Sharing drive components and integrated technology with Volvo’s XC90 T8, the latest rendition of the Swedish maker’s best-selling vehicle comes to market more powerful and smarter than ever. Volvo’s upscale 2018 XC60 T8 PHEV (plug-in-hybrid) presents a premium and rugged, yet refined, SUV where high performance meets advanced technology and comfort. It is the most powerful two-row SUV in Volvo history. The editors at Green Car Journal take a closer look.
Volvo Rightfully Calls 2018 XC60 T8 the Most Powerful Two-Row SUV on the Market
How it works: Volvo’s XC60 T8 successfully follows in the footsteps of its larger XC90 T8 crossover sibling. Both upscale plug-in hybrids use a 313 horsepower, supercharged and turbocharged 2.0-liter four-cylinder engine with an eight-speed automatic transaxle and two permanent-magnet AC motors.
In this through-the-road AWD hybrid system, a 46-horsepower electric motor drives the front wheels while an 87 horsepower AC motor powers the rear wheels. This results in total system output of 400 horsepower and 472 lb-ft torque. There is no mechanical connection between the two axles.
2018 Volvo XC60 T8 Lithium-Ion Battery Pack Enables Extended Electric-Only Drive Range
A lithium-ion battery pack is positioned in the center tunnel where a driveshaft would normally be located. This 10.4 kWh pack enables the 2018 Volvo XC60 T8 to travel about 18 miles on electricity alone. Total driving range on gas and electric power is 370 miles. The battery can be recharged in as little as three hours from a 240-volt source and six hours from a standard 120-volt outlet.
Regenerative braking, stop/start capability, and a Pure EV electric-only mode contribute to a 59 MPGe rating, quite good for a vehicle with a nearly 4,600-pound curb weight. The twin electric motors and 472 lb-ft torque bring impressive acceleration for a SUV that can carry five people, propelling the vehicle from 0 to 60 mph in 4.9 seconds.
The Re-Engineered 2018 Volvo XC60 Offers State-of-the-Art Active Safety and Driver Assist
Momentum, R-Design, and Inscription versions of the XC60 T8 are available, offering similar standard and optional equipment to non-hybrid T6 models. Optional driver assistance packages are available including a Vision package that includes blind-spot and cross-traffic alerts, automatic mirror dimming, power-retractable outside mirrors, and a parking-assist function.
The XC60’s Convenience package includes adaptive cruise control with Volvo's semi-autonomous Pilot Assist, a Level 2 partial-automation system that assists with driving tasks like remaining in a lane and matching traffic speed on the highway, while still relying on a driver as the primary monitor of the driving environment. Optional Steer Assist, which is linked with Volvo’s Blind Spot Information System and Oncoming Lane Mitigation, helps the driver steer around an obstacle if a collision is likely.
Volvo Takes 2018 XC60 to a Higher Level in Personal Electronic Connectivity
A 9.3-inch Sensus Connect screen in the dashboard center stack offers tablet-like swipe-and-pinch gestures. It’s large enough that it can be divided into four independent sections to provide quick and easy access to any controls needed. Sensus Connect provides 4G/LTE connectivity and offers its own suite of apps including Pandora, Spotify, Glympse, Local Search, Yelp, Weather, and Wiki Locations. The main Sensus screen interacts with 8-inch or 12.3-inch driver information displays and the optional head-up display showing navigation, infotainment, and basic information.\
Volvo’s XC60 T8 is offered at a base price of $52,900, about 10 grand more than its conventionally-powered sibling. It’s an exceptional compact crossover providing the luxury appointments and advanced technology we’ve come to expect from Volvo. It’s also a compelling option for new car buyers looking for an upscale crossover experience with the efficiency of plug-in hybrid power.
So what to do with old electric vehicle batteries? Here’s one approach: Toyota and Chubu Electric Power Co. will be constructing a large-capacity storage battery system that reuses recycled batteries from Toyota electric vehicles. This aims at addressing two key issues. It deals with ways to make use of aging EV batteries that have reached the end of their useful life for vehicle propulsion, while also enabling Chubu Electric to mitigate the effects of fluctuations in the utility’s energy supply-demand balance, a growing issue caused by the expanding use of renewable energy.
Initially, the focus will be on repurposing nickel-metal-hydride (Ni-MH) batteries since these have been used in large numbers of electric vehicles for nearly two decades. The focus will then expand to include lithium-ion (Li-Ion) batteries by 2030. Li-Ion batteries have generally powered the second generation of electric vehicles and plug-in hybrids in more recent years, and thus will not reach their end-of-use for electric propulsion for some time still.
The energy storage capabilities of EV batteries diminish over time and after continuous charging and discharging. Eventually they become insufficient for powering electric cars but can still store adequate energy for other purposes. Even with their diminished performance, combining them in large numbers makes them useful for utilities and their efforts to manage energy supply-demand.
Based on the results of their initial work, the plan is to provide power generation capacity of some 10,000 kW by 2020. In a related effort, Toyota and Chubu Electric will be exploring ways to ultimately recycle reused batteries by collecting and reusing their rare-earth metals. The automaker has explored battery recycling in the past including at the Lamar Buffalo Ranch field campus in Yellowstone National Park. Here, 208 used Toyota Camry Hybrid battery packs are used to store renewable electricity generated by solar panel arrays.
Porsche says it plans to invest more than $7 billion (six billion euro) in electrified vehicles over the next four years. As part of this, the automaker will be devoting some $600 million toward the development of is coming Mission E electric sports car and other electrified variants. About $1.25 billion will be dedicated to hybrid and electric powertrains for existing Porsche models
“We are doubling our expenditure on electromobility from around three billion euro to more than six billion euro”, said Oliver Blume, Chairman of the Executive Board of Porsche AG. “Alongside development of our models with combustion engines, we are setting an important course for the future with this decision.”
Porsche’s stunning battery electric Mission E sports car will boast an output of 600 horsepower and deliver quick 0-60 mph sprints in less than 3.5 seconds. Driving range is claimed to be over 300 miles between charges. It will be fast-charge capable.
In addition to its investment in electrification, Porsche will invest some $250 million on manufacturing sites and facilities plus an additional $850 million on smart mobility, charging infrastructure, and new technologies.
Green Car Journal editors previously experienced 10,000 miles of driving in BMW’s i3, with those miles behind the wheel of a 2015 i3 REx several years ago. We were convinced then, as we are now, that BMW’s i3 is an indispensable, right-sized urban car that’s not only super-efficient to drive around crowded city environs but loads of fun as well.
Chalk that up to its easy maneuverability, great handling, and lightweight construction using a carbon fiber reinforced plastic (CFRP) body over an aluminum and CFRP passenger cell. Plus, of course, there’s the instant torque and surprisingly quick launch provided by the i3’s 170 horsepower electric motor. The i3 became our go-to vehicle for everyday drives.
Now, two years later, we’re 7,500 miles into a long-term test of a 2017 BMW i3 REx and experiencing even more satisfying results. While driving range in the earlier i3 was limited to 81 miles on the model’s 22 kWh lithium-ion battery pack, or 72 miles on batteries with an overall range of 150 miles using electricity from its REx gasoline engine-generator, those numbers substantially increased in the 2017 model year i3 we’ve been driving.
