Green Car Journal logo
Kia EV9 on a mountain road.

First teased back in 2021 with a bold, forward-looking design that’s still signature Kia, the automaker’s electric EV9 emerged in recent months to great expectations. Not the least of these expectations is from Kia itself, which aims for the Kia EV9 to take the family SUV market by storm, much like its spiritual Telluride sibling did when it was released four years ago.

Kia’s signature EV model line was launched in 2021 with the EV6, an all-electric compact crossover. The EV9 is the automaker’s second volley in the EV wars, sharing Kia’s E-GMP platform also used by the EV6, Hyundai Ioniq 5 and 6, and the Genesis GV60. Kia hasn’t released much info regarding trim levels, but we do know the EV9 will be offered in Kia’s GT trim sporting unique 21-inch wheels, roof rack, and dark chrome exterior accents. Entry pricing is speculated to begin around $55,000.

Three row seating in Kia EV9.

Three Rows, Two Powertrains

As of now, Kia has announced two powertrain choices for the upcoming EV9. First will be a base RWD option sporting 215 horsepower and 258 lb-ft torque utilizing a 77.6 kWh battery. The second is an AWD variant capable of producing 379 horsepower and 516 lb-ft torque with a long range 99.8 kWh battery. Kia is targeting 300 miles with its long range battery setup, while estimates for the base 77.6 kWh battery variant are currently unknown. Kia boasts a towing capacity of up to 5000 pounds, matching the Telluride. Charging the battery from 10 to 80 percent is handled in just 25 minutes thanks to Kia’s fourth-generation battery technology and use of an 800-volt fast charger.

The Kia EV9 has a surprisingly well-blended combination of varying styles, most prominent being its sci-fi essence. At the front, Kia’s ‘Tiger Face’ front fascia design metric is ruggedly futuristic with a large, black grille that emphasizes an appealing design flow, accentuated by slim, vertically oriented headlights that angle diagonally toward the grille. A high, sloping hood reminds us we are in the presence of a large and capable SUV. Hidden windshield wipers mean the continuity of the hood is uninterrupted, adding a subtle sleekness to this SUV.

Kia EV9 distinctive wheels.

Kia EV9 Has Futuristic Styling

Along the sides, the EV9’s most striking feature is its wheels. Kia’s use of simple geometric shapes as a base for the wheel design underscores how futuristic the model is meant to be perceived. That, along with its chunky, trapezoidal wheel arches, sharp fender lines, and smoothly uninterrupted body lines, provide an appealing amalgamation of styles. Around back, we see a very minimalist hatch with a subtle spoiler extending out from the roofline. The taillights were designed along the lines of Kia’s ‘Star-map Signature Lighting’ system, with the intent to emphasize the flow of body lines as they wrap into the rear of the EV9. Another styling benefit of this lighting system is its ability to frame the rear window, which represents yet another futuristic design cue.

Inside is a different story. Here’s Kia’s intent is to offer a cabin designed to be as comfortable and calming as possible without the complexity and futurism of its exterior. Most functions are controlled through the infotainment screen, which extends into the driver’s sightline to also act as a digital gauge cluster. Beneath the screen, Kia added dash-integrated haptic buttons that control key functions of the infotainment system. Buttons and switches are kept to a minimum to reinforce the model’s calm and comfortable interior theme.

Calming cabin of the Kia EV9.

A Calming Cabin in the Kia EV9

The EV9 makes good use of negative space, with decorative cloth inserts placed in the doors and the passenger side dash fascia. A floating center console stretches into the second row and features a reasonable amount of storage space. Optional 8-way reclining seats are offered for the first and second rows featuring heating and cooling capabilities. The EV9 follows Kia’s 10 essential materials interior production method using synthetic leather and recycled material throughout the cabin. Using a flat floor, cargo room is ample within the EV9, with 20 cubic feet of cargo room when all three rows are in use, as well as nearly 82 cubic feet with the second and third rows folded down.

The EV9 features a lot of tech with 20 collision avoidance and active driver technologies, three of which are all-new for Kia. These include standard Highway Driving Assist 2 that combines adaptive cruise control, stop-and-go assist, and lane-centering assistance. Standard Lane Following Assist helps the driver stay centered in their lane by delivering slight steering inputs, and optional Advanced Highway Driving Assist uses LiDAR technology to scan the road for potential hazards. Also standard is Remote Parking Assist 2, allowing drivers to remotely park their vehicles using Kia’s smartphone app, Kia Connect. The EV9 also employs over-the-air software updates.

