Do extended range electric cars and plug-in hybrids really save energy and make an environmental difference like all-electric vehicles? The answer is a resounding ‘yes’ if enough zero-emission miles are driven. To that end, the latest news from Chevrolet is encouraging: Since Chevy’s Volt extended range electric was introduced in 2010, Volt owners have reportedly driven more than a half a billion all-electric miles, resulting in no localized emissions over those miles and a pretty huge petroleum offset. In fact, Volt owners are spending some 63 percent of their time in EV mode.
All electric miles are even higher in an independent study managed by Idaho National Labs and conducted during the last half of 2013. Volt drivers participating in the Department of Energy’s EV Project totaled 1,198,114 vehicle trips during the six month period from July through December, 2013, with 81.4 percent of these trips completed without use of the Volt’s gasoline-powered generator.
Battery-only driving range is also proving to be better than projected. A GM study conducted over 30 months that focused on more than 300 Volts in California shows many Volt owners are exceeding EPA’s estimates of 35 miles of EV range per full charge. About 15 percent are surpassing 40 miles of all-electric range. GM data also illustrates that Volt owners who charge regularly typically drive more than 970 miles between fill-ups and visit the gas station less than once a month. The 2014 Volt features EPA estimated 98 MPGe fuel economy when running in electric mode and 35 city/40 highway on gasoline power.
Some interesting trivia: Since the Volt’s launch in 2010, more than 25 million gallons of gasoline have been saved by Volt drivers. Chevy also likes to point out that 69 percent of those buying a Volt are new to the GM brand and of those trading in a vehicle during purchase, the most frequent trade-in is a Toyota Prius. The Volt was named Green Car Journal’s 2011 Green Car of the Year®.
Electric drive vehicles of all types are increasingly in the news, often led by a near-nonstop focus on Tesla and its Model S, Model X, and planned Model 3 battery electric vehicles. People want electric cars. Some feel they need them, or more accurately, that we all need them. It has been so for quite some time.
I was one of those pushing hard for electric vehicles in the 1990s, driving prototypes on test tracks and limited production models on the highway as I shared their benefits on the pages of Green Car Journal and Motor Trend before that. It was an exciting time filled with hope that battery breakthroughs would come, bringing full-function EVs offering the same driving range as conventional vehicles.
Expectations were high that a public charging infrastructure would expand to make topping off batteries convenient. New ideas like 15-minute rapid charging and battery swap stations would allow drivers of all model EVs the ability to renew on-board energy in the time it takes to enjoy a cup of coffee, enabling them to head back on the road in short order with a full battery charge. Importantly, there was an expectation that EVs would be affordable, both to manufacture and to buy.
If only this unfolded as expected, automakers would commit to developing battery electric vehicles of all types to meet the needs of an emerging market. But things have not unfolded as expected.
California’s Zero Emission Vehicle mandate drove the electric car surge in the 1990s and it’s a huge influence today. While less refined than electric models we have now, electrics of the 1990s like the Toyota RAV4 EV, Nissan Altra minivan, and Honda EV Plus were quite well engineered. Then there was GM’s EV1. Sleek, sexy, and fun, it provided a daily driving experience unparalleled in the field, something I came to appreciate well during the year I drove an EV1.
The challenge then was the same as now: cost. The EV1 was so costly to build with such massive losses there was no business case for it to continue, and so it ended, as all other electric vehicle programs of the 1990s ended, for the same reason.
Early on, Volvo had the foresight to challenge the status quo. While evaluating ways to meet California’s impending ZEV mandate, the automaker concluded there was no way to do this realistically with a vehicle powered exclusively by batteries. In 1993, I test drove Volvo’s answer – its high-tech Environmental Concept Car (ECC) that added a high-speed turbine-generator to an electric drivetrain, thus creating what we now call a range-extended electric vehicle (think Chevy Volt). Sadly, the ECC’s high cost turbine-generator meant this innovative car never saw production. But it was at the leading edge of a movement that brought us hybrids and range-extended electric cars. Today, even BMW – a high-profile champion of electrics with its innovative i3 – understands the importance of offering a range-extended variant with a gas engine-generator for those who prefer the convenience of longer range.
In answer to the chorus of Tesla enthusiasts sure to raise their voices, I am aware that Tesla is committed to all-electric vehicles and the range of the $70,000-$95,000 Model S (before the addition of popular options) is substantially greater than its competitors. The coming Model X electric crossover is expected to be in the same aspirational category as the Model S with a price suitable for premium buyers. The company's planned Model 3, presumably a vehicle accessible to the masses at a price Tesla says will be about $35,000, is said to be three years away. That's a good thing since significant battery cost reductions will be required to make this Tesla-for-the-masses electric an affordable reality. Will three years be enough? Achieving battery cost reductions of the magnitude required is no sure bet and, as history has proved, battery technology advances move at their own pace.
One stock analyst recently quoted in a major newspaper article shared that Tesla has the ability to reduce battery costs by nearly half in the coming three to five years. Of course, the backstory is that this ‘ability’ is really but a ‘potential’ based on batteries that do not yet commercially exist. The past 25 years are replete with examples of major government and industry efforts aimed at developing energy-dense, safe, and affordable electric car batteries that deliver the range and cost expectations of auto manufacturers and consumers. Over these years there have been many incremental improvements in battery design and chemistry, a slew of failures, and pending ‘breakthroughs’ that have often been promoted only to have expectations and actual production sidelined for a plethora of reasons du jour.