We knew from the start that BMW hit upon something extraordinary with its range-extended REx i3 variant. Simply, BMW recognized that range is a big issue with drivers considering an electric vehicle, and while the i3’s electric range is suitable for a great many drivers, the confidence of extending range with a small engine-generator is real. With the REx variant, most driving can be done exclusively on battery power for convenient, efficient, and zero-emission transport. Occasional trips beyond the i3’s battery range are possible with electricity produced by the REx system.
While a 22 kWh battery pack still powers the 2017 base model, BMW reengineered the 2017 i3 with an optionally available 94 kWh battery pack for greater battery electric range, plus an available REx variant with a slightly larger 2.4 gallon gas tank. The result is notable. The 2017 i3 with the larger battery offers an EPA estimated 114 miles on battery power. Opting for the 2017 i3 REx variant delivers an EPA estimated 97 miles of battery range (somewhat less than the electric-only model due to the REx system’s additional weight), and 180 miles of overall driving with the range extender.
We did find that the shorter 72 mile battery range of our 2015 i3 REx found us using the range extender somewhat regularly. With the longer 97 mile range we’ve only been into the range extender a few times, other than those times the range extender was required to automatically run for service since we hadn't been using it. Yes, it’s only a difference of 15 additional battery electric miles, but with our everyday routes and driving habits those additional miles have made a difference.
The i3 is a kick to drive and we tend to smile a lot as our off-the-line acceleration regularly surprises others between traffic lights. The twin displays offer easy-to-reference information and controls are intuitive. For such a small car, the i3 provides a surprising amount of headroom and overall passenger comfort. The trunk is small but adequate for our everyday needs. Charging with our wall-mounted 240-volt charger is a breeze. It's also economical since we set the i3 to charge at off-peak times and enjoy a discounted electric vehicle rate from our local electric utility.
Green Car Journal editors continue to find our 2017 BMW i3 tester a favored go-to vehicle for daily drives because it’s fun and easy to drive in addition to being clean and economical. We expect that will continue to be the case in the months ahead because it's a combination that’s just hard to beat.
The Karma Revero is Green Car Journal’s 2018 Luxury Green Car of the Year, earning this distinction for many reasons. But let's start here: The Revero is the most head-turning vehicle we have ever driven. Period. The attention this stunning grand touring car gets wherever it is driven is just short of amazing. If you’re lucky enough to own one, get used to it. This will never change.
Karma Automotive, a company owned by China’s Wanxiang Group, has revived the impressive but short-lived Fisker Karma extended range electric car that made a brief appearance on the market five years ago, thoroughly reengineered it, and has reintroduced it as the ‘Revero.’ The company wisely left most of the car’s breathtaking exterior design intact with a few tweaks, devoting its efforts instead to major technology improvements and creating a wondrous interior to complement the car’s incredible looks. The company then strategically set up its headquarters and manufacturing in Southern California, the land of electric cars. Even in California, where car culture is king and there’s no shortage of coolness on wheels, this car is clearly special.
The $130,000 Karma Revero is built on a lightweight aluminum spaceframe and powered by two high-power electric motors, both energized by lithium-ion batteries positioned along the car’s centerline. This pair of AC permanent magnet motors provides a combined 403 horsepower and 981 lb-ft torque driving the rear wheels, delivering a 0-60 mph sprint in 5.4 seconds.
Like the Chevrolet Volt, the Karma Revero is a series hybrid that uses an internal combustion engine solely to drive a generator, which in turn supplies electricity to the electric drive motors or to the car’s battery pack. There is no mechanical connection between the engine and wheels. The Revero delivers an estimated 50 miles on batteries alone and about 300 miles total on batteries and electricity generated by its engine-generator.
The Revero’s battery pack can be fully charged in about 10 hours using the car’s onboard charger operating on 120-volt household power. With a 240-volt charger this drops down to just under four hours. A 480-volt rapid charger enables charging to 80 percent of the battery’s capacity in just 24 minutes. The Revero has a large solar roof that’s claimed to contribute up to 1.5 miles of battery power per day, depending on weather conditions. This feature makes the Revero the first production car in the country to be powered by electricity, solar, and gasoline.
A driver has three selectable drive modes – Stealth (pure electric), Sustain (gasoline engine/generator or ‘EV later’ mode), and Sport (battery electric plus generator for maximum performance). Stealth mode would ideally be used in town where zero-emission driving is preferred, with a switch to Sustain model outside of town. The latter would maintain the batteries’ state-of-charge to enable zero-emission Stealth driving again when returning to the city. There are three levels of regenerative braking for desired deceleration and massive Brembo brakes for conventional braking.
Revero is well-connected and able to make software updates wirelessly, using Blackberry's Certicom cryptography as an added security layer within QNX-secured two-way data transmission. The Revero has an eight-speaker audio system with Bluetooth connectivity and three USB charging ports. Driver assistance includes lane departure warning and a backup camera. A 12.3-inch-wide multi-configurable driver display is provided along with a 10.2-inch touchscreen-only infotainment system.
The premium ‘green’ car field is expanding with impressive models available from noted domestic and offshore luxury brands. Each has its strengths and customer appeal. In the realm of plug-in hybrids or extended range electric cars where sheer – maybe intoxicating – beauty is at the top of the list, the Karma Revero truly has no peer.
BMW’s i3 gets its first mild facelift since its introduction in 2014 plus a new i3s sport model, featuring a higher performance electric drive, sport suspension with 10 mm lower height, and a 40 mm wider track. A restyled front fascia gives both the BMW i3 and i3s a wider appearance. The front apron on the i3s includes aggressive M-like scoops while the rear apron has individually styled contours with black surrounds around a wide, body-colored inlay. Both the i3 and i3s have standard full-LED headlights using LED bulb units for both low and high beams, as well as for daytime running lights. New turn signal indicators also feature LED technology.
The i3s uses a high output 184 horsepower electric motor that generates 199 lb-ft peak torque, 15 greater lb-ft than the standard i3 plus an additional 14 horsepower. BMW also updated the i3s drivetrain to optimize power delivery and the performance curve at higher rpms. At the limits of its motor speed range, power and torque of the enhanced drive system deliver an improvement of up to 40 percent over the standard i3. Driving dynamics and e-Driving abilities are significantly enhanced at higher engine speeds when higher performance and higher torque are more noticeable. In addition to Comfort, Eco Pro, and Eco Pro+ settings, i3s drivers can also choose SPORT mode for a more direct accelerator response and tighter steering
Both the i3 and i3s use the more powerful 33 kilowatt-hour lithium-ion battery introduced in the 2017 i3, which increased battery pack capacity by more than 50 percent and boosted driving range from 81 miles to 114 miles. without any changes in packaging. An optional REx range extending gasoline engine-generator is available for both the i3 and i3s to extend plug-in battery range to a maximum of about 180 total miles of driving.
The latest version of BMW’s iDrive 6 provides an intuitive interface for controlling infotainment, communications, and navigation in the i3 and i3s. When equipped with Navigation System Professional, the control display has a 10.25-inch screen with increased resolution. Automatic over-the-air updates of navigation data are provided via a mobile network connection. The voice recognition system has improved comprehension through cloud-based speech processing. All BMW Connected and BMW Connected+ services are available. On-Street Parking Information, available for the first time in i3 models, helps locate available parking spaces in many major U.S. cities. The system uses historical and real-time data to determine the likelihood of finding vacant parking and displays this information on a navigation map.
