An all-new generation Nissan LEAF is coming, morphing into a crossover electric vehicle that better fits the needs of today’s market. This new move by Nissan signals the rebirth of an iconic EV model that once pushed the boundaries of electrification as California was imposing its Zero Emission Vehicle Mandate on an unprepared auto industry. There was no shortage of EV concepts and prototypes during this time, and of course GM fielded its relatively short-lived, limited-production EV1 electric car. But it was Nissan that caught everyone’s attention with its LEAF prototype and then the unveiling of the production model that Green Car Journal viewed in Japan. Following that, the 2010 model Nissan LEAF emerged as a stylish electric car that embodied Nissan’s view of the future. This article pulled from Green Car Journal’s extensive archives is presented just as it ran 16 years ago to share just what a breakthrough this early EV was for enthusiasts and the auto industry.
Excerpted from Fall 2009 issue: The Nissan LEAF electric car coming to showrooms in 2010 promises a new chapter in battery electric driving that got a good start in the 1990s, but was dramatically sidetracked by serious political squabbling and economic realities. What we have here is an electric car being brought to market driven by business case rather than regulatory fiat, and the difference in approach means everything.
Here’s a major automaker not only ready to bring a new from-the-ground-up electric car to U.S. highways, but also apparently quite eager to do so. It has created a stylish and sporty car to wrap around intelligent electronics, a smart battery design, and an overall driving experience that will be appreciated by wide-ranging new car buyers … not just electric car enthusiasts. But we’re getting ahead of ourselves. First, there’s a story to tell.
Nissan has always been somewhat of a wild card amid its Japanese competitors in the U.S. market, primarily Honda and Toyota. Toyota is a juggernaut with the leading eco-vehicle on the market – the Prius – plus lots of Toyota and Lexus hybrid models and sheer numbers in its favor. Being large has its advantages. Honda is innovative and agile, with an environmental focus that runs deep and a willingness to embrace imperatives like fuel economy, alternative fuels, and low emissions long before they’re in vogue.
And Nissan? Well, the automaker has never been considered a front-runner in the environmental arena. It has but a single gasoline-electric hybrid in the U.S. and this model, the Altima Hybrid, was late in coming … an interesting turn of events since Nissan has been developing hybrid technology for quite some time. Simply, Nissan’s leadership didn’t see the business case for hybrids early on, although this was remedied when it became apparent that a hybrid model was pretty much a necessity.
As a result, it has been easy to appreciate Nissan for its many exceptional models and the overall quality of its products. But is has been just as easy for some to discount Nissan as a serious contender in the ‘green car’ field. That assessment would be a mistake.
Nissan’s Altima Hybrid deserves more attention than it gets. It’s true to the brand: stylish, sporty, and offers snappy performance. Car enthusiasts who drive competitive mid-level hybrids and don’t feel a connection should drive an Altima Hybrid before moving on. It can be surprising.
Over the years, Nissan has tested M85 methanol flexible-fuel vehicles (FFVs) on American highways, introduced several E85 ethanol FFVs to its product lineup, and showcased many electric and hydrogen concepts and demonstrators. While many automakers get well-deserved kudos for offering models powered by near-zero emission gasoline engines, it was Nissan that first introduced this groundbreaking technology in its 2000 model Sentra CA sedan. Nissan was also the only major automaker to feature forward-looking lithium-ion battery technology in its Altra EV minivan that was test marketed in the 1990s. All other automakers’ electric cars of the era used nickel-metal-hydride or advanced lead-acid batteries.
This willingness to step out and get ahead of the curve brings us to an interesting new phase in Nissan’s ‘green’ evolution – its coming LEAF battery electric car. At a time when the number of gasoline-electric hybrid models is growing and plug-in hybrids are of increasing focus, Nissan is aiming to be the electric car leader by introducing an all-new model that’s not only technologically advanced, but affordable for the masses as well. That’s something that nobody has been able to pull off.
One of the secrets of this affordability is Nissan’s potential strategy to decouple battery cost from the price of the vehicle. While this isn’t yet a sure thing and various scenarios are being examined, the fundamental plan being explored is that the most cost prohibitive part of an electric car -- expensive lithium-ion batteries – is removed from the equation. You buy the car but separately lease the batteries at a monthly cost that’s presumably less than you would pay for gas. So, you get an advanced electric car that operates at pennies per mile, uses no fossil fuels, or produces any emissions that contribute to air pollution and, presumably, climate change. And it doesn’t cost you any more to own and operate than a comparable gasoline model.
Green Car Journal traveled to Yokohama, Japan to drive a Nissan Versa (known as the Tilda there) outfitted with the LEAF’s advanced electric powertrain, and we sure didn’t come away disappointed. To place this in context, Green Car Journal editors have driven all the electric vehicle models that were test marketed by the major automakers in the 1990s, spent a year behind the wheel of GM’s EV1, and also drove many developmental electric vehicles on test tracks over the past two decades. It takes a lot to impress us. And we are, we must admit, impressed.
Our time behind the wheel of this electrified Nissan test mule left a strong impression that Nissan really has something here. The drive was sporty and largely indistinguishable from driving a conventional gasoline model. That’s a good thing, since any time you can drive an advanced vehicle running on unconventional power and it seems normal, well … mission accomplished. Acceleration was brisk because, after all, its 107 hp (80kW) electric motor delivers 100 percent of its 206 lb-ft torque from zero mph. Steering feel, handling, and braking were spot on. Nothing seems to have been sacrificed on the road to a zero emission future.
There are some givens when driving any electric car, and time piloting this Nissan example presented no exception. There’s the unmistakable lack of all noise associated with internal combustion, with the absence of these familiar cues replaced with the sound of tires contacting the pavement and wind rushing past the windshield. It gets your attention at first, but take it from a long-time electric car driver – it fades away after a short time and becomes the new ‘normal.’
Besides the seamless way in which this electric Nissan performed during our test drive, what’s most impressive about Nissan’s new electric car program is its innovative use of multiple stacks of laminated compact battery modules integrated beneath the floor. These lithium-ion batteries can be readily configured in ways that accommodate the needs of different vehicle platforms. Yes, we’re thinking future models beyond Nissan’s purpose-built LEAF electric hatch. In the LEAF, Nissan says these batteries provide a real-world 100 mile driving range. More modules could conceivably provide that same kind of range in a larger sedan or crossover.
Also impressive is Nissan’s innovative use of sophisticated electronics that integrates with popular electronic devices. The LEAF’s advanced IT system connects to a 24 hour global data center that provides information, entertainment, and driver support. A monitor displays available charging stations and a ‘reachable area’ based on remaining power. Cellphones can be used to set charging times, communicate with the vehicle to determine when charging is done, and even remotely set the air conditioner to pre-cool the interior before getting in to drive.
Nissan’s coming electric LEAF, with its pleasing design that blends sharp and curvaceous lines and a suite of far-reaching advanced technologies, represents a brilliant addition to the Nissan product line. It reflects an intuitive knowledge of what consumers want and a willingness to lead … really lead. And it also shows that Nissan has its finger on the pulse of the market.
Sure, it’s a risk to go so boldly into the electric realm, designing an innovative and cutting-edge compact car based solely on electric drive. Considering the competitive nature of the automotive field and the pace at which Nissan is shepherding this electric model to market, it’s a logical gamble that could pay off in a very big way. The electric LEAF may well be the vehicle that moves Nissan beyond the considerable environmental shadow cast by competitors Toyota and Honda, presenting the kind of leapfrog opportunity that comes rarely and offers a finite window. No doubt, Nissan's leadership is hoping this is so and appears poised to make that leap.
Nissan was first out of the gate with a mass-market EV, the 2011 LEAF, but it took a dozen years for the automaker to pop out a second all-electric model. By the time the Nissan Ariya was introduced in 2023 it already trailed some of the competition in range and handling performance. That doesn’t change for 2025. The Nissan Ariya remains a fantastic improvement and step up from the Leaf, but except for its interior, it doesn’t stand out in the sea of compact electric crossovers and SUVs that EV shoppers can now choose from.
As a longtime Nissan EV driver – having leased a 2011 LEAF when they first came out and then later purchasing a 2018 LEAF – we waited anxiously for the carmaker to bring out the Ariya. We were impressed with its looks and features after viewing the new EV just prior to its on-sale date in the U.S.
It took a while after that to get into one, but we finally did and spent a week with the top-of-the-line, dual-motor, all-wheel drive Ariya Platinum. We found it to be a well-balanced EV with a quiet and comfortable ride, refined exterior design, outstanding interior, a long list of standard features, and top-notch driver assist and safety tech. But it proved to be only middle-of-the-road when it came to driving characteristics.
The Ariya doesn’t qualify for the buyer’s federal tax credit that can lop $7,500 off the price of competitive EVs from Chevrolet, Cadillac, Honda, Kia, and Tesla that do qualify. But Nissan often offers buyers cash rebates to make up some, or even all, of the difference. And those who lease can get the credit because of an IRS ruling exempting leased EVs from the credit’s “made in North America” requirement.
While the base Ariya trim has a barely adequate range of just 216 miles (205 miles with all-wheel drive), higher trims use a much larger battery and offer lots more range – up to 289 miles with front-drive and 272 with electronic all-wheel drive. However, there are other small electric crossovers, such as the Chevrolet Equinox EV and Kia EV6, that offer more power or more range – sometimes more of both – for less cost. At the top of the trim tree, Cadillac’s new all-wheel drive Optiq electric SUV outdoes the Ariya Platinum+ AWD in range and is its equal in interior quality and fittings.
Still, if winning slaloms and topping the 300-mile mark on range or the 3-second mark for 0-60 mph acceleration aren’t at the top of your list of musts, the 2025 Nissan Ariya is certainly worth a look.
Boding well for Ariya is that the nearly identical 2023 model has been named a top choice for used EV buyers by Recurrent, a company that tracks EV battery health, sales, and pricing. It earned this distinction because of its advanced driver assistance and safety technologies, retained value, and strong performance in cold climates. Because the Ariya hasn’t changed mechanically – or much in any way – from 2023 (except lower starting prices for each trim), Recurrent’s real-world report on two-year-old models is good news for shoppers considering the 2025 Ariya.
