Green Car Journal logo

Autodesk VRED Professional 2014 SR1-SP7Featuring design cues from the iconic VW Microbus, the BUDD-e is VW's first concept vehicle using the all-new Modular Electric Toolkit (MEB) designed specifically for plug-in vehicles. The MEB architecture represents a fundamental change in future electric-powered Volkswagens, from body and interior design to packaging and drive characteristics. An all-electric range of about 230 miles means a vehicle like the BUDD-e could serve a family's primary transportation needs. Options to keep batteries topped off include cordless inductive charging and the ability to be charged to 80 percent in about 30 minutes with an available rapid charger.

BUDD-e is probably more ‘connected’ than any car before it and thus gives a comprehensive look at the future of connectivity with the Internet of Things (IoT). Not only does the car’s completely new infotainment system make traveling more interactive and media more tangible, it also creates a seamless link between the car and the outside world. As an example of connectivity to a Smart Home, a driver or passengers could control air conditioning, turn lights on or off, determine if their kids are at home, or even put the whole house into energy-saving sleep mode. Plus, in the future the BUDD-e will automatically turn on lights in and around the house as soon as the car approaches.

vw-budd-e-illustration

2017-prius-primeToyota has added ‘Prime’ to the branding of its second generation plug-in hybrid electric vehicle (PHEV) to emphasize it’s the most technologically advanced, best-equipped Prius ever. Prime is the first Toyota hybrid to feature a dual-mode generator drive system that enables the Hybrid Synergy Drive’s electric motor and generator to both provide power for maximum acceleration. A new 8.8 kWh lithium-ion battery pack delivers up to 22 miles of all-electric driving, double that of the first-generation plug-in Prius. Toyota estimates 120 MPGe or greater or the model, which is expected to be the highest MPGe rating of any PHEV.

Prime features an array of connected and advanced electronics systems including an available 11.6-inch HD multimedia screen. Prius Prime will start appearing in U.S. showrooms in late fall and will be available in all 50 states.

2017-prius-prime-display

2016-rav4-hybrid-rear-viewThe Toyota RAV4 that emerged an all-new generation SUV in 2013 features a stylish refresh this year with a bolder front fascia, restyled bumpers, and sharper rocker panels. That’s not the big news for 2016, though, because the RAV4 now features an important new addition – the first-ever hybrid powertrain in the RAV4.

While an all-electric RAV4 variant developed with Tesla had previously been offered in limited numbers and markets beginning in 2012 and an earlier generation RAV4 EV was offered in small numbers in the late 1990s, this is a very different scenario. Toyota has priced the RAV4 Hybrid base price aggressively at $28,370 and expects it to represent about 10 to 15 percent of all 2016 RAV4 models sold.

2016-rav4-hybrid-energy-monitorToyota's two-motor Hybrid Synergy Drive system is used in the 2016 RAV4 Hybrid, the same as in the Lexus NX 300h hybrid crossover. In this application the RAV4 Hybrid comes with Electronic On-Demand AWD-I, making all-wheel-drive standard in the model. Fuel efficiency is rated at 34 mpg in the city and 31 mpg on the highway. Driving range is just over 480 miles.

The RAV4 Hybrid integrates a 2.5-liter Atkinson-cycle 4-cylinder gasoline engine and 141 horsepower electric motor to drive the front wheels. A 67 horsepower electric motor provides torque to the rear wheels when the vehicle’s control system senses power is needed. Electrical energy is provided by a nickel-metal-hydride battery pack. An electronically controlled continuously variable transmission is used. Several operating modes are provided. ECO mode favors fuel economy by optimizing throttle response and air conditioning output. EV mode allows the RAV4 Hybrid to run solely on battery power for about a half-mile while traveling below 25 mph.

2016-toyota-rav4-hybrid-limited-dashInside, more premium features are used this year including soft-touch materials on the dash and door panels and a leather steering wheel. A 4.2-inch TFT multi-information display is included in a revised gauge cluster. The five passenger crossover offers ample room for five adults plus 38.4 cubic feet of cargo capacity behind the rear seats, expanding to 73.4 cubic feet with the 60/40 split rear seats folded. Rear-passenger knee room is enhanced with front seats that feature a slim seat back. The rear seatbacks also recline several degrees for added passenger comfort.

The RAV4 Hybrid is one of the first U.S. models to offer Toyota Safety Sense (TSS), a new multi-feature safety system that includes forward collision warning and automatic pre-collision braking. There is also lane-departure alert, radar-based adaptive cruise control, pedestrian pre-collision warning, and automatic high beams. A new Bird's Eye View Monitor with Perimeter Scan provides a live rotating 360-degree view of the surroundings on a 7-inch touchscreen using four cameras mounted on the front, side mirrors, and rear of the car. Limited models include blind-spot monitors with cross-traffic alerts as well.

2016-rav4-hybrid-rear-cargo

New Acura NSX in Berlina BlackThe Acura NSX supercar is taking a long time to reach the reality of showrooms, years after the automaker’s late-2011 announcement that it would be offering a successor to the original NSX. It’s now expected to begin manufacturing in Marysville, Ohio in spring 2016. When it goes on sale in a time frame that sees competitors introducing early 2017 models, NSX fans will have been waiting over four years to witness the model’s rebirth. By all indicators it will be worth the wait.

Acura has taken a rather innovative approach in creating the NSX successor that replaces the previous generation last seen in 2005. The new NSX is an all-wheel-drive hybrid with power supplied by a 3.5-liter, mid-ship V-6 and three permanent-magnet synchronous AC electric motors. It will produce an expected 500-plus horsepower.

NSX Powertrain - Top ViewThe V-6 is all-new and shares nothing with other Honda/Acura engines. Its 75-degree 3.5-liter DOHC V-6 features dry sump lubrication, twin turbochargers, and intercooling. The engine is mated to a new, nine-speed dual-clutch transmission integrated with the rear electric motor. This motor, mounted at the front of the transaxle, can power the NSX up to 50 mph for only a few miles since the car’s lithium-ion battery is limited in capacity. The rear motor's primary purpose is to add torque when needed for maximum performance.

