Like all of us over the long course of lockdowns and varying degrees of COVID 19-related restrictions, my wife Sheree and I were yearning for the day we could travel somewhere…anywhere…that seemed safe, made sense, and transported us at least briefly beyond the everyday concerns of the pandemic that had literally stopped us all in our tracks. Hawaii was calling to us.
Visiting Hawaii when we did, as the pandemic was loosening its hold on life, was like vacationing during a sort of pandemic ‘shoulder season’ – the traditionally less crowded, less hectic months before and after the masses head to the most desired vacation destinations. While the Governor of Hawaii is now welcoming visitors back as the recent COVID 19 surge has passed in the islands, and things are much more ‘normal’ (read that ‘crowded’) with Hawaii once again a top destination, it was eerily quiet during our before-the-surge visit.
Traveling to Hawaii was no small logistics challenge, though that has eased now with changing visitor requirements . As we viewed our options before deciding on Hawaii, other favorite destinations like Italy seemed better left for another day once things are more sorted out. Australia was off the table since its borders were, and still are, closed to international visitors, though that country has just announced it is again allowing entry to international students and foreign workers. We've done road trips through the Pacific Northwest but were looking for something different. So what about Hawaii? That’s been a work in progress and travel there initially required a 14 day quarantine since March 2020, then a shortened 10 days of mandatory quarantine starting in December 2020 for travel to all of the Hawaiian Islands.
This policy relaxed late last year with the option for a quarantine exemption through the State of Hawaii’s Safe Travels portal, at https://travel.hawaii.gov. A video on the site presents an overview of the program and lists the steps to be completed, including the need for a negative COVID 19 test for non-vaccinated visitors traveling to Oahu. A recent change now grants a quarantine exemption for fully-vaccinated visitors who register with the Safe Travels portal, upload vaccination cards, and then have their vaccination cards confirmed during airport check-in. Other islands have had additional requirements, and the state’s rules continue to evolve, so it’s best to reference the latest requirements and restrictions at the State of Hawaii’s online COVID 19 portal, at https://hawaiicovid19.com/travel/getting-to-hawaii.
Hawaii’s quarantine exemption process is clear but not entirely free from angst, though vaccinated travelers will find it easier than the non-vaccinated. For those who have not been vaccinated, timing is essential since a negative NAAT or PCR COVID 19 test is required from a Hawaii-approved lab. These labs are listed on the Safe Travels portal. After registering for an account through the portal and providing your travel information, including flight and hotel reservation numbers, your negative COVID 19 test can be uploaded and instantly verified.
This test must be done no more than 72 hours prior to your flight to Hawaii. Naturally, there’s a realistic concern that everything go well and the testing lab e-mails a negative test result to you in time. For those with connecting flights, the timeline is based on the final non-stop flight segment you take to Hawaii, not your originating airport.
Though we are now fully vaccinated, our trip took place before Hawaii’s ‘vaccine passport’ option was in place. We knew that a number of testing options were available, including relatively new availability for testing on-site at some larger international airports, but decided to take our test at a local urgent care since they work with a Hawaii-approved lab partner. We timed it so the test was taken within the required 72 hour window, doing so on a walk-in basis, though other testing providers may offer appointments. We arrived, filled out the paperwork, and were called in for the Hawaii-approved nasal swab test. Then the anticipation began. We were pleasantly surprised when we received e-mails about 18 hours later with our negative results, quicker than promised. Then we uploaded the test PDFs to our accounts on the Safe Travels portal.
Once you’re within 24 hours of your flight, you need to log-in to the portal and answer a short health questionnaire. A QR code is issued immediately after the questionnaire is submitted, whether you're requesting exemption with a test or vaccination. This QR code allows screeners access to your Safe Travels quarantine exemption status during airport check-in. While you can access this QR code by logging in any time, Safe Travels recommends that you also make a printout of the QR code and carry it with you. Those seeking a quarantine exemption must bring their vaccine card with them. Since this trip involved an exemption with a COVID 19 test, we brought the PDF of our test results with us just to be safe.