The Ariya uses an EV-exclusive platform from Nissan that enables a longer wheelbase and more interior space. By packaging the batteries under the floor, the platform gets rid of transmission tunnels and permits interiors with flat floors. Removing the internal combustion engine allows designers to shorten hoods and rethink front fascia, which no longer need open grilles to gulp air for the engine.
While we tested a 2024 Ariya, the 2025 models are identical. The only new features are that wireless phone charging is now standard in all trims and 2025 models built since the start of the year have the Tesla Supercharger-compatible NACS charging port as standard equipment. Models made before that date have the CCS port that requires a $235 accessory adapter to make use of Tesla chargers.
Nissan also dropped the Venture and Empower trims for 2025, winnowing the Ariya ‘family’ to a choice of four trims that include two battery sizes and two powertrain choices.
Nissin starts the Ariya lineup with a small battery-version, the Engage, followed by the Engage+, Evolve+, and Platinum. The first two can be had with front drive or, for a $4,000 upcharge, dual motor electric all-wheel drive that boosts power and range. The last two are dual motor AWD only that Nissan calls it e-4ORCE, because…why not?
The Ariya in base Engage trim starts at $41,160 including the $1,390 destination charge. It comes with front-wheel drive and a 66 kWh battery (63 kWh usable), 19-inch alloys with all-season rubber, and LED headlamps. Inside, there’s a head-up display, heated steering wheel and front seats, an eight-way power adjustable driver seat with memory, six-speaker stereo system, wireless Apple Car Play and wired Android Auto connectivity, wireless phone charger, and in-dash navigation. The all-wheel drive Engage variant starts at $45,160 and adds a beefier dual motor, electronic all-wheel drive system, and a sliding center console.
Evolve+ trim is priced at $45,760 for front-wheel drive. It has a 91 kWh battery (87 kWh usable) for more range and power, and adds to the base model’s standard features with items such as a panoramic moonroof, rain-sensing windshield wipers, 360-degree camera and monitor, eight-way power-adjustable front passenger seat, and a stow-away table in the sliding front console, The all-wheel drive version of the Evolve+ starts at $49,760 and adds the dual-motor e-4ORCE AWD system and a powered rear liftgate.
Engage+ e-4ORCE starts at $46,760 and adds the 91 kWh battery and larger front disc brakes to the base Engage AWD package. Stepping up to Platinum+ e-4ORCE, the top trim in the Ariya lineup, brings a near-luxury class price of $55,760. It has all the features of the Evolve+ AWD and adds a 9-speaker Bose audio system, Nappa leather upholstery, power tilt and telescoping steering column, position memory for exterior side mirrors, a hand-free power rear liftgate, and LED fog lamps. A version with 20-inch wheels is priced the same.
The base Engage with front drive gets a single 160 kW motor on the front axle and is rated at 214 horsepower and 221 lb-ft torque. EPA estimated range is 216 miles. The AWD Engage e-4ORCE gets motors on each axle with a combined output rating of 335 hp, 413 lb-ft torque, and an EPA range estimate of 205 miles.
Range and power for the big-battery variants differ depending on trim level and drive type. The front-drive Evolve+ gets a single 178 kW motor rated at 238 hp and 221 lb-ft torque. EPA estimates range for the front-drive Evolve+ at 289 miles. The all-wheel drive Engage+ e-4ORCE is rated at 335 hp and 413 lb-ft torque. Evolve+ and Platinum+ e-4ORCE versions get dual-motor systems featuring 389 horsepower and 442 lb-ft torque. EPA range estimates are 272 miles for the Engage+ and Evolve+ with AWD. The Platinum+ has more features and is heaver, so its range drops to 267 miles, or 257 miles with 20-inch wheels and tires.
Both of the base Engage variants (without the “+”) use liquid-cooled, 66 kWh battery packs that can recharge from 80 percent depleted to 80 percent full in 35 minutes on a DC fast-charger rated at 135 kW, and in 65 minutes at 50 kW. For home charging on 240-volt Level 2 equipment, the Ariya has a 7.2 kW on-board charger that needs 10.5 hours to fully replenish an empty 66 kWh battery. All other 2025 Nissan Ariya trims and variants get a liquid-cooled 91 kWh battery. Charging at DC fast charge systems is a bit slower versus the base Engage because the battery has almost 50 percent more capacity. Per Nissan, it takes 40 minutes at 135 kW and 90 minutes at 50 kW. Home charging takes 14 hours with the larger battery if starting from a fully discharged state.
We found the Ariya range estimates to be fairly accurate. On a 232 mile trip in the Platinum+ e-4ORCE with 20-inch wheels, we lost just 11 percent – 28 miles – of the EPA-estimated 257 miles of range. The trip included 183 miles of freeway driving and 49 miles of city and country roads. Overall energy consumption worked out to 36.4 kWh per 100 miles, or 2.75 miles per kWh.
The Ariya’s interior is one of the best at the non-luxury level, with a modern minimalist look, quality fittings, and, in upper trims, interesting ambient lighting that pops from laser-cut screening in the foot wells and along the upper door panels. The center console has backlit touch controls for drive and regenerative modes. There’s a metal trim bar that runs the width of the lower dash with matching trim on the console. The bar is lighted and, in models with the advanced ProPilot 2.0 driver assistance system, changes colors to communicate various driving modes. There are dual glove boxes but no center console storage on lower trims, while upper trims get a center console storage compartment and a roomy locking storage drawer that slides out of the lower dash panel.
Seat upholstery is leatherette (vinyl) on all but the Platinum trim, which gets Nappa leather. Seats are supportive and nicely padded front and back, with adequate adjustments for the driver and front passenger seats. The Ariya is near the top of its price class in headroom and front legroom. Even in back, where it trails competitors by an inch or more, the flat floor opens up room others don’t have and gives passengers room to sprawl a bit. All trims get power-adjustable driver’s seats while the two top trims also get power-adjustable front passenger seats.
A pair of 12.3-inch, horizontally-oriented screens pop up from a padded dash that is otherwise nearly barren of visible knobs and switches. A volume knob for the stereo sits at the bottom center of the infotainment screen. A row of backlit, touch-sensitive switches for the climate control system is hidden under a woodgrain trim strip along the dash bottom.
Most functions are controlled via the center-mounted infotainment touchscreen or by touch controls on the flat-bottomed steering wheel. The other 12.3-inch screen, mounted behind the wheel, serves as a digital instrument panel and delivers information the driver needs to know. The center console stops short of the dash and there’s no center stack. Nissan did a good job of sound attenuation and while some wind noise does get through, the cabin is very quiet even at high speeds.
Ariya offers 27.9 cubic-feet of storage space behind the rear seats. Flip the 60/40 split rear seats down and that grows to almost 60 cubic feet. The ‘crossover coupe’ shape (think BMW X6) helps the Ariya’s looks but eats into cargo space just a bit, although it remains very competitive in the segment with slightly more cargo space than the Kia EV6, Honda Prologue, Chevrolet Equinox EV, and Cadillac Optiq.
The two top Ariya trims are rated to tow up to 1,500 pounds. That capability fits the needs of those needing to tow items such as a small utility trailer, a jet ski, or a small sailboat.
We tested the Platinum+ e-4ORCE and found it to be comfortable, quiet, and pleasant to drive. It exhibited sprightly acceleration, though without the stomach-dropping kick many EVs offer when the accelerator is jammed to the floor. Nissan claims a 5.0-second time for a 0 to 60 mph sprint in the 389 hp Ariya variants, and that’s about what we experienced. Drop down to the entry-level Engage, though, and acceleration gets a bit sluggish for an EV at 7.5-seconds for that same 0-60 run.
The 2025 Nissan Ariya boasts a low center of gravity and in AWD versions a 50:50 weight balance, but it still isn’t a sports car (the Platinum trim weighs in at 5,057 pounds). Ariya doesn’t like to be pushed hard into corners and offers little in the way of steering feedback. Overall, it’s best suited to highway cruising and leisurely sight-seeing drives in the mountains and on winding country roads. There is a high-performance NISMO edition with a re-tuned chassis and 429 horsepower available in Japan and Europe, so the car’s handling and power delivery can be improved. That variant costs about $5,000 more than the top-spec Platinum+e-4ORCE in Japan and there are no plans at present to bring it to the U.S.
Nissan’s ProPilot suite of driver assistance and advanced safety systems is standard on all Ariya trim levels. ProPilot includes full-range adaptive cruise control, lane departure warning with lane keeping assist, forward and rear automatic emergency braking, blind spot monitoring, and rear cross traffic alert. It’s linked with the on-board navigation system to more accurately predict highway conditions ahead and has speed adjust to automatically slow on curves and offramps. Nissan provides its updated ProPilot 2.0 system as standard equipment on the Platinum+ trim and as an option for the Evolve + AWD. It includes all the base ProPilot systems and adds automated highway driving capability and automated parking assist. The Evolve+ and Platinum+ trims also get a 360-degree camera-based monitor system.
The Ariya has been awarded a 5-star overall safety rating by the National Highway Traffic Safety Administration (NHTSA) and has been named a Top Safety Pick by the nonprofit Insurance Institute for Highway Safety (IIHS).
This was originally published on thegreencarguy.com. Author John O'Dell is a distinguished career journalist and has a been an automotive writer, editor, and analyst specializing in alternative vehicles and fuels for over two decades.
It’s the 1990s and you’re looking to drive something different. Imagine piloting a car that was as technologically advanced as a Lamborghini Diablo was fast, and more exclusive in numbers than that decade’s Ferrari F40. Now picture it with a GM emblem on its hood. In your mind’s eye, you’re behind the wheel of the legendary EV1, the first mass produced electric car of our modern age.
This is the car that started it all. While many automakers pursued electric vehicle development programs in the 1990s, it was GM’s Impact concept car, and then the production EV1 that followed, that literally set the modern EV field in motion.
GM turned to efficiencies-focused AeroVironment in California to develop an advanced electric vehicle unlike any other. When it debuted this car, the Impact prototype, at the 1990 LA Auto Show, the mission was to generate excitement. And that it did, courtesy of the Impact’s show-stopping teardrop-shaped plastic body, aluminum spaceframe, and a revolutionary electric propulsion system created by AeroVironment engineer and EV pioneer Alan Cocconi.