Up front there’s a Twin Motor Unit consisting of two smaller electric motors, each powering a front wheel via a planetary gearset. When used with the rear brakes, this provide a torque-vectoring capability. The driver can select between quiet, sport, sport-plus, and track modes to tailor the driving experience.

New Acura NSX in Berlina BlackMuch has been done to keep weight down and the center of gravity low. For starters, there is a carbon-fiber floor panel and part of the rear subframe uses proprietary aluminum-casting technology for stiffness and low weight. The aluminum-intensive space-frame structure is joined together by self-piercing rivets, flow-drill screws, welding, and much adhesive. High-strength steel is used in the super-thin A-pillars. The hood and doors are aluminum while the fenders are SMC, a common form of fiberglass. An aluminum or carbon-fiber roof can be ordered.

Performance is expected to include a 0–60 mph time of 2.7 seconds, 0–100 mph in 6.4 seconds, and a 190 mph top speed. Plus, as if that kind of performance excitement isn’t enough, an even hotter version is planned. For those who can afford the price of entry, the coming Acura NSX will mean that gasoline-electric hybrid power has never looked so good.

New Acura NSX

 

There’s something almost magical about plugging your car into an outlet at night and waking up to a full ‘tank’ in the morning. There’s no need for a stop at the gas station, ever. Plus, there’s no nagging guilt that the miles metered out by the odometer are counting off one’s contribution toward any societal and environmental ills attendant with fossil fuel use.

This is a feeling experienced during the year Green Car Journal editors drove GM’s remarkable EV1 electric car in the late 1990s. Daily drives in the EV1 were a joy. The car was sleek, high-tech, distinctive, and with the electric motor’s torque coming on from zero rpm, decidedly fast. That’s a potent combination.

This image has an empty alt attribute; its file name is EV1-Rolling-Chassis-Illustration-1024x576.jpgThe EV1 is long gone, not because people or companies ‘killed’ it as the so-called documentary Who Killed the Electric Car suggested, but rather because extraordinarily high costs and a challenging business case were its demise. GM lost many tens of thousands of dollars on every EV1 it built, as did other automakers complying with California’s Zero Emissions Vehicle (ZEV) mandate in the 1990s.

Even today, Fiat Chrysler CEO Sergio Marchionne says his company loses $14,000 for every Fiat 500e electric car sold. Combine that with today’s need for an additional $7,500 federal tax credit and up to $6,000 in subsidies from some states to encourage EV purchases, and it’s easy to see why the electric car remains such a challenge.

This image has an empty alt attribute; its file name is Fiat-500-Underhood-1024x576.jpg

This isn’t to say that electric cars are the wrong idea. On the contrary, they are perceived as important to our driving future, so much so that government, automakers, and their suppliers see electrification as key to meeting mandated 2025 fleet-wide fuel economy requirements and CO2 reduction goals. The problem is that there’s no singular, defined roadmap for getting there because costs, market penetration, and all-important political support are future unknowns.

The advantages of battery electric vehicles are well known – extremely low per-mile operating costs on electricity, less maintenance, at-home fueling, and of course no petroleum use. Add in the many societal incentives available such as solo driving in carpool lanes, preferential parking, and free public charging, and the case for electrics gets even more compelling. If a homeowner’s solar array is offsetting the electricity used to energize a car’s batteries for daily drives, then all the better. This is the ideal scenario for a battery electric car. Of course, things are never this simple, otherwise we would all be driving electric.

This image has an empty alt attribute; its file name is EV-Charging-1024x576.jpgThere remain some very real challenges. Government regulation, not market forces, has largely been driving the development of the modern electric car. This is a good thing or bad, depending upon one’s perspective. The goal is admirable and to some, crucial – to enable driving with zero localized emissions, eliminate CO2 emissions, reduce oil dependence, and drive on an energy source created from diverse resources that can be sustainable. Where’s the downside in that?

Still, new car buyers have not stepped up to buy battery electric cars in expected, or perhaps hoped-for, numbers, especially the million electric vehicles that Washington had set out as its goal by 2015. This is surprising to many since electric vehicle choices have expanded in recent years. However, there are reasons for this.

This image has an empty alt attribute; its file name is Toyota-Tesla-RAV4-EV-Side-1-1024x576.jpg

Electric cars are often quite expensive in comparison to their gasoline-powered counterparts, although government and manufacturer subsidies can bring these costs down. Importantly, EVs offer less functionality than conventional cars because of limited driving range that averages about 70 to 100 miles before requiring a charge. While this zero-emission range can fit the commuting needs of many two-vehicle households and bring substantial fuel savings, there’s a catch. Factoring future fuel savings into a vehicle purchase decision is simply not intuitive to new car buyers today.

Many drivers who would potentially step up to electric vehicle ownership can’t do so because most electric models are sold only in California or a select number of ‘green’ states where required zero emission vehicle credits are earned. These states also tend to have at least a modest charging infrastructure in place. Manufacturers selling exclusively in these limited markets typically commit to only small build numbers, making these EVs fairly insignificant in influencing electric vehicle market penetration.

This image has an empty alt attribute; its file name is BMW-i3-Action-1024x576.jpg

Battery electric vehicles available today include the BMW i3, BMW i8, Chevrolet Spark EV, Fiat 500e, Ford Focus Electric, Honda Fit EV, Kia Soul EV, Mercedes-Benz B-Class Electric Drive, Mitsubishi i-MiEV, Nissan LEAF, Smart ForTwo Electric Drive, Tesla Model S, Toyota RAV4 EV, and VW e-Golf. While most aim at limited sales, some like BMW, Nissan, and Tesla market their EVs nationwide. The Honda Fit EV and Toyota RAV4 EV are being phased out. Fleet-focused EVs are also being offered by a small number of independent companies. Other battery electrics are coming.

BMW’s i3 offers buyers an optional two-cylinder gasoline range extender that generates on-board electricity to double this electric car’s battery electric driving range. A growing number of electrified models like the current generation Prius Plug-In and Chevy Volt can also run exclusively on battery power for a more limited number of miles (10-15 for the Prius and up to 40 miles in the Volt), and then drive farther with the aid of a combustion engine or engine-generator. Both will offer greater all-electric driving range when they emerge as all-new 2016 models. Many extended range electric vehicles and plug-in hybrids like these are coming soon from a surprising number of auto manufacturers.