We flew Alaska Airlines direct from San Jose, California, to Honolulu’s Daniel K. Inouye International Airport. At check-in in San Jose, we provided our tickets and then logged into the Safe Travels portal on our phones to show our QR codes. During check-in, status on our Safe Travels accounts was changed from Not Screened and Not Exempt to Screened and Exempt. This same process follows now for those who apply for a quarantine exemption with their uploaded vaccine card, with the physical vaccine card confirmed by the airline. With confirmation complete, Alaska Airlines issued Safe Travels wristbands that allowed breezing through the airport upon arrival in Oahu. Those without wristbands must endure long lines as their exempt status is manually confirmed once they arrive in Hawaii.
After check-in, we logged into our Safe Travels accounts on our phones to confirm the change to Exempt was made. A new QR code reflecting this change was shown. You will need to log-in and show this updated QR Code when checking in to your hotel to confirm exemption from quarantine.
This is a lot of work to go through for any trip. However, the yearning to experience this tropical paradise after a seemingly endless time of pandemic restrictions was compelling enough to make it worthwhile. Plus, we knew that once travel began in earnest later, the relatively uncrowded and reasonably priced Hawaii we wished to visit would likely experience rising costs and a crush of visitors. Following our 5 1/2 hour flight from San Jose to Honolulu, the promised benefit of wearing a Safe Travels wristband was immediately evident. Those without one went right at the entry sign for a long line and manual processing, while we went left and, with a quick flash of our wristbands at a check point, continued toward baggage claim. It was that simple.
We had arranged to be met with a ride and lei greeting because, after all, that’s really how you should arrive on the islands and it’s not that costly. It’s also a good plan because rental cars have been very expensive everywhere, including Hawaii, due to tight availability. We even found Uber prices to be higher than normal due to increased demand. The best bargain for travel needs, surprisingly, was an old-school cab since their costs are regulated. If you do want to rent, then you might consider going electric with a Tesla Model S, 3, X, or Y rented from WDT Luxury Tesla Rental Hawaii, though these can't be rented at the airport. The 14 Teslas in this company's growing fleet are currently renting from $125 to $350 per day, with the top-of-the-line Model S Plaid going for $849 daily. Speaking of Teslas, while strolling the main part of Waikiki be sure to head over to the Tesla showroom on Kalakaua Avenue to appreciate some electric car eye candy there.
Over the years, our go-to hotel has always been the Hilton Hawaiian Village, a 22 acre resort located on a wide stretch of Waikiki Beach that’s much less crowded than the stretch of beach adjacent to Waikiki’s main hotels and shopping area. We’ve found the walk from HHV to the main bustle of Waikiki to be easy and enjoyable, with half the walk along the beach. This time, however, we started our vacation with two nights at the Moana Surfrider, a stately and historic hotel located in the heart of Waikiki Beach. We’ve been wanting to experience this hotel for some time and finally took the opportunity. We weren’t disappointed. The Moana Surfrider, like many hotels in Hawaii, closed down for months to weather the dearth of tourists and the unknowns of the early months of the pandemic. And like others, they have strived to reopen in ways that allow accommodating guests in true Hawaiian style.
We found check-in an easy process, with the only additional step involving confirmation of our quarantine exempt status through the Safe Travels QR code on our phones. The lobby, the rooms, the restaurants and bar, and overall experience were just as we had hoped. The Surfrider’s manager was even on hand in the lobby to welcome guests to Hawaii and the hotel, an unexpected touch.
At night, we were able to enjoy live music and drinks at the hotel’s iconic Beach Bar with its exceptional surf-and-sand view, and Vintage 1901, the hotel’s stately piano bar. There’s the Beachhouse fine dining restaurant if you’re so inclined, or you can order dinner from a more limited menu at Vintage 1901, as we did. We enjoyed breakfast at the hotel’s Verandah at the Beachhouse and pineapple smoothies at the Surfrider Café. While we didn’t get to enjoy Sunday afternoon tea at the Verandah because it was fully booked, we have done this high tea before and highly recommend it.
One of our favorite things in years past has been to stop by the Moana Surfrider just to spend some time on the rocking chairs that line its front porch, and just people-watch. This Moana Surfrider’s location in the heart of Waikiki Beach makes everything easily accessible. While restaurants and shops are capacity controlled due to COVID 19 restrictions, there were plenty of them ready and waiting to serve visitors.