Kia EV9 has spacious cargo area with the seats folded down.

With the speedy advance of electric vehicles, it’s no surprise that legacy automakers are starting to make strides in tech and production, and the Kia EV9 is poised to make a big impact. The EV9 is pointed squarely at Kia’s plans for the future of the brand and should begin arriving at dealers by the end of 2023.

Green Car Time Machine.

In the early 1990s, California took yet another leadership position in battling motor vehicle-related air pollution and mitigating fossil fuel use with its forward-thinking 1998 Zero Emission Vehicle Mandate. This mandate would require two percent of the new models for sale in California by the largest auto manufacturers to offer zero emissions in 1998, with larger percentages in future years. While this could potentially be achieved through any available means, it essentially meant the production and sale of battery electric vehicles. Environmentalists and many others were thrilled, while the auto industry in general was not. The result was an increasingly contentious fight to kill, preserve, or modify the mandate. Below is our special report detailing the siege of the state’s ZEV Mandate and an overview of the wave of activities taking place at the time. This report is presented just as it originally appeared in Green Car Journal’s April 1994 issue.

Excerpted from April 1994 Issue: Even as the U.S. Big Three automakers are lining up against the zero emission vehicle mandate, others within the automaking community are showing their support. An increasing number of noted automotive personalities are also becoming involved with electric cars as the pace of development picks up.

For example, Carroll Shelby, developer of the 1960s-era Shelby Cobras and former board member at EV powertrain company Unique Mobility, has shown an active interest in producing a hybrid electric vehicle. Other notables abound. Among them: Former General Motors chairman and CEO Robert Stempel, GM Hughes Aircraft chairman emeritus Malcolm Currie, and Malcolm Bricklin, importer of the Yugo subcompact and developer of the gull-wing exotic car that bore his name in the 1970s, among others.

Electric Vehicles on the Track

Former Indy, Can-Am, and Formula Atlantic drivers are taking their turn at the wheel of electrically-propelled race cars. Example: 1983 Indy 500 winner Tom Sneva raced at Arizona Public Service’s Electric 500 in Phoenix again this year, this time in an electrified 1993 Ford Probe. Auto magazine writers/race drivers like Motor Trend’s road test editor Mac DeMere have taken to the track in Formula Lightning electric race cars, bringing the potential of sharing their positive EV experience with millions of auto enthusiast readers.

Exercises in range and speed abound as performance benchmarks are sought for modern electric vehicles. One of the most significant to date was set just last month by GM’s Impact at the Fort Stockton Test Center’s 7.7 mile oval track in Texas. Running modified power electronics and high-speed Michelin tires, the Impact weighed in at 3,250 pounds once stripped of interior trim and fitted with a roll cage. It ran a United States Auto Club-sanctioned 183.075 mph over a timed mile to establish a record for EVs in the 2,205 pound and above category. Its unofficial international land-speed record remains subject to confirmation by the Federation Internationale de l’Automobile.

Far from being just an exercise in speed, this effort also helps further electric vehicle state-of-the-art, as is always the case in racing. “We wanted to find the vehicle’s top speed because we new it would provide us with real-world data on the car’s aerodynamics, the efficiency and durability of the propulsion system, and it would help us fine-tune the suspension,” offers Kenneth R. Baker, vice president of GM’s Research and Development Center.

ZEV Mandate Spurs Worldwide Effort

Performance milestones achieved since the California Air Resources Board announced its zero emission vehicle mandate in 1990 have been impressive. In 1991, an electric car called the IZA fielded by Tokyo Electric Power Co., Meidensha, and Tokyo R&D claimed a single-charge distance of 343 miles in Japan. This was achieved on a chassis dynamometer at a constant speed of 25 mph. In 1992, a Horlacher Sport EV powered by sodium-sulfur batteries ran 340 miles nonstop at an average of 74 mph in Switzerland. Also in 1992, a retrofitted Geo Metro powered by BAT Technology-prepared batteries and an Advanced D.C. Motors powertrain reportedly achieved a single-charge driving distance of 405 highway miles at an average of 43 mph in Utah.