Public charging stations and their availability are also displayed on the navigation system’s map. With Navigation Professional, a boundary representing the maximum range the i3 could travel on its current charge status is displayed. Different ranges in each of the Driving Dynamic Control modes can also be shown.
The Technology and Driving Assistance Package for the i3 and i3s includes Active Driving Assistant, Active Cruise Control with Stop & Go, Daytime Pedestrian Protection, Frontal Collision Warning with City Collision Mitigation, and Speed Limit Info. Advanced Real-Time Traffic Information and ConnectedDrive Services are also included within the upgraded Navigation System package. Park Distance Control and Parking Assistance are options.
A BMW TurboCord electric vehicle charger provides charging via a standard 120-volt outlet and can also charge up to three times faster when used with a 240-volt outlet. It is the smallest and lightest UL-listed portable charger available and comes with a 20 ft charging cord.
While technically a plug-in series hybrid since it operates with its engine generating electricity rather than powering the drive wheels, GM officially prefers to describe the Volt as an extended range electric car. We get it and that does seem an apt way to describe this highly advanced electrified sedan. The Chevrolet Volt is distinguished for plenty of reasons, not the least of which is its 53-mile all-electric driving range before reverting to electric power from its 1.5-liter DOHC engine-generator, which delivers a total 420 mile driving range.
That 53-mile battery electric range is just one of the reasons the Volt is a standout. With the exception of Honda’s new Clarity Plug-In that achieves 47 miles on battery power before reverting to hybrid operation, no other plug-in hybrid competitors come close. Before the Clarity, the best PHEV competitors were able to offer 25 to 33 all-electric miles, with most achieving significantly less.
Green Car Journal editors spent a year and just over 20,000 miles behind the wheel of Chevy’s Volt, allowing plenty of time to experience life with this extended range electric under varying driving conditions. One thing continually stood out: Having this kind of battery electric range meant most of our daily drives were spent entirely in electric mode with zero emissions. When heading off to nearby cities beyond the Volt’s battery range or during our numerous road trips, it was comforting to know there was no limit to the distance we could drive with the car’s engine-generator at the ready.
The Volt drives confidently, and silently, with refined road matters and passenger comfort we came to appreciate on drives long and short. The changeover once batteries are depleted does bring a different feel since the engine-generator is more noticeable than engines in a typical plug-in hybrid, but not so much that we gave it a second thought during our drives.
Welcome features are replete in the Volt, from a built-in Wi-Fi hotspot, LCD instrument cluster, and 8-inch center touchscreen display to MyLink infotainment and advanced driver assist systems. Thoughtful touches like a heated steering wheel and heated front and rear seats help cinch the deal in cold weather driving.
It’s tough to find fault with the Volt since Chevrolet really did an exceptional job with this car. If we had one wish, it would be for a slightly more accommodating rear seat. The first-generation Volt was a four-seater since the car’s battery storage configuration meant a console was at the center of the rear seat, with batteries beneath. The rear seat in the second-generation Volt left the rear console behind in lieu of a center seat position, although it’s clearly better suited for a child than an adult. No matter…we’re happy with the change.
After 20,000 miles on the road, this was one long-term test car that was hard to give up. Our positive experience over our year of driving remains with us and, like every Volt owner we’ve run across, we can only heartily recommend this car.
Plug-in vehicles are on a roll. That’s not to say that battery electric or plug-in hybrids will eclipse internal combustion or hybrid vehicles in the market anytime soon. But the fact that there are 40 plug-in models available in the U.S. during calendar year 2017 speaks volumes on how seriously automakers are taking electrification.
In the market for a plug-in vehicle? Here are your options this calendar year. Prices do not take into account an available federal tax credit up to $7,500 that may apply, or state incentives that can range up to $5,000 or more. Happy hunting!
AUDI: Audi has big plans for plug-in vehicles in its lineup, although the A3 e-tron represents the solitary choice at present. That said, it’s a good one since the A3 has long been a popular and approachable model in the U.S. and represents the right starting point for Audi. Offered at a base price of $39,500, this plug-in hybrid provides 16 miles of battery electric range and an overall driving range of 380 miles. The automaker plans to have three e-tron models within the next three years and others coming after that.
BMW: This automaker is a prolific marketer of plug-in vehicles. Its sole all-electric model is presently the innovative i3, which features a base price of $42,400. It emerged with a larger battery pack in the 2017 model year. The i3 BEV is powered by a 60 AH battery that delivers an EPA rated 81 mile range, with the 94 AH battery variant providing 114 miles of all-electric driving. The i3 REx comes with an engine-generator range extender that enables 97 miles on battery power and an overall range of 180 miles with electricity generated on board. Five additional plug-in hybrids are in BMW’s stable including the sporty i8 ($143,400), 330e $44,100), 530e ($52,950), 740e ($90,700), and X5 xDrive40e ($56,600).
CADILLAC: The short-lived Cadillac ELR extended range electric car, an upscale version of the Chevrolet Volt, was a flash-in-the-pan that illustrated you couldn’t market a high-end – and high priced – plug-in hybrid based on a lower-price Chevy model and get buyers to step up. Cadillac’s answer is its all-new CT6 Plug-In, a luxury model based on its flagship CT6 sedan offering great tech and style. The CT6 plug-in hybrid delivers a 31 mile all-electric range and a 440 miles driving range overall, at a base price of $76,095.
CHEVROLET: GM has the technical prowess to create exceptional electric vehicles, as shown by the acclaimed Chevrolet Volt extended range electric sedan that’s beloved by its owners. The $34,095 Volt provides a 53 mile battery electric range before reverting to electricity created by its on-board engine-generator, for a total range of 420 miles. Chevrolet’s new Bolt EV raises the bar for battery electric cars with an all-electric range of 238 miles before requiring a charge. This all-electric compact crossover is replete with the latest on-board tech and comes in at an MSRP of $37,495.
CHRYSLER: Chrysler was serious about electric and plug-in hybrid vehicles years ago with many concepts and demonstration vehicles, but that faded away as the company focused on getting its finances and mojo back. As part of FCA Group, Chrysler is once again showing its chops with the field’s first-ever plug-in hybrid minivan, the Chrysler Pacifica Hybrid, much to the delight of families and others who have been waiting for such a breakthrough in this vehicle class. The Pacifica Hybrid drives 33 miles on battery power and 570 miles overall, offering a base price of $41,995.
FIAT: The Fiat 500 is a pint-sized, fun vehicle as a gas-powered model. It’s even more fun in our opinion as an electric. The Fiat 500e is cute, nimble, and delivers 84 all-electric miles of driving. No matter that Fiat Chrysler Automobile’s CEO Sergio Marchionne once said the automaker loses $15,000 on every Fiat 500e sold and wasn’t particularly enthusiastic about that. This automaker is still in the game and 500e fans are a happy bunch because of it. The Fiat 500e features a base price of $32,995.