We knew ahead of time that reduced capacity meant quite a few restaurants would be fully booked on many nights, so we made reservations in advance through the Open Table app, including the popular Hard Rock Honolulu. Some, like the always-in-demand Duke’s Waikiki beach bar and restaurant, had no reservations open for breakfast, lunch, or dinner during our stay. However, Duke’s sets aside half of its tables for walk-ins, so we gave it a try and lunch for the two of us involved just a 15 minute wait.
Waikiki Beach is often a very crowded place. While there were tourists strolling along its main street, Kalakaua Avenue, and a reasonable amount of traffic, we found it less crowded than on previous visits when sidewalks were packed. Some popular eateries that are often impossible for walk-ins, like the Cheesecake Factory, had unusually short lines and presented no obstacles to enjoying a fun meal. By the time you’re reading this, though, the greater numbers of travelers now heading to Hawaii likely mean a much busier environment with the usual wait times.
After several days at the Moana Surfrider, we moved on to our usual Hawaiian digs, the Hilton Hawaiian Village. We’ve always enjoyed this resort because it offers so much on-site – an array of casual and fine-dining restaurants, a pizzeria, New York deli, and Starbucks, along with gift shops and two ABC Stores for picking up everything from sandwiches, drinks, and snacks to sundries, rafts, and beach supplies. Complimentary morning activities are offered like hula lessons, lei making, yoga, and tai chi.
This was the intended ‘down time’ of our trip, so four days were spent on lounge chairs under an umbrella on the resort’s uncrowded stretch of Waikiki Beach. Drinks and food are nearby at the Hau Tree Bar and Tropics Bar & Grill. Daily walks took us to the bustle of activities along Kalakaua Avenue and the main part of Waikiki Beach, a pleasant 25 minute stroll. A fascinating trip to the Honolulu Museum of Art was also on order to view its collection of Asian, Hawaiian, European, and American art.
Hilton Hawaiian Village closed down for eight months during the pandemic and reopened in November 2020. During our stay, we found that while it did offer many of the features and amenities we’ve come to appreciate in the past, the pandemic’s impact meant it was still getting up to speed. The nightly live entertainment we’ve always enjoyed on stage at the expansive outdoor Tapa bar, and in the more intimate setting of Tropics Bar & Grill, was absent. The popular Tapa Bar itself we closed. In fact, except for the Waikiki Starlight Luau held on the resort’s Great Lawn adjacent to the Duke Kahanamoku Lagoon, there was no live entertainment at all on the property during our visit. The last we checked, the resort was planning to start live entertainment again shortly.
Like many hotels on the islands, daily rhythms at Hilton Hawaiian Village have been affected by capacity limits, so restaurant reservations are a good idea, either booked on-site or through Open Table. Hilton Hawaiian Village is billed as the largest ocean resort in the Pacific, so it’s understandable why it’s taking time to fully emerge from the challenges of the pandemic. This is a very popular Waikiki destination and we expect it to be bustling as usual the next time we return.
Hawaii's new vaccine passport system now provides a much simpler way to get a quarantine exemption. We didn't have that option at the time of our visit so a COVID 19 test with specific timing requirements was required. This same testing requirement is still in place for unvaccinated visitors today. We expect that the vast majority of those heading to Hawaii have not had issues with a test exemption. That said, we also know of a few who did not receive test results in time and had to cancel their vacation plans. There is no accommodation for taking a test once you’ve landed in Hawaii. You’re either exempt before flying there through a negative test or confirmed vaccination card, or you’re subject to the mandatory quarantine. So you focus. Understand the requirements explained through Safe Travels. And you plan your test timing carefully, since in this case timing is everything.
This article could have been titled, ‘Four Tickets to Paradise,’ but our friends John and Cathy who were to join us never made it. They had to cancel their trip just hours before their scheduled flight, though they did all the right things through Safe Travels Hawaii and timed their COVID 19 tests appropriately . One of their PCR test results came back quickly, but the other was delayed and eventually came back inconclusive. It was expected that a quick follow-up NAAT COVID 19 test would come in time, but the negative test result wasn’t received until just before their scheduled flight, after all was cancelled. That was a disappointing sign of the times, so it was just the two of us this time.
As a final thought, Hawaii is absolutely worth the effort even amid all the extra steps you have to take right now to get there. Being on the islands, especially after all the months of lockdowns and restrictions, is spectacular even amid its reawakening and we enjoyed our experiences there immensely. You will enjoy the Aloha, too!