This same year saw Dr. John Dunning and three associates at Delco Remy drive 631 miles in a 24 hour period behind the wheel of an electric Geo Storm in California. The car, outfitted with a GM Impact battery pack and electric drive system, achieved this milestone by alternating one-hour drives at better than 50 mph with one-hour charging sessions using a 7 kilowatt charger.

In early 1993, Chrysler made news with a 158 hour, 2,604 mile Detroit-to-Los Angeles trip in an electric TEVan while showcasing Chrysler/Norvik quick-charge technology. During this same time frame, Bill Roe set a new national closed-course one-mile oval speed record by breaking the 100 mph barrier in a Brawner Motorsport-prepared electric Lola Indy Car at the Solar & Electric 500 in Phoenix.

Battery Swaps and Fast Charging

The progression has continued in 1994. Roe eclipsed his own closed-course EV record recently at the APS Electric 500, piloting his Exide EX 11 electric IndyCar to a new national one lap record speed of 107.162 mph. And Diversified Technical Services’ Dan Parmley completed a record-breaking endurance run on Phoenix International Raceway’s one mile oval, driving 1,048.8 miles in 24 hours courtesy of 23 battery changeovers.

Battery swap at electric vehicle race.

Parmley’s effort supplanted an electric vehicle endurance record recently established by Solectria’s James Worden. Worden drove 831.8 miles on the 1,477 mile oval at Atlanta Motor Speedway to set a new 24 hour distance driving record in a lead-acid battery powered Chevy S-10 pickup. Sponsored by the Southern Coalition for Advanced Transportation, the truck’s batteries were recharged 13 times at 16 kWh by a fast-acting Electronic Power Technology charger, taking less than 20 minutes each time. It was driven an average of 59 miles between charges.

These efforts do prove what’s possible, but not necessarily what’s realistic for everyday drivers. It’s true that electric vehicles can be made to go very fast. They can accelerate just as quickly as most internal combustion engine cars. With a steady accelerator, a series of battery exchanges, or a healthy dose of quick charges, they can also travel very respectable distances. But at present they can’t do all of these at the same time.

ZEV Mandate Encourages Innovation

That’s sobering news, to be sure. But there are plenty of positives to recognize. Note the significant technology advancements made in just four short years of extensive EV development: Battery exchanges, an obscure concept when first voiced by industry experts, has proven viable in racing. Rapid recharging, which holds promise for overcoming the electric vehicle’s dependence on lengthy recharging sessions and unnecessary downtime, has also shown its promise in the lab, during demonstrations, and on the track. New battery technologies, most notably nickel-metal-hydride, are starting to prove their worth in real-world trials.

Perhaps most important is the promise shown by the advanced electric vehicles being fielded by U.S. automakers in limited numbers. Both the Ford Ecostar and Chrysler TEVan have demonstrated their viability as utility vehicles during test drives at the hands of Green Car Journal editors.

GM's Impressive Impact EV

But as an all-around technology statement, there’s nothing like GM’s Impact. GCJ editors have driven the Impact hard on highways in Michigan, finding it superb in every regard. It distinguishes itself not only as an excellent electric vehicle, but as a rather amazing automobile even when stacked up against its gasoline-powered peers.

The Impact’s technological innovations are many, ranging from an ultra-lightweight aluminum space frame with composite body panels to an innovative heat pump climate control system and blended regenerative anti-lock braking. Like GCJ editors, testers from publications like Motor Trend, Popular Science, and Popular Mechanics also found the Impact a testament to the viability of the electric car.

Public perception is also favorable. In fact, GM has had a substantially greater number of requests to participate in its Impact PrEView Drive than ever anticipated. In response to an announcement sent with utility bills in New York and Los Angeles, the automaker reportedly expected about 5,000 replies in each market. Instead, New York generated a list of 14,000 volunteers, and Los Angeles about 10,000 – far too many for the program.

Tech Advances Via ZEV Mandate

To be sure, the Big Three’s developmental EVs are just that: Examples of electric vehicle development…an engineering ‘snapshot’ of where ewe are now. Anyone who describes them otherwise is exploiting  these vehicles for their own aims, either pro or con. Their cost is very high due to their hand-built assembly and the exotic technologies employed. But they are functioning examples of what automakers can come up with when ‘encouraged’ by regulatory fiat. To think we would have done this far without a mandate in place is folly.