As just one recent example, Panasonic's 2009 announcement of a lithium-ion battery breakthrough using a silicon alloy cathode was accompanied with a claim it would be manufactured in 2012. Many positive reports on electric vehicles take into account this very ‘breakthrough’ and others like it, with the considerable cost reductions that would follow. Yet, Panasonic did not begin mass production of this battery technology in 2012. According to a Panasonic spokesman, the company’s work on developing high-capacity battery cells using a silicon-based negative electrode is ongoing. Hopefully, developments like these will lead to the kind of mass production that could bring long-hoped-for battery performance and cost reductions. Perhaps this will come to pass with a mass effort by Tesla through its proposed $5 billion battery ‘Giga Factory,’ and perhaps not. But after 25 years of following battery development I have learned not to count on claims or development, but rather actual production and availability in the real world.
Tesla continues to develop its Supercharger quick-charge network and has potential plans for a battery swap system, both exclusively compatible with its own vehicles. An innovative and expanding infrastructure for battery electrics will be required for their ultimate success and these are very positive moves, although only for those with a Tesla product and not electric vehicle owners as a whole.
Battery electric vehicles priced at levels accessible to everyday buyers will continue to grapple with cost and marketing challenges until a battery breakthrough comes. This is illustrated by Fiat Chrysler Automobiles CEO Sergio Marchionne's comment earlier this year that the company is losing $14,000 on every one of the Fiat 500e electric cars it sells. Is it so different for other automakers also selling EVs in limited numbers and in constrained geographic locations? Not inconsequentially, to bolster the market battery electric cars will also require continuing federal and state incentives that combined typically total $10,000 or more. Hopefully, innovative thinking and real technology and cost breakthroughs will emerge in the years ahead.
In the meantime, gasoline-electric hybrids and plug-in hybrid models, plus range-extended electric vehicles that combine all-electric drive with an on-board electric generator, are providing functionality for everyone even as battery-only electric cars fight hard to establish their place in the automotive market. Let's hope that mass-market, nationally-available models like BMW's innovative i3 electric car change this dynamic sooner than later.
What does Silicon Valley, California have in common with Leipzig, Germany? They are both home to the most innovative, technically advanced, and possibly the most significant cars of the 21st century. The Tesla Model S and the BMW i3 are the cars that have defied experts who said they couldn't be built. While the key innovations for each of these cars are different, the innovative spirit is the same.
With the Model S, Tesla created a breakout electric car out of mostly existing technology. What Tesla did better than other new entrant was put it together, what Silicon Valley calls ‘systems integration,’ into a remarkable package. With obsessive attention to detail and high standards for performance and styling, Elon Musk has emerged as the Steve Jobs of the auto industry and proven countless naysayers wrong.
With the i3, BMW created an affordable car out of an innovative material, carbon fiber, or technically speaking, ‘carbon fiber reinforced plastic.’ BMW has found a way to apply its manufacturing know-how to bring what was once an exotic material for supercars and fighter jets to an everyday car. Driven to not make just a ‘me too’ electric car, Ulrich Kranz, the father of the i3, has created a breakthrough car that, like the Model S, is receiving enthusiastic reviews from auto critics for its performance.
In the 20th century, the automobile shaped the world. In the 21st century, the world will shape the automobile. Today’s cars are a major source of urban air pollution, global warming emissions, and oil dependency.
Fortunately, there are those in the auto industry – like Mr. Musk and Dr. Kranz – who understand it doesn’t have to be this way. Technology innovation combined with visionary leadership can reinvent the automobile. Tesla’s Model S and BMW’s i3 prove that being more in balance with today’s global realities does not mean sacrificing what makes the auto industry great.
The thought of vehicle-integrated solar cells taking an active role in powering an electric car remains a tantalizing prospect. In fact, the use of solar panels on the roof of a vehicle is not a new idea. It’s been shown that ultra-lightweight solar race cars with solar-packed body shells can actually drive exclusively on the power of the sun. In real life, though, this doesn’t work with production cars weighing thousands of pounds that need to carry varying numbers of passengers and weight, provide the acceleration needed for safe motoring, and in general perform all the functions required of a modern car.
Disappointing to some, car-mounted solar panels typically generate just enough electricity to operate a fan to keep the interior of a parked car cool on a hot day, falling fall far short of providing the kind of energy needed for drive motors. Lowering cabin temperatures in a parked EV does serve a purpose since less energy is needed to cool the passenger space during the early part of a drive. That means less of a drain on batteries needed to power an electric vehicle. In this case, every little bit helps.
There are other answers and solar charging does take different forms. Plenty of EV owners offset their car’s use of electricity through large solar panels on their homes. Many public charging stations also make use of solar arrays to provide at least part of the power needed for charging electric vehicles. These have been the most logical examples of solar charging to date. Still, efforts toward creating the true solar car continue.
The latest example comes from Ford. Working in a collaborative project with long-time solar technology partner SunPower and Georgia Institute of Technology, Ford’s C-MAX Solar Energi Concept embraces an innovative approach that could potentially deliver the same amount of electrical power as plugging a C-MAX Energi PHEV into the electrical grid. The goal is no less than creating a logical stepping stone toward making a solar-powered hybrid feasible for daily use.
Ford’s C-MAX Solar Energi Concept benefits from amplifying the sunlight that enables the car’s already-efficient SunPower solar cells to create electricity. A huge jump in solar energy conversion is accomplished with a special solar concentrator lens that directs intense solar rays to the solar panels on the vehicle's roof. The off-vehicle solar concentrator uses a special Fresnel lens of the type originally invented for use in lighthouses, boosting the impact of sunlight by a factor of eight. Similar in concept to a magnifying glass, the patent-pending system tracks the sun as it moves from east to west.