Since the very first Green Car Awards™ presented by Green Car Journal in 2005, the magazine’s mission has been to acknowledge and encourage environmental achievement in the auto industry. It has always been important to recognize new models that are driving a green revolution on our highways by decreasing emissions, encouraging energy diversity, and improving efficiency. This enlightened way forward is crucial to vastly improving the automobile’s impact on the environment and ensuring a future for personal-use vehicles.
That mission has never been more vital than it is today as we see first-hand the environmental challenges we all face. While there are many ways to address these challenges and solutions must come from many fronts, it’s reassuring to know that the auto industry is stepping up in significant ways.
High efficiency internal combustion models that eke out fuel economy numbers in the 30 to 40 mile-per-gallon range, and above, were unheard of in the recent past. They’re on the road today. Hybrids that extend fuel efficiency to 40 and 50 miles per gallon are not uncommon. Models driving on battery electric power often are achieving an energy equivalent of 80, 90, and 100 miles-per-gallon, or more. There’s still work to be done to accomplish important environmental goals, but this truly is a watershed moment.
The motor vehicle continues to have an important story to tell, now and in the decades ahead. That story speaks to greater efficiency, improved attention to sustainability, and a more thoughtful approach to environmental compatibility, all made possible by the enlightened design, advanced technologies, and amazing innovation found in an unfolding new generation of vehicles. The Green Car Awards – the most important environmental awards in the auto industry – celebrate these vehicles, and by extension the automakers, engineers, product planners, and others who make them happen.
Each award year, Green Car Journal editors examine the universe of vehicle models sold in the U.S. that distinguish themselves with exemplary environmental credentials. Through an extensive vetting process, five vehicles are identified in each of eight categories that stand out by virtue of their environmental achievement. This process considers many factors such as lower carbon emissions, greater efficiency, or the use of advanced technologies such as lightweighting, electrification, more efficient internal combustion, or other innovative efficiency-enhancing or sustainability strategies. Each model that rises to the top 5 in a category are honored with Green Car Journal’s Green Car Product of Excellence™. These standout vehicles then advance to be finalists for Green Car Awards.
Models honored with 2022 Green Car Product of Excellence are: Audi e-tron GT; Audi Q4 e-tron; BMW i4; BMW iX; BrightDrop EV 600; Chevrolet Bolt EUV; Chrysler Pacifica Hybrid; ELMS Urban Delivery EV; Ford E-Transit; Ford F-150; Ford Maverick; Ford Mustang Mach-E GT; GMC Hummer EV; Honda Civic; Hyundai IONIQ 5; Hyundai Kona Electric; Hyundai Tucson; Hyundai Venue; Jeep Grand Cherokee 4xe; Karma GS-6; Kia EV6; Kia Seltos; Kia Sorento Hybrid/PHEV; Lexus NX; Lightning eMotors Electric Van; Lucid Air; Mercedes-Benz EQS; MINI Cooper SE; Porsche Taycan Cross Turismo; Rivian Electric Delivery Van; Rivian R1T; Tesla Model S Plaid; Toyota Sienna; Toyota Tundra; Volkswagen ID.4; Volvo C40 Recharge.
This year involved weighing the merits of more potential finalists than any previous year in the award program’s history. In the shifting sands of the pandemic, the auto industry’s chip shortage, and today’s phased timeline for new model introductions throughout the year, an important part of this process is determining a new model’s realistic delivery timeline, not just the availability of online preorders. In some cases this means a new high-profile model must be considered in the following year’s award program.
For the past 16 years, the Green Car of the Year® has been selected by an invited jury that includes leaders of the nation’s energy efficiency and environmental organizations, along with celebrity auto expert Jay Leno and Green Car Journal staff. This year’s invited jury included Paula Glover, president of the Alliance to Save Energy; Mindy Lubber, president of CERES; Joseph K. Lyou, president and CEO of the Coalition for Clean Air; Matt Petersen, president and CEO of Los Angeles Cleantech Incubator and advisory board chair of Climate Mayors; and Dr. Alan Lloyd, president emeritus of the International Council on Clean Transportation and senior research fellow at the Energy Institute, University of Texas at Austin. Winners of all other Green Car Awards are selected by a jury of automotive experts and Green Car Journal staff.