The electric EV1, based on the Impact concept but highly refined beneath the skin, emerged at Saturn dealers six years later. The EV1 was special, it was silent, and it was fast. Without the engine braking effect of a gas engine and with its regenerative braking setting adjusted accordingly, after lifting off the throttle it seemed to coast forever in a relatively friction-free state. Overall, it was seductive to drive, and if your mind wandered you could imagine piloting the era’s F-14 Tomcat on the street… and that doesn’t happen every day. We know, because we spent a year driving an EV1 on the roads and highways of California, one of the select areas where the EV1 was available.
The EV1 came to market with a slew of all-new technologies that are common today, from low rolling resistance tires to regenerative braking and keyless ignition. Accelerating from 0 to 60 mph took about eight seconds. The Gen 1 model had an estimated 50 to 95 mile driving range on its advanced lead-acid batteries.
Later, GM introduced Gen 2 EV1s with more advanced and power dense nickel-metal-hydride batteries that enabled an EV1 to travele an estimated 75 to 140 miles. Energizing both Gen 1 and Gen 2 batteries was handled with a unique charging paddle that transferred electrical energy via magnetic induction, without a hard connection between the paddle and car.
During its short lifetime, only 1,117 EV1s were built and these were leased only, with no purchase available. Leasing was a nod to GM’s need to maintain ultimate ownership over highly advanced and extremely expensive-to-produce vehicles, using all-new technology, that were being fielded in a limited way to feel out the market. Initially offered at a lease cost of $640 per month with financial incentives that brought this down to $480, the EV1’s lease terms evolved over time to be as low as $349.
Ultimately, this chapter of GM’s continuing electric vehicle story ended abruptly. The program was discontinued in 2002 and all EV1s were required to be returned at their end-of-lease, either making their way to the crusher or donated as inoperable examples to museums and other institutions, never to be seen on the highway again.
There’s no doubt that plug-in hybrids loom large on the minds of drivers today. One might assume this is a recent phenomenon given the constant media attention today. But really, this has been an ongoing area of interest for quite some time. In fact, some 17 years ago, Green Car Journal technical editor Bill Siuru penned a feature offering an overview of this interest. This article from our archives is worth sharing today since it not only indicates the reasons why plugging in is such a positive thing, but considering the interest at the time, it also illustrates the surprisingly long time it has taken to reach where we are today. Other revelations are included here, like the potential for vehicle batteries to be used for V2G (vehicle-to-grid) and V2H (vehicle-to-home) energy, and of course Volvo’s growing commitment to its electrified future. Here, we present this article from Green Car Journal’s fall 2007 issue.
Excerpted from Fall 2007 Issue: The tremendous interest in plug-in hybrid vehicles (PHEVs) is driven by many things, from a desire for greater fuel efficiency to decreasing emissions, achieving long-term reductions in fuel cost, and promoting energy diversity so we’re much less dependent on imported oil. Each of these is important to our future. Together, they make a compelling case for the PHEV that bears further exploration.
Plug-in hybrids could provide most of the environmental and fossil fuel-savings benefits long promised by battery electric vehicles (BEVs), but not yet delivered. Also called grid-connected hybrids, PHEVs overcome the biggest challenge of BEVs – insufficient range. With all-electric range of up to 60 miles, under most driving scenarios a PHEV can be a true zero-emission vehicle (ZEV), just like a BEV. In reality, however, plug-in hybrids offer much more since gasoline-electric hybrid power is ready to take over from all-electric drive once battery energy is depleted.
Initially, aftermarket suppliers like EnergyCS in California and Hymotion in Canada developed PHEV retrofit kits for popular hybrids like the Toyota Prius, Ford Escape Hybrid, and Mercury Mariner Hybrid. These have been quite expensive and aimed exclusively at fleets because of cost. Major automakers have now joined in. General Motors’ much-publicized Chevy Volt will be a PHEV with an all-electric range of 40 miles. According to GM, 75 percent of all commuters drive 40 miles or less to and from work. A plug-in Saturn Vue hybrid, in the works and possibly available in advance of the Volt, could double the fuel economy of any current SUV and provide some 10 miles of electric-only propulsion. Toyota, Nissan, Ford, and several other manufacturers have PHEVs in the works, as well.
While most hybrid cars, SUVs, light trucks, and PHEVs unveiled to date are parallel hybrids, several have followed a different approach with a series hybrid configuration. One of the latest is the Volvo ReCharge Concept. The ReCharge series hybrid uses an internal combustion engine solely to drive a generator for producing electricity that powers the vehicle’s electric motors. Essentially, the ReCharge is a battery electric vehicle with an internal combustion engine for range extension. This drive configuration allows the 1.6-liter, four-cylinder Volvo Flexifuel engine to operate in its optimum rpm range for best fuel economy and minimum emissions. An added advantage when not directly connecting an internal combustion engine to the wheels is much more design flexibility.
In this instance, the ReCharge uses four individually controlled electric drive motors for all-wheel drive. Individual wheel motors also allow optimum weight distribution and maximizing both traction and mechanical efficiency. Since a transmission is no longer needed, mechanical gear friction is reduced substantially. The ReCharge can run on battery power alone for just over 60 miles and also operate its engine on biofuels like E85 ethanol, all the while retaining the sporty performance of the Volvo C30 sport coupe on which it is based. For a 93 mile (150 km) drive starting with a full charge via an ordinary electric outlet, it will use less than three-quarters of a gallon of fuel, which equates to almost 125 mpg. A driver would rarely need to fill up the tank if driven less than 60 miles daily.
PHEVs offer us more than just emissions reduction and increased efficiencies. They also have the unique ability to supply large amounts of electrical power for uses other than just propulsion. This feature is being exploited in the plug-in hybrid Trouble Truck Project by a consortium consisting of the Electric Power Research Institute, Eaton, Ford Motor Co., and California’s South Coast Air Quality Management District. Trouble trucks, used by utility repair crews, are typically operated in residential neighborhoods. Since their internal combustion engines are left idling to power buckets, power tools, lights, and accessories, emissions and noise occur at job sites as a matter of course. Providing power through a PHEV’s battery and electrical system means continuous engine operation is no longer needed.
These PHEV trouble trucks use Eaton’s parallel pre-transmission hybrid system with either a Ford 6.8-liter V-10 gasoline engine or 6.0-liter V-8 diesel engine. Along with reducing consumption and emissions while traveling to and from worksites, the PHEV trouble trucks provide engine-off cab air conditioning and standby AC electrical generating capacity, including 5 kW of exportable power for at least six hours to power equipment. PHEV trouble trucks based on Ford’s F-550 truck chassis are used by Southern California Edison, Los Angeles Department of Water and Power, and Pacific Gas & Electric. This project will later expand to 50 Ford F-550-based trucks and E-450-based vans for utility and public fleets. Since the F-550 and E-440 chassis are widely used as shuttle buses, urban delivery trucks, cable service trucks, and even motorhomes, there’s every potential that volume production could reduce per-vehicle cost. In fact, PHEV technology could find a home in high-end motorhomes where, perhaps in conjunction with solar panels, it could replace noisy and polluting generators typically used to power on-board electrical components while parked.
PHEVs can produce so much electricity that excess energy could be supplied to the electrical grid using vehicle-to-grid (V2G) technology. V2G allows two-way sharing of electricity between PHEVs, BEVs, and the electric power grid. With V2G, an electric or plug-in hybrid vehicle not only could be plugged in for battery recharging, but under certain conditions could also send electricity back from the batteries to the grid. For instance, vehicles could store electrical energy generated during off hours for use during peak power demands. This would eliminate the need for utilities to buy expensive overcapacity electricity on the spot market or fire up older, and high-polluting, fossil fuel ‘peaker’ generating plants. To encourage consumers to participate in a V2G program, utilities could pay motorists for the use of their PHEV or BEV, or owners could sell back energy to the utility when demand is highest.
In what’s called V2H – or emergency home backup – a PHEV could be used for emergency power. For instance, the PG&E demonstrator supplies 9 kW hours of electricity and the average home uses about 2.5 kW of electricity an hour, which means that hours worth of backup power is available if needed. Volvo says the ReCharge Concept’s efficient generator, essentially an Auxiliary Power Unit (APU), is powerful enough to supply an entire house with electricity. Thus, with minor modifications it could be used in case of a power failure.
Like the BEV, the practicability and affordability of the PHEV is governed by battery technology and cost. Its greater all-electric range capability requires larger, heavier, and much more expensive battery systems to store additional electric energy. Plug-in hybrid Dodge Sprinter vans have a 14 kW-hour nickel-metal-hydride or lithium-ion battery system that provides 20 miles of electric-only power. In contrast, the Prius uses a 1.5 kW-hour battery pack for normal gasoline-electric hybrid operation. Ordinary hybrids require batteries that supply short bursts of electrical boost with a nearly constant state-of-charge to ensure battery longevity. PHEV batteries must provide this high power burst while additionally handling full charge to deep discharges like a BEV. Another concern focuses on whether enough electric power will be available should PHEVs become extraordinarily popular. However, a study by the Department of Energy’s Pacific Northwest National Laboratory says the nation’s existing electric power grid could support up to 180 million PHEVs.
All this is unfolding, now. Technology marches on, costs diminish through efficiencies, and interest drives further development...all good things that should bring the plug-in hybrids we desire to our highways sooner than later.
VW’s iconic Beetle and Transporter were signature vehicles on the roads of America because, for a time some six or seven decades back, they were virtually everywhere. They were also underpowered and pretty utilitarian, though that didn’t stop them from getting the love from adoring fans. That same love is soon to befall the all-new VW ID. Buzz.
The Transporter of old – known by many here as the VW Microbus, or just the VW Bus – never achieved the sheer volume of its cousin the Beetle (aka Bug). Still, it has an enduring place in the hearts of Americans who see the occasional restored VW Bus on the road or at the beach, harkening back to a simpler time when affordable and adorable vehicles were available to everyone.
When VW debuted its ID. Buzz electric microbus concept in the States seven years back, an instant cult following emerged. People wanted this, and they wanted it bad. We could see why after experiencing an up-close-and-personal tour of the production model last year in Southern California. We have to say…we liked what we saw.
Comparable in size to VW’s Atlas Cross Sport, the ID. Buzz is visually stunning and showcases modern stylings with futuristic elements, but doesn't lose that vintage essence shared by the VW Buses of old. One such homage to its ancestry is the model’s vibrant color palette that optionally contrasts with white splashes on both the interior and exterior. Keeping things modern is standard IQ.Drive with adaptive cruise control, a digital dash with a 12.9 inch infotainment center, plus USB and wireless charging options for all your electronic devices.