With the aid of the concentrator, the system can collect enough energy from the sun each day to equal a four-hour battery charge for the C-MAX Energi, about 8 kilowatt-hours. Ford says this is sufficient to deliver the same performance as a conventional C-MAX Energi plugged into the electrical grid. The Ford C-MAX Solar Energi Concept would also have the same total range as a conventional C-MAX Energi of up to 620 miles, including up to 21 electric-only miles. Since the sun isn't always shining, there is still a charge port so this solar Energi variant t can be charged conventionally from the grid.
The special solar concentrator carport used with the C-MAX Solar Energi is conceptualized in a way that maximizes capturing solar energy as the sun moves throughout the day. This requires an east-west carport orientation and also the ability for the car to autonomously move forward and backward beneath the canopy during daylight hours, thus enabling its solar cells to make the most of sunlight directed by the concentrator. As Consumer Reports posits, not only does this require buying into the concept of an unattended car moving all by itself during the day, but also the potential liability issues that could come with it.
Ford studies suggest that the sun could power up to 75 percent of all trips made by an average driver in a solar hybrid vehicle. Solar charging could be especially valuable in places where the electric grid is underdeveloped, unreliable, or expensive to use. In addition, use of a C-MAX Solar Energi could reduce yearly CO2 and other greenhouse gas emissions from the average U.S. car owner by as much as four metric tons – the equivalent of what a U.S. home produces in four months. If all light-duty vehicles in the United States were to adopt Ford C-MAX Solar Energi Concept technology, annual greenhouse gas emissions could be reduced by approximately 1 billion metric tons.
Next up: Ford and Georgia Tech will be testing the concept under real-world conditions. The outcome of those tests will help determine if the concept is feasible as a production vehicle.
Many believe that the ultimate goal for electric transportation is the hydrogen fuel cell vehicle (FCV), with battery electric vehicles being just a step along the way. Hyundai is skipping this step and concentrating on developing and marketing FCVs. The automaker notes that affordable electric vehicle technology is best suited to smaller urban vehicles, not to larger family and utility vehicles that many families require to meet all of their needs.
To that end, Hyundai is poised to offer its next-generation Tucson Fuel Cell vehicle in Southern California Hyundai dealers starting sometime this spring. Production is taking place at the automaker’s Ulsan plant in Korea. Hyundai already began production of the ix35 Fuel Cell, the Tucson’s equivalent in Europe, at Ulsan in January 2013. Since the Ulsan plant builds the gasoline-powered Tucson CUV, this allows Hyundai to take advantage of both the high quality and cost-efficiency of its popular gasoline-powered Tucson platform.
Hyundai’s third-generation fuel cell vehicle features significant improvements over its predecessor, including a 50 percent increase in driving range and 15 percent better fuel efficiency. The Tucson and ix35 Fuel Cell are equipped with a 100 kilowatt electric motor, allowing a top speed just shy of 100 mph. Instantaneous 221 lb-ft torque from the electric motor means spritely acceleration.
Sufficient hydrogen for an approximate 370 mile range is stored in two hydrogen tanks. Refueling is accomplished in less than 10 minutes, providing daily utility comparable with its gasoline counterpart. Electrical energy is stored in a 24 kilowatt-hour lithium-ion polymer battery that’s been jointly developed with LG Chemical. The fuel cell reliably starts in temperatures as low as -20 degrees C (-4 degrees F). Unlike battery electric vehicles there is minimal capacity decrease at very low temperatures.
Hyundai’s fuel cell fleet has completed over two million durability test miles since 2000. Extensive crash, fire, and leak testing have been successfully completed. Hyundai says that high reliability and long-term durability come as a matter of course with the power-generating fuel cell stack, which has no internal moving parts.
The Hyundai Fuel Cell will be leased for $499 per month on a 36 month term, with $2,999 down. This includes unlimited free hydrogen refueling and At Your Service Valet Maintenance at no extra cost. Hyundai will initially offer the Tucson Fuel Cell in the Los Angeles/Orange County areas at four dealerships that will have hydrogen refueling capability. The automaker says that availability will expand to other regions of the country consistent with the accelerating deployment of hydrogen refueling stations.
Hyundai is also partnering with Enterprise Rent-A-Car to rent the Tucson Fuel Cell at select locations in the initial lease regions. This will allow interested consumers to evaluate the Tucson Fuel Cell for their lifestyles on a multi-day basis. Rentals are also planned sometime this spring.
The evolution of the auto industry has been no less than amazing. I have witnessed this first-hand while documenting the advent of ‘green’ cars over two decades at Green Car Journal and at Motor Trend before that. We had electric cars back in the 1990s as we do now, battling for acceptance, with other alternative fuels also jockeying for position amid an expansive field of conventional vehicles. Things change, things stay the same…although the numbers have improved for electrics.
While not particularly ‘green’ in earlier years, the automotive field did show early inclinations toward efficiency, particularly after the Arab oil embargo of the 1970s and oil disruptions of the 1980s. That was short lived as gasoline disruptions eased and gas was again plentiful and cheap. It was the 1990s, though, when industry and consumer interest in ‘green’ kicked into high gear.
