all-electric vehicle.

Taycan comes in three versions to fit varying desires – the Taycan 4S, Taycan Turbo, and Taycan Turbo S. All variants feature all-wheel-drive using two electric motors, one driving each axle. The three Taycan versions differ only in battery capacity and horsepower, with each featuring varying levels of performance and driving range.

The point of entry for the model is the $103,800 Taycan 4S, which features a 79.2 kWh battery pack and 522 horsepower from its two motors. The $150,900 Taycan Turbo is energized by a 93 kWh battery and delivers 616 peak horsepower. This same 93 kWh battery pack is optional on the Taycan 4S. At $185,000, the Taycan Turbo S shares the same powertrain as the Turbo model but is tuned to deliver an even greater 750 horsepower when using launch control. Launch control power lasts for short bursts of 2.5 seconds. After that, all models reduce output slightly to protect the drivetrain from heat.

EPA rates the Taycan Turbo at a 201 mile driving range. That breaks the 200 mile barrier perceived by many as necessary for next-generation electric vehicles, but it is lower than some other electrics like the Audi e-tron and Tesla Model S. EPA fuel efficiency for the Taycan Turbo is a combined 69 MPGe (miles-per-gallon equivalent). Efficiency and range ratings for the Taycan 4S and Taycan Turbo S have not yet been released.

Porsche’s Taycan is the first electric vehicle to use an 800-volt electrical architecture. This allows more powerful 270 kW charging that enables recharging the battery from 5 to 80 percent in about 22 minutes. This requires an 800 volt DC public fast charger that is still quite rare. More common 400 volt DC fast-charging is limited to 50 kW, with some 150 kW chargers available that triple maximum charging power at 400 volt DC fast-charging stations. These can bring an 80 percent charge in 90 minutes or less.  Charging the Taycan using a widely-available 240-volt Level 2 public or home charger takes 10 to 11 hours.

All Taycans come with a 10.9-inch infotainment screen, Apple CarPlay, navigation, Bluetooth, HD and satellite radio, four USB ports, panoramic sunroof, and adaptive air suspension. Among the model’s standard safety equipment is a rearview camera, parking sensors, forward collision warning with brake assist, lane keep assist, traffic sign recognition, and adaptive LED headlights. Optional safety items include blind spot monitoring, adaptive cruise control, night vision camera,  and a surround-view parking camera system. Adding the optional performance package brings four-wheel steering and active anti-roll bars.

Aston Martin Lagonda's production-ready Rapide E, the marque’s first all-electric production car, is on its way to market. The first car built at Aston Martin’s state-of-the-art St Athan production facility – the brand’s Home of Electrification – Rapide E represents a pioneering first step towards achieving the company’s more comprehensive electrification strategy and the successful fruition of Lagonda, the world’s first zero-emission luxury brand.

Inside and out, Rapide E is equipped with the materials and technology befitting of the marque’s first EV model. Gone are the analog displays of the past. A 10-inch digital display now sits in their place, delivering all essential information to the driver including the battery’s state of charge, current motor power levels, regenerative performance, and a real-time energy consumption meter. Swathes of carbon fiber have been deployed throughout, assisting in delivering the strict weight targets set by Aston Martin’s engineering team.

A redesigned underfloor streamlines airflow from the front splitter all the way through to Rapide E’s new more massive rear diffuser, a feature now wholly dedicated to aero efficiency due to the removal of the exhaust system required in the past. The model’s forged aluminum aerodynamic wheels, which are shod with low rolling-resistance Pirelli P-Zero tires, have also been redesigned to provide further efficiency without compromising brake cooling capability. The sum of these changes gives Rapide E’s aerodynamic package an 8 percent improvement over the previous internal combustion model.

An 800-volt electrical architecture battery powers Rapide E – encased in a carbon fiber and Kevlar casing – with a 65 kWh capacity using over 5600 lithium-ion cylindrical cells. This bespoke battery pack lies where the gas model’s 6.0-liter V-12, gearbox, and fuel tank were located. This battery system powers two rear-mounted electric motors producing a combined target output of just over 600 horsepower and a colossal 700 lb-ft torque. Top speed for Rapide E is 155 mph with a 0-60 mph time of under 4 seconds.

A special edition with a production run strictly limited to 155 units, Rapide E has been developed in collaboration with Williams Advanced Engineering.

Lou Ann Hammond is CEO and editor-in-chief at drivingthenation.com

First thing: Have you driven an electric car? If you’ve lived with one for a time, then you likely have some solid ideas of your EV’s best features. Those who have just done a few test drives or haven’t driven electric at all could use some illumination. So here you go.

1. Hey, speed racer! Most electric cars boast pretty impressive acceleration from a stop. Unlike an internal combustion engine, electric motors generate 100 percent of their torque right out of the gate, which means your launch from standing still can be much more aggressive than you would imagine. We’re not saying you should do this as a matter of course…just that it’s kinda fun to know that capability exists.

2. Charging is way cool. Really. There’s nothing like parking your car for the night, plugging in, and starting the next day with a full ‘tank’ of energy on board. Just imagine life without the need to stop at a gas station. If you’re able to sign up for an electric vehicle rate plan from your electric utility, then set your charging to take place at non-peak hours overnight. You’ll have a full charge in the morning at the least possible cost. Plus, an ever-expanding network of public chargers is available for charging away from home, and while many now require a fee, a great many still provide energy for free. So, benefit from the kindness of strangers.

3. Electric vehicles are quiet, so enjoy your solitude. In the early days of EV development during the 1990s, there were unexpected noises to contend with like gear whine, high frequency noise from motor controllers, and such mundane things as the sound of tires contacting pavement and wind rushing past the windshield. Really. The familiar sound of internal combustion that normally masks the everyday sounds of motoring was notably absent. Over the years electrics have been engineered with better and quieter controllers, additional soundproofing, and other engineering measures to create the quiet EVs we have today. Experience the Zen.

4. EVs are extraordinarily efficient so you’ll be saving money every mile you drive, compared to driving on gas. The exact amount varies since gasoline and electricity costs differ by state, region, and city. A recent analysis by the Department of Energy indicated the national average for a gallon of gas was $2.74 compared to $1.21 for an ‘eGallon.’ DOE’s calculations factor the cost of fueling with gas compared to a similar vehicle that runs on electricity. The difference is even more dramatic in California, where I recently fueled up with standard grade gas at $4.59 per gallon. I was glad to get behind the wheel of an electric at the earliest possible opportunity.