Inside is an inviting cabin with three rows of seats that can accommodate up to seven. Front seats feature standard heating, cooling, and massage features, while the second row comes with heated seats. Both rear rows are fully foldable, with the rearmost row entirely removable to create additional space for adventures. The ID. Buzz features a pair of power sliding side doors, sliding windows in the cabin, an optional sunroof that can be darkened, and a spacious rear hatch. Three interior color ‘worlds’ are available including mid-century modern-vibed Copper, moody dark themed Moonlight, and coastal-themed Dune.
Two power choices are available for the ID. Buzz, with a rear-mounted electric motor offering 282 horsepower or dual motors producing 330 horsepower. A 91 kWh lithium-ion battery energizes both versions. The rear-drive ID. Buzz features an EPA estimated 234 mile driving range with the all-wheel drive two-motor variant delivering a 231 mile range. It’s worth noting that the ID. Buzz comes with the ability to tow via a manually-retractable tow hitch that’s cleverly hidden behind the rear bumper when not in use.
Three versions of the ID. Buzz will be offered at launch including the entry-level Pro S at $59,995; the Pro S Plus at $63,495 to $67,995; and the 1st Edition at $65,495 to $69,995. The higher figure for the latter pair comes with dual motor all-wheel drive. Fans of this iconic electric microbus/van will find the ID. Buzz hitting North American highways later this year.
In the ever-evolving world of battery technology, the safety of lithium-ion (Li-ion) batteries has become a paramount concern, especially as the demand for electric vehicles (EVs) and renewable energy storage systems surges globally. Epsilon Advanced Materials (EAM), a leader in the production of high-quality battery materials, is at the forefront of addressing these safety challenges. Through innovative solutions and a deep commitment to sustainability, EAM is enhancing the performance of lithium-ion batteries and significantly reducing risks associated with their use.
EAM’s journey is rooted in a vision of decarbonizing economies and driving the transition to cleaner energy technologies. It all began when an entrepreneur with a passion for sustainability crossed paths with a battery engineering scientist who had developed an exceptional battery material in his backyard. This meeting of minds sparked the creation in 2018 of EAM, a company dedicated to perfecting the art and science of advanced battery materials. Since its inception, EAM has sought to lead the way in providing innovative battery solutions that meet the demands of a rapidly changing world.
EAM’s approach to battery safety is through its focus on synthetic graphite anode materials. These materials are designed to improve fast charging performance, a feature that is increasingly important as consumers demand quicker charging times for their EVs. Traditional battery materials can struggle to handle the higher currents involved in fast charging, leading to stress on the battery and an increased risk of overheating. However, EAM’s synthetic graphite anode material is engineered to handle these higher currents with less stress, significantly reducing the risk of overheating and enhancing the overall safety of the battery.
Another key factor in the safety of Li-ion batteries is the direct current internal resistance (DCIR), which represents the resistance to current flow within the battery. Higher resistance can generate heat, which in turn increases the risk of thermal runaway – a dangerous situation where the battery can overheat uncontrollably. EAM’s synthetic graphite-based anode material boasts lower DCIR, meaning it offers less resistance to current flow. This reduction in resistance provides better heat management within the battery, minimizing the chances of thermal runaway and ensuring safer operation even under high-stress conditions.
In addition to these advancements, EAM’s synthetic graphite anode material also offers superior cycling stability compared with natural graphite. Over time, battery materials can degrade, leading to unwanted reactions within the battery that can generate heat and compromise safety. EAM’s material, however, degrades less over time, maintaining its stability and reducing the likelihood of these unwanted reactions. This enhanced cycling stability not only extends the lifespan of the battery but also ensures that it operates safely throughout its life cycle.
EAM’s commitment to safety and innovation is further demonstrated by its plans to open a state-of-the-art battery materials and components plant in North Carolina in 2026. This $650-million facility will be a significant step forward in the domestic production of battery materials, including both natural and synthetic graphite anodes. With a targeted annual production capacity of 60,000 tons of anode materials by 2031, the plant could eventually supply enough materials for up to 1.1 million electric vehicles in the U.S.
The decision to establish this manufacturing plant in Brunswick County, NC is strategic, as this location will be part of a burgeoning EV battery hub in the state, positioning EAM to play a critical role in the U.S. battery supply chain. This move is particularly timely given recent developments in the global graphite market. China, which dominates synthetic graphite production, has recently curbed exports of the material, leading to concerns about supply chain stability and rising costs. By developing a domestic source for synthetic graphite, EAM is not only reducing reliance on imported Chinese materials but also bolstering the U.S. battery industry against potential supply disruptions.
EAM’s U.S.-made battery components and materials are expected to qualify for incentives under the Inflation Reduction Act and related U.S. legislation aimed at building domestic supply chains for EVs and batteries. This support from the U.S. government underscores the importance of EAM’s work in ensuring that the next generation of batteries is not only high-performing but also safe and sustainable.
As EAM continues to innovate and expand, its focus remains firmly on the safety and sustainability of Li-ion batteries. The company’s advanced materials and cutting-edge technologies are setting new standards for battery safety, ensuring that as the world shifts towards cleaner energy and electric mobility, the batteries powering this transition are as safe as they are efficient. EAM is not just meeting the challenges of today’s battery industry but is also anticipating and addressing the needs of tomorrow. Through its commitment to innovation, safety, and sustainability, EAM is playing a key role in shaping the future of energy storage and electric mobility.
Sunit Kapur is Chief Executive Officer of Epsilon Advanced Materials, a global battery material manufacturer focused on sustainable battery solutions.
Today’s developments surrounding EVs are not a surprise. They were predictable, an awakening of sorts, to the realities of personal mobility needs and the true desires of a driving public amid a significant and sustained push toward electrification.
Unsold inventories of battery EVs at dealer lots, significant price cuts to move metal, and a rethinking of strategies are just part of today’s electric vehicle universe. We are seeing this new reality across the automotive spectrum as companies previously committed to being “all-in” for EVs – from Ford and GM to Volkswagen and Volvo – reassess the way forward.
Yes, interest in battery electric vehicles has grown substantially in recent years. EV sales have captured a larger slice of the new car market than might have been imagined in just the recent past and that percentage has been growing faster than before. This should rightfully be celebrated by EV enthusiasts. An impressive expansion of the zero-emission EV market should also be celebrated because of the considerable impact this has on decreasing carbon emissions, though it’s becoming increasingly clear that the hoped-for wholesale move toward battery EVs will not resolve our carbon challenges.
After more than three decades of documenting the commercialization of electric vehicles, I feel compelled to point out that EVs still represent a fraction of the overall automotive market and there remains great interest in more familiar options. Battery electric vehicles simply do not meet everyone's needs at this time. Barring significant breakthroughs in technology, cost, and convenience – the latter bolstered by an expansive and reliable national charging network and a resilient electrical grid to support it – there’s a possibility they may not meet all motorists’ needs for some years in the future. To our collective detriment, that has not stopped the powers-that-be from forcing an EV-first agenda.
The assumption that government can severely restrict consumer vehicle choices without alienating huge numbers of car buyers, creating financial havoc and uncertainties within the auto industry, and bringing an array of unintended consequences in coming years is simply an act of hubris. I've witnessed other examples of this over the years. Ultimately, the outcomes have not favored those in power who overstep and assume they know more about the needs and desires of car buyers than buyers themselves.
There are many reasons for this, but fundamentally let’s remember that a motor vehicle – beyond serving as a social conveyance for projecting image, status, values, or nuances of all sorts – is a crucial tool to get folks safely and reliably to work, school, the market, or wherever they need to be, regardless of distance or driving conditions. And lest we forget, a new car typically represents the second largest consumer purchase after a home. That makes buying a car an important financial decision beyond just being a very personal choice.
The battery EV’s rather eye-opening depreciation, identified by car search engine and research firm iSeeCars as averaging 49.1 percent over the first five years, isn’t very comforting from the standpoint of a financial strategy. It’s worth noting that iSeeCars doesn't see this same kind of depreciation across the board for electrification, identifying hybrids as having a nearly 12 percentage point advantage over EVs in value retention over a five year period, slightly better than the depreciation rate for all types of cars.
How much has changed for electric cars over the years? A lot…and too little. To share some perspective, I’d like to offer up a Green Car Journal editorial I wrote in 2012, Curb Your (EV) Enthusiasm. It seems prescient today. In it, a dozen years ago, I pointed out that:
– After decades of battery development, the expectation that battery breakthroughs would come to make EVs cost competitive with internal combustion vehicles had not materialized.
– Battery electric cars still required significant federal subsidies to encourage sales because of their high battery cost and retail price.
– In a normal world, a compact electric SUV should not cost $50,000, a four-door electric sedan $40,000, or a small electric hatchback over $30,000.
– A small number of electric vehicles might be available under $30,000, but comparable internal combustion models would typically be priced many thousands of dollars less while offering greater functionality.
– Government agencies viewed EVs as a panacea for decreasing CO2 emissions, improving air pollution, and enhancing energy security.
- States embraced electric vehicles in their State Implementation Plans as a strategy for showing how they would meet air quality standards mandated by the Clean Air Act.
– Automakers recognized electric propulsion as a strategy for meeting increasingly higher fleet fuel economy targets.
– Electric utilities viewed EVs as a pathway to selling electricity as a motor fuel.
The conclusion about the way forward a dozen years ago? Battery electric vehicles are one part of the solution along with advanced combustion vehicles, hybrids, plug-in hybrids, and extended-range electric vehicles that create on-board electricity to provide full functionality.
It appears there’s a growing consensus today that we’ve come full circle to this way of thinking. As electric vehicle sales cool, multiple automakers have shared they are backing off from previously-announced timelines for EV model introductions, new EV assembly lines, and greenfield battery plants. There’s also a new emphasis on producing an expanding lineup of hybrid and plug-in hybrid models that consumers increasingly desire, even on the part of major automakers that have previously announced plans to exclusively build battery electric vehicles and have shown little interest in hybrid power.
All this underscores that as much as we’re enamored with modern battery electric vehicles and their ability to address carbon emissions, they are not the singular answer to future mobility. They are a choice among other vehicles and technologies that also speak to individual needs, desires, and environmental sensibilities. And that’s the way it should be.