Many experts believe that California’s ZEV mandate has served not only as a motivator for the world’s automakers, but as a wake-up call for industry. Most of the players are involved not because they have to be, but because the electric vehicle field is perceived as being good business. That’s been the impetus for electric vehicle consortia like Calstart, Electricore, Southern Coalition for Advanced Transportation, Northeast Alternative Vehicle Consortium, Mid-America Electric Vehicle Consortium, and Hawaii’s Electric Vehicle Demonstration Project Consortium.

Electric vehicle drive system.

Emerging Opportunities for Suppliers

It's true that regulations now in place will require automakers to build and sell EVs. But that’s not the case with battery companies, electronics manufacturers, energy management specialists, tire manufacturers, engineering firms, composites manufacturers, aluminum companies, and many, many others. They’re on board because of emerging opportunities that will allow them to bring advanced transportation components to a new generation of energy efficient, more environmentally conscious automobiles. In their eyes, this will only take place if the California ZEV mandate survives the intensive automotive lobbying sure to take place in the months to come.

Momentum seems to be on the EV proponents’ side. The Ozone Transport Commission recently voted to adopt California’s low emission vehicle program in the Northeast, including requirements for zero-emission vehicles. On the heels of this decision came a California Assembly Transportation Committee hearing on Assembly Bill 2495, which would have prohibited the state from requiring ZEVs until battery technologies guaranteed arbitrary performance levels. This bill was heavily lobbied on both sides, then soundly defeated. The next round in this battle: Next month’s scheduled California Air Resources Board review of ZEV technologies and the feasibility of reaching the program’s goals. A full report to follow.

panamera-4-e-hybrid-front-1Except for green e-hybrid badges on the front doors, green brake calipers, and green ‘Panamera 4’ at the rear, Porsche’s new-generation Panamera 4 E-Hybrid looks just like its non-hybrid V-6 sibling. But there’s a lot going on behind the scenes that justifies this plug-in hybrid model’s additional $10,000 cost. For beginners, the Panamera 4 E-Hybrid combines a 330 horsepower twin-turbocharged, 2.9 liter V-6 and a 136 horsepower electric motor to produce a total of 462 horsepower and 516 pound-feet of torque, providing some pretty stellar performance.

The Panamera 4 E-Hybrid is offered in a base model along with Sport Turismo and Executive variants. The Sport Turismo is the closest Porsche is likely to ever come to building a station wagon, with this model stretching the roofline with new sheetmetal aft of the B-pillar, plus a more upright rear window and larger hatch. This greatly improves rear headroom while also delivering marginally more cargo space. The Sport Turismo seats five with four place seating optional. Even more spacious is the Executive model, which adds 5.9 inches to the wheelbase and provides additional rear legroom. Along with other amenities, the executive model has a large rear center console with 10.1-inch screens that can double as tablets.

panamera-4-e-hybrid-plugged-inInternal combustion output is delivered to all four wheels via a ZF eight-speed dual-clutch automatic transmission. The electric motor is positioned between the V-6 engine and transmission. Electrical energy is stored in a 14.1 kilowatt-hour battery pack located under the trunk floor. This is sufficient for an all-electric range of 31 miles and a maximum speed of 87 mph, with the speed limitation intentional to maximize battery driving range. The battery pack can be charged in 12 hours using the car’s 3.6-kilowatt, 120 volt onboard charger or in just three hours with an optional 7.2-kilowatt, 240 volt charger. The E-Hybrid automatically starts driving in pure EV mode. When the battery is depleted the powertrain switches to hybrid mode, delivering varying combinations of combustion and electric power for maximum fuel efficiency.

A standard Sport Chrono package offers default E-Power and Hybrid Auto modes, plus Sport and Sport+ modes that sharpen throttle response and shifting, stiffen dampers, and open the optional sport exhaust. The car’s E-Hold mode conserves the battery’s state of charge so the Panamera can run in pure EV mode at a later time. In E-Charge mode the V-6 engine generates more power than needed to recharge the battery while driving. Driver assistance systems like Night Vision, Lane Change, and Lane Keep are options. Also available is InnoDrive adaptive cruise control that reads upcoming corners, changing gradients, and traffic conditions.


clarity-fuel-cellGreen Car Journal’s recent drive of Honda’s new Clarity Fuel Cell in Los Angeles delivered what we expect from Honda. Simply, our experience with this sleek and high-tech hydrogen sedan during the Green Car Tour ride-and-drive at GreenBuild 2017 underscored how seamless Honda has made driving a hydrogen powered electric vehicle. Now, others are enjoying the experience as well since the first retail deliveries of Honda’s third-generation Clarity Fuel Cell model have taken place in Southern California. This marks yet another milestone for this automaker as it sets its sights on growing a hydrogen vehicle market.