This image has an empty alt attribute; its file name is Coda-EV-1024x576.jpgIt has been an especially tough road for independent or would-be automakers intent on introducing electric vehicles to the market. Well-funded efforts like Coda Automotive failed, as have many lesser ones over the years. Often enough, inventors of electric cars have been innovative and visionary, only to discover that becoming an auto manufacturer is hugely expensive and more challenging than imagined. In many cases their timeline from concept and investment to production and sales becomes so long that before their first cars are produced, mainstream automakers have introduced models far beyond what they were offering, and at lesser cost with an established sales and service network to support them.

A high profile exception is Tesla Motors, the well-funded Silicon Valley automaker that successfully built and sold its $112,000 electric Tesla Roadster, continued its success with the acclaimed $70,000-$100,000+ Model S electric sedan, and will soon deliver its first Tesla Model X electric crossovers. While Tesla has said it would offer the Model X at a price similar to that of the Model S, initial deliveries of the limited Model X Signature Series will cost a reported $132,000-$144,000. It has not yet been announced when lower cost 'standard' Model X examples will begin deliveries to Tesla's sizable customer pre-order list.

This image has an empty alt attribute; its file name is Tesla-Model-S-on-Road-1-1024x576.jpgTesla’s challenge is not to prove it can produce compelling battery electric cars, provide remarkable all-electric driving range, or build a wildly enthusiastic – some would say fanatical – customer base. It has done all this. Its challenge is to continue this momentum by developing a full model lineup that includes a promised affordable model for the masses, its Model 3, at a targeted $35,000 price tag. It will be interesting to see if the Model 3 ultimately comes to market at that price point.

This is no easy thing. Battery costs remain very high and, in fact, Tesla previously shared that the Tesla Roadster’s battery pack cost in the vicinity of $30,000. While you can bury the cost of an expensive battery pack in a high-end electric car that costs $70,000 to over $100,000, you can’t do that today in a $35,000 model, at least not one that isn’t manufacturer subsidized and provides the 200+ mile range expected of a Tesla.

This image has an empty alt attribute; its file name is Tesla-Model-X-Falcon-Wing-Doors-1024x576.jpgThe company’s answer is a $5 billion ‘Gigafactory’ being built in Nevada that it claims will produce more lithium-ion batteries by 2020 than were produced worldwide in 2013. The company’s publicized goal is to trim battery costs by at least 30 percent to make its $35,000 electric car a reality and support its growing electric car manufacturing. Tesla has said it’s essential that the Gigafactory is in production as the Model 3 begins manufacturing. The billion dollar question is…can they really achieve the ambitious battery and production cost targets to do this over the next few years, or will this path lead to the delays that Tesla previously experienced with the Tesla Roadster, Model S, and Model X?

Tesla is well-underway with its goal of building out a national infrastructure of SuperCharger fast-charge stations along major transportation corridors to enable extended all-electric driving. These allow Tesla vehicles the ability to gain a 50 percent charge in about 20 minutes, although they are not compatible with other EVs. For all others, Bosch is undertaking a limited deployment of its sub-$10,000 DC fast charger that provides an 80 percent charge in 30 minutes. A joint effort by ChargePoint, BMW, and VW also aims to create express charging corridors with fast-charge capability on major routes along both coasts in the U.S.

This image has an empty alt attribute; its file name is Chargepoint-Charger-1-1024x576.jpgThe past 25 years have not secured a future for the battery electric car, but things are looking up. The next 10 years are crucial as cost, infrastructure, and consumer acceptance challenges are tackled and hopefully overcome to make affordable, unsubsidized electric cars a mass-market reality. It is a considerable challenge. Clearly, a lot of people are counting on it.

elf-sideNow here’s something you don’t see every day: A pretty cool rendition of how to blend eco transport, human hybrid power, solar charging, and cool factor into an eye-catching mode of sustainable transportation.

Durham, North Carolina-based Organic Transit offers the ELF, an egg-shaped production vehicle designed for urban mobility with scant environmental impact. The three-wheeled vehicle uses a 740 watt UpDrive DC motor, NuVinci CVT transmission, and a 30 amp-hour lithium-ion battery to provide electric drive when electrical assist is needed or you tire of pedaling. Top pedal/electric speed is 30 mph.

elf-handlebarsThe manufacturer says charging the battery takes 2 1/2 hours via a standard household outlet or 7 hours with power generated by the vehicle’s 100 watt solar roof panel. Since it’s legally a bicycle, the three-wheeled ELF can be driven on bike paths and even parked on sidewalks.

The lightweight, 160 pound ELF uses a color impregnated composite bodyshell and Lexan polycarbonate windscreen atop a 6061T aircraft grade aluminum frame with stainless steel hardware. It features 26 inch wheels, triple disc brakes, and dynamic dampening. LED headlights, taillights, brake lights, and turn signals are provided. Inside is a single ergonomic sliding seat said to accommodate riders up to 6 foot, nine inches tall, plus a locking cargo compartment. The base model is priced at $5,495. Two-seat variants are available plus a black-and-white tactical version for police and security use.

organic-transit-1

PrintFor a decade, Green Car Journal has been recognizing vehicles that significantly raise the bar in environmental performance. With automakers stepping up to offer ever-more efficient and ‘greener’ vehicles in all classes, the magazine’s awards program has naturally expanded to include a greater number of awards for recognizing deserving vehicles.

This prompted the recent suite of Green Car Awards presented during Policy Day at the Washington Auto Show in the nation’s capital – the 2015 Green SUV of the Year™, 2015 Green Car Technology Award™, and 2015 Luxury Green Car of the Year™.

bmw-i8-award-winner

BMW’s gull-wing i8 earned the distinction as the 2015 Luxury Green Car of the Year, outshining competitors Audi A8 L TDI, Cadillac ELR, Porsche Panamera S E-Hybrid, and Tesla Model S. Aimed at aspirational buyers who value superb styling and exceptional performance combined with the efficiency of plug-in hybrid drive, the i8 is unique among its peers with an advanced carbon fiber passenger body shell. It also features a lightweight aluminum drive module with a gasoline engine, lithium-ion batteries, and electric motor. The i8 can drive on battery power for 22 miles and up to 310 miles on hybrid power.