We’ve spent hundreds of thousands of miles behind the wheel of a great many electric vehicles, hybrids, and plug-in hybrid models over the years. They all have their advantages and appeal…and each speaks to the very specific needs of different types of drivers and their daily rhythms. If you’re inclined to go electric as a way of addressing efficiency and environmental concerns – but hesitant to rely exclusively on battery power for reasons compelling to you and your situation – then you’re an excellent candidate for a plug-in hybrid.
Beyond its advanced technology and user friendliness, there’s an elegant beauty inherent in a PHEV. Within the capabilities of its battery powered range, a plug-in hybrid allows driving on electric power, internal combustion power, or a combination of the two. You are effectively in an electric vehicle with options and the transition from electrons to gas is essentially seamless.
Plug-in hybrids present a logical choice because they present no limitations. These days, chief among these limitations with battery electric vehicles is range anxiety, whether imagined or real. When driving an electric vehicle, remaining battery power is always top of mind to ensure there’s adequate on board energy to get you to where you need to be. This is less of an issue today with popular electric models offering much longer range in the many hundreds of miles, but the concern persists.
Not so with plug-in hybrids. With PHEVs, you get the benefits of an electric vehicle while driving on batteries like zero emissions, near-silent operation, and improved performance. When battery energy in a PHEV is depleted you keep on going with combustion or hybrid power as long as there’s gas in the tank.
Like hybrids, plug-in hybrids take several forms. The most common of these is the parallel plug-in hybrid, which uses an internal combustion engine and one or more battery powered electric motors to directly drive the wheels. A series plug-in hybrid, also known as an extended range electric vehicle (EREV), delivers power to the wheels through its electric motor, or motors, with the combustion engine and batteries providing electricity to power the motors. In this configuration the engine operates exclusively as a generator with no mechanical connection to the road. An example of this is Karma’s GS-6. Some models, like the Toyota Prius Prime and Mitsubishi Outlander PHEV, are series-parallel hybrids that use both power strategies for motive power, along with the zero-emission electric driving for which plug-in hybrids are known.
Both plug-in hybrids and conventional gas-electric hybrids achieve their higher efficiency through an intricate computer-controlled dance that blends electric and combustion power in response to real-time driving conditions. While each benefits from the efficiencies that gas-electric hybrid power delivers, at best a hybrid may drive exclusively on battery power for very short distances with a light touch on the accelerator pedal.
Plug-in hybrids are different. They’re equipped with larger battery packs than hybrids, though these packs are still quite smaller than full electric vehicles. These larger batteries, and the ability to plug in and charge up, allows a PHEV to drive greater distances on battery power alone. The Volvo S60 T8 Recharge plug-in hybrid sedan, for example, features 40 miles of electric driving and an overall 530 mile range, while the Kia Sportage PHEV delivers 34 miles on battery power with a total 430 mile driving range.
Determining your needs is an important step in deciding whether a plug-in hybrid is the right choice. For example, if your daily drives average 30 miles or so, then either of the above examples – and quite a few other PHEV models – will allow driving electric without the need for hybrid power to kick in. Just charge your PHEV’s battery overnight and you’re ready to go again the next day, with no need for a trip to the gas station. Even plug-in models with shorter electric driving range will still do for your commute if there’s charging available at your workplace, since a workplace charge opportunity can effectively double a PHEV's round-trip battery electric range.
Here’s the underlying advantage of a plug-in hybrid vehicle: If you do need to drive farther than a PHEV’s electric range, then you’ll take advantage of the zero-emission efficiencies of battery power with gas-electric hybrid drive handling the rest of your miles. The same holds true for those longer drives, such as visits with far-away friends or longer vacations and road trips. Easy.
So is a plug-in hybrid right for you? It’s a personal decision based on preferences and the degree to which you want to go electric. For those who want to ease into an electric future without limitations, then a plug-in hybrid may well be the best choice for you.
There’s an all-new Dodge Charger Daytona hitting the streets of America. This storied name channels echoes of of the past with the mind’s eye visualizing the rare, wildly-winged 1969 Dodge Charger Daytona of the muscle car era, a model that raced in NASCAR and was available only in small numbers to well-monied car enthusiasts. While the 2024 Charger Daytona is a bit more civilized than its namesake of 55 years ago, it is equally dramatic in its own way.
Back in the day, muscle cars were a dominating force on dragstrips and, more importantly, on the highways of America. These go-fast models delivered the whole package for car enthusiasts – exciting looks with stripes, scoops, and a stance with attitude, their mere presence tantalizing the senses with a low engine rumble at idle, a throaty roar at speed, and if you were the one behind the wheel, an adrenaline rush like no other.
They also sucked gas on an epic scale with their four-barrel, six-pack, and sometimes dual-quad carburetors. High horsepower small- and big-block engines were high-compression to eke the most power from the air-fuel mixture fed to combustion chambers, which meant more expensive high-octane premium fuel. Muscle cars, and really most cars of the era, had tailpipe emissions that were nothing to brag about. Still, these were iconic hot rods that defined an era.
While the performance-infused Daytona designation has been used sporadically by Dodge since, this is different. Stellantis has read the tea leaves well and the all-new Dodge Charger is not only fast and formidable, but also headlined by two fully electric variants, the Daytona R/T and Daytona Scat Pack. This move ensures the Charger’s claim as the world’s quickest muscle car, and the most powerful.
That doesn’t mean the automaker has abandoned the high horsepower gas engines that have powered this model over the years. Car enthusiasts who wish that familiar experience can opt for the Charger SIXPACK 3.0-liter twin turbo Hurricane engine in either Standard Output or High Output versions.
Specs for the electric Charger Daytona models surpass those of the gas versions, with the electric Daytona R/T besting the SIXPACK S.O. with 496 horsepower vs. the gas version’s 420. The Daytona Scat Pack does even better by delivering an electrified 670 horsepower vs. the gas high output engine’s 550, a bump of 120 ponies overall. The Daytona R/T is expected to deliver 317 miles of driving range with the more powerful Scat Pack a shorter, but still substantial, 260 miles.
Acceleration is impressive, with the Daytona Scat Pack expected to close a 0-60 mph sprint in just 3.3 seconds while earning a quarter-mile elapsed time of 11.5 seconds. Performance is enhanced in Daytona models with a PowerShot feature that provides an additional 40 horsepower boost for up to 15 seconds when needed. Stopping power is bolstered with 16-inch Brembo vented rotors and distinctive red six-piston calipers up front and eight-piston calipers at the rear. All Charger models are four-wheel drive. Driver-selectable Auto, Eco, Sport, and Wet/Snow drive modes allow tailoring the driving experience, with the Scat Pack adding Track and Drag modes for good measure.
Serene silence is not the hallmark of the new Daytona as it is in other electrics. Rather, Daytona R/T and Scat Pack sound the part of earth-pounding muscle cars with their all-new Fratzonic Chambered Exhaust that replicates a Dodge Hellcat exhaust profile, with sound intensity tied to performance. Drivers can alternatively select a ‘stealth’ sound mode if that’s more to their liking…but what’s the fun in that?
All this power and performance would be academic if not packaged in an athletic form, and the new Dodge Charger does pull that off with a pure uninhibited muscle car presence. Its lines are sharp, evolved, and definitively true to the breed, featuring an appealing profile and a powerful widebody stance. This muscle car’s appealing ‘hidden hatch’ design is accentuated by a black painted flowing roofline that can be made more dramatic with an optionally available full-length glass roof. We particularly like that the front end is not closed off in a snout like so many electric cars, but rather features stylishly understated openings above and below the bumper fascia.
Inside is a driver-centric cabin featuring an instrument cluster with either a 10.25- or optional 16-inch screen, along with a center 12.3-inch touch screen angled toward the driver. A forward-looking flat top/flat bottom steering wheel design features an array of controls for popular functions and also includes paddle shifters for rapidly adjusting regenerative braking settings on the fly. The center console features a pistol-grip shifter and start button. Standard seating is cloth and vinyl with either black or red Nappa leather available as an upgrade. Rear seats can be folded flat for additional cargo capacity. As expected, a full suite of advanced safety and driver assist systems are standard or available.
Two-door coupe versions of the 2024 Charger Daytona R/T and Scat Pack feature an MSRP of $59,595 and $73,190, respectively, and begin production this summer. Four-door variants of the electric models will start production in the first half of 2025 with two- and four-door gas Charger SIXPACK models coming later that year. Pricing for these will be disclosed closer to their release.
Green Car Journal editor/publisher Ron Cogan was editor of Hot Rod’s Musclecar Classics in the mid-1980s.
Green Car Journal has closely followed the evolution of the Toyota Prius since our early hands-on experience at Toyota’s Arizona Proving Grounds in mid-1997. Here, we piloted a Toyota Corona test mule powered by an exotic gas-electric powerplant concept that was unlike anything we had driven before. Little did we know that this test car’s Toyota Hybrid System would make its way in production form to the automaker’s all-new Prius, a model that debuted later that year at COP 3, the third United Nations climate conference. This is where the landmark Kyoto Protocol international treaty was adopted to mitigate greenhouse gases and climate change.
The Prius was there to make a statement that Toyota recognized the environmental challenges ahead and was prepared to lead. Prius sales began in Japan in 1997 and expanded worldwide in 2000. The rest is history. In the 27 years since the Prius was introduced, this hybrid has stayed true to its original mission as a model of high efficiency and low carbon emissions. It has shape-shifted over time, starting out as a quirky subcompact sedan and then morphing into a hatchback with a distinctive and easily-recognizable profile.
Now in its all-new fifth generation, Toyota’s Prius is a true game changer presenting as a wondrous liftback with a whole new outlook that far transcends eco consciousness, though that is still the core of its being. Today’s Prius is now sleek and visually compelling, extraordinarily fuel efficient at up to 57 combined mpg, and delivers surprising levels of performance for an eco-champion priced at just $27,950.
For an additional five grand the model’s plug-in hybrid variant, Prius Prime, features all this along with a more powerful 13 kWh lithium-ion battery that brings an EPA estimated 45 miles of electric driving and up to 600 miles of overall range. Along with its admirable EPA estimated 52 combined mpg as a hybrid, Prime achieves up to 127 MPGe when running on its batteries.
Prius Prime’s considerable battery electric range makes it the ideal electric vehicle for a great many who wish to drive zero emission every day, but also want the ability to tackle longer trips seamlessly. This characteristic, and so many others that elevate the model above its peers, distinguished Toyota’s Prius Prime as Green Car Journal’s 2024 Green Car of the Year®.