5. Driving electric is like being in an immersive game. You have an extraordinary level of influence over your car’s efficiency with instrumentation providing continuous feedback on your driving and how this is affecting range. That’s not as critical in an EV with a 250-mile range capability as it is in one that can go only 90 miles on a charge, but that doesn’t matter. You’ll find yourself intrigued by your car’s instant feedback on energy usage, battery status, and distance-to-empty. There will be times when you will consciously (or unconsciously) adjust acceleration, speed, and downhill coasting to eke out more miles on that constantly recalculating distance readout, since more efficient use of on-board energy adds miles in real-time. Backing off the accelerator early and coasting up to a red light to maximize regenerative braking that feeds energy to the batteries is also human nature for an EV driver. Game on!

Green Car Time Machine.

It was an exciting time for electric cars in the early 1990s. GM’s Impact concept was unveiled at the 1990 LA Auto Show, with the Tokyo Motor Show exhibiting many electric concepts as well. Among them was Tokyo R&D’s IZA electric car. Green Car Journal editors attending the Tokyo show found the IZA a fascinating counterpoint to the Impact at the time. If you’re interested in the beginnings of the modern electric vehicle field as we know it today, then there’s no better place to start than diving into Green Car Journal’s early issues with us. Here, we present the following article from the Green Car Journal archives, as it was originally published in March 1992.

Excerpted from March 1992 Issue: Sleek and slippery like GM’s Impact prototype, the IZA easily garners attention from anyone in its vicinity. It did this consistently at the Tokyo Motor Show. GCJ editors there found it to be among the most formidable EV research efforts showcased by Japanese interests.

Iza electric car powertrain.

The IZA is principally sponsored by Tokyo Electric Power Company (TEPCO) as an “experimental study vehicle.” The company began with a clean slate in 1988, commissioning Tokyo R&D, Ltd. to design the body and Meidensha Corp. to handle motor and inverter development. Technical guidance was provided by the EV Research Organization and Professor Yoichi Kaya of the University of Tokyo.

Iza Electric Car Specs

Some interesting comparisons can be drawn with GM’s Impact prototype. Both aerodynamic EVs achieve an impressive 0.19 coefficient of drag, each relying heavily on wind tunnel design and high-tech construction techniques. The Impact uses a fiberglass-reinforced monocoque arrangement, while the IZA integrates a carbon fiber reinforced plastic body over an aluminum chassis. Height and width dimensions are nearly identical. Certain specifications vary widely since the Impact is a two-seater and the IZA a 2+2. The IZA’s body and wheelbase are longer (an additional 29 and 13 inches), and curb weight heftier by 1268 pounds.

This image has an empty alt attribute; its file name is Iza-Spec-Chart-Wide-1024x576.jpg

One of the most interesting features found on the IZA is its brand of motivation. Meidensha Corp. integrated a direct-drive system with each wheel connected to a DC brushless motor. Japan Storage Battery Company installed 24 nickel-cadmium (NiCad) batteries to create a 288-volt, 28.8 kWh powerpack for the four-wheel drive powertrain. This battery system weighs in at a substantial 1170 pounds, one-third of the car’s overall weight. Bridgestone Ecology 205/50R17 low-rolling resistance radials were mounted to modulate road friction and unspring weight.

Endurance testing on Meidensha’s chassis dynamometer in October 1991 indicated a 343-mile range at a steady speed of 25 mph, and a 169-mile range at 62 mph. Indicated top speed is 110 mph, the same as that of the Impact.

This image has an empty alt attribute; its file name is Iza-Illustration-1-1024x576.jpg

Functionality and Features

The car incorporates a variety of comfort and convenience features including power steering, power windows, and power-assisted brakes. An inverter-controlled heat pump air conditioning system is also used. Its interior is simple but stylish, with a smoothly contoured dashboard placing all controls easily within reach. Minimal instrumentation is housed within a very small rounded cluster directly in front of the driver.

TEPCO sources advise GCJ that additional IZA models are not planned at this time. In the meantime, the company is conduction further tests and working to secure a license plate for highway operation.

An important part of Green Car Journal’s mission is encouraging environmental progress in the auto industry through its annual Green Car Awards™ program.

These high-profile awards recognize vehicles that champion environmental achievement while remaining true to their purpose – they are fun to drive, look to our safety, provide value, and deliver the attributes most important to new car buyers  Importantly, they lead the way forward in meaningful ways through lower carbon emissions, greater efficiency, and improved overall environmental compatibility.

Green Car of the Year®, the magazine’s signature award first presented at the 2005 L.A. Auto Show, enjoys worldwide attention and is widely recognized as the most prestigious environmental award in the auto industry.

Weighing the merits of this award’s finalists are jurors from highly-respected efficiency and environmental organizations including Jean-Michel Cousteau, President of Ocean Futures Society; Matt Petersen, Board Chair of Climate Mayors; Dr. Alan Lloyd, Senior Research Fellow at the Energy Institute, University of Texas at Austin; Mindy Lubber, President of CERES; and Jason Hartke, President of the Alliance to Save Energy. Celebrity auto enthusiast Jay Leno and Green Car Journal editors round out the awards jury.

Models considered for Green Car Awards™ span all vehicle classes, from economy cars to luxury cars, and from Show. In addition, all five exceptional finalists for each award earn Green Car Journal’s 2019 Green Car Product of Excellence™ distinction for their environmental achievement.

GREEN CAR OF THE YEAR® Winner: Honda Insight. Finalists: Lexus ES 300h, Nissan Altima VC-Turbo, Toyota Avalon Hybrid, Volkswagen Jetta.

LUXURY GREEN CAR OF THE YEARWinner: Jaguar I-PACE. Finalists: Audi e-tron, Porsche Cayenne E-Hybrid, Range Rover P400e, Tesla Model 3.

GREEN SUV OF THE YEARWinner: Mitsubishi Outlander PHEV. Finalists: Cadillac XT4, Hyundai Kona, Lexus UX, Volvo XC40.

GREEN TRUCK OF THE YEARWinner: RAM 1500. Finalists: Chevrolet Colorado, Chevrolet Silverado, Ford F-150, Ford Ranger.