The Jeep Grand Cherokee EcoDiesel rose to the top as the magazine’s 2015 Green SUV of the Year, besting finalists Honda CR-V, Hyundai Tucson Fuel Cell, Lexus NX 300h, and Mazda CX-5. Offering excellent fuel efficiency for an SUV of its size, the Grand Cherokee EcoDiesel’s 3.0-liter EcoDiesel V-6 offers up to 30 highway mpg and is approved for B20 biodiesel use. An Eco Mode optimizes the 8-speed transmission’s shift schedule, cuts fuel feed while coasting, and directs the air suspension system to lower the vehicle at speed for aerodynamic efficiency.

jeep-grand-cherokee-ecodiesel-winnerThe Ford F-150 was honored with the 2015 Green Car Technology Award for its milestone use of an all-aluminum body. Competing for the award were advanced powertrains in the BMW i3, BMW i8, Chevrolet Impala Bi-Fuel, Ford F-150, Honda Fit, Kia Soul EV, Tesla Model S, VW e-Golf, and Volvo Drive-E models. The F-150’s aluminum body enables the all-new 2015 pickup model to shed up to 700 pounds for greater efficiency and performance.

While the Green Car Technology Award has a history at the Washington Auto Show, the first-time Green SUV of the Year and Luxury Green Car of the Year awards could not have existed just a short time ago. Simply, SUVs and luxury vehicles were seldom considered ‘green,’ and for good reason. An SUV/crossover’s mission was to provide family transport and recreational capabilities, while aspirational/luxury vehicles were expected to deliver the finest driving experience combined with high-end appointments and exceptional design. Both categories held few environmental champions and ‘green’ was hardly an afterthought.

ford-f-150-award-winner

The evolving nature of ‘green’ cars has brought about a fundamental shift in which environmental performance is now important in SUVs and luxury vehicles. Even so, not all models in these classes are created equal. The challenge has been finding the right balance – the ‘sweet spot’ – that finds SUVs and luxury vehicles delivering the efficiency and environmental qualities desired without sacrificing the conventional touchstones – quality, safety, luxury, value, performance and functionality – that consumers demand. This year’s winners of the 2015 Green Car Awards clearly achieve this balance.

Presenting these important awards at the Washington Auto Show is compelling considering its reputation as the ‘Policy Show,’ a result of the show’s proximity to Capitol Hill and the influence that Washington DC has in driving a more efficient generation of vehicles to market. The 2015 Washington Auto Show has also expanded in recent years, receiving accreditation from the Organisation Internationale des Constructeurs d'Automobiles (OICA) as one of the five top tier auto shows in America. This year’s Washington Auto Show featured more than 700 vehicles from over 42 domestic and import auto manufacturers, plus a Green Car Awards exhibit showcasing 15 finalist vehicles within the show’s Advanced Technology Superhighway exhibit area.

WANADA_AutoShow_Logo_NoTag

3d-printed-carThe evolving world of 3D printing is nothing less than astonishing. Today, 3D printing is being used to help create everything from body parts to car parts. As demonstrated at last year’s SEMA Show, an entire car can also be created in real time and driven off under its own power. Now students at Nanyang Technological University in Singapore have built the first solar electric car with a 3D-printed body shell that has 150 individually 3D printed parts.

Mounted on a carbon fiber chassis and designed from scratch by NTU undergraduates, the solar NV8 and companion NV9 three-wheeled racer were built within a year at the Innovation Lab housed at the School of Mechanical and Aerospace engineering. The team’s 16 students and mentor Associate Professor Ng Heong Wah collaborated with various NTU schools and research centers, plus sponsors and institutions including Stratasys, Creatz3D, and the Singapore-MIT Alliance for Research and Technology (SMART).

The cars will race in the Shell Eco-Marathon Asia hosted in Manilla at the end of this month. According to the mechanical engineering students Kam Sen Hao and Ng Jun Wen who designed the NV8, the solar car was originally envisioned to feature a supercar design but the competition’s dimensional requirements resulted in a more sensible micro-car with vertical opening doors.

DC Fast ChargeExpanding the driving range capabilities of electric cars through fast charging is of growing interest. Tesla has keyed in on this with its high-profile Supercharger network of fast chargers along major transportation corridors. While this is great for Tesla owners, it’s not a comfort to drivers of other EVs since the SuperCharger network is not compatible with their cars.

Enter ChargePoint, VW, and BMW, which have joined together to offer similar capabilities for other electric vehicle models. The three are developing express electric vehicle charging corridors with fast charging stations that allow EV drivers to recapture up to an 80 percent charge in just 20 minutes. Fast charging sites will be strategically spaced no more than 50 miles apart to make longer trips possible for EVs that incorporate a DC fast charging capability.

Initial efforts will focus on heavily-traveled routes on the East and West Coasts, providing 100 DC fast chargers at existing ChargePoint sites. The aim is to expand fast charging capabilities to other sites within the ChargePoint network, which already offers more than 20,000 charging spots in North America. EV drivers can access the network with a ChargePoint or ChargeNow card or with the ChargePoint mobile app.

Well, this should be no surprise. Reuters reports what we’ve suspected all along because there’s a long history of this happening: Low gasoline prices are negatively impacting the sale of alternative fuel vehicles including those running on natural gas and electricity.

Not surprisingly, with lower gasoline prices comes a decided uptick in purchases of larger and lower efficiency vehicles, especially SUVs. Beyond personal transportation, the commercial sector is also being hit hard because the cost differential involved in buying large natural gas trucks presently fails to pencil out well compared to conventionally powered models.

Is this a trend? Only short term, really. Green Car Journal editors have noted such occurrences over the past two decades and the trend has always ebbed and flowed with varying fuel prices, incentives, and other factors. While the long-term prospects for battery electric vehicles hinge on lower cost batteries in the future, hybrids and high efficiency conventional vehicles are here to stay.