FORD: Ford is offering the Ford Focus Electric as its sole all-electric vehicle along with two plug-in hybrids. The $29,120 Ford Focus Electric has a range of 115 miles before a recharge is needed. Ford is using its Energi PHEV technology in the CMAX, a five-door, compact multipurpose vehicle and Fusion mid-sized sedan. Energi technology includes a 2.0-liter 4-cylinder engine, 118 horsepower electric motor, and 7.6 kWh lithium-ion battery. The $24,120 CMAX Energi delivers 22 electric miles and an overall driving range of 570 miles, while the $31,120 Fusion Energi drives 22 miles on battery power with a total range of 610 miles.
HONDA: The 2017 Honda Clarity was launched first as a hydrogen fuel cell electric vehicle in California and is being joined by battery electric and plug-in hybrid variants this year. The Clarity Electric will drive 80 miles on batter power and initially be available in California and Oregon only, while the Clarity Plug-In Hybrid is expected to be available in all 50 states. These electrified sedans seat five, are quite spacious, and loaded with connected tech and an array of driver-assist systems. The Electric will be leased at $269 per month for 36 months, with $1,730 down (this folds the federal tax credit into the lease terms). The Clarity Plug-In is expected to deliver an electric-only range of 42 miles with an overall driving range of 330 miles. Honda has not yet announced a price for the Plug-In.
HYUNDAI: Hyundai’s all-new Ioniq comes in hybrid, plug-in hybrid, and battery electric choices. At an MSRP of $29,500, the battery electric version features a 124 mile range and an EPA estimated 136 MPGe. It will be available exclusively in California. The plug-in hybrid coming this fall is expected to provide an estimated all-electric range of about 25 miles and hybrid power will take it hundreds of miles past that, although overall range specifics and pricing have not yet been announced. Hyundai’s $34,600 Sonata Plug-in Hybrid, which delivers 27 miles of range on battery power and 590 miles overall, is sold at Hyundai dealerships in 10 states and can be custom ordered elsewhere.
KARMA: Karma Automotive, a new company owned by China’s Wanxiang Group, has revived the defunct Fisker Karma extended range electric car of five years ago and is now manufacturing it in Southern California. Now called the Karma Revero, this grand touring car retains the original’s breathtaking design with some tweaks and benefits from significant technology upgrades and luxury appointments. It’s built on a lightweight aluminum spaceframe and powered by two high-power electric motors energized by lithium-ion batteries, delivering a 0-60 mph sprint in 5.4 seconds. The car drives 50 miles on batteries alone and about 300 miles on electricity generated on board by its 2.0-liter engine-generator. The Revero’s price of entry is $130,000.
KIA: Kia’s plug-in offerings include the boxy, battery-powered Soul Electric that’s been around for a number of years and the more mainstream Optima Plug-In Hybrid sedan. The plug-in Optima variant was missing from the new-generation Optima launch in 2016 but happily arrived with new technology for 2017, at a base price of $35,210. It offers 29 electric miles of driving and 610 miles overall range. The Soul Electric features a 93 mile battery electric range. Coming is the Kia Niro plug-in hybrid, a compact SUV that will join the new Niro lineup in 2018.
MERCEDES-BENZ: Mercedes-Benz is serious about high-efficiency electrics. The automaker is planning at least 10 new plug-in hybrid models with the aim of electrifying nearly all vehicles in its model lineup. Presently available plug-ins in the U.S. market include the B250e electric five-door hatchback, which features a driving range of 87 miles and a base price of $39,900. Plug-in hybrids this year include the $46,415 C350e and $96,600 S550e sedans, plus the $66,300 GLE550e SUV. Each of these delivers 12 to 14 miles of battery electric driving and a 400 to 460 mile overall range.
MINI: For the first time ever there will be a plug-in hybrid from MINI, the MINI Cooper S E Countryman ALL4. All of the new Countryman variants feature a 1.5-liter 3-cylinder engine. The $36,800 plug-in Countryman adds an 87 horsepower electric motor and 7.6 kWh lithium-ion battery, providing an EPA estimated all-electric range of 12 miles and an overall driving range of 270 miles. The engine drives its front wheels while the electric motor delivers power to the rear axle.
MITSUBISHI: The eggplant-shaped, four-passenger Mitsubishi iMIEV that’s been knocking around since its introduction seven years ago boasts the lowest cost of entry for a mainstream battery electric car in the U.S., at $22,995. It also has the shortest electric driving range at 59 miles, which may fit the needs of some folks but certainly not all. A 66 horsepower motor provides very modest performance. On the plus side, this battery electric model achieves 112 MPGe efficiency.
NISSAN: Nissan’s LEAF is not only the best-selling electric car in the country, but also in the world with some 250,000 examples on the road. Featuring a unique and highly-recognizable design, it delivers a 107 mile driving range and is EPA rated at 112 MPGe. Power is provided by a 107 horsepower electric motor and 30 kWh battery pack located beneath the floor. An ‘eco route’ feature analyzes available battery power and displays charging stations within range.
PORSCHE: When Porsche offers a plug-in hybrid, you know it’s going to be fast. So it is with the automaker’s new Panamera 4 E-Hybrid, which boasts a total system output of 680 horsepower that brings 0 to 60 mph in 3.2 seconds and a top speed of 192 mph. All-electric range is 11 miles with an overall range of 480 miles. Porsche also offers the Cayenne S E-Hybrid that's powered by a 333 horsepower V-6 and 95 horsepower electric motor, a combination that delivers 14 miles of electric driving and an overall 480 mile range.
SMART: The Smart fortwo Electric Drive is an interesting proposition. In general, the Smart has not flourished in the U.S. because the big deal about the Smart is its diminutive physical footprint, a plus in space-impacted European cities but not so much in the wide-open USA. That said, electric drive gives the Smart an environmental edge. It’s powered by a 74 horsepower motor and updated lithium-ion battery pack that reportedly increases electric driving range to 80 miles, up from the previous generation’s 68 mile range. The Smart fortwo Electric Drive comes at a base price of $24,550 with a convertible variant priced at $28,750.
TESLA: Tesla’s Model S luxury sedan, which starts at a base of $69,500 and goes up to $140,000 depending on powertrain and battery, is the longest range battery electric vehicle around. Its base powerplant delivers an electric driving range of 249 miles. The all-wheel drive Tesla Model X SUV starts at $82,500 and delivers 237 electric miles, topping out at $145,000. Powertrain options bring additional range. Tesla’s Model 3, which begins production this month and will be on sale shortly, aims to be the automaker’s first affordable electric at a base cost of $35,000. However, with the Model 3’s large number of preorders it’s expected that Tesla will first deliver highly optioned – and more expensive – Model 3 orders well above the $35,000 base cost.
TOYOTA: The Toyota Prius Prime plug-in hybrid can run on its gas engine or motor alone, or a combination of both. This $27,100 plug-in hybrid features a dual-mode generator drive system enabling both the primary drive motor and motor-generator to provide power when maximum acceleration is demanded. An 8.8 kWh lithium-ion battery pack provides 25 miles of all-electric range, while overall range on electric and hybrid power is 640 miles. It achieves an EPA estimated 54 mpg and 133 MPGe while running on battery power. Prius Prime automatically relies more on electric capability in situations where it is more efficient than running the engine.