CONNECTED GREEN CAR OF THE YEARWinner: Nissan LEAF. Finalists: Audi e-tron, Subaru Crosstrek Hybrid, Tesla Model 3, Toyota RAV4 Hybrid.

COMMERCIAL GREEN CAR OF THE YEARWinner: Ford Transit Connect. Finalists: Ford Special Service PHEV Sedan, Mercedes-Benz Metris, RAM 1500, RAM ProMaster City.

GREEN CAR TECHNOLOGY OF THE YEARWinner: GM Dynamic Fuel Management. Finalists: Hyundai Nexo Fuel Cell Powertrain, Nissan VC-Turbo, Mitsubishi PHEV Powertrain, RAM eTorque.


Audi e-tron
Audi's new 2019 e-tron electric SUV joins Jaguar and Porsche in giving Tesla some serious competition. The automaker’s first-ever all-electric vehicle looks much like the rest of the Audi lineup, foregoing the temptation to go too futuristic or quirky in an effort to stand out as an electric. Its iconic Audi grille reinforces the sense of normalcy even as it handles the distinctly-electric job of directing cooling air to pass under the battery pack. Some electrification cues are provided, though, as the e-tron features slats running across the rear bumper that highlight the lack of tailpipes. Lights in the front are also designed to look like the bars of a charge status indicator. A dark colored section along the sides show battery pack location.

Efficient aerodynamics and other efficiency-enhancing touches were important in designing the e-tron, which features a drag coefficient of just 0.30. Features include cooling ducts for the e-tron’s front brakes and its adaptive, speed-dependent air suspension. Standard ultra-low rolling resistance 20-inch wheels are aerodynamically optimized. Full underbody cladding incorporates an aluminum plate to help protect the battery and also lower drag.

Audi e-tronThe e-tron's electric quattro all-wheel drive uses two asynchronous motors, each driving one set of wheels. Single-stage transmissions transfer torque to the axles via differentials. At moderate cruising speeds, the e-tron is powered mainly by the rear motor. The battery pack's location between the axles plus the low positioning of other drive components results in low center of gravity. Weight distribution is approximately 50:50. A driver can select from seven different driving modes, from comfortable to sporty, that alter suspension stiffness, steering responsiveness, and how aggressively the SUV accelerates.

Two electric motors accelerate the e-tron from 0-60 mph in 5.5 seconds with a top speed of 124 mph. It can tow up to 4000 pounds when equipped with the optional tow package. While EPA has yet to provide driving range numbers, testing in Europe resulted in 248 miles from the 95 kWh battery pack. EPA's testing here tends to yield somewhat lower range numbers.

2019-audi-etron-cabin-1Audi put heavy emphasis on recuperating as much energy as possible. Depending on driving conditions, terrain, and driving style, regenerative braking can provide as much as 30 percent of the e-tron’s range. The driver can select how aggressively the car uses this system, allowing for "one pedal" driving where taking the foot off the throttle will bring the car to a full stop using only regenerative braking.

The e-tron is available with a full range of standard or optional driver assistance packages including adaptive cruise assist, intersection assist, rear cross traffic assist, lane change and vehicle exit warning, and park steering assist. It comes in three trim levels - Premium Plus, Prestige, and First Edition. A panoramic glass sunroof is standard.

Audi e-tron

Tesla’s Model 3 was promised from the beginning to be an advanced electric sedan at an affordable $35,000 entry price. That, as anyone who has followed Tesla with any kind of regularity, has been an elusive goal as only higher-end and much more expensive versions of the Model 3 have been offered. And now…the $35,000 Model 3 is finally a reality.

Model 3 is a stylish and high-tech sedan offering a signature Tesla look and lots of advanced technology. Tesla’s third all-electric vehicle, the Model 3 follows in the footsteps of the well-regarded Model S sedan and Model X crossover SUV. Like these vehicles, the Model 3 is fast and fun to drive. Importantly, it does what Teslas are known to do – offer all-electric driving from about 220 miles up to 310  miles before requiring a recharge, which does a lot to ease range anxiety.

Just as Tesla’s approach to being an automaker is different, so too are its cars. Compared to the Model X, which the company packed in as many ‘firsts’ as possible  – a crossover with gullwing-like ‘falcon’ doors and the industry’s largest windshield – the Model 3 is more aligned with the needs of mass production. In fact, Tesla describes the Model 3 as ‘smaller and simpler’ than its predecessors to make it more affordable than the Model S.

The $35,000 entry price tag is important since the Model 3 has been widely-promoted as a $35,000 ‘everyman’s electric vehicle’ affordable to the masses, even as the cheapest model available was initially $49,000, then $46,000, and ultimately $43,000 before Tesla finally made the leap to its recently-announced $35,000, slightly decontented base model. At that price it’s doubtful that Tesla will make money, and in fact it wasn’t long ago when Tesla CEO Elon Musk said the company would lose money on the Model 3 at that price point. An array of industry experts agree with that assessment. But that’s another story.

If not an exercise in simplicity, then perhaps the Model 3  is a statement that ‘less-is-more,’ even as it delivers desired levels of performance, range, technology, and safety. For example, rather than more costly aluminum construction like the Model S and Model X, the Model 3 uses both aluminum and less-costly steel. Its interior is also a model of simplicity devoid of instrumentation and external controls, knobs, or switches, with everything – including the speedometer – incorporated into its 15-inch center-mounted touchscreen display.

Buyers have a choice of battery packs and motors that deliver varying levels of performance and range. The lowest motor output currently available is estimated to offer 220 horsepower and rear-wheel drive, with a range of 220 miles. The dual motor model features 450 horsepower with all-wheel drive and a range of 310 miles.

Like all Tesla models, the Model 3 includes the hardware needed in the future for full self-driving, although this capability is dependent upon extensive software validation and local regulatory approval. Model 3 offers forward radar, eight cameras, and 12 ultrasonic sensors that enable an array of safety and driver-assist functions including automatic emergency braking, collision avoidance, and side collision warning. Over-the-air software updates are part of the package and Tesla’s AutoPilot semi-autonomous driving system is an available option.