Plug-in hybrid electric vehicles (PHEVs) combine the functionality of a gasoline-electric hybrid with the zero-emission capabilities of an all-electric vehicle. Unlike conventional hybrids that rely solely on an internal combustion engine and regenerative braking to charge their batteries, PHEVs also allow batteries to be charged through an electrical outlet or EV charging station.

A PHEV’s battery pack is significantly larger and more powerful than a conventional hybrid, but still quite smaller than that of a dedicated battery electric vehicle. Thus, a PHEV’s electric driving range is shorter than an electric vehicle. Still, the added functionality of 20 to 40 miles of zero-emission electric driving is a real plus to many hybrid owners.

Examples of PHEVs already available to U.S. consumers include the BMW 13 and i8, Chevrolet Volt, Cadillac ELR, Ford C-MAX Energi, Ford Fusion Energi, Honda Accord Plug-in Hybrid, Porsche Panamera S E-Hybrid, and Toyota Prius Plug-In. Other PHEVs from various automakers are in the works.

The larger battery pack in a PHEV can add several thousand dollars to a hybrid’s purchase price. For example, Ford's Fusion and C-MAX Energi models use a 7.6 kilowatt-hour lithium-ion battery that provides about 21 miles of electric-only driving. This compares to the smaller and less expensive 1.4 kilowatt-hour battery in Ford hybrids without plug-in capability. The kilowatt-hour capacity of a battery is an indicator of the miles a PHEV can travel in electric-only mode, much like the gasoline in a conventional car's tank indicates its range.

A PHEV’s greatest advantage is that driving range is not limited by the finite battery capacity carried on board, thus there is no ‘range anxiety.’ Once battery power is depleted, a PHEV reverts to conventional gasoline-hybrid operation or, depending on its configuration, powers its motors with electricity created by an on-board internal combustion engine-generator. For this reason, PHEVs are often called extended range electric vehicles (EREVs).

Calculating PHEV fuel economy is complicated due to differing operating modes – all-electric with no gasoline used, combined electric and gasoline use, and gasoline-only operation. Plus, series and parallel plug-in hybrids operate differently. For this reason, federal PHEV fuel economy labels have been established to illustrate a plug-in hybrid’s expected efficiency measured in miles-per-gallon (MPG) when running on gasoline-electric hybrid power and MPGe (miles-per-gallon equivalent) when running on electricity.

2015-green-car-of-the-year-logoOver the 10 year history of Green Car Journal’s Green Car of the Year award program, there has never been a battery electric car that has been compelling enough to be recognized as the best-of-the-best in an ever-expanding field of ‘green’ cars. That has changed with the groundbreaking BMW i3, Green Car Journal’s 2015 Green Car of the Year®.

The BMW i3 came out on top of a field of finalists that included the Audi A3 TDI, Chevrolet Impala Bi-Fuel, Honda Fit, and VW Golf. The array of technologies and fuels represented included high efficiency gasoline, electric drive, clean diesel, and natural gas.

bmw-13-action-rightBMW’s i3 stands out as one of the most innovative vehicles ever to be introduced by any major automaker. It breaks the mold – literally – with a strong and lightweight body using materials and technology at home on the race track, and now used for the first time to construct a mainstream production car. It is a milestone, forward-thinking approach.

Meeting both near-term and far-reaching goals is no easy thing. The challenge is to design and build cars that offer meaningful environmental achievement while delivering the traditional touchstones desired by new car buyers, among them comfort, safety, convenience, connectivity, performance, and value. Also important in the world of advanced vehicles like battery electric cars is a significant commitment to the manufacturing and sale of these vehicles that goes beyond a few thousand units sold in select geographical areas. BMW’s commitment with the i3 is focused not only nationally in the U.S., but globally as well.

bmw-i3-cutawayOffering a lightweight carbon fiber reinforced plastic (CFRP) body on an aluminum space frame, BMW’s innovative i3 brings environment-conscious drivers all-electric drive with an optional internal combustion range extender. The most unique aspect of the i3 is the car’s body structure, which incorporates the first-ever use of carbon fiber reinforced plastic (CFRP) to form the body and passenger cabin of a mass-production vehicle. CFRP is as strong as steel and 50 percent lighter. It is also 30 percent lighter than aluminum.

This BMW’s drive module includes an electric drivetrain, 5-link rear suspension, and an aluminum structure. Its lithium-ion battery pack is mounted mid-ship beneath the floor. Strategic placement of the 450 pound battery pack and drive components provides a very balanced 50-50 weight distribution to enhance handling and performance.

bmw-i3-dashAcceleration is crisp, with a 0-60 elapsed time of 7.2 seconds provided by an electric motor producing 170 horsepower and 184 lb-ft torque. With a curb weight of just 2,700 pounds, the i3 has is sprightly even at highway speeds. Strong regenerative braking characteristics often allow the i3 to be driven with just the accelerator pedal in city driving. When a driver lets off the accelerator, regen slows the car quickly and allows it to come to a complete stop without touching the brake pedal.

Charging at home with an available 220 volt charger delivers a full charge in about three hours. Where available, public DC fast charging can bring an i3 to 80 percent state-of-charge in 20 minutes and a full charge in 30 minutes. The i3 BEV features an 81 mile EPA estimated range on batteries. The i3 REx, equipped with an internal combustion range extender that creates on-board electricity as needed to help keep batteries charged, features a 72 mile battery driving range and 150 miles total with the range extender.

bmw-i3-chargingEfficiency is a given. EPA rates the i3’s city fuel economy at 137 MPGe (miles per gallon equivalent) and 111 MPGe on the highway, with a combined 124 MPGe. For the REx-equipped model, EPA rates mileage at 117 MPGe combined.

The 2015 Green Car of the Year® is selected by a majority vote of an award jury comprised of Green Car Journal staff and invited jurors, including TV personality and car aficionado Jay Leno plus leaders of the nation’s most high-profile environmental and efficiency organizations. These jurors include Jean-Michel Cousteau, president of Ocean Futures Society; Matt Petersen, board member of Global Green USA; Mindy Lubber, President of CERES; Kateri Callahan, President of the Alliance to Save Energy; and Dr. Alan Lloyd, President emeritus of the International Council on Clean Transportation.

bmw-i3-side-doorsThe diversity of new car models at showrooms today reflects an evolving and sophisticated market in which a growing number of new car buyers have decided that environmental performance must meet their needs and expectations, on their terms. As it happens, 2015 Green Car of the Year jurors have clearly decided that this year, the electric BMW i3 does it best.