VOLKSWAGEN: VW has updated its e-Golf electric hatchback with an improved battery, greater range, and additional on-board electronics. It also benefits from styling updates to give it a crisper look. The latest electrified version of VW’s popular hatch offers a more powerful motor that delivers greater horsepower and torque, plus 50 percent greater electric range at 125 miles per charge. That’s a significant improvement in a world where electric range has become an increasingly important market differentiator. Additional updates include VW’s digital and interactive Digital Cockpit with information presented on a 12.3- inch color screen. The e-Golf has a base price of $29,815.
VOLVO: Volvo’s seven passenger, $67,800 XC90 T8 luxury SUV uses a twin engine plug-in hybrid powertrain for power and increased efficiency. It features the automaker’s 316 horsepower, turbocharged and supercharged 2.0-liter four-cylinder Drive-E engine mated to an eight-speed automatic transmission. The T8 uses an 82 horsepower electric motor on the rear axle and a lithium-ion battery pack that delivers 14 electric miles, with a total hybrid range of 350 miles. Volvo has other plug-in models in the works including its new S90 luxury sedan.
Will electrified vehicles dominate our highways in the future? It’s a question on the minds of many these days as an increasing number of battery electric and plug-in hybrid models come to new car showrooms. The answer is not an easy one, especially since there’s the potential that future CAFE (Corporate Average Fuel Economy) requirements could be modified. CAFE has been a driving force in the accelerated research and development in plug-in vehicles and new model introductions.
Automakers as a whole have said the current CAFE requirement of 54.5 mpg by 2025 cannot be achieved without a serious emphasis on electrification and the efficiencies these models bring. Thus, there has been an undeniable momentum for plug-ins underway as witnessed by the 39 battery electric and plug-in hybrid models from 20 automotive brands available in the U.S. market during calendar year 2017.
It has been a long path to get to this point since modern electrics emerged in the early 1990s. Along the way, early battery electric vehicles have been constrained by the limitations imposed by the very nature of battery electric propulsion. Simply, batteries are very heavy and costly, which result in two distinct penalties – greater weight that saps overall efficiency and high production costs that either make these vehicles expensive to buy, or require automakers to absorb much of these costs.
Those were the issues in the 1990s and, not coincidentally, these remain the issues today. Battery electric cars in 2017 are an order of magnitude better than those of a few decades back. But driving range and cost remain significant challenges. Plug-in hybrids are another matter.
Since these offer both all-electric driving and hybrid operation after batteries are depleted, there is no ‘range anxiety’ – the concern that a battery electric vehicle’s battery power could be insufficient for daily driving needs. Automakers are into plug-in hybrids in a big way and this has become a very competitive part of the automotive landscape.
So what does our driving future hold? There are nearly 40 plug-in vehicles for sale this year and that’s a big statement. Most major automakers have thriving electric research and development programs underway with electric model launches of one type or another in the pipeline. We will see an expanding offering of plug-in hybrids with battery electric models featuring greater driving range, as witnessed by the benchmarks being set by Chevrolet and Tesla and the new commitment to electrics by Volvo.
One wild card is that internal combustion continues to achieve surprising efficiency gains, at reasonable cost compared to electrics. That means the combustion vehicles we’ve had on our roads for more than a century will continue to ply our highways for some time to come, at approachable cost and without the need for the federal and state incentives that now help motivate buyers to go electric.
Still, there’s a growing desire for the emissions and inherent efficiencies of electric drive so there’s every reason to expect this interest to increase. We don’t yet know if plug-in vehicles of one stripe or another will dominate the market in the years ahead. But what is clear is that electrification is poised to play a major role moving forward.
Automakers have been in a frenzy of late to claim a leadership position with electrification. Volvo has now taken a significant step in that direction by announcing its intention to include an electric motor in all of its models launched after 2019.
That doesn’t signify an exclusive leap toward battery electric cars, even though Volvo does plan to launch five all-electric vehicles between 2019 and 2021. Electrification can take many forms including hybrid, plug-in hybrid, and electric-assist systems, plus of course cars that run exclusively on batteries. There will be a mix in the Volvo lineup depending on a model’s propulsion needs and market demands.
This move is not a surprise. Volvo announced three years ago that it was replacing the five- and six-cylinder engines that had been powering its models with a new and more efficient Drive-E four-cylinder. This engine architecture was designed from the beginning to include a start-stop motor and regenerative braking, plus ready integration with hybrid and plug-in hybrid technology.
The first use of Drive-E engines in the U.S. was in select 2015 Volvo models. Since Volvo’s plan all along was to transition its models to Drive-E power and this engine was designed for electrification, using electrically-augmented Drive-E engines – or in some cases battery electric drivetrains – in all new models after 2019 represents the next stage of this transition.
Toyota’s 2017 Prius Prime aims to fill the needs of drivers who love the efficiency of the ubiquitous Prius but want the added benefit of a plug. As is the case with most hybrids, all-electric drive in the conventional Prius hybrid is limited to very short stretches with light pressure on the accelerator, otherwise it’s running on gasoline-electric hybrid power. The Prius Prime changes this with truly usable battery electric range before resorting back to hybrid propulsion.
Prime is a significant advance for Toyota as the company seeks to establish the highest conceivable standard for a plug-in hybrid, all packaged in edgy sci-fi styling. Think Blade Runner and you’re not far off, but in a clean Zen environment. Three distinct models of the Prius Prime are offered to fit varying tastes, including the Prime Plus at $27,100, the Prime Premium at $28,800, and the Prime Advanced at $33,100.
All Prime models share their silhouette with the Prius Hatchback but with unique front and rear end treatments. Prime is also 6.5 inches longer and just a bit lower and wider than the standard Prius model. To achieve increased front and rear head room, engineers lowered placement of the gasoline engine, electric motor, and seats. An additional benefit Toyota designers targeted was slippery aerodynamics, which they achieved with a coefficient of drag of just 0.25 – lower than most sports cars. Less wind resistance is an important element in achieving Prime’s exceptional fuel efficiency of 54 combined mpg as a hybrid and 133 MPGe when running on battery power. With an estimated driving range of 640 miles, Prime will outrun most anything for distance. EPA estimates an all-electric range of up to 25 miles.
We spent time behind the wheel of a fully-equipped Prime Advanced model on twisty mountain roads and highways to get a feel for Toyota’s new plug-in hybrid. Our test drive included stretches of high speed curves with little traffic, where we found the Prime Advanced doing quite well with good mid-range power while passing on two-lane roads. We’ve driven a friend’s first-generation 2016 Prius Plug-in Hybrid regularly over the past year and found it very efficient, but mundane and cumbersome on our own mountain road. A few fast turns into our drive instilled much more confidence in Toyota’s latest plug-in hybrid as we continued increasing our speed in turns.
The Prime’s major improvement in handling stems from a much more grounded feeling in turns, a nod to the Prime’s use of independent McPherson strut front suspension and double-wishbone rear suspension, with stabilizer bars front and rear. This is what some of the better-handling sports car utilize for their superior driving characteristics. Another significant change to enhance handling was moving the car’s 287 pound lithium-ion battery to the rear, with the weight transfer making a big difference in balanced handling. The only thing that holds you back from driving faster is the squeal of tires that are primarily designed for fuel economy.