Tesla now offers two levels of Connectivity: Standard that is free and Premium that comes at a modest annual cost. Standard  Connectivity offers basic maps and navigation, music and media over Bluetooth, and software updates over Wi-Fi. Both receive maps and navigation functionality, traffic-based routing, trip planner, and Supercharger stall availability. All cars with Standard Connectivity will simply need to connect to a Wi-Fi network to receive software updates. Premium Connectivity adds satellite-view maps with live traffic visualization, in-car streaming music and media, and over-the-air software updates via Wi-Fi and cellular.

In an interesting twist to the $35,000 Model 3 saga, Tesla shuttered some of its stores and galleries in an effort to save money in tandem with the lower-cost Model 3 availability, with the intention of potentially closing all of them and exclusively selling online. The company then changed its mind and kept most of its Tesla stores and galleries open. Again, another story…so stay tuned.

Porsche Taycan electric car.

Along with models like the 2019 Jaguar I-PACE, Audi e-tron, and upcoming Porsche Taycan, we're seeing a new generation of high-tech battery-powered vehicles that bring an exciting new direction to legacy automakers. These models also have something important in common: They aim to disrupt Tesla, the industry’s de-facto electric car leader.

Disruption is a word thrown about with abandon these days as veritable institutions of business and commerce fall from grace, or at least profitability, at the hands of an ever-changing and disruptive world. Think Sears, Borders, and Kodak. The list of major companies disrupted – either gone, a shadow of their former self, or on the ropes – continues to grow. While the auto industry has largely escaped this same fate, change is definitely in the wind. And its bogeyman in recent years has clearly been Tesla.

Tesla Model X on highway.

Disruption Long Before Tesla

We’ve seen the auto industry disrupted before, not by innovators but rather by geo-politics, circumstance, and a lack of long-term vision. The Arab Oil Embargo of 1973 and the 1979 Oil Crisis that brought serious gas shortages were a result of political disruption. It was a time when stations ran out of gas, lines of cars snaked for blocks as drivers tried desperately to keep their tanks full and their car-dependent lives on track, and consumers looked for more fuel-efficient vehicles to ease their pain. The problem, however, was there were few fuel-efficient models being produced since there had been no particular demand for them. The auto industry had to adapt, but with typically long product cycles it would take years to adequately fill this need.

Segue to 2003 and the launch of Tesla Motors, an occurrence that seemed interesting but hardly a threat to legacy automakers. Its high-tech Tesla Roadster introduced in 2008 – based on engineless ‘gliders’ produced by Lotus – proved that electric cars could be sporty, fun, and go the distance in ways that all other electrics before it could not, to the tune of 250 miles of battery electric driving on a single charge. Then came the Tesla designed-and-built Model S, Model X, and the new-to-the-scene Model 3. Clearly, the battle for leadership in electric cars was underway.

Jaguar I-PACE rolling chassis.

A History of Innovation

The auto industry’s penchant for innovation has always characterized its giants. Over its long history, this is an industry that brought us the three-point safety belt, airbags, anti-lock braking, cruise control, direct fuel injection, electronic ignition, and near-zero emission gasoline engines. And let us not forget Kettering’s invention of the electric starter that first saw use in 1912 Cadillacs, an innovation that tipped the scales – and history – in favor of internal combustion over electric cars of the era and helped lead to the combustion engine’s dominance to this day.

While Tesla may have established its role as the industry’s electric car innovator, that’s not to say that legacy automakers haven’t made tremendous progress. GM’s short-lived EV1 electric car of the 1990s proved that exciting and fun electric cars were possible, but not necessarily affordable to make at the time. The technologies developed by GM through the EV1 program live on to this day with evolutionary electric-drive technology found in its acclaimed Chevrolet Bolt EV and other electrified models. Advanced battery electric production vehicles have also been a focus at Audi, BMW, Ford, Honda, Hyundai, Jaguar, Kia, Mercedes-Benz, Nissan, Smart, and VW, with others like Porsche set to enter the market with long-range battery EVs.

Jaguar I-PACE racing Tesla Model X.

The Age of Electrification

So here’s the lesson of the day: If a business model no longer works, as was the case with General Motors and Chrysler during the financial meltdown in the late 1990s, you restructure. A brand no longer resonates with consumers? You drop it, like GM did with Oldsmobile. And if a class of vehicles is falling out of favor in lieu of more desired ones, you move on, as Ford is doing by phasing out almost all of its passenger cars in coming years in favor of more desired crossover/SUVs and pickups.

A paradigm shift is also occurring as automakers grapple with changing consumer preferences, regulatory requirements, and the projected demand for future vehicles and technologies. Enter the age of electrification. Over the past decade, Tesla has set the bar for innovative battery electric propulsion, advancements in near-autonomous driving technology, over-the-air vehicle software updates, and more. It has achieved a real or perceived leadership position in these areas and that’s a threat to legacy automakers. Now automakers are responding in a serious way and Tesla itself is under siege.

Chevrolet Bolt EV near building.

Chevy Bolt EV First

GM fired the first volley with its 2017 Bolt EV, beating Tesla’s long-touted Model 3 to market with an affordable long-range EV capable of traveling 238 miles on battery power. While Tesla is now delivering its well-received Model 3 in increasing numbers after a series of production challenges, the race with GM to produce an ‘affordable’ mainstream EV with 200-plus mile range was not much of a race to affordability at all. GM won that one handily, holding the line with a $37,500 price (after destination charges), while Tesla’s $35,000 Model 3 has yet to materialize. As Tesla did with its earlier model launches, the automaker is delivering uplevel, high-content, and higher-performance versions first, in the case of the Model 3 from a recently-lowered base price of $42,900 to $60,900, depending on configuration. The Bolt EV’s MSRP has moved in the other direction, dropping slightly to $36,620 for the 2019 model.

Nissan’s all-new, next-generation LEAF that debuted in 2018 improved its range to 150 miles, with a recently-announced LEAF PLUS model joining the lineup with a bigger battery and a range of 226 miles. Hyundai’s 2019 Kona Electric and Kia’s 2019 Niro Electric offer a battery range of about 250 miles, although these offer availability only in California and perhaps a few other ‘green’ states.

Nissan LEAF electric car.

Exciting New EV Entries

Jaguar’s 2019 I-PACE, a fast and sporty crossover with a 234 mile battery electric range, is now available and priced to compete with Tesla’s Model S and X. We'll soon be seeing Audi e-tron and Porsche Taycan long-range electrics on U.S. highways, with others like Aston Martin and Maserati developing high-end electric models as well.