The advancement of ‘green’ vehicles has largely been driven by the State of California, which has long required new vehicles to run cleaner than those meeting federal standards, a nod to the state’s epic half-century battle with urban smog. California has led the way in recent times with its milestone low emission vehicle program and its requirements for ever-cleaner running cars meeting seemingly impossible emissions goals. All this led to more stringent federal standards and, along the way, internal combustion vehicles with near-zero tailpipe emissions. It also hastened the introduction of hybrids and battery electric cars.
Early on, interest in greener cars was primarily driven by concerns such as tailpipe emissions, air quality, and petroleum dependence, the latter focused on resource depletion, the environmental cost of petroleum production, and significant dependence on imported oil. But that has evolved. The release of multiple studies singling out CO2 emissions as a major contributor to climate change added yet another reason to demand cleaner cars, with carbon emissions now a focal point. New regulations requiring much higher fuel economy in the years ahead – accomplishing the multiple goals of reducing petroleum use and lowering CO2 emissions through higher efficiency – have helped change the dynamic as well, as have the shockingly high gas prices seen late last decade. Together, they created the perfect storm for ‘green’ cars.
The cumulative result of regulations and incentives – plus an auto industry increasingly looking at ‘green’ not only as a requirement but as a market advantage – is a field of greener choices at new car showrooms. We now have internal combustion vehicles with near-zero emissions. A growing number of vehicle models are hybrids, plug-in hybrids, and battery electric cars with a few gaseous fuel models as well. The vast majority, however, are conventional vehicles that are worlds better than those of the past – gasoline and clean diesel models that achieve 35, 40, and 45 mpg or better with 50+ mpg clearly on the horizon.
While electric vehicles are often the topic du jour, it’s evident that new car buyers want the ability to pick their path to a greener driving future, choosing the vehicle, powertrain, and fuel that make them comfortable in their daily journeys. It has been satisfying to witness the auto industry’s decades-long evolution that’s now enabling consumers to do just that.
In his 2011 State of the Union address, President Obama set a goal of having one million electric vehicles on the road by 2015. The million EVs would include plug-in hybrids, extended range electric vehicles, and all-electric vehicles. Now that we’re roughly at the halfway point for the 2015 goal, what is the scorecard?
It’s important to note that the goal was rather naively – or perhaps intentionally – based on manufacturer- and media-supplied data on how many electric cars could be built and not from projections of how many people would actually buy them. Unless we’re talking very hot-selling items like the latest Apple iPhone or iPad, sales projections are usually based on projected sales and not made on potential production.
The estimate actually projected 1,222,200 EV units produced including 13,000 commercial vehicles (Ford Transit Connect, Navistar eStar EV, and Newton EV). Another 252,000 included Fisker Karma and Nina models and the Think EV). Think is no longer producing cars and Fisker Automotive has ceased production, although it should reappear because of it's just-announced bankruptcy sale to China's Wanxiang Group..
Sales of the four EVs and PHEVs to date have been far lower than their target numbers, with the Tesla S a lone exception. The million EV goal looks far from being achievable by 2015.
Electric vehicle models not included in President Obama’s estimates, but now on sale, are the Mitsubishi i-MiEV, Honda Fit EV, Fiat 500e, Chevrolet Spark EV, Toyota RAV4 EV, and smart electric drive. Of these, only the i-MiEV is available everywhere in the country. Some others can be considered ‘compliance vehicles’ since they are only offered in very limited ways with the intent to comply with California’s ZEV mandate, which aims at putting over 1.4 million zero emission vehicles on the road by 2025.
Part of the government’s strategy to reach this goal is to offer substantial tax credits to encourage sales. Typically, this includes a federal credit of $7,500 plus state incentives. As of November 2013, 40 states and the District of Columbia have monetary incentives including electric vehicle tax credits and registration fee reductions ranging from $1,000 in Maryland to $6,000 in Colorado. Even with incentives, though, electric sales are not keeping pace with President Obama’s ambitious goals.
Bill Siuru is a retired USAF colonel who has been writing about automotive technology for 45 years. He has a Bachelor degree in automotive engineering, a PhD in mechanical engineering, and has taught engineering at West Point and the U.S. Air Force Academy.
The electric hub motor has been around for a long time. Ferdinand Porsche’s first automobile in 1898 was the Lohner-Porsche with two electric motors in the front wheel hubs. Initially, electricity was supplied from batteries and later by batteries and a gasoline engine-driven generator, in what is considered the first hybrid electric vehicle. While there has been on-and-off interest in hub drive systems, there are currently two programs underway that could lead to production vehicles within a couple of years.
One of the big challenges has been the substantial unsprung weight that can degrade ride quality and handling. This can be overcome by lighter weight motors and other components that are now available. For example, Ford has shown its Fiesta eWheelDrive prototype developed with Schaeffler Technologies in Germany. The two Schaeffler eWheelDrives are housed within the 16-inch rear wheel rims. Each highly-integrated wheel hub drive contains an electric motor, power electronics, controller, brake system, and liquid cooling system.
Each motor supplies a peak 54 horsepower or 44 horsepower continuous output to a rear wheel. The motor produces 516 lb-ft of torque. The highly-integrated wheel hub drive has a total weight of 117 pounds, only 17.6 pounds more than a conventional wheel including its wheel bearing and brake components.
The Fiesta eWheelDrive installation is just a technology demonstrator. Ford and Schaeffler feel the ideal application is in city cars for use in crowded urban areas with limited parking. Everything, with the exception of batteries, needed to propel and brake the car is located in the wheel. Thus, the space now needed for the engine and transmission or electric motor in an EV can be used for passengers and luggage. Indeed, it could mean a four-person car that takes up no more parking space than a current two-person car. The eWheel- Drive steering system could even allow moving sideways into parking spaces.