 

It is an exciting time to be involved with the auto industry, or to be in the market for a new car. The auto industry has responded splendidly to the challenge of new emission, fuel economy, and safety standards. The public is offered a greater than ever selection of vehicles with different powertrains, lightweight materials, hybrids, and electric drive vehicles across many platforms. We see increasing numbers of clean diesel vehicles and natural gas is making a resurgence, especially in the heavy-duty sector.

alan-lloydThe positive response by the auto industry to the ever-tightening pollutant emission and fuel economy standards includes tactics such as the use of aluminum in the Ford F-150 and the increased use of carbon fiber by BMW, among many innovations introduced across many models and drivetrains. These evolutionary changes are a major tribute to the automobile engineers who are wringing out the most they can in efficiency and reduced emissions from gasoline and diesel engines. I view this evolutionary change as necessary, but not sufficient to meet our greenhouse gas goals by 2050.

New car ownership is currently down in Europe and is leveling off in the U.S. For global automotive manufacturers, however, this trend is offset by the dramatic growth in places like China and India. The potential for dramatic growth in the developing world is clearly evident: In the U.S., there are about 500 cars per thousand people, compared to about 60 and 20 in China and India, respectively.

How can these trends be reconciled with the environmental and health concerns due to climate change and adverse air quality in the developing world? The evidence for climate change accumulates by the day. Hazardous air quality in many major cities in China has drawn global attention, providing a visual reminder of how far the developed world has come and how much environmental protection needs to be accelerated in the developing world. Damaging air pollution is increasingly seen as a regional and even worldwide challenge. Dramatic economic growth in many developing countries is generating pollution that knows no boundaries. Air pollution from China, for example, fumigates Korea and Japan and is even transported across the Pacific to impact air quality in California and other Western states.

It will take a revolutionary change to provide personal mobility without unacceptable energy and environmental consequences. As a recent National Academy of Sciences (NAS) document states, it is likely that a major shift to electric drive vehicles would be required in the next 20 to 30 years. Electric drive vehicles, coupled with renewable energy, can achieve essentially zero carbon and conventional pollutant emissions. The NAS report also predicted that the costs of both battery and fuel-cell electric vehicles would be less than advanced conventional vehicles in the 2035-2040 timeframe.

This transition will not occur overnight and we will be driving advanced conventional vehicles for many years to come. In a study for the International Council on Clean Transportation, Dr. David Greene calculated that the transition could take 10 to 15 years, requiring sustained investment in infrastructure and incentives in order to achieve sustained penetration. While this investment is not inexpensive, it is projected that the benefits of this investment will be 10 times greater than the costs.

So where do we stand today on electric vehicles? We are seeing an unprecedented number of hybrid, plug-in hybrid, and battery electric vehicles across many drivetrains and models. There were about 96,000 plug-in electric vehicles sold or leased in the U.S. last year and more than 10 new PEV models are expected this year. While the sales fall short of some optimistic projections, it is an encouraging start after many years of more hope than delivery. The FC EV is expected to see significant growth after the initial limited introduction of fuel cells in the 2015-2017 timeframe by five major automobile companies.

It will take many years of sustained increasing penetration into new car sales to make this revolution a success. It is indeed a marathon and not a sprint. The challenge is how to ensure sustained sales of electric drive vehicles in the face of the many attributes of advanced technology conventional vehicles.  Electric drive vehicle drivetrains have an affinity with the increasing amount of electronics on board the vehicle, which might ultimately yield very interesting, capable, and competitive vehicles.

I have little doubt that if we are serious about our energy, environmental, and greenhouse gas goals the revolution in technology will occur. All the major automobile companies seem to recognize this in their technology roadmap, which includes advanced conventional vehicles, plug-in hybrid vehicles, battery and fuel cell electric vehicles.

In conclusion, the next 20 years promise to be equally as challenging and exciting as the last 20 years. I have little doubt that the automobile engineers are up to the task ahead, but whether we have the political fortitude to stay the course to achieve the necessary air pollution and GHG reductions is far less certain.

Dr. Alan Lloyd is President Emeritus of the nonprofit International Council on Clean Transportation (ICCT). He formerly served as Secretary of CalEPA and Chairman of the California Air Resources Board.

the-icct-logo

 

toyota-fcvToyota has unveiled its hydrogen fuel cell vehicle that will be available for sale to California customers in summer 2015. The Toyota FCV four-door sedan is forward-looking with its blending of traditional sleek styling and aggressive futuristic exterior touches.

This is quite a departure from the Hyundai Tucson Fuel Cell now on sale in California that packages hydrogen fuel cell power within a conventional-looking Tucson SUV. Honda took a more middle-of-the-road approach with its FCX Clarity fuel cell sedan that it began leasing to limited numbers of California customers in 2008, offering an advanced body design that, while not necessarily wildly futuristic, did preview many of the styling cues that would show up in Honda’s model lineup in future years.

toyota-fcv-rearLike its fuel cell competitors, the Toyota FCV is driven by electric motors powered by electricity electrochemically generated by a hydrogen fuel cell. Since there is no combustion, no CO2 is produced and the car emits only water vapor. The Toyota FCV is expected to travel 300 miles on a tank of hydrogen, providing the advantages of an electric car without the limitations of short driving range. Refueling is said to take less than five minutes.

While hydrogen fueling opportunities are admittedly sparse these days, Toyota is working toward a solution in California through its partnership with FirstElement Fuels. The aim is to support the long-term operation and maintenance of 19 new hydrogen refueling stations in that state, accessible by all model fuel cell vehicles. The availability of hydrogen fueling will determine where automakers initially offer their first fuel cell vehicles, thus the interest in California.