According to Steve Center, vice-president of American Honda’s Environmental Development Office, this is just the beginning as Honda continues to roll out the new Clarity series of electrified vehicles. Based on an earlier discussion at the LA Auto Show with Honda public relations lead Sage Marie, plus reading between the lines of previous announcements, it’s expected that the present ‘world’ Clarity FCEV will serve as the manufacturing platform for Honda’s electrified lineup including, but not limited to, a plug-in gasoline/electric hybrid, an extended range stand-alone battery EV, and eventually an electrified crossover or SUV offering. While looking at the futuristic body line of this production five-passenger fuel cell electric vehicle, we are in fact also looking at Honda’s near-future autonomous driving design directive.2017 Honda Clarity Fuel CellDictated by low-drag aerodynamics and inspired by the ‘folded wings of a bird,’ the Clarity brings an eye pleasing and futuristic four-door, five-passenger sedan to the world of hydrogen fueled electric cars and SUVs. Clarity begins with specifically compounded low friction tires, aerodynamic wheels, and slip-stream designed roof and side panels engaged to reduce fuel consumption and maximize the power generated through Clarity’s efficient hydrogen fuel cell generator. With a range of 366 miles between fill ups, the Clarity features greater electric-drive range than Tesla’s Model S.

Thanks to Honda’s downsized yet super-efficient hydrogen fuel cell, Clarity also comes to market with greater interior passenger volume and trunk space than Toyota’s hydrogen Mirai. Here, one discovers a minimalist yet rather spacious world of well-balanced, driver-centered features inspired by the executive office work place. A large touchscreen monitor, informative eye-forward gauge cluster, graph bar, and heads-up display intuitively inform the driver. Pleasing leather, hard and soft plastic molded surfaces, a hint of wood, and brushed metals surround driver and passengers. This may in fact be one of the finest-finished interiors in Honda’s stable.

2017 Honda Clarity Fuel CellOn the business side, the initial Clarity offering is presently exclusive to Southern California at 12 select Honda dealerships where nearby hydrogen fueling stations are readily available. Among the first lessees are Jon Spallino, private securities investor and the world's first individual fuel cell vehicle customer. Jon began with the 2005 Honda FCX fuel cell vehicle and the new Clarity Fuel Cell is his third hydrogen-powered Honda. Also taking initial delivery were Jack Cusick, assistant principal of Newport Harbor High School; Jackie Keller, founder of NutriFit healthy meal services; Jim Salomon, president at Questar Construction; Karen Thorp, deputy district attorney for the County of Los Angeles; and Terry Tamminen, CEO of the Leonardo DiCaprio Foundation.

Clarity may be leased in select markets for $369 per month with $2868 due at signing. Honda provides some enticing incentives including a generous mileage allowance of 20,000 miles per year and a fuel allowance of up to $15,000 in hydrogen fuel. Also provided are an Avis luxury rental car allowance for vacations and other extended trips plus 24/7 roadside assistance.


audi-a3-etron-wide-1When Audi introduced its all-new A3 generation in the U.S. in 2014, only the sedan was offered with the promise that the popular Sportback version would be coming. That follow-up is the A3 e-tron, the exclusive A3 Sportback choice here in the 2016 model year. This exclusivity makes this $37,900 A3 e-tron all the more special.

The A3 e-tron plug-in hybrid makes use of the same 150-horsepower, 1.4 liter TFSI gasoline engine and six-speed S tronic transmission as conventional Sportbacks available in offshore markets. The e-tron adds a liquid-cooled, 102 horsepower electric motor to deliver a satisfying 7.6 second 0 to 60 mph launch and the kind of spirited driving experience expected of an Audi.

audi-a3-etron-engine-1The car’s lithium-ion battery pack is located beneath the rear bench seat, allowing fold-flat seats and the hatchback utility of a Sportback since there’s no battery intrusion in the cargo area. This battery allows up to 17 miles of all-electric driving to handle typical around-town driving chores.