Prime uses all-season P195/65/R15 tires mounted on 6.5J X 15 inch 5-spoke aluminum wheels. There are no optional wheel or tire choices and no spare. For tire repairs there is a repair kit and three years of 24-hour roadside assistance at no charge. Prime’s basic warranty is 36 month/36,000 miles with an additional 60 months covering the powertrain, with no mileage limitations. Hybrid-related components including the HV battery and modules are covered for 8 years/100,000 miles.
Toyota’s Hybrid Synergy Drive powers all Prius Prime models using a dual motor drive. This dual motor capability did not come with the addition of a second drive motor, but rather repurposing the drivetrain’s motor-generator (MG1) for additional use. In this configuration, a one-way clutch engages both MG1 and the car’s primary electric drive motor (MG2) for motive force, the first time MG1 has been used in this way. During deceleration, regenerative braking recaptures electrical energy through MG1 and stores this energy in the battery for later use. Energy is supplied to the motors via an 8.8 kWh lithium-ion battery pack. The gasoline engine used in this hybrid powertrain is a 1.8 liter, 95 horsepower Atkinson-cycle four- cylinder. Combined, the engine and motors deliver 121 net system horsepower.
For some, the best new feature will be changes in charging requirements. While the Prime’s 8.8kWh battery delivers over double the energy of the previous Prius Plug-In’s battery pack, no special wall charger is needed. Just plug it into a standard 120-volt household outlet and in less than 5 1/2 hours you’ll have a full charge. Toyota recommends a dedicated 15A GF1 outlet for this. Faster charging in under two hours is achieved using a public charger or a 240-volt home charger, if desired. Prius Prime apps can manage charging, locate charge stations, set climate control, and handle numerous other functions that take advantage of the Prius Prime’s connected capabilities.
Different operating modes can be selected. EV Auto Mode will automatically rely on electric capability in urban driving and during short trips. Under certain driving conditions such as negotiating steep hills, Prime’s gas engine will kick in to provide additional power. Selecting Hybrid Mode uses the gas engine for primary drive force with supplemental power from the electric motor. Power is transmitted via a planetary-type continuously variable transmission.
The most distinctive styling elements of Prime are its quad LED headlights that give this car its futurist look. These automatically adjust brightness to its environment and oncoming cars. Without a doubt, a Prime will always be readily identifiable at night given its full-width LED rear light panel that follows the shape of the double-wave rear window and spoiler. In fact, the first time you see a Prime on the road at night an immediate impression might be that of a new Lamborghini…the taillights have that kind of styling impact.
Contributing to the Prius Prime’s overall light weight of 3,375 pounds is a rear hatch made from carbon fiber. This superior strength material is usually only found on exotic or race cars due to its expense. In this application it is used for lightweighting purposes and to make opening and closing the hatch effortless. Rear visibility is enhanced by a full-width glass panel and standard backup camera.
All Prime models feature a four-seat layout with a center console front and rear, with 60/40 folding rear seats. The front console has a handy wireless charging pad for Q-i compatible devices. Auxiliary 12-volt power outlets are provided up front and in the rear, with a USB 2.0 port for iPod connectivity and control standard. The shiny white plastic used for the console has a Star Wars trooper look to it and may be too bright for some tastes. A 4.2-inch gauge panel mounted above the dash is considerably easier to read in daylight than that of the previous model. A heads-up display is available.
The most obvious interior feature is Prime’s optional 11.6-inch tablet-like HD multimedia screen that’s mounted vertically in Premium and Advanced models. A standard Entune multimedia system provides audio, navigation, and an App Suite. Suffice to say if it’s on the market, Prime has bundled it...unless you want to play CDs. Apparently there is no place for CDs in the future. Audiophiles will be particularly pleased with the Prime Advanced model since it includes JBL audio with 10 speakers and delivers an exceptional concert hall experience.
For those who find parking a challenge there’s the Advanced model’s included Intelligent Clearance Sonar (ICS) with Intelligent Parking Assist (IPA). Once selected, the system’s sonar sizes up an available parking space and reverses the car into the space. Perpendicular spaces are also negotiated, plus it will also steer you out of a parallel spot.
The Prime's Safety Sense P list of standard safety features is as impressive as it is extensive. Prime bundles a Pre-Collision System with Pedestrian Detection and Automatic Braking, Lane Departure Alert and Steering Assist, Full-Speed Dynamic Radar Cruise Control with full stop technology, and Auto High Beams. The Advanced model adds Blind Spot Monitor and Rear Cross Traffic Alert. Also, there are eight airbags for additional driver and passenger safety.
Toyota is out to raise the standard by which plug-in hybrids are measured. They have done so with the Prius Prime by adding leading edge technology systems coupled to a powertrain that is a marvel of efficiency. Factoring in a price reduction in the thousands from the earlier generation Prius plug-in and an expanded 25 mile battery-only driving range, this Toyota model certainly holds appeal for Toyota Prius fans and new converts to a plug-in hybrid society.
It’s looking like Tesla doesn’t have a lock on the fast-charging that encourages longer-distance electric vehicle journeys. While clearly in catch-up mode, a number of automakers are partnering with charging providers to install fast-charge stations at key points along major transportation routes. The latest is a partnership between Nissan and EVgo that will enable rapid charging at strategically located stops between Boston and Washington DC.
The 'I95 Fast-Charge ARC' (Advanced Recharging Corridor) will include nine charging sites along 500 miles of Interstate 95 with a total of 50 DC fast-chargers, each offering two fast-charge plugs each. Since technology marches on, the stations will have a capability of charging four or more EVs simultaneously at a power output of 50kW, with pre-wiring to enable easy upgrades for charging at up to 150kW once the technology is available consumer stations.
The Boston-DC project follows a similar project in California. With construction already underway, completion is expected in time for the launch of the all-new Nissan LEAF.
Like most kids growing up in the 1960s, my first experience with an electric race car was at a slot car track as a teenager. They were fast…really fast if you used a hopped-up rewind motor capable of smoking competitors off the track.
This was followed decades later with the full-scale, real-life electric cars I witnessed competing in the APS Solar & Electric 500 at Phoenix International Raceway in 1991. They were electric conversions of one type or another, using commercially- available batteries or experimental ones with exotic chemistries, once again reinforcing that racing is where automotive technology is proved on the track, then evolved and adapted for cars on the road.
Segue to 2017, where the process continues in full force. Not only are electrics competing in FIA Formula E racing, but automakers are now signing on in a big way. Audi, Jaguar Land Rover, and Mahindra are competing with factory teams during the 2017 Formula E season and others are sponsoring race teams. It’s no mystery why auto companies are involved in Formula E since electrification is playing an increasingly important role in the automobile’s future.
Now there’s a new twist that combines electric racing with the high-profile competition in developing autonomous cars: the Roborace. Ten teams will use identical autonomous electric race cars with an eye toward earning the checkered flag exclusively through the prowess of artificial intelligence (AI) and their programming skills. No driver required.
The application of increasingly sophisticated AI in our cars is evident in the advanced driver-assist systems being integrated in new models, creating ‘smart’ cars that can respond to emergency situations faster than most drivers. In fact, the processing speed of machines versus humans was recently on the mind of Tesla Motors’ Elon Musk, when he recently shared that the processing speed of machines is so superior to humans that “over time I think we will probably see a closer merger of biological intelligence and digital intelligence.”