 

2014 Pikes Peak Int. Hill Climb Practice DayMitsubishi has again shown its aptitude for taking on traditional race cars at the Pikes Peak International Hill Climb in Colorado. Its electric-powered MiEV Evolution III prototype racecars finished first and second in the Electric Vehicle division, with its lead car finishing just 2.4 seconds behind the overall 2014 Pikes Peak race winner, a gasoline-powered Le Mans sports car prototype driven by Romain Dumas.

The winning MiEV was piloted by six-time PPIHC motorcycle champion Greg Tracy with the second-place MiEV driven by two-time Dakar Rally winner Hiroshi Masuoka, who crossed the finish like just over four seconds after Tracy. To his credit, Tracy is the first driver in the event's history to record a sub-10 minute lap time in both two- and four-wheel racing categories.

2014 Chevrolet Volt

Do extended range electric cars and plug-in hybrids really save energy and make an environmental difference like all-electric vehicles? The answer is a resounding ‘yes’ if enough zero-emission miles are driven. To that end, the latest news from Chevrolet is encouraging: Since Chevy’s Volt extended range electric was introduced in 2010, Volt owners have reportedly driven more than a half a billion all-electric miles, resulting in no localized emissions over those miles and a pretty huge petroleum offset. In fact, Volt owners are spending some 63 percent of their time in EV mode.

All electric miles are even higher in an independent study managed by Idaho National Labs and conducted during the last half of 2013. Volt drivers participating in the Department of Energy’s EV Project totaled 1,198,114 vehicle trips during the six month period from July through December, 2013, with 81.4 percent of these trips completed without use of the Volt’s gasoline-powered generator.

2014 Chevrolet Volt

Battery-only driving range is also proving to be better than projected. A GM study conducted over 30 months that focused on more than 300 Volts in California shows many Volt owners are exceeding EPA’s estimates of 35 miles of EV range per full charge. About 15 percent are surpassing 40 miles of all-electric range. GM data also illustrates that Volt owners who charge regularly typically drive more than 970 miles between fill-ups and visit the gas station less than once a month. The 2014 Volt features EPA estimated 98 MPGe fuel economy when running in electric mode and 35 city/40 highway on gasoline power.

Some interesting trivia: Since the Volt’s launch in 2010, more than 25 million gallons of gasoline have been saved by Volt drivers. Chevy also likes to point out that 69 percent of those buying a Volt are new to the GM brand and of those trading in a vehicle during purchase, the most frequent trade-in is a Toyota Prius. The Volt was named Green Car Journal’s 2011 Green Car of the Year®.

 

Electric drive vehicles of all types are increasingly in the news, often led by a near-nonstop focus on Tesla and its Model S, Model X, and planned Model 3 battery electric vehicles. People want electric cars. Some feel they need them, or more accurately, that we all need them. It has been so for quite some time.

I was one of those pushing hard for electric vehicles in the 1990s, driving prototypes on test tracks and limited production models on the highway as I shared their benefits on the pages of Green Car Journal and Motor Trend before that. It was an exciting time filled with hope that battery breakthroughs would come, bringing full-function EVs offering the same driving range as conventional vehicles.

Expectations were high that a public charging infrastructure would expand to make topping off batteries convenient. New ideas like 15-minute rapid charging and battery swap stations would allow drivers of all model EVs the ability to renew on-board energy in the time it takes to enjoy a cup of coffee, enabling them to head back on the road in short order with a full battery charge. Importantly, there was an expectation that EVs would be affordable, both to manufacture and to buy.

If only this unfolded as expected, automakers would commit to developing battery electric vehicles of all types to meet the needs of an emerging market. But things have not unfolded as expected.

California’s Zero Emission Vehicle mandate drove the electric car surge in the 1990s and it’s a huge influence today. While less refined than electric models we have now, electrics of the 1990s like the Toyota RAV4 EV, Nissan Altra minivan, and Honda EV Plus were quite well engineered. Then there was GM’s EV1. Sleek, sexy, and fun, it provided a daily driving experience unparalleled in the field, something I came to appreciate well during the year I drove an EV1.

The challenge then was the same as now: cost. The EV1 was so costly to build with such massive losses there was no business case for it to continue, and so it ended, as all other electric vehicle programs of the 1990s ended, for the same reason.

Volvo ECC powered by a turbine-hybrid powerplant.

Early on, Volvo had the foresight to challenge the status quo. While evaluating ways to meet California’s impending ZEV mandate, the automaker concluded there was no way to do this realistically with a vehicle powered exclusively by batteries. In 1993, I test drove Volvo’s answer – its high-tech Environmental Concept Car (ECC) that added a high-speed turbine-generator to an electric drivetrain, thus creating what we now call a range-extended electric vehicle (think Chevy Volt). Sadly, the ECC’s high cost turbine-generator meant this innovative car never saw production. But it was at the leading edge of a movement that brought us hybrids and range-extended electric cars. Today, even BMW – a high-profile champion of electrics with its innovative  i3 – understands the importance of offering a range-extended variant with a gas engine-generator for those who prefer the convenience of longer range.

In answer to the chorus of Tesla enthusiasts sure to raise their voices, I am aware that Tesla is committed to all-electric vehicles and the range of the $70,000-$95,000 Model S (before the addition of popular options) is substantially greater than its competitors. The coming Model X electric crossover is expected to be in the same aspirational category as the Model S with a price suitable for premium buyers. The company's planned Model 3, presumably a vehicle accessible to the masses at a price Tesla says will be about $35,000, is said to be three years away. That's a good thing since significant battery cost reductions will be required to make this Tesla-for-the-masses electric an affordable reality. Will three years be enough? Achieving battery cost reductions of the magnitude required is no sure bet and, as history has proved, battery technology advances move at their own pace.

One stock analyst recently quoted in a major newspaper article shared that Tesla has the ability to reduce battery costs by nearly half in the coming three to five years. Of course, the backstory is that this ‘ability’ is really but a ‘potential’ based on batteries that do not yet commercially exist. The past 25 years are replete with examples of major government and industry efforts aimed at developing energy-dense, safe, and affordable electric car batteries that deliver the range and cost expectations of auto manufacturers and consumers. Over these years there have been many incremental improvements in battery design and chemistry, a slew of failures, and pending ‘breakthroughs’ that have often been promoted only to have expectations and actual production sidelined for a plethora of  reasons du jour.