Driving on battery and hybrid power delivers an overall driving range of just under 400 miles. Fuel economy is an EPA estimated combined 89 MPGe when running on battery power and 35 mpg in hybrid mode.

2016-rav4-hybrid-energy-monitorAudi likens its A3 Sportback as kind of a Swiss Army Knife of hybrids because of its four selectable driving modes. EV mode provides pure electric driving, the default mode at every start. Hybrid mode chooses the most efficient power and is ideal for long distances. Hold Battery mode preserves charge and saves EV power for later use. Charge Battery mode charges the battery during highway driving to ensure plenty of electric range when returning to an urban area.

With the A3 Sportback e-tron, Audi set out to prove that efficiency and performance can co-exist in a premium vehicle, without sacrifice. By all measures it has accomplished this goal.


elf-sideNow here’s something you don’t see every day: A pretty cool rendition of how to blend eco transport, human hybrid power, solar charging, and cool factor into an eye-catching mode of sustainable transportation.

Durham, North Carolina-based Organic Transit offers the ELF, an egg-shaped production vehicle designed for urban mobility with scant environmental impact. The three-wheeled vehicle uses a 740 watt UpDrive DC motor, NuVinci CVT transmission, and a 30 amp-hour lithium-ion battery to provide electric drive when electrical assist is needed or you tire of pedaling. Top pedal/electric speed is 30 mph.

elf-handlebarsThe manufacturer says charging the battery takes 2 1/2 hours via a standard household outlet or 7 hours with power generated by the vehicle’s 100 watt solar roof panel. Since it’s legally a bicycle, the three-wheeled ELF can be driven on bike paths and even parked on sidewalks.

The lightweight, 160 pound ELF uses a color impregnated composite bodyshell and Lexan polycarbonate windscreen atop a 6061T aircraft grade aluminum frame with stainless steel hardware. It features 26 inch wheels, triple disc brakes, and dynamic dampening. LED headlights, taillights, brake lights, and turn signals are provided. Inside is a single ergonomic sliding seat said to accommodate riders up to 6 foot, nine inches tall, plus a locking cargo compartment. The base model is priced at $5,495. Two-seat variants are available plus a black-and-white tactical version for police and security use.



The San Antonio Auto & Truck Show has a big interest in trucks. After all, we’re talking Texas. Now ‘green’ is gaining even more emphasis at the show with Green Car Journal’s inaugural Green Truck of the Year™ award.

Green Car Journal has presented its coveted Green Car of the Year® award in Los Angeles for the past decade, recognizing the best and the brightest vehicles with improved environmental performance. The Green Truck of the Year™ award program in San Antonio is a natural complement. Trucks are a high-profile part of the San Antonio Auto & Truck Show and Texas is the largest truck market in the nation, making this an ideal venue for this new high-profile award.

In selecting the program’s five finalists, Green Car Journal editors consider all potential truck models in the U.S. market, weighing environmental attributes alongside traditional touchstones that define what makes a great pickup, such as functionality, versatility, safety, value, and style. The 2015 Green Truck of the Year™ winner is selected from these five finalists by a Green Truck of the Year™ jury comprised of automotive experts and Green Car Journal staff.


Trucks are no strangers to Green Car Journal. The magazine’s editors and writers have deep backgrounds with trucks, having served on staff at enthusiast truck publications during their careers. They have owned sport trucks, work trucks, custom trucks, and off-road trucks so they know what's important to truck buyers, just as they know the importance of 'green' features in the trucks of our future.

The 46th annual San Antonio Auto & Truck Show will take place on November 6-9, 2014 at the Henry B. Gonzalez Convention Center in San Antonio, Texas, with the 2015 Green Truck of the Year™ announced during the show's media day on November 6. Presented by the San Antonio Automobile Dealers Association, the show highlights the auto industry’s newest innovations and provides a ‘one-stop shop’ for evaluating the latest cars, trucks, and technologies. It is recognized as South Texas’ premier automotive event.