What does that mean? Apparently, being human in a future world of AI is not enough because we are so slow. “It’s mostly about the bandwidth, the speed of the connection between your brain and the digital version of yourself, particularly output,” says Musk. His reasoning is that “some high bandwidth interface to the brain will be something that helps achieve a symbiosis between human and machine intelligence and maybe solves the control problem and the usefulness problem.” Yikes. I’m not the first to think ‘cyborg’ after hearing this. I’ll pass…although I will enjoy the benefits of connectivity and driver assistance systems in the meantime.
In a different and certainly more comforting look ahead, we know that plug-in vehicles are a hot item. Would you be surprised to know there are now 39 plug-in models - battery electrics and plug-in hybrids - being sold now or coming during the 2017 calendar year? That's a huge statement for electric drive and that number will certainly grow in the years ahead.
While Tesla models presently claim the greatest battery electric range at an entry point of $84,700, the new $37,495 Chevy Bolt EV stands out as the first battery electric car affordable to the masses with a driving range over 200 miles. Tesla has promised its coming Model 3 will also have a driving range greater than 200 miles at a base price of $35,000.
Without a doubt, the integration of semi-autonomous features and ‘green’ technologies will continue to grow. Welcome to your driving future!
BMW’s 330e iPerformance sedan adds yet another level of refinement to this automaker’s popular 3 Series along with a healthy dose of environmental acumen. The 330e plug-in hybrid combines a 184 horsepower TwinPower Turbo four-cylinder with a 76 horsepower electric motor to not only enable all-electric driving, but also some pumped-up performance. The combination delivers a total 252 horsepower and 310 lb-ft peak torque for short bursts to provide the kind of performance expected of a larger engine. Even though batteries make the 330e about 500 pounds heavier than the 320i, it accelerates from 0 to 60 mph in just 6.1 seconds compared to the conventionally powered 320i’s 7.3 second sprint. Power is delivered to the rear wheels via an eight-speed Steptronic automatic transmission.
The 330e’s 7.6 kilowatt-hour lithium-ion battery is located beneath the trunk floor to minimize impact on trunk capacity. Positioning batteries here also results in an ideal 50/50 front-to-rear weight ratio. Charging the batteries is handled via a chargeport located on the driver’s side front fender. Here, An LED light ring provides information regarding charge status. Charging takes about two to three hours when connected to an optional 240-volt BMW i Wallbox charger at home or to a public Level II charger. Alternatively, the 330e can be plugged into a standard 120-volt wall socket to charge up in less than seven hours.
Multiple driver-selectable settings enable tailoring the 330’s responsiveness and efficiency. A Driving Experience Control on the center console offers Sport, Comfort, and Eco Pro modes, while an eDrive button also allows for three modes for electric driving including Auto eDrive, Max eDrive, and Save Battery. Depending on setting, the 330e can determine the most fuel efficient combination of electric motor and engine power under specific driving conditions, moderate acceleration to conserve energy during low battery periods, or enable all electric driving. When battery power drops below 50 percent, Save Battery foregoes electric power and maintains battery charge while allowing the battery to be charged by the engine. This enables pure electric driving later, for example, in urban areas where zero-emissions are preferred or mandated.
BMW’s 3 Series is an ideal platform for the addition of plug-in hybrid power since this is the brand’s most successful model line, representing about a quarter of the automaker’s worldwide vehicle sales with over 14 million sales globally. The 330e carries on where the standard 3 Series leaves off, adding electrification to a stylish and well-equipped model featuring a driver-centered and accommodating cabin and handsome design.
Of course, the 330e iPerformance is also replete with desired standard and optional on-board electronics. Among these are Forward Collision Warning, City Collision Mitigation, Pedestrian Warning, Lane Departure Warning, and a Driving Assistant system that identifies speed limits and no-passing zone information.
The 2017 BMW 330e is EPA rated at 30 combined mpg and 71 MPGe when driving on battery power, with an all-electric driving range of 12 miles and overall range of 350 miles. It has an MSRP of $44,795 that includes destination and handling.
Green Car Journal has named the all-electric 2017 Chevrolet Bolt EV its 2017 Green Car of the Year® during AutoMobility LA at the Los Angeles Auto Show. The Bolt EV emerged the winner over fellow finalists BMW 330e iPerformance, Chrysler Pacifica, Kia Optima, and Toyota Prius Prime. Widely recognized as the auto industry’s most prestigious environmental honor, the award was presented by Green Car Journal editor and publisher Ron Cogan and accepted by Chevrolet Cars & Crossovers marketing director Steve Majoros.
The Green Car of the Year jury selected the 2017 Bolt EV for its milestone 238 mile battery electric driving range, stylish design, pleasing driving dynamics, and welcome suite of advanced and connected technologies. Along with its distinction as the first production battery electric vehicle to achieve a 200-plus mile driving range, the 2017 Bolt EV offers an array of features that provide a unique and catered ride to the driver.
Editors and jurors note that Chevrolet’s all-new 2017 Bolt EV is a breakthrough vehicle in every sense, sending a clear signal that an electric car’s environmental achievement is well-suited to the mass market. From the time modern electric vehicles emerged in the 1990s, limited driving range has presented a core challenge to the commercialization of electric cars affordable to everyday drivers. Bolt EV overcomes this with its 238-mile battery electric driving range and approachable price, the first production electric car to achieve this milestone.
Each year, an expanding number of environmentally positive vehicle models are considered for the Green Car of the Year® program, an illustration that the auto industry is continuing to expand its efforts in offering new vehicles with higher efficiency and improved environmental impact. The Green Car of the Year® is selected through a majority vote by a jury that includes celebrity auto enthusiast Jay Leno, as well as leaders of noted environmental and efficiency organizations including Jean-Michel Cousteau, President of Ocean Futures Society; Matt Petersen, Board Member of Global Green USA; Dr. Alan Lloyd, President Emeritus of the International Council on Clean Transportation; Mindy Lubber, President of CERES; and Kateri Callahan, President of the Alliance to Save Energy.
Staff jurors include Cam Benty, Ron Cogan, Drew Hardin, Jeff Karr, Todd Kaho, and Dr. Bill Siuru, all veteran auto writers and editors with decades-long careers in the auto industry. Their deep understanding of the importance and nuances of vehicles includes their time spent as editors of such noted legacy auto publications as Motor Trend, Hot Rod, Car Craft, Truck Trends, Popular Hot Rodding, and others.
During the award’s vetting process, Green Car Journal editors consider all vehicles, fuels and technologies as an expansive field of potential candidates is narrowed down to the final five. Finalists are selected for their achievements in raising the bar in environmental performance. Many factors are considered including efficiency, performance characteristics, ‘newness,’ affordability and overall environmental achievement. Availability to the mass market is important to ensure honored models have the potential to make a real difference in environmental impact, and finalists must be available for sale by January 1 of the award year.
Chevrolet's second generation 2016 Volt features sportier styling, better performance, and a lighter and more powerful two-motor drive system than the generation that came before it. The five-passenger, extended range electric now drives up to 53 miles on batteries alone, with its 1.5-liter, four-cylinder engine-generator creating electricity to deliver an overall 420 mile range. If range anxiety is one of your concerns with electric cars, that needn’t be even a distant thought here.