It will be interesting to see how this all plays out over the coming months and years. To be sure, legacy automakers will not cede their leadership positions and market share without a terrific fight… and that fight is intensifying. Tesla doesn’t fear risk and has shown it will go in new directions that others will not, unless they must.

Audi e-tron electric car.

Tesla Does Things Differently

But Tesla doesn’t operate like legacy automakers that have been around for a long time, some more than a century. Those companies have mastered mass production, fielded extensive model lineups, developed widespread and convenient service networks, and have a history of successful worldwide distribution. Tesla is still learning this game, although it is making headway with its intense and successful efforts to deliver increasing numbers of its Model 3 to customers.

Importantly, legacy automakers are immensely profitable, while Tesla has had but a few profitable quarters since its launch and its losses have been in the billions. Tesla’s well-documented difficulties in ramping up mass production of the company’s 'entry-level' Model 3 – and its initial deliveries of only up-level Model 3 examples at significantly higher cost than its widely-publicized $35,000 base price – have added to its challenges.

Tesla Model 3 electric car.

That said, it would be a mistake to count Tesla out for the long haul based on its current and historic challenges including missed financial and vehicle delivery targets, serious Model 3 production challenges, and a number of high-profile Tesla crashes while driving on its much-touted Autopilot. Regardless of all this, in 2018 Tesla’s Model 3 was the best-selling luxury model in the U.S.

Legacy automakers will have Tesla directly in their sights and Tesla will continue to innovate. A veritable race-to-the-finish!

hyundai-kona-electric-drivinng-1Hyundai’s 2019 Kona joins a growing list of long-range EVs aiming to entice new car buyers to go electric. The Kona Electric subcompact crossover looks like its conventionally-powered counterpart save for its closed front grille, silver side sills, unique 17-inch alloy wheels, and appropriate badging. It is available in three trim levels – SEL, Limited, and Ultimate.  Like the gasoline Kona, the Kona Electric is available with a two-tone roof if the sunroof is not ordered.

Power is provided by a 201-horsepower electric motor driving the front wheels, energized by a 64-kWh lithium-ion polymer battery that enables an estimated 250-mile range. It can be recharged from a depleted state in about 54 minutes via a fast 100 kW Combined Charging System (CCS), or in 75 minutes with the more common 50 kW CCS. Charging with a 240-volt Level 2 charger takes about 10 hours. An EPA estimated 117 MPGe is expected. The Kona Electric accelerates from 0-60 mph in 7.6 seconds and has an electronically limited top speed of 104 mph.

hyundai-kona-electric-cabinA 7-inch TFT screen instrument cluster shows the speedometer, battery charge level, energy flow, and driving mode. There’s also a 7-inch infotainment touchscreen system that offers HD and satellite radio as well as BlueLink data connectivity. The system is also compatible with Apple CarPlay and Android Auto. Navigation with an 8-inch screen is optional. BlueLink app-based remote charge management and charge scheduling is fitted. Other available features include a flip-up head-up display and wireless inductive charging for personal electronics.

hyundai-kona-electric-displayPush button shift-by-wire controls are located on the center console. Adjustable regenerative braking is controlled by steering wheel paddles. Electrically-assisted power steering has been tweaked to accommodate the enhanced low-speed performance of an electric vehicle.

A host of driver assist features are provided depending on the trim level. All trim levels get Forward Collision-Avoidance Assist, Blind-Spot Collision Warning, Lane Keeping Assist, Rear Cross-traffic Collision Avoidance Assist, Rear View Monitor, and  Smart Cruise Control. The Ultimate trim level adds Parking Distance Warning for reverse, Smart Cruise Control with Stop and Go, and a head-up display.

The Kona Electric will initially be sold only in California. It will eventually be available in states that have adopted the California ZEV mandate.

hyundai-kona-electric-charging

nissan-leaf-straight-on-2First off, this is not the LEAF we’ve grown accustomed to seeing on the road since the model’s introduction in 2010. Our drive of the new generation 2018 Nissan LEAF quickly reinforced this is a whole-new animal, a new generation of the venerable electric car intended to capture the imagination and, not coincidentally, market share in the increasingly competitive electric vehicle field.

We have history with the LEAF. Green Car Journal first experienced the original LEAF’s capabilities in a technology demonstrator designed to share what Nissan had in mind for its groundbreaking, soon-to-come production electric vehicle. At Nissan’s behest, we tested the automaker’s LEAF-destined electric drivetrain in its EV-12 test mule back in 2009 at Nissan’s global headquarters in Yokohama, Japan. We later witnessed the LEAF’s unveiling, clearly showing Nissan’s willingness to push the envelope for electric cars with an edgy design.

nissan-ev-12-test-muleWe were impressed. So much so, in fact, that Green Car Journal honored the LEAF with the magazine’s 2010 Green Car Vision Award™ in Washington DC, ahead of its introduction to the market. Nissan’s insight into what electric vehicle buyers desired has indeed proved visionary over the years. Testament to this is the LEAF’s standing as the world’s leading affordable, mass production EV since its launch.

The all-new generation Nissan LEAF aims to expand on this success with new styling and a 50-percent increase in driving range. It also features a full suite of Nissan Intelligent Mobility technologies. This all-electric model is more attractive with excellent aerodynamics that result in a low 0.28 drag coefficient. Improved aerodynamics not only means a quieter ride but also contributes to greater range. That’s an important consideration in electric cars with near-silent drivetrains that don’t mask outside noise.

nissan-leaf-rearThe new Leaf features a 150-mile driving range between charges compared to the previous generation’s 100 miles. This is an important milestone that serves to overcome potential ‘range anxiety.’ Why 150 miles rather than shooting for the 200+ mile range like the Chevy Bolt EV and Tesla Model 3? It’s all about balancing price with functionality. Simply, Nissan aimed at providing an affordable price point under $30,000 for the LEAF. That meant delivering the range it figured would fit the driving needs of most drivers while keeping battery costs within reason. It’s a sound strategy.