Electric drive vehicles of all types are increasingly in the news, often led by a near-nonstop focus on Tesla and its Model S, Model X, and planned Model 3 battery electric vehicles. People want electric cars. Some feel they need them, or more accurately, that we all need them. It has been so for quite some time.

I was one of those pushing hard for electric vehicles in the 1990s, driving prototypes on test tracks and limited production models on the highway as I shared their benefits on the pages of Green Car Journal and Motor Trend before that. It was an exciting time filled with hope that battery breakthroughs would come, bringing full-function EVs offering the same driving range as conventional vehicles.

Expectations were high that a public charging infrastructure would expand to make topping off batteries convenient. New ideas like 15-minute rapid charging and battery swap stations would allow drivers of all model EVs the ability to renew on-board energy in the time it takes to enjoy a cup of coffee, enabling them to head back on the road in short order with a full battery charge. Importantly, there was an expectation that EVs would be affordable, both to manufacture and to buy.

If only this unfolded as expected, automakers would commit to developing battery electric vehicles of all types to meet the needs of an emerging market. But things have not unfolded as expected.

California’s Zero Emission Vehicle mandate drove the electric car surge in the 1990s and it’s a huge influence today. While less refined than electric models we have now, electrics of the 1990s like the Toyota RAV4 EV, Nissan Altra minivan, and Honda EV Plus were quite well engineered. Then there was GM’s EV1. Sleek, sexy, and fun, it provided a daily driving experience unparalleled in the field, something I came to appreciate well during the year I drove an EV1.

The challenge then was the same as now: cost. The EV1 was so costly to build with such massive losses there was no business case for it to continue, and so it ended, as all other electric vehicle programs of the 1990s ended, for the same reason.

Volvo ECC powered by a turbine-hybrid powerplant.

Early on, Volvo had the foresight to challenge the status quo. While evaluating ways to meet California’s impending ZEV mandate, the automaker concluded there was no way to do this realistically with a vehicle powered exclusively by batteries. In 1993, I test drove Volvo’s answer – its high-tech Environmental Concept Car (ECC) that added a high-speed turbine-generator to an electric drivetrain, thus creating what we now call a range-extended electric vehicle (think Chevy Volt). Sadly, the ECC’s high cost turbine-generator meant this innovative car never saw production. But it was at the leading edge of a movement that brought us hybrids and range-extended electric cars. Today, even BMW – a high-profile champion of electrics with its innovative  i3 – understands the importance of offering a range-extended variant with a gas engine-generator for those who prefer the convenience of longer range.

In answer to the chorus of Tesla enthusiasts sure to raise their voices, I am aware that Tesla is committed to all-electric vehicles and the range of the $70,000-$95,000 Model S (before the addition of popular options) is substantially greater than its competitors. The coming Model X electric crossover is expected to be in the same aspirational category as the Model S with a price suitable for premium buyers. The company's planned Model 3, presumably a vehicle accessible to the masses at a price Tesla says will be about $35,000, is said to be three years away. That's a good thing since significant battery cost reductions will be required to make this Tesla-for-the-masses electric an affordable reality. Will three years be enough? Achieving battery cost reductions of the magnitude required is no sure bet and, as history has proved, battery technology advances move at their own pace.

One stock analyst recently quoted in a major newspaper article shared that Tesla has the ability to reduce battery costs by nearly half in the coming three to five years. Of course, the backstory is that this ‘ability’ is really but a ‘potential’ based on batteries that do not yet commercially exist. The past 25 years are replete with examples of major government and industry efforts aimed at developing energy-dense, safe, and affordable electric car batteries that deliver the range and cost expectations of auto manufacturers and consumers. Over these years there have been many incremental improvements in battery design and chemistry, a slew of failures, and pending ‘breakthroughs’ that have often been promoted only to have expectations and actual production sidelined for a plethora of  reasons du jour.

As just one recent example, Panasonic's 2009 announcement of a lithium-ion battery breakthrough using a silicon alloy cathode was accompanied with a claim it would be manufactured in 2012. Many positive reports on electric vehicles take into account this very ‘breakthrough’ and others like it, with the considerable cost reductions that would follow. Yet, Panasonic did not begin mass production of this battery technology in 2012. According to a Panasonic spokesman, the company’s work on developing high-capacity battery cells using a silicon-based negative electrode is ongoing. Hopefully,  developments like these will lead to the kind of mass production that could bring long-hoped-for battery performance and cost reductions. Perhaps this will come to pass with a mass effort by Tesla through its proposed $5 billion battery ‘Giga Factory,’ and perhaps not. But after 25 years of following battery development I have learned not to count on claims or development, but rather actual production and availability in the real world.