Electrification is so important to 'green' cars today that nearly every Green Car Awards finalist included a battery electric, plug-in hybrid, or hybrid powertrain option, and all Green Car of the Year candidates were exclusively battery electric for the first time. After all the vetting, the evaluations, and the decisions, the results are in. Six of the eight award winners are all-electric vehicles and two are highly-efficient hybrids. Here are the standout winners and worthy finalists for this year’s 2022 Green Car Awards:
2022 Green Car of the Year® – Audi Q4 e-tron
Finalists for Green Car Journal’s signature award included the Audi Q4 e-tron, BMW i4, Kia EV6, Rivian R1T, and Volvo C40 Recharge.
2022 Luxury Green Car of the Year™ – Lucid Air
Vying for this award were the Audi e-tron GT, BMW iX, Karma GS-6, Lucid Air, and Mercedes-Benz EQS.
2022 Urban Green Car of the Year™ – Chevrolet Bolt EUV
Finalists were the Chevrolet Bolt EUV, Hyundai Kona Electric, Hyundai Venue, Kia Seltos, and MINI Cooper SE.
2022 Performance Green Car of the Year™ – Tesla Model S Plaid
Among this award’s finalists were the Audi e-tron GT RS, Ford Mustang Mach-E GT, Lucid Air Dream Performance, Porsche Taycan Cross Turismo Turbo S, and Tesla Model S Plaid.
2022 Green SUV of the Year™ – Hyundai IONIQ 5
The top 5 finalists included Hyundai IONIQ 5, Hyundai Tucson, Jeep Grand Cherokee 4xe, Lexus NX, and Volkswagen ID.4.
2022 Commercial Green Car of the Year™ – BrightDrop EV 600
Finalists were BrightDrop EV 600, ELMS Urban Delivery EV, Ford E-Transit, Lightning eMotors Electric Van, and Rivian Electric Delivery Van.
2022 Green Truck of the Year™ – Ford Maverick
Presented at the San Antonio Auto & Truck Show, finalists included the Ford F-150, Ford Maverick, GMC Hummer EV, Rivian R1T, and Toyota Tundra.
2022 Family Green Car of the Year™ – Toyota Sienna
Also hosted by the San Antonio Auto & Truck Show, finalists were Chrysler Pacifica Hybrid, Honda Civic, Kia Sorento Hybrid/PHEV, Toyota Sienna, and Volkswagen ID.4.
Hyundai’s IONIQ 5 is meant to be noticed. Sharp and angular bodylines define the model, along with a V-shaped front bumper, distinctive daytime running lights, and a clamshell hood to minimize panel gaps and enhance aerodynamics. Attention to efficiency is exhibited in many ways, one of these a low drag coefficient enhanced with flush door handles and 20 inch, aero-optimized rims. The new electric crossover rides on an extended 118.1-inch wheelbase that’s nearly four inches longer than that of the Hyundai Palisade SUV, offering short overhangs that allow for more expansive interior space.
Inside is a cabin focused on comfort and functionality, featuring what Hyundai defines as a ‘living space’ theme. Since it uses a dedicated EV platform with batteries located beneath the floorboard, IONIQ 5’s floor is flat without the requisite transmission tunnel of combustion engine vehicles, thus lending additional interior design freedom.
Drivers are treated to a configurable dual cockpit with a 12-inch digital instrument cluster and 12-inch touchscreen. A new-for-Hyundai augmented reality head-up display delivers needed information in a way that essentially makes the windshield a handy display screen. Of course, the latest driver assist systems are provided, with Hyundai SmartSense offering the make’s first use of its Driving Assist plus driver attention warning, blind spot collision avoidance assist, intelligent speed limit assist, and forward collision avoidance assist.
Interesting touches abound, like a moveable center console that can be positioned normally or slid rearward up to 5 1/2 inches to decrease any impediment between front seating positions. Both front seats take reclining to a whole new level and even provide first-class style footrests. Those in the rear are also treated to more comfortable accommodations. Front seat thickness has been reduced by 30 percent to provide more room for rear seat passengers, and those passengers can also recline their seats or slide them rearward for increased legroom. Sustainability is addressed with the use of eco-friendly and sustainable materials sourced from recycled thermoplastics, plant-based yarns, and bio paint.