Despite its somewhat higher wheel-sprung masses, extensive testing has shown the Fiesta eWheelDrive exhibiting driving behavior equal to a conventional Fiesta in terms of comfort and safety. The two wheel hub drive motors also allow torque vectoring for enhanced maneuverability in tight spaces. Ford, Schaeffler, and other partners plan on producing two more drivable vehicles by 2015.
Protean Electric, based in Britain, has been developing hub drive motors for years and plans volume production of its Protean Drive system in China this year. It showed its in-wheel electric drive system on a BRABUS hybrid vehicle at Auto Shanghai 2013. The BRABUS Hybrid, based on the Mercedes-Benz E-Class, is powered by an internal combustion engine driving a generator and two Protean electric drive motors, one in each of the rear wheels. Protean had also demonstrated Protean Drive in a Vauxhall Vivaro cargo van, Guangzhou Trumpchi sedan, Ford F150 pick-up, and a BRABUS full electric vehicle also based on the Mercedes-Benz E-Class.
The Protean PD18, designed to fit inside an 18 x 18 inch wheel rim, provides 735 lb-ft torque and 100 horsepower. This is a 25 percent increase in peak torque compared with the previous generation design. Thus, it is powerful enough to be the only source of traction drive in electric vehicles. The unit only weighs 68 pounds per motor.
Each Protean Drive has a built-in inverter, control electronics, and software. The design can be used in small- to full-size vehicles including application in current vehicle platforms, retrofits to existing vehicles, or in all new vehicles. Protean says it recoups up to 85 percent of the available kinetic energy during regenerative braking. Compared to other electric vehicle drive systems, in-wheel motors apply regenerative braking directly at each wheel independently, similar to standard friction brakes.
Opportunity charging can be a pretty big deal to electric car owners. Topping off at public charging stations, or for that matter at chargers available at the workplace, can considerably extend electric driving range. This can help relieve range anxiety or simply deliver the additional battery power needed for longer drives. But this strategy depends on a charger being available.
For years, EV owners have expressed frustration whenever drivers of internal combustion engine (ICE) vehicles park in an EV charging spot, thus blocking access to a charge. There’s even a term for it – being ‘ICEed.’ Now there’s a new twist. With the number of electrics on the road far surpassing the number of public or workplace chargers, EV owners are now squabbling among themselves as they jockey for their position at an available charger. Enter a new term – ‘charge rage.’
That’s what’s happening when an EV owner sees another EV at a charger and believes it has already topped off and is now simply hogging the charging opportunity. Or charge rage could also occur when an EV driver really needs a charge to get to where they need to go, and other EVs are simply plugged in and an obstacle to their mobility. What’s happening is frustration, unkind words, and often enough one EV owner unplugging another’s car so they have access to a charge.
There’s no easy to answer to this other than a huge infusion of new chargers. There’s movement by some charging manufacturers to institute a charge reservation program. Some companies are also taking reservations for workplace charging, encouraging EV owners to unplug and move out of a charging space once they’re adequately topped off. There is no instant answer. What there is, simply, is a challenge that has not been adequately considered. It will be interesting to watch this unfold.
VW’s e-Golf is coming to U.S. highways at the end of this year and will be available in select states. Powered by a 115 horsepower permanent magnet AC electric motor developing 199 lb-ft torque, the e-Golf is said to accelerate from 0-62 mpg (0-100 km/h) in about 10.4 seconds and offer an electronically limited 87 mph top speed. Driving range should vary between 70 to 90 miles depending on driving habits and environmental conditions.
The e-Golf’s lithium-ion battery is integrated in the center tunnel and within a space-saving frame in the vehicle floor beneath the front and rear seats. The battery accounts for 700 pounds of the e-Golf’s 3090 pound curb weight. Charging with a 120 volt outlet is accomplished in about 20 hours, although a 220 volt garage or public charger will bring the batteries to a full state of charge in less than four hours. Rapid charging at a fast-charge station could bring the e-Golf to 80-percent of charge in 30 minutes.
The all-new NSX hybrid supercar, to be motivated by an advanced powertrain combining torque vectoring all-wheel drive with hybrid efficiency, was recently shown in prototype form by Acura. The prototype maintains the low and wide stance of the original NSX with the dynamic and alluring proportions of the NSX Concept that debuted in 2012.
The new NSX design steps up this car’s game by combining supercar driving dynamics with advanced environmental performance. Its all-new Sport Hybrid SH-AWD (Super Handling All-Wheel Drive) powertrain features three electric motors, one integrated with the mid-mounted, direct-injected V-6 engine. Power is delivered through an all-new dual-clutch transmission (DCT) driving the rear wheels. Two independent electric motors drive the front wheels.
Multiple benefits come as a matter of course. Beyond the obvious advantages of gasoline-electric hybrid power, the system will enable instant delivery of negative or positive torque to the front wheels during cornering to achieve a level of driving performance unparalleled with current AWD systems. Electric-only front-wheel drive will be available for zero emissions driving.
Acura’s iconic supercar will be produced at the Performance Manufacturing Center now under construction in Marysville, Ohio. The original Acura NSX was built in Japan from 1990 until 2005. The new NSX is being developed by a global R&D team led by designers and engineers at Honda R&D Americas in Los Angeles and Raymond, Ohio. Honda’s engine plant in Anna, Ohio will assemble the advanced powertrain for the NSX. The Acura NSX is slated for launch in 2015 and will be exported to customers throughout the world.