Tesla continues to develop its Supercharger quick-charge network and has potential plans for a battery swap system, both exclusively compatible with its own vehicles. An innovative and expanding infrastructure for battery electrics will be required for their ultimate success and these are very positive moves, although only for those with a Tesla product and not electric vehicle owners as a whole.

Battery electric vehicles priced at levels accessible to everyday buyers will continue to grapple with cost and marketing challenges until a battery breakthrough comes. This is illustrated by Fiat Chrysler Automobiles CEO Sergio Marchionne's comment earlier this year that the company is losing $14,000 on every one of the Fiat 500e electric cars it sells. Is it so different for other automakers also selling EVs in limited numbers and in constrained geographic locations? Not inconsequentially, to bolster the market battery electric cars will also require continuing federal and state incentives that combined typically total $10,000 or more. Hopefully, innovative thinking and real technology and cost breakthroughs will emerge in the years ahead.

In the meantime, gasoline-electric hybrids and plug-in hybrid models, plus range-extended electric vehicles that combine all-electric drive with an on-board electric generator, are providing functionality for everyone even as battery-only electric cars fight hard to establish their place in the automotive market. Let's hope that mass-market, nationally-available models like BMW's innovative i3 electric car change this dynamic sooner than later.

hyundai-tucson-fuel-cell-front-1Many believe that the ultimate goal for electric transportation is the hydrogen fuel cell vehicle (FCV), with battery electric vehicles being just a step along the way. Hyundai is skipping this step and concentrating on developing and marketing FCVs.  The automaker notes that affordable electric vehicle technology is best suited to smaller urban vehicles, not to larger family and utility vehicles that many families require to meet all of their needs.

To that end, Hyundai is poised to offer its next-generation Tucson Fuel Cell vehicle in Southern California Hyundai dealers starting sometime this spring. Production is taking place at the automaker’s Ulsan plant in Korea. Hyundai already began production of the ix35 Fuel Cell, the Tucson’s equivalent in Europe, at Ulsan in January 2013. Since the Ulsan plant builds the gasoline-powered Tucson CUV, this allows Hyundai to take advantage of both the high quality and cost-efficiency of its popular gasoline-powered Tucson platform.


Hyundai’s third-generation fuel cell vehicle features significant improvements over its predecessor, including a 50 percent increase in driving range and 15 percent better fuel efficiency. The Tucson and ix35 Fuel Cell are equipped with a 100 kilowatt electric motor, allowing a top speed just shy of 100 mph. Instantaneous 221 lb-ft torque from the electric motor means spritely acceleration.

Sufficient hydrogen for an approximate 370 mile range is stored in two hydrogen tanks. Refueling is accomplished in less than 10 minutes, providing daily utility comparable with its gasoline counterpart. Electrical energy is stored in a 24 kilowatt-hour lithium-ion polymer battery that’s been jointly developed with LG Chemical. The fuel cell reliably starts in temperatures as low as -20 degrees C (-4 degrees F). Unlike battery electric vehicles there is minimal capacity decrease at very low temperatures.


Hyundai’s fuel cell fleet has completed over two million durability test miles since 2000. Extensive crash, fire, and leak testing have been successfully completed. Hyundai says that high reliability and long-term durability come as a matter of course with the power-generating fuel cell stack, which has no internal moving parts.

The Hyundai Fuel Cell will be leased for $499 per month on a 36 month term, with $2,999 down. This includes unlimited free hydrogen refueling and At Your Service Valet Maintenance at no extra cost. Hyundai will initially offer the Tucson Fuel Cell in the Los Angeles/Orange County areas at four dealerships that will have hydrogen refueling capability.  The automaker says that availability will expand to other regions of the country consistent with the accelerating deployment of hydrogen refueling stations.


Hyundai is also partnering with Enterprise Rent-A-Car to rent the Tucson Fuel Cell at select locations in the initial lease regions. This will allow interested consumers to evaluate the Tucson Fuel Cell for their lifestyles on a multi-day basis. Rentals are also planned sometime this spring.