Performance in a traditional sense, like quick acceleration and impressive driving dynamics, has never been expected of a Prius. That wasn’t its mission. This changes in a big way with the new Prius presenting as a driver’s car, a model that speaks to car enthusiasts who value appealing style and a fun-to-drive nature alongside environmental performance. The new Prius Prime’s 220 system horsepower, delivered by a 2.0-liter engine and 161 hp electric motor-generator, changes the performance equation with nearly 100 more horsepower and a third greater torque than the previous generation Prime. That extra power is a big deal and drivers will appreciate Prius Prime’s surprising ability to sprint from 0-60 mph in just 6.6 seconds.
Greater performance aside, the most noticeable change in the new Prius is clearly its attention-grabbing, smoothly sculpted design. We know this first-hand. Over the past few months, we’ve spent significant time behind the wheel of an uplevel ($39,670) Prius Prime XSE long-term test vehicle equipped with this model’s full complement of advanced electronics and a cabin smartly upholstered in leatherlike SofTex. Inevitably, we get looks, questions, and overt signs of appreciation from a great diversity of people during our drives, many of them drivers of earlier Prius models and others who simply love the car’s forward-leaning and distinctive look.
We get it. The new Prius exudes a sporty appearance with its low roofline and sweeping aerodynamic profile, lending homage to the Prius of old while transforming its look into something more compelling. Once attention moves beyond the car’s most noticeable and eye-catching feature, there’s plenty inside to appreciate as well. Here, one finds a comfortable and functional cabin featuring a pleasing balance of tech, comfort, and style, with a distinctive instrument panel design that takes its cues from Toyota’s bZ4X electric car.
We’ll be sharing our experiences of daily life with the Prius Prime in the months ahead, and no doubt, more stories of interactions with others who find the all-new Prius as compelling as we do.
We’ve driven plenty of Mustangs over the years and have owned several, including a 1966 Mustang back in the day and a pristine 2005 Grand Am Cup-themed Mustang GT that resides in the garage now. The latter combustion pony car shares garage space with a charging electric car most of the time, representing a scenario that’s likely to become a fixture of life for many multi-car households in our unfolding mobility future – an EV for most daily driving and a combustion car or hybrid available for good measure.
Playing to this, electrification strategies have varied among the world’s major automakers, from a bit of dabbling with EVs to going all-in with battery electric models. Time will tell which strategy works out best in an era where electrification’s benefits and challenges are often still weighed intently before buyers make their move to go electric, though buyers in growing numbers are doing so these days.
Ford is solidly positioned in the ‘all-in’ category. Along with its electric F-150 Lightning pickup and E-Transit commercial van, perhaps its most high-profile move has been its evolutionary – or perhaps revolutionary – Mustang Mach-E that debuted in late 2020, the electrified stable mate of the legendary gas-powered Mustang.
The Mach-E successfully trades on the Mustang nameplate and carries on distinct Mustang design cues like a long hood and tri-bar taillights, though it is decidedly different with a unique sweeping roofline and coupe/liftback design. While some Mustang afficionados might take issue with the nameplate being applied to a crossover model, it’s really a moot point. The fun factor is there and it’s a Mustang in spirit if not in silhouette.
As expected, the Mach-E continues to evolve with an expanding number of model choices and battery options, including the new dual motor Mach-E GT that we recently drove in the Pacific Northwest. What really got our attention, though, was Ford’s Mustang Mach-E Rally we piloted around the track at the Dirtfish Rally School in Snoqualmie, Washington, just outside of Seattle.
The Rally gets all the content and performance attributes of the GT with additional benefits and features added for its mission. This adventurous model is a departure from the norm for Mach-E, literally, with that departure focused on off-pavement action far from stoplights, traffic, and the hustle of daily life. Our experience test driving for 4 Wheel & Off-Road magazine many years ago means we have a deep appreciation for that kind of opportunity.
The all-wheel drive Mach-E Rally comes specially prepared for the job, with MagneRide suspension featuring an inch higher riding height than the standard Mach-E, RallyCross-tuned shocks and springs, and powertrain calibration and traction control tuned for the rugged and uneven surfaces of dirt-track and rallycross driving. Aluminum underbody shielding provides protection from the hazards and grime inherent in this kind of off-pavement driving.
Power is abundant with the Mach-E Rally’s 480 horsepower delivered by front and rear motors, with an available RallySport drive mode enhancing linear throttle response. Selecting this mode also sets more aggressive damping for improved handling and enables additional yaw for bigger slides, all important in dirt-track driving. Acceleration is impressive with the Rally’s 700 lb-ft torque enabling a 0-60 mph sprint is just 3.4 seconds. Its 91 kWh lithium-ion battery delivers an estimated 265 mile range.
Form follows function with the Mach-E Rally, as it is also distinguished with special body moldings, an aggressive rear liftback spoiler, rally-style fog lights, black painted roof, and eye catching graphics that add to its appeal. Power is delivered to the road via 19-inch gloss-white wheels equipped with Michelin CrossClimate 2 tires ideal for navigating loose surfaces. All this comes at a cost of $59,995, some $20,000 over the base model and six grand more than the Mach-E GT.
Driving the Mach-E Rally at Dirtfish was exhilarating. This specially equipped model exhibited exceptional capabilities and a seriously fun-to-drive nature at speed, which was expected given its rallycross nature. What’s really impressive is the degree to which the Mach-E Rally accomplishes this without sacrificing comfort or capabilities on the street, where most drivers will likely spend most of their time behind the wheel.
So, let’s just share a fundamental: There’s no circumstance in which either of our personal Mustangs would have ventured off-pavement, at least not willingly and not for an extended drive, unless we happened upon a washed-out road and it was our only way home. But the 2024 Mustang Mach-E Rally? Well, that’s another story…and it’s a really good one.
Now that we’ve been behind the wheel of a Mach-E Rally on Dirtfish Rally School’s dirt, gravel, and wet course, our Mustang horizons have expanded. We can say with confidence that heading off the beaten path in a Mach-E Rally is not only a reasonable option, it’s one likely to be calling out to Rally owners with some regularity. After all, while the road ahead may be straight and true, often enough there will be a new adventure awaiting on dirt roads less traveled just a turn of the wheel away.
VW will launch its 2025 ID.7 electric sport sedan in the U.S. in two trim levels and in both rear- and all-wheel drive formats. Typically, a two-trim strategy provides a more basic entry-level model and a mid- or top-range premium version. But since the VW ID.7 is being marketed as a ‘near luxury’ sedan, its base Pro S trim should come very well-equipped. The Pro S Plus will offer even higher levels of posh, adding 20-inch alloys, adaptive ride damping, front premium massage seats with heating and cooling, and an upscale 700-watt, 14-speaker Harman/Kardon sound system.
Rear-drive versions of the 2025 ID.7 will use a single motor mounted on the rear axle rated at 282 horsepower and 402 lb-ft torque. All-wheel drive versions will have two motors – one on each axle – capable of delivering a maximum of 335 horsepower. Both will use an 82 kWh lithium-ion battery pack. Those are the same powerplants installed on the three upper ID.4 electric crossover trims for the 2024 model year. VW is holding back on revealing range estimates for the ID.7 until closer to launch, but the streamlined sedan should deliver a few miles more than the boxier ID.4, which is rated – for 82 kWh battery versions – at 292 miles for rear-drive models and 263 miles for all-wheel drive versions.
Sedans have been phased out by many automakers in the U.S. market and electric sedans are even rarer, so the ID.7 won’t have a lot of direct competition. Midsize premium electric sedans in the ID.7’s anticipated price range are the Hyundai Ioniq 6, which is likely to be the prime competition, plus the Tesla Model 3, lower trim levels of the BMW i4, and some trim levels of the Ford Mustang Mach-E, a crossover with some sedan-like styling characteristics.
The ID.7 may be the roomiest of the bunch. At 195.3 inches, it is longer than any of the others and just .75 inches shorter than the ID.Buzz van. The ID.7 also has a longer wheelbase – an indicator of cabin legroom – than any likely competitor except the Mach-E, which, at 117.5 inches, beats the VW electric sport sedan’s wheelbase by a scant half an inch. Driving range varies among likely competitors’ rear-wheel-drive models, from 256 miles for the base BMW i4 with a 66 kWh (usable) battery to an extended range of 310 miles for the Ford Mustang Mach-E with an 88 kWh (usable) battery.
The ID.7 is expected to come to market with a sporty, EV-modern interior with a flat dash hosting a centrally mounted, 15-inch infotainment touchscreen that will be control central for most vehicle functions. Backlit sliders beneath the screen will provide cabin temperature and audio volume controls, and there’s a touchpad on the left side of the dash with headlight and defroster controls. A head-up display will show drivers most of the info they need, projected directly onto the lower portion of the windshield, but there’s also a small digital driver info screen behind the flat-bottom steering wheel. The shifter is located on the steering column, leaving the center console clean and open.
To make up for the paucity of physical controls and to make it easier for drivers to use the vehicle’s functions – like selecting drive modes – without taking their eyes off the road to stare into the infotainment screen, VW has developed a voice command system that can be used to do more than change audio channels and make phone calls. Drivers will be able to use to it set those drive modes, set up the navigation system and driver-assist systems such as lane-keeping mode, and even adjust the in-dash vents for the climate system.
While VW hasn’t supplied most vehicle measurements yet, the company did disclose that the ID.7’s primary cargo area behind the fold-down second-row seats measures a spacious 18 .8 cubic feet. Among potential competitors, only the Tesla Model 3 and Mustang Mach-E have more.
ID.7 will use VW’s IQ.Drive advanced driver assist system as standard equipment. It features hands-on-wheel semi-autonomous driving in some circumstances. Also standard across the line will be automated Park Assist Plus for parallel and perpendicular parking. We expect standard safety and driver assist systems for the ID.7 to include full-range adaptive cruise control, front collision mitigation, blind spot monitoring, lane departure warning and lane keeping assist, and more. The ID.7 hasn’t yet been crash-tested by either the National Highway Traffic Safety Administration (NHTSA) or the Insurance Institute for Highway Safety (IIHS). But the ID.4, with which the ID.7 shares a platform, has received top crash safety ratings from both.