As just one recent example, Panasonic's 2009 announcement of a lithium-ion battery breakthrough using a silicon alloy cathode was accompanied with a claim it would be manufactured in 2012. Many positive reports on electric vehicles take into account this very ‘breakthrough’ and others like it, with the considerable cost reductions that would follow. Yet, Panasonic did not begin mass production of this battery technology in 2012. According to a Panasonic spokesman, the company’s work on developing high-capacity battery cells using a silicon-based negative electrode is ongoing. Hopefully,  developments like these will lead to the kind of mass production that could bring long-hoped-for battery performance and cost reductions. Perhaps this will come to pass with a mass effort by Tesla through its proposed $5 billion battery ‘Giga Factory,’ and perhaps not. But after 25 years of following battery development I have learned not to count on claims or development, but rather actual production and availability in the real world.

Tesla continues to develop its Supercharger quick-charge network and has potential plans for a battery swap system, both exclusively compatible with its own vehicles. An innovative and expanding infrastructure for battery electrics will be required for their ultimate success and these are very positive moves, although only for those with a Tesla product and not electric vehicle owners as a whole.

Battery electric vehicles priced at levels accessible to everyday buyers will continue to grapple with cost and marketing challenges until a battery breakthrough comes. This is illustrated by Fiat Chrysler Automobiles CEO Sergio Marchionne's comment earlier this year that the company is losing $14,000 on every one of the Fiat 500e electric cars it sells. Is it so different for other automakers also selling EVs in limited numbers and in constrained geographic locations? Not inconsequentially, to bolster the market battery electric cars will also require continuing federal and state incentives that combined typically total $10,000 or more. Hopefully, innovative thinking and real technology and cost breakthroughs will emerge in the years ahead.

In the meantime, gasoline-electric hybrids and plug-in hybrid models, plus range-extended electric vehicles that combine all-electric drive with an on-board electric generator, are providing functionality for everyone even as battery-only electric cars fight hard to establish their place in the automotive market. Let's hope that mass-market, nationally-available models like BMW's innovative i3 electric car change this dynamic sooner than later.

ford-c-max-energi-solar-roofThe thought of vehicle-integrated solar cells taking an active role in powering an electric car remains a tantalizing prospect. In fact, the use of solar panels on the roof of a vehicle is not a new idea. It’s been shown that ultra-lightweight solar race cars with solar-packed body shells can actually drive exclusively on the power of the sun. In real life, though, this doesn’t work with production cars weighing thousands of pounds that need to carry varying numbers of passengers and weight, provide the acceleration needed for safe motoring, and in general perform all the functions required of a modern car.

Disappointing to some, car-mounted solar panels typically generate just enough electricity to operate a fan to keep the interior of a parked car cool on a hot day, falling fall far short of providing the kind of energy needed for drive motors. Lowering cabin temperatures in a parked EV does serve a purpose since less energy is needed to cool the passenger space during the early part of a drive. That means less of a drain on batteries needed to power an electric vehicle. In this case, every little bit helps.

ford-c-max-energi-solar-34

There are other answers and solar charging does take different forms. Plenty of EV owners offset their car’s use of electricity through large solar panels on their homes. Many public charging stations also make use of solar arrays to provide at least part of the power needed for charging electric vehicles. These have been the most logical examples of solar charging to date. Still, efforts toward creating the true solar car continue.

The latest example comes from Ford. Working in a collaborative project with long-time solar technology partner SunPower and Georgia Institute of Technology, Ford’s C-MAX Solar Energi Concept embraces an innovative approach that could potentially deliver the same amount of electrical power as plugging a C-MAX Energi PHEV into the electrical grid. The goal is no less than creating a logical stepping stone toward making a solar-powered hybrid feasible for daily use.

ford-c-max-energi-plugged-in

Ford’s C-MAX Solar Energi Concept benefits from amplifying the sunlight that enables the car’s already-efficient SunPower solar cells to create electricity. A huge jump in solar energy conversion is accomplished with a special solar concentrator lens that directs intense solar rays to the solar panels on the vehicle's roof. The off-vehicle solar concentrator uses a special Fresnel lens of the type originally invented for use in lighthouses, boosting the impact of sunlight by a factor of eight. Similar in concept to a magnifying glass, the patent-pending system tracks the sun as it moves from east to west.

With the aid of the concentrator, the system can collect enough energy from the sun each day to equal a four-hour battery charge for the C-MAX Energi, about 8 kilowatt-hours. Ford says this is sufficient to deliver the same performance as a conventional C-MAX Energi plugged into the electrical grid.  The Ford C-MAX Solar Energi Concept would also have the same total range as a conventional C-MAX Energi of up to 620 miles, including up to 21 electric-only miles. Since the sun isn't always shining, there is still a charge port so this solar Energi variant t can be charged conventionally from the grid.

ford-c-max-solar-carport

The special solar concentrator carport used with the C-MAX Solar Energi is conceptualized in a way that maximizes capturing solar energy as the sun moves throughout the day. This requires an east-west carport orientation and also the ability for the car to autonomously move forward and backward beneath the canopy during daylight hours, thus enabling its solar cells to make the most of sunlight directed by the concentrator. As Consumer Reports posits, not only does this require buying into the concept of an unattended car moving all by itself during the day, but also the potential liability issues that could come with it.

Ford studies suggest that the sun could power up to 75 percent of all trips made by an average driver in a solar hybrid vehicle. Solar charging could be especially valuable in places where the electric grid is underdeveloped, unreliable, or expensive to use. In addition, use of a C-MAX Solar Energi could reduce yearly CO2 and other greenhouse gas emissions from the average U.S. car owner by as much as four metric tons – the equivalent of what a U.S. home produces in four months. If all light-duty vehicles in the United States were to adopt Ford C-MAX Solar Energi Concept technology, annual greenhouse gas emissions could be reduced by approximately 1 billion metric tons.

Next up: Ford and Georgia Tech will be testing the concept under real-world conditions. The outcome of those tests will help determine if the concept is feasible as a production vehicle.