A more powerful 40 kWh lithium-ion battery pack features improvements and revised chemistry that bring a 67 percent increase in energy density. Nissan designers have located the low-slung battery pack and other heavy components to the middle of the chassis to enhance the car’s center of gravity and handling. Fun fact: Using vehicle-to-home systems, the LEAF’s battery can store a home’s surplus solar energy while parked during the daytime and use it to help power a home in the evening.

nissan-leaf-underhoodLEAF’s electric powertrain features a 147-horsepower electric motor that’s well-suited to the model. It provides 38 percent more horsepower than the previous version with 26 greater torque for improved acceleration. Acceleration is crisp with more than enough power at the ready for all the driving situations we encountered on twisty roads and Interstates. Intelligent Ride Control delivers more precise motor torque control during cornering. This also reduces vibration while improving ride quality and steering control. Electric power steering software has been tweaked for improved steering feel. The LEAF’s steering torsion bar is also stiffer for better feedback and more linear response to steering inputs.

Nissan’s e-Pedal slows down the car via regenerative and friction braking when a driver’s foot lifts off the accelerator. This delivers electricity to the battery while essentially providing braking force without using the car’s brake pedal. It even brings the car to a complete stop. We found that driving with e-Pedal kept our LEAF tester in place while stopped on a steep hill without requiring a foot on the brake pedal. Notably, e-Pedal allows drivers to go without using the brake pedal 90 percent of the time.

nissan-leaf-interiorLEAF’s ProPILOT cruise control conveniently maintains a constant distance to the vehicle ahead.  If that vehicle stops, ProPILOT automatically applies brakes to also bring the LEAF to a full stop. It remains stopped even with your foot off the brake. Driving resumes when ProPILOT is activated with the touch of a switch or light pressure on the accelerator. The system also helps keep the LEAF centered in its lane at speeds between 19 and 62 mph. Other LEAF driver-assist technologies include Intelligent Lane Intervention, Lane Departure Warning, Intelligent Emergency Braking, Blind Spot Warning, Rear Cross Traffic Alert, and Intelligent Around View Monitor with moving object detection.

The new LEAF’s interior has a more luxurious and high-end look. Its dashboard is dominated by a seven-inch display for infotainment and the navigation system, if so equipped, plus Nissan's Safety Shield state-of-charge and power gauge. Another seven-inch screen faces the driver in place of conventional dials. Apple CarPlay and Android Auto are included on LEAFs with the higher-spec infotainment/navigation system.

nissan-leaf-chargingToday’s electric car market is different than that of the past. There are more choices in a growing number of vehicle classes and this makes it tougher for automakers to compete. Nissan aims to not only compete in the electric car field but dominate globally as it has in recent years.

The LEAF’s status as a true world car is underscored by widespread availability like the previous-generation LEAF. It’s also reinforced by Nissan’s global manufacturing capabilities with assembly plants in Japan, England, and in Smyrna, Tennessee. Offering the all-new LEAF at a base price of $29,990 here in the U.S. is a strategy that should bode well for Nissan in today’s increasingly competitive electric vehicle market.

nissan-leaf-1


XC60 T8 InscriptionSharing drive components and integrated technology with Volvo’s XC90 T8, the latest rendition of the Swedish maker’s best-selling vehicle comes to market more powerful and smarter than ever. Volvo’s upscale 2018 XC60 T8 PHEV (plug-in-hybrid) presents a premium and rugged, yet refined, SUV where high performance meets advanced technology and comfort. It is the most powerful two-row SUV in Volvo history. The editors at Green Car Journal take a closer look.

XC60 T8 InscriptionVolvo Rightfully Calls 2018 XC60 T8 the Most Powerful Two-Row SUV on the Market

How it works: Volvo’s XC60 T8 successfully follows in the footsteps of its larger XC90 T8 crossover sibling. Both upscale plug-in hybrids use a 313 horsepower, supercharged and turbocharged 2.0-liter four-cylinder engine with an eight-speed automatic transaxle and two permanent-magnet AC motors.

In this through-the-road AWD hybrid system, a 46-horsepower electric motor drives the front wheels while an 87 horsepower AC motor powers the rear wheels. This results in total system output of 400 horsepower and 472 lb-ft torque. There is no mechanical connection between the two axles.

XC60 T8 Inscription2018 Volvo XC60 T8 Lithium-Ion Battery Pack Enables Extended Electric-Only Drive Range

A lithium-ion battery pack is positioned in the center tunnel where a driveshaft would normally be located. This 10.4 kWh pack enables the 2018 Volvo XC60 T8 to travel about 18 miles on electricity alone. Total driving range on gas and electric power is 370 miles. The battery can be recharged in as little as three hours from a 240-volt source and six hours from a standard 120-volt outlet.

Regenerative braking, stop/start capability, and a Pure EV electric-only mode contribute to a 59 MPGe rating, quite good for a vehicle with a nearly 4,600-pound curb weight. The twin electric motors and 472 lb-ft torque bring impressive acceleration for a SUV that can carry five people, propelling the vehicle from 0 to 60 mph in 4.9 seconds.

XC60 T8 InscriptionThe Re-Engineered 2018 Volvo XC60 Offers State-of-the-Art Active Safety and Driver Assist

Momentum, R-Design, and Inscription versions of the XC60 T8 are available, offering similar standard and optional equipment to non-hybrid T6 models. Optional driver assistance packages are available including a Vision package that includes blind-spot and cross-traffic alerts, automatic mirror dimming, power-retractable outside mirrors, and a parking-assist function.

The XC60’s Convenience package includes adaptive cruise control with Volvo's semi-autonomous Pilot Assist, a Level 2 partial-automation system that assists with driving tasks like remaining in a lane and matching traffic speed on the highway, while still relying on a driver as the primary monitor of the driving environment. Optional Steer Assist, which is linked with Volvo’s Blind Spot Information System and Oncoming Lane Mitigation, helps the driver steer around an obstacle if a collision is likely.

XC60 T8 InscriptionVolvo Takes 2018 XC60 to a Higher Level in Personal Electronic Connectivity

A 9.3-inch Sensus Connect screen in the dashboard center stack offers tablet-like swipe-and-pinch gestures. It’s large enough that it can be divided into four independent sections to provide quick and easy access to any controls needed. Sensus Connect provides 4G/LTE connectivity and offers its own suite of apps including Pandora, Spotify, Glympse, Local Search, Yelp, Weather, and Wiki Locations. The main Sensus screen interacts with 8-inch or 12.3-inch driver information displays and the optional head-up display showing navigation, infotainment, and basic information.\

Volvo’s XC60 T8 is offered at a base price of $52,900, about 10 grand more than its conventionally-powered sibling. It’s an exceptional compact crossover providing the luxury appointments and advanced technology we’ve come to expect from Volvo. It’s also a compelling option for new car buyers looking for an upscale crossover experience with the efficiency of plug-in hybrid power.