Pricing is also to come and won’t be revealed until closer to the ID.7's launch in the third quarter of this year.
This was originally published on thegreencarguy.com. Author John O'Dell is a distinguished career journalist and has a been an automotive writer, editor, and analyst specializing in alternative vehicles and fuels for over two decades.
California has banned the sale of new gas vehicles in the state by 2035. Eight other states have adopted its far-reaching rule and more are considering it. This is an environmental win but also a huge worry for many who feel their mobility way of life will be increasingly challenged as we head toward an electrified future. They have a right to be concerned.
It’s true that many assumptions are at work today as we head toward a world replete with electric cars, and these should be well considered. Perhaps the most controversial notion is that the nation’s electrical grid will support a massive influx of electric vehicles on our highways. If we accept that calculations supporting this conclusion were accurate at the time they were made, it’s apparent they didn’t take into account the challenges now posed by an increasingly contrary climate.
One example is Electric Vehicles at Scale – Phase 1 Analysis: High EV Adoption Impacts on the Western U.S. Power Grid, the first of a multi-part analysis by Pacific Northwest National Laboratory conducted on behalf of the Department of Energy. This comprehensive and well-documented report analyzed how the many millions of electric cars expected on the road by 2028 would affect the Western grid.
Without diminishing the considerable work and expertise that went into this report, it’s important to note that there’s an important caveat. In its words, the study’s outcomes “are predicated on normal grid conditions, absent of any grid contingencies, such as generator or transmission outages, extreme weather scenarios, extreme high loads, or fire conditions that require deactivation of major transmission lines.”
This is an eye-opening footnote. In recent years, the nation has experienced a greater incidence of extreme weather events like historic heat waves, deep freezes, high winds, hurricanes, and monsoon-like downpours. These have disrupted the electrical grid and caused blackouts in diverse parts of the country. This not only brings the misery of living in the dark without air conditioning, lights, or staying connected, but also an inability to charge an electric vehicle if one happens to be in your garage.
During yet another California heat wave in a recent summer, the state’s Independent System Operator issued 10 straight days of Flex Alerts asking consumers to cut energy use to avoid rolling blackouts. The ask was that thermostats be set higher and that consumers avoid using major appliances, including electric vehicle chargers, during specific times. Consumers rallied to the call and blackouts were averted. But this is not sustainable as an answer to an overloaded grid.
Overtaxing the grid isn’t exclusively a problem here. Heat waves and a severe drought impacting hydroelectric power affected a million electric vehicles in China, causing public charging stations to go offline. This underscores the challenge, illustrating the fragile balance of power generation and demand, and how unanticipated heat waves, droughts, and wildfires – and of course millions more electric cars – can potentially strain any electrical grid past its breaking point.
California has been successful in increasingly moving toward renewable wind and solar power, but phasing in renewables to displace the need for conventional power generation takes time. In anticipation of projected electricity shortfalls and the potential for blackouts in the years ahead, California extended operation of the state’s last operating nuclear powerplant, Diablo Canyon, which was scheduled to shut down in 2025. The powerplant supplies 9 percent of the state’s electricity and was deemed critical to California’s short-term electrical needs.
Over three decades ago when attention first turned to electric cars, the need for environmental improvement was real. It is, by all measures, now acute. Will a 2035 ban on gasoline cars in California and other ‘green’ states come to pass as planned, and will we be able to charge the millions of electric vehicles this will bring? A great many people hope so. But along the way, history shows us we need to be prepared with realistic options and contingency plans…just in case.
Green Car Journal editor Ron Cogan has focused on the intersection of automobiles, energy, and the environment for 35 years. He is an acknowledged electric vehicle expert and spent a year of daily travels behind the wheel of GM’s groundbreaking EV1 electric car.
Buyers of Acura ZDX models and all Honda Prologues built after Feb. 26, 2024, will qualify for the full federal $7,500 federal clean vehicles tax credit. Those who lease will also get the credit in the form of reduced monthly lease payments regardless of the vehicle’s production date. The 2024 Prologue EV will start at under $50,000 while Acura’s ZDX, an electric crossover built on the same platform, will start at just over $65,000.
Honda is offering the Prologue in three trims, two available with single-motor, front-drive or dual-motor, electric all-wheel drive (eAWD) powertrains, and one with dual-motor eAWD as the only powertrain. Acura’s ZDX will come in two trims, one with both rear-wheel drive and eAWD options, the other with eAWD only. The two EVs are the fruit of Honda’s short-lived EV co-development program with GM. They share their underpinnings and batteries with the Chevrolet Blazer and Cadillac Lyriq.
The base rear-drive Acura ZDX A-Spec trim will start at $65,745 including a $1,245 destination charge. The eAWD variant will start at $69,745. The eAWD Type S will start at $74,745 and there’s a sport edition with performance wheels and tires for $1,000 more. Acura said the base A-Spec can deliver up to 313 miles of range- slightly more than its Honda Prologue platform mate. The eAWD version comes close at 304 miles. Both Type S variants are rated at 278 miles.
Honda’s base front-drive 2024 Prologue EX will start at $48,795 including a mandatory $1,395 destination fee. The eAWD version, with two motors and more horsepower, jumps to $51,795. The front-drive Prologue Touring starts at $53,095, jumping to $56,095 with eAWD. Prologue Elite, available only with electric all-wheel drive, starts at $59, 295. EPA range estimates are 296 miles for the front-drive EX and Touring, 281 miles for the eAWD EX and Touring and 273 miles for the Elite.
This was originally published on thegreencarguy.com. Author John O'Dell is a distinguished career journalist and has a been an automotive writer, editor, and analyst specializing in alternative vehicles and fuels for over two decades.
Unveiled earlier this year, the Polestar 4 is the fourth model produced by the Swedish EV maker. The Polestar 4 takes on a unique coupe SUV design and is placed between the Polestar 2 and 3 in terms of size. Polestar has utilized the SEA1 platform for the 4 model that’s built by Geely Holding, a Chinese automotive giant. This luxurious EV boasts a 50-50 weight distribution and in its more powerful version delivers admirable performance with dual motors and a projected zero to 60 time of 3.6 seconds.
Polestar offers two powertrain options. The standard iteration consists of a single-motor, rear-wheel-drive configuration capable of producing 272 horsepower and 253 lb-ft torque. The second option, which is expected to go toe-to-toe with the Porsche Macan EV, is a dual-motor, all-wheel-drive arrangement sporting 544 horsepower and 506 lb-ft torque. This variant is able to disengage the front motor using a clutch system when under light throttle to save battery power.
All Polestar 4 configurations receive a 102 kWh lithium-ion battery. Fast charge times are not yet available; however Polestar has reported a maximum fast charge capability of 200 kW. The Polestar 4 also carries V2L, or vehicle-to-load ability, allowing users to power their gadgets or other electric items on the go.
The exterior design is a rather singular experience with futuristic style and cutting-edge lines. Precept headlights featuring a Thor’s Hammer design tells one right away that this is a Polestar. Split at the middle, the top half of the headlight travels up and shoots along the fender, while the bottom half turns downward toward the functional air scoop situated in front of both wheels. A long and sporty hood swoops up into a windshield that has been brought forward to allow more interior space.
Looking to the side, more evidence of the model’s subtle sportiness is on display. Wheel options for the Polestar 4 are all sharp and angular in design, matching the knife-edged bodyline at the bottom of the doors.
Polestar has included its LightBlade rear light design that spans the width of the rear end, with 90-degree downward angles at both ends. A notable feature for the Polestar 4 is the absence of a rear window. In its place is a pair of High-Definition cameras mounted at the back of the roof. These cameras are connected to a digital rear-view mirror that allows for a full view of the road already traveled.
Polestar has devoted a lot of attention to designing the interior of the 4. Here, one finds tons of unique options and design cues along with a panoramic roof that extends all the way past the heads of rear passengers. This glass can be fitted with an optional electrochromic feature that allows users to turn the glass from transparent to opaque. Several interior options are available, all of which utilize sustainable materials at every opportunity. Seats are upholstered with SoftTech, a 3D-printed material, and carpets and floor mats use PET. Several interior configurations take advantage of vegan materials, with one option using animal welfare-secured Nappa leather. Drivers can also set the mood using the infotainment system, with its settings taking inspiration from the solar system.
The Polestar 4 is packed with tech. A 10.2-inch digital gauge cluster is used along with a 15.4-inch infotainment screen that takes center stage, the latter employing the Snapdragon Cockpit Platform to control functions. Polestar also includes a 14.7-inch head-up display that can turn yellow for better visibility in snowy conditions. Android Automotive OS grants use of select Google apps, with Apple CarPlay and Android Auto standard fare. Polestar is partnered with Volvo so there’s naturally a myriad of safety features. Mobileye SuperVision is present, allowing drivers to take their hands off the wheel in select driving conditions, as long as eyes are focused on the road. A dozen cameras monitor the inside and outside of the vehicle along with ultrasonic sensors that monitor the driver to detect drowsiness or distraction.
This all-new Polestar model looks to be an all-around contender for the EV world. It’s got power, tech, and style on its side. This upscale coupe SUV has a lot going for it including a more manageable estimated price of $60,000, a significant twenty five grand less than the Polestar 3. Production has begun and the first deliveries are slated for China shortly, though buyers in the U.S. will have to wait patiently until later in 2024.
Though the amount of public charging stations across the country has grown sharply over the past year – increasing more in 2022 than in the prior three years combined – driver satisfaction with charging infrastructure has dropped significantly over the same time period. From long wait times to high costs, there are many hurdles that must be overcome to accelerate widespread EV adoption.
Specifically, as the EV market has grown, it’s become increasingly fragmented and, as a result, difficult to navigate. With its wide range of stakeholders with distinct business needs to the increasing variety of charging hardware that runs on differing software, a lack of compatibility across the ecosystem often leaves drivers unsure where they can reliably charge their vehicles – what has come to be known as “EV range anxiety” – or having to toggle between multiple applications just to refuel.
We can overcome much of these frustrations by improving interoperability and roaming capabilities throughout charging infrastructure. The concept of EV roaming, also referred to as eRoaming, opens customer access to an almost endless number of chargers. Similar to the use of roaming on a cellular network, eRoaming allows drivers to charge at another service provider’s charging station and have the charging transaction integrated with their normal method of payment. We’ve seen the success of eRoaming in supporting tremendous EV growth throughout Europe – where roaming has been the norm in countries like the Netherlands and Norway for the past decade – and it’s time we did the same in the U.S.