Batteries remain the electric car’s most pervasive challenge. After decades of research and development plus billions of dollars of investment, an energy-dense and affordable electric car battery remains elusive. Automakers are acutely aware of this as high battery costs can mean significant losses on every unit sold.
Ford is aiming to meet the challenge head-on with a new $8 million battery lab that’s now operating at the University of Michigan. The goal is to develop smaller and lighter batteries that are also less expensive to produce, resulting in more efficient and affordable battery electric vehicles with greater driving range.
The automaker’s existing battery labs focus on testing and validating production-ready batteries. This new effort will address batteries earlier in the development process, serving as a stepping-stone between the research lab and the production environment. The new lab includes a battery manufacturing facility supporting pilot projects, testing, and state-of-the-art manufacturing to make test batteries that replicates the performance of full-scale batteries.
Battery development is in its infancy and this kind of research is critical, says Ford, as is the need for new chemistries to be assessed in small-scale battery cells that can be tested in place of full-scale production batteries, without compromising test results. The automaker points out that in the span of 15 years, the industry has gone from lead-acid to nickel-metal-hydride to lithium-ion batteries, and it’s too early in the battery race to commit to one type of battery chemistry.
Getting around Hawaii is a study in diversity. Hang around the islands and you’ll see folks moving about on trolleys and buses, in cabs, rental cars, scooters, and of course on foot. We prefer staying planted at the Hilton Hawaiian Village with its array of interesting sites, nightlife, and of course its desirable stretch of Waikiki Beach. Walks to downtown Waikiki are a must to experience the vibrant activities there.
After arrival at Honolulu International Airport and a requisite lei greeting, there are plenty of choices available for getting to Waikiki and elsewhere on the island. Popular options include cabs and town cars or shared rides aboard courtesy vehicles from some hotels, on-demand SpeediShuttle, and the island-wide TheBus service.
What about rental cars? Not really on our radar unless a day trip to the North Shore is on the agenda. Typical of others, we’ve rented cars when visiting in the past, but the car was parked more than it was used. Still, what about those interesting places in the guidebook that call to you…those farther than a pleasant walk but not really distant enough to warrant the cost and hassle of a conventional rental car?
That line of thought spelled opportunity for Justin MacNaughton and Warren Doi, founders of GreenCar Hawaii, a by-the-hour ‘green’ car share service on Kauai and Oahu. Choices vary by location but include the Nissan LEAF, Chevy Volt, hybrids, and efficient gasoline models. Our plans on this trip included visiting Honolulu’s Chinatown and hiking the Makapu’u Lighthouse Trail, with a trailhead some 15 miles from our Hilton Hawaiian Village base.
Since GreenCar Hawaii had a rental outlet at the nearby Doubletree Alana Hotel, we walked over to the Doubletree to pick up a Nissan LEAF there. We figured...if we're going to travel with a light eco footprint, why not go zero emission with a popular electric car?
The process of renting a vehicle from GreenCar Hawaii is simple and can be done online, by phone, or through a kiosk at the hotel. If the reservation was made ahead of time, a credit card is swiped at the kiosk as a reservation identifier, details for the car-share rental are shown, and a reservation check-in is printed out. Present this to the hotel’s valet parking and the car is brought up by an attendant, no different than if you were a guest at the hotel with a car in valet parking.
We knew the drill with electric cars and made sure our travels wouldn’t take us farther than the LEAF’s available range. All told, our plotted routes would consume about 60 miles so we were good to go. Those wishing to go farther than the range of the rental LEAFs can opt to charge up at numerous 240 volt Level II chargers on the island or at a handful of available fast chargers.
Picking up our LEAF from the valet, we headed out on city streets and then H1 East and HI-72 East toward the Makapu’u Point State Wayside, where visitors park their cars before heading out on the hike. The half-hour, 15 mile drive was pleasant and uneventful, the LEAF performing as expected with plenty of power and a comfortable ride.
The guidebook described the hike as ‘easy and breezy’ along a two mile paved trail. While short and do-able, it’s also a bit steep at times and warm as well as breezy. The bonus: It's good exercise and the views are unbeatable. Reaching the summit provides a great view of the Makapu’u lighthouse and two small islands nearby – Manana and Kaohikaipu. We've hiked Diamond head before and recommend this as a nice follow-up after that trek up the famous dormant volcano. Following our hike was a drive to Honolulu’s Chinatown and a quick visit to Hilo Hattie’s for souvenirs to bring back home.
Returning the LEAF to the Doubletree Alana Hotel was simple, with a swipe of a credit card at the kiosk identifying our rental details, processing the $15 per hour charge for our four hour rental, and printing out a receipt. Keys were handed over to valet parking and we were off on a walk to Cheeseburger Waikiki for loco moco and then back to the Hilton Hawaiian Village. Easy breezy, as they say.
BMW is planning to offer the i series of electric, plug-in hybrid, and range-extended electric vehicles beginning in late 2013. This entirely new model line will offer BMW’s usual focus on premium engineering and style, but critically, it will also feature a consistent focus on eco sustainability and urban living. BMW is serious enough about this to have worked with New York University to develop a report, ‘Urban Mobility in the 21st Century.’ The report finds that 80 percent of us drive less than 50 miles per day, and that by 2050 the world’s urban population will grow by 80 percent, from 3.5 billion to 6.3 billion. In short, BMW thinks we need cars that work in megacities and also don’t pollute.