XC60 T8 Inscription

 

So what to do with old electric vehicle batteries? Here’s one approach: Toyota and Chubu Electric Power Co. will be constructing a large-capacity storage battery system that reuses recycled batteries from Toyota electric vehicles. This aims at addressing two key issues. It deals with ways to make use of aging EV batteries that have reached the end of their useful life for vehicle propulsion, while also enabling Chubu Electric to mitigate the effects of fluctuations in the utility’s energy supply-demand balance, a growing issue caused by the expanding use of renewable energy.

Initially, the focus will be on repurposing nickel-metal-hydride (Ni-MH) batteries since these have been used in large numbers of electric vehicles for nearly two decades. The focus will then expand to include lithium-ion (Li-Ion) batteries by 2030. Li-Ion batteries have generally powered the second generation of electric vehicles and plug-in hybrids in more recent years, and thus will not reach their end-of-use for electric propulsion for some time still.

This image has an empty alt attribute; its file name is Toyota-Battery-Recycling-3-1024x576.jpgThe energy storage capabilities of EV batteries diminish over time and after continuous charging and discharging. Eventually they become insufficient for powering electric cars but can still store adequate energy for other purposes. Even with their diminished performance, combining them in large numbers makes them useful for utilities and their efforts to manage energy supply-demand.

Based on the results of their initial work, the plan is to provide power generation capacity of some 10,000 kW by 2020. In a related effort, Toyota and Chubu Electric will be exploring ways to ultimately recycle reused batteries by collecting and reusing their rare-earth metals. The automaker has explored battery recycling in the past including at the Lamar Buffalo Ranch field campus in Yellowstone National Park. Here, 208 used Toyota Camry Hybrid battery packs are used to store renewable electricity generated by solar panel arrays.

Mission E Cross TurismoPorsche says it plans to invest more than $7 billion (six billion euro) in electrified vehicles over the next four years. As part of this, the automaker will be devoting some $600 million toward the development of is coming Mission E electric sports car and other electrified variants. About $1.25 billion will be dedicated to hybrid and electric powertrains for existing Porsche models

“We are doubling our expenditure on electromobility from around three billion euro to more than six billion euro”, said Oliver Blume, Chairman of the Executive Board of Porsche AG. “Alongside development of our models with combustion engines, we are setting an important course for the future with this decision.”

Porsche’s stunning battery electric Mission E sports car will boast an output of 600 horsepower and deliver quick 0-60 mph sprints in less than 3.5 seconds. Driving range is claimed to be over 300 miles between charges. It will be fast-charge capable.

In addition to its investment in electrification, Porsche will invest some $250 million on manufacturing sites and facilities plus an additional $850 million on smart mobility, charging infrastructure, and new technologies.

bmw-i3-front-2Green Car Journal editors previously experienced 10,000 miles of driving in BMW’s i3, with those miles behind the wheel of a 2015 i3 REx several years ago. We were convinced then, as we are now, that BMW’s i3 is an indispensable, right-sized urban car that’s not only super-efficient to drive around crowded city environs but loads of fun as well.

Chalk that up to its easy maneuverability, great handling, and lightweight construction using a carbon fiber reinforced plastic (CFRP) body over an aluminum and CFRP passenger cell. Plus, of course, there’s the instant torque and surprisingly quick launch provided by the i3’s 170 horsepower electric motor. The i3 became our go-to vehicle for everyday drives.

bmw-i3-rearNow, two years later, we’re 7,500 miles into a long-term test of a 2017 BMW i3 REx and experiencing even more satisfying results. While driving range in the earlier i3 was limited to 81 miles on the model’s 22 kWh lithium-ion battery pack, or 72 miles on batteries with an overall range of 150 miles using electricity from its REx gasoline engine-generator, those numbers substantially increased in the 2017 model year i3 we’ve been driving.

We knew from the start that BMW hit upon something extraordinary with its range-extended REx i3 variant. Simply, BMW recognized that range is a big issue with drivers considering an electric vehicle, and while the i3’s electric range is suitable for a great many drivers, the confidence of extending range with a small engine-generator is real. With the REx variant, most driving can be done exclusively on battery power for convenient, efficient, and zero-emission transport. Occasional trips beyond the i3’s battery range are possible with electricity produced by the REx system.

bmw-i3-displaysWhile a 22 kWh battery pack still powers the 2017 base model, BMW reengineered the 2017 i3 with an optionally available 94 kWh battery pack for greater battery electric range, plus an available REx variant with a slightly larger 2.4 gallon gas tank. The result is notable. The 2017 i3 with the larger battery offers an EPA estimated 114 miles on battery power. Opting for the 2017 i3 REx variant delivers an EPA estimated 97 miles of battery range (somewhat less than the electric-only model due to the REx system’s additional weight), and 180 miles of overall driving with the range extender.

We did find that the shorter 72 mile battery range of our 2015 i3 REx found us using the range extender somewhat regularly. With the longer 97 mile range we’ve only been into the range extender a few times, other than those times the range extender was required to automatically run for service since we hadn't been using it. Yes, it’s only a difference of 15 additional battery electric miles, but with our everyday routes and driving habits those additional miles have made a difference.

bmw-i3-interior-1The i3 is a kick to drive and we tend to smile a lot as our off-the-line acceleration regularly surprises others between traffic lights. The twin displays offer easy-to-reference information and controls are intuitive. For such a small car, the i3 provides a surprising amount of headroom and overall passenger comfort. The trunk is small but adequate for our everyday needs. Charging with our wall-mounted 240-volt charger is a breeze. It's also economical since we set the i3 to charge at off-peak times and enjoy a discounted electric vehicle rate from our local electric utility.

Green Car Journal editors continue to find our 2017 BMW i3 tester a favored go-to vehicle for daily drives because it’s fun and easy to drive in addition to being clean and economical. We expect that will continue to be the case in the months ahead because it's a combination that’s just hard to beat.

bmw-i3-charging

karma-revero-frontThe Karma Revero is Green Car Journal’s 2018 Luxury Green Car of the Year, earning this distinction for many reasons.  But let's start here: The Revero is the most head-turning vehicle we have ever driven. Period. The attention this stunning grand touring car gets wherever it is driven is just short of amazing. If you’re lucky enough to own one, get used to it. This will never change.