There are plenty of powertrain configurations to fit all needs including 48 kWh and 72.6 kWh battery options, plus a choice of a single rear motor or motors front and rear. At the top of the food chain, the AWD variant with the larger battery provides 301 horsepower and 446 lb-ft torque, netting 0-60 mile acceleration in about 5 seconds. The best range is achieved by the 2WD single-motor version, which is estimated at just over 290 miles, though that’s not based on the EPA testing regimen used in the U.S. Top speed is 115 mph in all configurations. IONIQ 5’s multi charging system is capable of 400- and 800-volt charging, with a 350 kW fast charger bringing the battery from 10 to 80 percent charge in just 18 minutes.
As an added bonus, the IONIQ 5’s V2L function enables it to function as a mobile charging unit to power up camping equipment, electric scooters, or electric bikes. You can take it all with you for those power-up opportunities, too, since IONIQ 5 is rated to tow up to 2,000 pounds.
The fully electric, five-passenger Lucid Air luxury sedan is a study in superlatives. It has generated significant attention thanks to some impressive numbers: up to 1,111 horsepower, 0 to 60 times as quick as 2.5 seconds, sub-10-second quarter-mile times, and an EPA rating of 125 MPGe. Its charging-system technology allows for 900-plus volts of fast charging, capable of quickly energizing the battery for up to 300 miles of range in just 20 minutes. Then there’s the Lucid Air’s groundbreaking EPA rated driving range of up to 520 miles, far beyond any other electric car on the road today.
It features an overall length of 195.88 inches and 116.54-inch wheelbase are nearly identical to a Tesla Model S. It’s narrower than the S by about an inch, lower in overall height by an inch and a half, and its key interior dimensions are about an inch or so bigger than the Tesla. Lucid reports the Air has a very slippery 0.21 coefficient of drag, nearly the same as the 0.208 Cd of the Tesla S.
Lucid was able to create generous interior room within that sleek body package by designing the Air around its Lucid Electric Advanced Platform (LEAP), which positions the batteries low in the floor and makes use of relatively small motors, in terms of exterior dimensions. They produce up to 670 horsepower yet weigh just 163 pounds.
The Lucid Air is offered in four models, from the $77,400 Air Pure to the top-of-the-line $169,000 Air Dream Edition. The Dream Edition is the first available — reservations are closed, but there is a waitlist for the hopeful — with all-wheel drive, dual electric motors producing a combined 1,111 horsepower, and the aforementioned EPA rating of 520 miles. As a first edition it has exclusive paint and interior materials, special 21-inch wheels, ‘future-ready’ hardware for eventual Level 3 autonomous functionality, and the ability to receive over-the-air updates. The $139,000 Air Grand Touring and $95,000 Air Touring models also have dual motors and AWD, while the Pure is rear-wheel-drive with a single motor and the option for dual motor/AWD.
Inside is a 34-inch, 5K glass cockpit display with touch controls for wipers, lights, navigation, climate, and the audio system. A retractable Pilot Panel display in the lower center of the dash augments the cockpit display controls. Touch controls for media and Lucid’s DreamDrive are built into the steering wheel. DreamDrive is Lucid’s suite of driver assistance and safety features, which receives information from a total of 32 cameras, radar, LIDAR, and ultrasonic sensors positioned around the car. Among the interior options that are now, or will be, available is a glass canopy roof and an Executive Rear Seating Package with the ‘jet-style experience’ of two reclining back seats. Miniaturizing the Lucid Air’s powertrain has made room for a spacious bi-level rear trunk and a front trunk that Lucid claims is four times larger than other electric cars.
Lucid Motors is headquartered in California’s Silicon Valley with its cars assembled at a 500-acre greenfield manufacturing facility in Casa Grande, Arizona.
Porsche’s addition to the Taycan line now means that fans of the marque not only get scintillating electric performance, but a more crossover-like persona to go with it. The Porsche Taycan Gran Turismo features with a longer and somewhat flatter roofline while retaining all the features that make the Taycan sedan so desirable. In an era where crossover SUVs get enormous attention and enjoy brisk sales, the addition of the Cross Turismo to the Taycan lineup makes perfect sense.
Here’s where it gets interesting. All Taycan Cross Turismo models are all-wheel drive due to their use of motors front and rear, and to a one they are serious performers. But there are a few choices that bust out the performance numbers entirely. At the top of the list is the Taycan Gran Turismo Turbo S that’s powered by dual electric motors churning out 460 horsepower and 774 lb-ft torque, with an impressive bump to 560 horsepower in boost mode that lasts for the first 2.5 seconds.