The large volume, five-door i3 hatchback will be constructed of lightweight carbon-fiber reinforced plastic containing the i series ‘life’ passenger cell and ‘drive’ electric propulsion cell, powered by a 170 hp electric motor driving the rear wheels. A range-extender engine will be optional. In a departure for BMW, the i3 will have rear ‘coach doors’ hinged at the rear of the doors rather than the front, plus bench seats to make city living (and parking) easier.
The seductive, two seat i8 coupe/cabriolet combines the same lightweight engineering with a 131 hp electric motor driving the front wheels and a 223 hp, 1.5-liter 3-cylinder turbo gas engine at the rear. These powerplants can be used together or separately. The car’s combined 354 horsepower accelerates the i8 from 0 to 60 mph in under six seconds. The i8 also features an electric-only range of 20 miles, a top speed of 155 mph, and up to 80 mpg.
BMW’s long-term mobility plan seems a good one. It integrates lessons learned from data gleaned from its extensive Mini-E and ActiveE electric vehicle field trials and focuses on sustainable manufacturing, practicality, and pollution reduction in an entirely new series of vehicles. BMW’s new i series could be poised to make a huge impact on how electric vehicles are designed and built.
With styling considered cute by some and out of the question by others, Mitsubishi’s i electric is clearly not for everyone. That begs the question: Just who is right for the i?
That’s not a question easily answered. There are no direct comparisons. Nissan’s LEAF is more sophisticated in most ways but costs about six grand more than Mitsubishi’s i. When the smart fortwo ed emerges this spring it will likely come in at a grand or so less than the i, but that savings brings with it the loss of a rear seat…a deal-breaker for many.
Those who want an affordable – as far as electric cars go – zero emission ride without high expectations may find the electric i a good fit. It is by design the least expensive, full-function four passenger electric vehicle on the market at present. That doesn’t mean it’s cheap. Rather, at a retail cost of $29,125 for the base ES model, it’s simply the EV that will strain a budget the least. Factor in the $7,500 federal tax credit and the cost drops to $21,625. Potential state and other incentives could drop the price even lower.
Think vintage ‘VW Bug’ and you’re in the ballpark in the way of driving experience. It’s fun to drive if your expectations are set somewhat low, sort of like those early Beetles. While it does have a host of modern features including an array of advanced entertainment, electronics, and safety systems, the Mitsubishi i cabin is generally Spartan by today’s automotive standards, also sort of like those early Beetles. Instrumentation is minimalistic with the obvious juxtaposition of an HDD navigation system with rearview camera, optionally available on the uplevel SE model.
Our initial driving experience was enlightening. We understood that running climate control or the stereo system would diminish range, but in the interest of driving the Mitsubishi i in ways that everyday motorists typically drive, we ignored that and did what we would normally do. Using the ‘Eco’ or ‘B’ transmission selections are also recommended to maximize range and regenerative braking, but again, we thought it instructive to see what tooling about town in ‘D’ (Drive) would bring.
It was a pleasant experience. We drove 65 on the freeway and merged readily enough. Driving around town was comfortable and confidence-inspiring with no downsides. We were driving electric with zero localized emissions, a real plus. Then we stole a look at the battery gauge, which had dropped to a disturbingly low three bars. Soon the charging icon was flashing and the realization hit that we wouldn’t be tooling around town much longer. Yikes! Back to the barn, pronto.
Driving range during our devil-may-care jaunt was a disappointingly low 32 miles. We probably deserved that and, honestly, such driving would slash the potential range of any electric car. This won’t be the experience for Mitsubishi I drivers who motor about conservatively and use the tools provided to optimize range, thus achieving something closer to the EPA’s combined range estimate of 62 miles. When you’re ready to charge up, the deed can be done in 7 hours from full discharge with a 220-volt home charger or in 22 hours with a 110-volt mobile charger that’s carried along in the vehicle.
We have lots of experience with neighborhood electric vehicles (NEVs) designed exclusively for around-town use at a governed top speed of 25 mph. The eggplant-like Mitsubishi i sort of reminds us of a NEV because of its minimalistic approach, but with much greater functionality, safety, and user-friendly features. It does not remind us of the delightfully drivable GM EV1 electric car we lived with for a year when that model was around, or for that matter any EVs at higher price ranges.
Considerably better than a NEV but offering less than other electric cars we’ve experienced, the Mitsubishi i aims at drivers who want their rides distinctive, eco friendly, and inexpensive to operate, with capabilities aimed at around-town driving or commuting. Obviously, Mitsubishi is banking on a large enough pool of like-minded buyers to make this approach a success.
How to extend the range of battery electric vehicles? A start-up company in Stuttgart, Germany has developed an answer in the form of the ‘ebuggy,’ a trailer carrying a lithium-ion battery designed to be towed behind an EV.
The ebuggy is viewed as an ‘on-demand’ solution since an EV would drive on urban trips without the trailer most of the time. Then, for longer trips, the EV would be driven to a service station where the ebuggy would be hooked up to provide extended range. It would be returned to the same service station or dropped off at another station at the destination.
The ebuggy can be towed at speeds up to 62 mph (100 km/hr) and has a four-hour battery capacity, which provides a range extension of about 240 miles for most electric cars. Add the standard range of the EV itself and trips of 300 miles on electricity alone are quite possible.