Karma Automotive, a company owned by China’s Wanxiang Group, has revived the impressive but short-lived Fisker Karma extended range electric car that made a brief appearance on the market five years ago, thoroughly reengineered it, and has reintroduced it as the ‘Revero.’ The company wisely left most of the car’s breathtaking exterior design intact with a few tweaks, devoting its efforts instead to major technology improvements and creating a wondrous interior to complement the car’s incredible looks. The company then strategically set up its headquarters and manufacturing in Southern California, the land of electric cars. Even in California, where car culture is king and there’s no shortage of coolness on wheels, this car is clearly special.

karma-revero-rearThe $130,000 Karma Revero is built on a lightweight aluminum spaceframe and powered by two high-power electric motors, both energized by lithium-ion batteries positioned along the car’s centerline. This pair of AC permanent magnet motors provides a combined 403 horsepower and 981 lb-ft torque driving the rear wheels, delivering a 0-60 mph sprint in 5.4 seconds.

Like the Chevrolet Volt, the Karma Revero is a series hybrid that uses an internal combustion engine solely to drive a generator, which in turn supplies electricity to the electric drive motors or to the car’s battery pack. There is no mechanical connection between the engine and wheels. The Revero delivers an estimated 50 miles on batteries alone and about 300 miles total on batteries and electricity generated by its engine-generator.

karma-revero-energy-flowThe Revero’s battery pack can be fully charged in about 10 hours using the car’s onboard charger operating on 120-volt household power. With a 240-volt charger this drops down to just under four hours. A 480-volt rapid charger enables charging to 80 percent of the battery’s capacity in just 24 minutes. The Revero has a large solar roof that’s claimed to contribute up to 1.5 miles of battery power per day, depending on weather conditions. This feature makes the Revero the first production car in the country to be powered by electricity, solar, and gasoline.

A driver has three selectable drive modes – Stealth (pure electric), Sustain (gasoline engine/generator or ‘EV later’ mode), and Sport (battery electric plus generator for maximum performance).  Stealth mode would ideally be used in town where zero-emission driving is preferred, with a switch to Sustain model outside of town. The latter would maintain the batteries’ state-of-charge to enable zero-emission Stealth driving again when returning to the city. There are three levels of regenerative braking for desired deceleration and massive Brembo brakes for conventional braking.

karma-revero-dashRevero is well-connected and able to make software updates wirelessly, using Blackberry's Certicom cryptography as an added security layer within QNX-secured two-way data transmission. The Revero has an eight-speaker audio system with Bluetooth connectivity and three USB charging ports. Driver assistance includes lane departure warning and a backup camera. A 12.3-inch-wide multi-configurable driver display is provided along with a 10.2-inch touchscreen-only infotainment system.

The premium ‘green’ car field is expanding with impressive models available from noted domestic and offshore luxury brands. Each has its strengths and customer appeal. In the realm of plug-in hybrids or extended range electric cars where sheer – maybe intoxicating – beauty is at the top of the list, the Karma Revero truly has no peer.

bmw-i3-front-actionBMW’s i3 gets its first mild facelift since its introduction in 2014 plus a new i3s sport model, featuring a higher performance electric drive, sport suspension with 10 mm lower height, and a 40 mm wider track. A restyled front fascia gives both the BMW i3 and i3s a wider appearance. The front apron on the i3s includes aggressive M-like scoops while the rear apron has individually styled contours with black surrounds around a wide, body-colored inlay. Both the i3 and i3s have standard full-LED headlights using LED bulb units for both low and high beams, as well as for daytime running lights. New turn signal indicators also feature LED technology.

The i3s uses a high output 184 horsepower electric motor that generates 199 lb-ft peak torque, 15 greater lb-ft than the standard i3 plus an additional 14 horsepower. BMW also updated the i3s drivetrain to optimize power delivery and the performance curve at higher rpms. At the limits of its motor speed range, power and torque of the enhanced drive system deliver an improvement of up to 40 percent over the standard i3. Driving dynamics and e-Driving abilities are significantly enhanced at higher engine speeds when higher performance and higher torque are more noticeable. In addition to Comfort, Eco Pro, and Eco Pro+ settings, i3s drivers can also choose SPORT mode for a more direct accelerator response and tighter steering

bmw-i3-side-1Both the i3 and i3s use the more powerful 33 kilowatt-hour lithium-ion battery introduced in the 2017 i3, which increased battery pack capacity by more than 50 percent and boosted driving range from 81 miles to 114 miles. without any changes in packaging. An optional REx range extending gasoline engine-generator is available for both the i3 and i3s to extend plug-in battery range to a maximum of about 180 total miles of driving.

The latest version of BMW’s iDrive 6 provides an intuitive interface for controlling infotainment, communications, and navigation in the i3 and i3s. When equipped with Navigation System Professional, the control display has a 10.25-inch screen with increased resolution. Automatic over-the-air updates of navigation data are provided via a mobile network connection. The voice recognition system has improved comprehension through cloud-based speech processing. All BMW Connected and BMW Connected+ services are available. On-Street Parking Information, available for the first time in i3 models, helps locate available parking spaces in many major U.S. cities. The system uses historical and real-time data to determine the likelihood of finding vacant parking and displays this information on a navigation map.

bmw-i3-cabinPublic charging stations and their availability are also displayed on the navigation system’s map. With Navigation Professional, a boundary representing the maximum range the i3 could travel on its current charge status is displayed. Different ranges in each of the Driving Dynamic Control modes can also be shown.

The Technology and Driving Assistance Package for the i3 and i3s includes Active Driving Assistant, Active Cruise Control with Stop & Go, Daytime Pedestrian Protection, Frontal Collision Warning with City Collision Mitigation, and Speed Limit Info. Advanced Real-Time Traffic Information and ConnectedDrive Services are also included within the upgraded Navigation System package. Park Distance Control and Parking Assistance are options.

bmw-i3-rear-actionA BMW TurboCord electric vehicle charger provides charging via a standard 120-volt outlet and can also charge up to three times faster when used with a 240-volt outlet. It is the smallest and lightest UL-listed portable charger available and comes with a 20 ft charging cord.