These are just a few of the many reasons why the 2016 Volt won Green Car Journal’s 2016 Green Car of the Year®, and not coincidentally why we’ve been living with the Volt during a year-long extended test to analyze what it’s like to experience this vehicle on a daily basis. After 8500 miles behind the wheel in urban, rural, and open-road driving, we have to say this is about as ideal an electric vehicle as one could want. Really...it's that good. Anyone who says otherwise has not spent enough time in the second-generation Volt.
During early drives, it was obvious that the all-new Volt would fulfill a diversity of missions without breaking a sweat. Typical commutes and drives around town? No problem, zero emissions all the way. A journey of a thousand miles for work or vacation? Also no issues with the Volt’s overall driving range and the benefit of an EPA estimated 106 MPGe when driving on batteries, and 42 combined mpg while operating on electricity from the Volt’s engine-generator.
While our Volt is typically used for daily zero-emission commuting duty, we’ve now pressed it into service on many extended road trips over the 8,500 miles it’s been in our long-term test fleet. Green Car Journal editors have found it an ideal vehicle for all possible uses.
The 2016 Volt is a pleasure to drive and exhibits satisfying levels of acceleration in both battery and extended-range modes. It’s loaded with advanced electronics and features most desired by drivers today. Among our favorite features is this electric’s adaptive cruise control that keeps pace with the car ahead, a feature used often on shorter hops on the interstate and always during extended journeys. Regen-on-Demand, first used in the Cadillac ELR, is a welcome addition that adds to driving fun and efficiency. Squeezing a steering-wheel paddle instantly engages aggressive regenerative braking that slows the car and generates electricity for the battery, while releasing the paddle immediately returns a normal driving state. Normal regenerative braking always works in the background.
Chevrolet did all this with the 2016 Volt, and more, at an entry point of $33,170 that goes considerably lower with federal and state incentives. We’ll be taking this one out from the test fleet every opportunity we get.
Among owners and fans, it’s a foregone conclusion that Tesla will remain the dominant producer of electric vehicles (EVs) as the automotive world increasingly adopts this technology. And why shouldn’t it? Tesla produces the best EVs, and perhaps the best cars made, has developed an incredible brand, and fills waitlists years before a new car is delivered. This all seems to indicate that Tesla has developed a world-beating business model, but is it actually a signal of future trouble?
Tesla’s strategy has always been to build EVs that are better than their internal combustion competitors and sell them for premium prices. In the language of innovation theory, strategies that offer existing consumers better products at higher prices are called sustaining innovations. Sustaining strategies tempt entrepreneurs because they appear so logical: build a better product and customers will come. But research shows that it is a losing strategy for new businesses. In sustaining competition, the industry incumbents nearly always win.
Incumbents are favored because sustaining strategies build on capabilities that they have developed over the course of their rise to dominance. Worse still, a sustaining strategy presents the entrant as a clear and direct threat to the incumbents. The combination of these two factors creates a response that often proves overwhelming for the entrant. Incumbents respond ferociously and deploy so many resources to the battle that the entrant is overcome.
Consider the situation for Tesla: It would be difficult enough for a company that sells 50,000 units per year to fight even one major automaker head-on. But Tesla has attacked not just the automakers but also every incumbent in the value network that produces automobiles, including the entire base of suppliers and dealers. The resources that these aligned interests can bring to bear are vast. Collectively, these firms spend more on R&D every year than Tesla has invested in its lifetime.
Many have argued that the move away from internal combustion is simply too technologically painful for automakers, but the technology underpinning EVs is largely a modular combination of standard components purchased from independent suppliers. The technology simply isn’t a constraining factor, and with every new auto show the automakers demonstrate this with new concept cars, such as the Porsche Mission E, squarely targeting Tesla. With its fantastic design and beloved product, Tesla might have written the playbook that the incumbent automakers will follow to dethrone it.
If better products and technological barriers aren’t enough to defeat incumbents, is there any hope for entrepreneurs? We’re believers in disruptive innovation strategy, which allows entrants to beat even the most-powerful incumbents. Disruptive innovation begins at the bottom of existing markets or by creating new markets where people don’t currently consume. They target the least-attractive customers and produce worse products for less money with lower-cost business models than conventional offerings. In doing so, they create the phenomenon of asymmetric motivation, which causes incumbents to ignore or flee them. But disruptive strategies don’t remain at the bottom of the market – they possess a technological core that allows them to improve their performance over time, capturing more of the market and pushing incumbents into ever-smaller segments at the high-end.
Many observers say this approach could never work in EVs, but we’re seeing it happen today. It takes the form of low-speed EVs driven by security guards on college campuses, retirees in the Sunbelt, and middle class families in China. The manufacturers are largely unknown and that’s the point. Each year they grow bigger and improve their products without any resistance from incumbents. Soon they will be good enough to lure the least-demanding customers away from traditional automakers and the disruption will have begun. While these companies improve their performance to capture more customers, Tesla’s only option is to reduce its performance. Which position would you rather be in?
Thomas Bartman is a Senior Research Fellow at the Forum for Growth and Innovation at Harvard Business School
With its very limited edition 918 Spyder and more mainstream Panamera S E-Hybrid – not to mention the coming electric Mission E – Porsche has shown that it takes electrification seriously. The premium automaker’s next step in its electrification strategy is represented by the 2016 Cayenne S E-Hybrid, a move that has brought plug-in hybrid power to its popular SUV model.
The Cayenne S E-Hybrid uses essentially the same components as its Panamera sibling to achieve plug-in capability. There have been some changes, like upgrading this S E-Hybrid model’s lithium-ion battery pack from 9.4 to 10.8 kilowatt-hours. This battery replaces the spare tire found in conventionally powered Cayenne models and allows the Cayenne S E-Hybrid to travel about 14 miles on battery power. Electric-only driving is possible at speeds up to 78 mph before the engine starts and the vehicle operates likes a regular hybrid. E-Power is the default mode so the Cayenne S E-Hybrid always starts on electric power, given sufficient battery charge.
An E-Charge mode modifies charging strategy so the electric motor becomes a generator, enabling the battery to recharge up to 80 percent while driving. This provides adequate battery power for electric-only driving once desired destinations are reached, such as urban areas where zero-emission driving may be preferred. Unlike most regenerative braking systems that are either on or off, the Cayenne S E-Hybrid’s regen system provides some modulation in the brake pedal while slowing down.
The Cayenne plug-in uses a supercharged 3.0-liter V-6 mated to an eight-speed Tiptronic automatic transmission, same as the Panamera. A single 95 horsepower permanent-magnet motor located between the engine and transmission provides hybrid capability. Power is delivered to all four wheels via a limited-slip center differential. The supercharged V-6 and electric motor deliver a combined 416 horsepower.
As expected from a Porsche, the Cayenne S E-Hybrid provides excellent performance, especially considering it is a 5,000-plus pound SUV that can carry 5 people and tow up to 7,716 pounds. It can accelerate from 0 to 60 mph in 5.6 seconds, 0 to 100 mph in 14.4 seconds, and has a top speed of 151 mph. Efficiency is a combined 22 mpg in hybrid mode and 47 miles-per-gallon equivalent (MPGe) during electric driving
All this goodness does not come cheap at a base MSRP of $78,700, but that is in line with what one would expect to shell out for a Porsche. The combination of performance, prestige, and greater efficiency combine to make this an attractive offering for Porsche fans.