Envisioning franchised stations that could be co-located with gas stations, garages, or at highway rest stops, ebuggy GMBH says its system requires a much smaller initial investment compared to other range extension ideas like battery exchange stations. Battery recharging can be done using the same equipment used to recharge batteries in EVs. When an electric car owner signs up for ebuggy service, the user gets a kit for upgrading their car to the ebuggy system. This includes a tow hitch, power socket, and in-car display.
General Motor has debuted its first all-electric car since the sporty EV1 that was sold for a time in the 1990s. The Chevrolet Spark EV is basically a Korean-built, five-door Spark subcompact sedan converted into an electric vehicle. However, the drive unit and motor will be assembled at GM’s White Marsh, Maryland manufacturing facility using parts sourced from U.S. and global suppliers.
The Spark EV is powered by a GM-designed, coaxial drive unit and electric motor. Rated at 130 horsepower and 400 lb-ft torque, this motor can accelerate the four passenger EV to 60 mph in under eight seconds. Electric energy is stored in the 20 kilowatt-hour lithium-ion battery. The 560 pound battery pack consists of 336 prismatic cells. It’s warranted for eight years or 100,000 miles. GM has not provided range estimates for the Spark EV, but it is expected to match or exceed that of competitive EVs like the Nissan LEAF and Ford Focus EV, or about 80 miles under real world conditions.
SAE Combo DC Fast Charging will be optional. This will allow the Spark EV to reach 80 percent of full battery charge in as little as 20 minutes in fast-charge mode. A common on-board charging receptacle accommodates all three charging systems – DC Fast Charge, AC 240V, and AC 120V. Using a dedicated 240V outlet, the Spark EV recharges in less than seven hours.
Owners can control charging according to their expected departure time or when electric rates are lowest. Managing and monitoring the vehicle is also possible remotely via computer at OnStar.com, or with a special Chevrolet Mobile App powered by OnStar Remote Link. Drivers can view critical vehicle functions on one of two reconfigurable, high-resolution, seven-inch color LCD screens. Information includes a confidence gauge showing expected driving range based on driving habits and other conditions.
Many external changes are made from the regular Spark to improve aerodynamic efficiency and reduce range-killing drag. The result is a drag coefficient of 0.325 Cd and 2.5 additional miles of range. Low rolling resistance tires add another five to seven miles.
GM says the Spark EV will go on sale in summer 2014. It will initially be sold in California and Oregon, thus at least for now it is considered a ‘compliance’ EV that is being marketed mainly to meet California’s ZEV mandate. The mandate will require 15 percent of cars sold in this state by 2025 to be zero emission vehicles. It will also be available in Canada, Korea, and other global markets. The Spark EV will list for just under $32,500 and qualify for a $7,500 federal tax credit. Even with this incentive, the electric version is nearly double the base price of Chevy’s gasoline-powered Spark. Californians could get an additional $2,000 to $2,500 rebate to help soften the price differential.
Over the years I’ve driven many battery electric vehicle prototypes and all production EVs in the U.S., spending a year living with a GM EV1. I have also spent time behind the wheel of many electric car conversions from small and hopeful new EV companies ranging from U.S. ElectriCar to those founded by entrepreneurs like Malcolm Bricklin and Miles Rubin. Test drives took place on highways and test tracks on multiple continents, sometimes for short drives out of necessity and sometimes for weeks at a time. Electric cars were my beat as feature editor at Motor Trend in the 1990s, by choice. I’ve been a vocal advocate for electric cars since the first issue of Green Car Journal 20 years ago…sometimes very vocal.
Time has a way of tempering not only perspective but expectations. One example: Over two decades of following battery development, I recall clearly the high expectations many have had that battery breakthroughs would come. Affordable and energy-dense batteries would be the enabling technology that could encourage full-function battery electric cars to market, making them cost competitive with internal combustion and readily displacing cars that for 100-plus years have relied on petroleum, a commodity that has grown costlier and in tighter supply.
That battery breakthrough has yet to occur. Yes, we have batteries with better chemistry and advanced designs. But they don’t represent the breakthrough that’s been widely anticipated and they remain quite expensive, so much so that battery electric cars must still be federally subsidized because of their high battery cost and retail price. In a normal world, a compact electric SUV should not cost $50,000, nor should a four-door electric sedan be $40,000, or a small electric hatchback priced over $30,000. Yet they are. And yes, there are a few electrics priced under $30,000, but as internal combustion models they would typically be priced $10,000 to $15,000 less while offering greater functionality.
It’s understandable why electric cars are being pushed so hard. Historically, EVs have spoken to a lot of needs. States have included them in State Implementation Plans as a way to show how their state would meet air quality standards under the Clean Air Act. Electric utilities see them as a pathway to selling electricity as a motor fuel. Government agencies often view electric vehicles as a panacea for (you choose) improving air pollution, mitigating petroleum use, decreasing CO2 emissions, and enhancing energy security. Automakers realize the dramatic impact that electric propulsion can have in helping achieve increasingly higher fleet fuel economy averages in coming years. Thrifty and eco-minded consumers understand the value of a smaller environmental impact by driving oil- and emissions-free, at a low cost per mile.
I remain an electric car enthusiast. But as a seasoned auto writer and industry analyst I’m also obliged to focus on reality. Today’s reality is that if we’re to make a real difference in petroleum reduction and environmental impact, battery EVs are not the short-term answer. While important and deserving of continuing development and sales, they are just one part of the solution, along with advanced gasoline, alternative fuel, hybrid, plug-in hybrid, and extended-range electric vehicles that create on-board electricity to provide full functionality. That’s the way forward.
Ron Cogan is editor and publisher of Green Car Journal.