However, delivering EV roaming is an incredibly complex process, involving negotiated service and clearing agreements, comprehensive communications standards, various protocols, and support of multiple languages, currencies, tax rates, and regulations. Its successful deployment depends on eMobility providers (eMSPs) and charge point operators (CPOs) – traditionally separate players in the e-Mobility ecosystem – working together to share their capabilities through either a peer-to-peer Open Charge Point Interface (OCPI) protocol or leveraging a roaming hub, such as Hubject, GIREVE, or e-clearing.net.
What’s more, to enable true interoperability, EV charging management platforms must be compatible with all roaming hubs and support OCPI-based roaming, providing a scalable, live, and automated EV roaming setup between eMSPs and CPOs. At EVolve, a subsidiary of Vontier Corporation, our integrated smart energy management platform allows us to manage hundreds of thousands of EV chargers on roaming networks. From customer-facing tools that streamline the eRoaming experience for drivers to back-end technology that authorizes charging sessions, reconciles transitions between CPOs and eMSPs, and shares charge point data, our platform equips EV charging networks, OEMs, and other e-Mobility partners with a backward-compatible solution to easily deliver eRoaming and create a more reliable and convenient EV charging experience for customers.
Although a complicated landscape, what’s clear is that achieving widespread eRoaming will take the investment, collaboration, and cooperation of the entire industry. And despite differing business needs, this is an issue that all e-Mobility players stand to benefit from. Not only is improving roaming capabilities key to unleashing the true power of electrification – elevating outcomes for all corners of the ecosystem – but it will bring increased use to the charging points of CPOs and foster further brand recognition and loyalty for eMSPs, creating greater streams of revenue for both.
As we consider our goals for the years to come across the EV ecosystem, let’s all prioritize working together to enable eRoaming and increase interoperability to realize the full potential of the EV transformation.
Andrew Bennett is the CEO of EVolve, a Vontier company
Nissan’s LEAF electric vehicle was groundbreaking when it was introduced in the 2011 model year and has maintained an honored spot in the Nissan lineup, but it’s on its way out. Until the time comes for a replacement, Nissan fans in search of a zero-emission option needn’t worry. There’s another choice in the new Nissan Ariya EV.
The Ariya is built on Renault-Nissan’s CMF-EV platform, also utilized by the European-market exclusive Renault Megane E-Tech Electric. It has the same exterior dimensions as the Nissan Rogue yet the same interior dimensions as the larger Murano, owing the larger space to the absence of a front trunk (“frunk”), along with a clever space-saving design.
Nissan provides two powertrain choices. The standard powertrain setup is a single-motor, front-wheel-drive option producing 238 horsepower and 221 lb-ft torque. If buyers wish to upgrade, Nissan offers a 389 horsepower, 442 lb-ft torque dual-motor configuration that also boasts Nissan’s e-4ORCE all-wheel-drive system. This system is loosely related to the racetrack-dominating Nissan GT-R’s ATTESA E-TS torque split all-wheel-drive configuration.
As for batteries, Nissan offers two of those as well. The entry-level battery is a 63 kWh liquid-cooled lithium-ion battery with an EPA-estimated range of 216 miles. The second, more powerful option is an 87 kWh lithium-ion battery which is also liquid-cooled and offers an EPA-estimated range up to 304 miles. The Ariya is capable of charging from 20 to 80 percent in about 40 minutes using a fast charger via its front fender-mounted charge port.
Exterior and interior design were at the forefront of the Ariya’s conception. Nissan uses many traditional and modern Japanese techniques, combining them into a rather unique finished product. The front end of the Ariya exhibits what Nissan describes as chic and timeless Japanese futurism, or iki, exemplified by its Bullet Train-inspired fascia. Its slim, four-LED V-Motion headlights are underlined by thin LED running lights, darting diagonally into the translucent front grille. Underneath this see-through cover is an example of Kumiko, a traditional Japanese pattern. Large, functional air scoops sit in front of both wheels with a diffuser-inspired gloss-black central air intake situated at the bottom of the front end.
At the sides, the Ariya assumes a more sporty appearance, but still captures some of the minimalistic elegance that Nissan has tried to convey. Cleverly designed wheels take air and push it away from the body while in motion to minimize drag. A sleek, low roofline is painted gloss-black to create a floating look.
At the back, Nissan angled the rear end a bit more than most SUVs to further its sporty appearance. A large roof spoiler comes down almost to the middle of the rear window. A thin LED rear light spanning the entirety of the rear hatch is present, with a design that hints at the Nissan Z. Another air diffuser-inspired design is seen at the bottom of the rear bumper.
Inside the Ariya, Nissan has again employed traditional Japanese design. The door panels all have an embossed paper lantern-inspired pattern around the speaker-surround and armrest. HVAC vents are hidden in the dashboard, powered by haptic-touch buttons built into the dash beneath a convex 12.3-inch infotainment screen. Along with this screen is a connected 12.3-inch digital gauge cluster with easy to locate drive mode selections. Nissan has provided plenty of rear legroom and the Ariya is capable of folding the second-row seats completely flat, providing a maximum 60 cubic feet of cargo room with the second row folded.
Arriya integrates Nissan’s newest driver assistance platform, ProPILOT Assist 2.0. Included in this iteration is a hands-on system that aids drivers with staying in their lane, changing lanes, and exiting highways. ProPILOT Assist 2.0 also allows drivers to take their hands off the wheel, as long as the drivers eyes are squarely on the road ahead. Nissan Safety Shield 360 is also present, offering High Beam Assist, Blind Spot Warning, and Pedestrian Detection, among others.
While coming at a cost some $15,000 higher than Nissan’s longstanding LEAF, the $43,190 Ariya crossover is more spacious, quite stylish, and offers significantly longer driving range that can top 300 miles. Overall, it represents a solid choice for buyers looking to upgrade their everyday driving experience to a zero-emission crossover from one of the industry’s EV pioneers.
First teased back in 2021 with a bold, forward-looking design that’s still signature Kia, the automaker’s electric EV9 emerged in recent months to great expectations. Not the least of these expectations is from Kia itself, which aims for the Kia EV9 to take the family SUV market by storm, much like its spiritual Telluride sibling did when it was released four years ago.
Kia’s signature EV model line was launched in 2021 with the EV6, an all-electric compact crossover. The EV9 is the automaker’s second volley in the EV wars, sharing Kia’s E-GMP platform also used by the EV6, Hyundai Ioniq 5 and 6, and the Genesis GV60. Kia hasn’t released much info regarding trim levels, but we do know the EV9 will be offered in Kia’s GT trim sporting unique 21-inch wheels, roof rack, and dark chrome exterior accents. Entry pricing is speculated to begin around $55,000.
As of now, Kia has announced two powertrain choices for the upcoming EV9. First will be a base RWD option sporting 215 horsepower and 258 lb-ft torque utilizing a 77.6 kWh battery. The second is an AWD variant capable of producing 379 horsepower and 516 lb-ft torque with a long range 99.8 kWh battery. Kia is targeting 300 miles with its long range battery setup, while estimates for the base 77.6 kWh battery variant are currently unknown. Kia boasts a towing capacity of up to 5000 pounds, matching the Telluride. Charging the battery from 10 to 80 percent is handled in just 25 minutes thanks to Kia’s fourth-generation battery technology and use of an 800-volt fast charger.
The Kia EV9 has a surprisingly well-blended combination of varying styles, most prominent being its sci-fi essence. At the front, Kia’s ‘Tiger Face’ front fascia design metric is ruggedly futuristic with a large, black grille that emphasizes an appealing design flow, accentuated by slim, vertically oriented headlights that angle diagonally toward the grille. A high, sloping hood reminds us we are in the presence of a large and capable SUV. Hidden windshield wipers mean the continuity of the hood is uninterrupted, adding a subtle sleekness to this SUV.
Along the sides, the EV9’s most striking feature is its wheels. Kia’s use of simple geometric shapes as a base for the wheel design underscores how futuristic the model is meant to be perceived. That, along with its chunky, trapezoidal wheel arches, sharp fender lines, and smoothly uninterrupted body lines, provide an appealing amalgamation of styles. Around back, we see a very minimalist hatch with a subtle spoiler extending out from the roofline. The taillights were designed along the lines of Kia’s ‘Star-map Signature Lighting’ system, with the intent to emphasize the flow of body lines as they wrap into the rear of the EV9. Another styling benefit of this lighting system is its ability to frame the rear window, which represents yet another futuristic design cue.
Inside is a different story. Here’s Kia’s intent is to offer a cabin designed to be as comfortable and calming as possible without the complexity and futurism of its exterior. Most functions are controlled through the infotainment screen, which extends into the driver’s sightline to also act as a digital gauge cluster. Beneath the screen, Kia added dash-integrated haptic buttons that control key functions of the infotainment system. Buttons and switches are kept to a minimum to reinforce the model’s calm and comfortable interior theme.
The EV9 makes good use of negative space, with decorative cloth inserts placed in the doors and the passenger side dash fascia. A floating center console stretches into the second row and features a reasonable amount of storage space. Optional 8-way reclining seats are offered for the first and second rows featuring heating and cooling capabilities. The EV9 follows Kia’s 10 essential materials interior production method using synthetic leather and recycled material throughout the cabin. Using a flat floor, cargo room is ample within the EV9, with 20 cubic feet of cargo room when all three rows are in use, as well as nearly 82 cubic feet with the second and third rows folded down.
The EV9 features a lot of tech with 20 collision avoidance and active driver technologies, three of which are all-new for Kia. These include standard Highway Driving Assist 2 that combines adaptive cruise control, stop-and-go assist, and lane-centering assistance. Standard Lane Following Assist helps the driver stay centered in their lane by delivering slight steering inputs, and optional Advanced Highway Driving Assist uses LiDAR technology to scan the road for potential hazards. Also standard is Remote Parking Assist 2, allowing drivers to remotely park their vehicles using Kia’s smartphone app, Kia Connect. The EV9 also employs over-the-air software updates.
With the speedy advance of electric vehicles, it’s no surprise that legacy automakers are starting to make strides in tech and production, and the Kia EV9 is poised to make a big impact. The EV9 is pointed squarely at Kia’s plans for the future of the brand and should begin arriving at dealers by the end of 2023.