All that power makes its way to pavement via a single-speed front transmission and a two-speed dog-ring transmission at the rear, catapulting the Turbo S from 0 to 60 mph in just 2.6 seconds. Top speed is 161 mpg. Performance numbers moderate just a bit in the Gran Turismo Turbo and 4S, with those models delivering 3.0- and 3.8-second sprints from 0-60 mph, respectively. Top speed for the 4S is 161 mph with the Turbo topping out at 155 mph.
While not aimed at harsh off-roading, off-pavement and recreational functionality is built into the Taycan Cross Turismo with features like adjustable air suspension, unique rocker panels, rugged front and rear fascia, and fender extensions. Additional body cladding and a slight increase in right height are gained with an available Off Road Design Package. A driver-selectable Gravel Mode optimizes traction in gravel, sand, and mud by adjusting the Cross Turismo’s torque management, suspension height and firmness, and traction control. Integrated roof rails are standard fare, allowing the use of a roof transport system for bulky items, while accessories like a rear-mounted Tequipment bike rack are available.
Beyond its notable performance, the Taycan Grand Turismo is also quite high-tech and connected. Inside is a comfortable command cabin with handsome appointments and a center 10.9-inch infotainment screen. Its Porsche Communication Management (PCM) system controls an array of vehicle functions and now offers Android Auto for the first time, joining Apple CarPlay integration that’s been part of the Taycan from the start. A panoramic glass roof is standard. A full suite of safety and driver assist systems are standard or optional. There’s even optional Remote Park Assist, while allows remotely controlling parking via a smartphone from outside the vehicle.
The Taycan Gran Turismo seems to have it all, in one very stylish, zero-emission package. You can carve turns in ways one would expect from a Porsche, turn heads with an eye-catching design, enjoy the latest in advanced electronics and driver assist systems, and recreate with accessories that can bring your gear along for the ride. Plus, of course, while minding the speed limit there’s the knowledge you could get wherever you’re going at blazing speed…if only circumstances allowed it.
For a lot of folks, Volkswagen’s all-new ID.4 introduced last year checked off all the boxes, except maybe one. It powered its rear wheels only with a single electric motor. Now a new ID.4 AWD model adds a second electric motor up front for better overall performance and all-wheel drive traction.
Power in the base rear-wheel drive ID.4 is delivered by a 201 horsepower permanent magnet motor featuring 229 lb-ft torque. The AWD version adds a second 107 horsepower asynchronous electric motor up front that not only provides all-wheel drive capability, but a boost to 295 horsepower total output and 339 lb-ft torque.
Energy is stored in an 82 kWh lithium-ion battery pack. In the single motor version this delivers a driving range of up to 260 miles at an EPA estimated 99 combined MPGe fuel efficiency, with the more powerful AWD version achieving up to 249 miles of range at 97 MPGe. Charging with a 240-volt Level 2 charger takes about 7 to 8 hours, with 30 miles of range provided in about an hour. Level 3 fast-charging can add around 60 miles of range in just 10 minutes. VW ID.4 buyers get three years of DC fast-charging through Electrify America public chargers for free.
The ID.4 rides on MacPherson struts and coil springs in the front and a multilink suspension in the rear, with anti-roll bars at both ends. It also sports VW’s electronic stability control system as standard equipment. ID.4 features a 108.9-inch wheelbase and a 62.5-inch track, making it quite maneuverable in tight city driving situations. It rides on either 19- or 20-inch aluminum alloy wheels with all-season tires to keep a good grip on the road. A low 0.28 coefficient of drag enhances the model’s overall efficiency. Because the ID.4 is designed as a utility vehicle, the standard version is designed to tow 2200 pounds with the AWD capable of handling 2700 pounds.
True to its German roots, the interior of the ID.4 emphasizes a purposeful design with clean styling and minimal frills, while offering all the functional equipment expected in a modern vehicle. The driver is treated to a commanding driving position behind a sporty three spoke steering wheel fitted with all the primary control buttons the driver might need. It has an overall interior volume of 99.9 cubic feet, roomy for the vehicle’s overall footprint. VW’s Car Talk allows the vehicle to communicate with the driver through voice commands so the driver’s eyes never need to leave the road. IQ.DRIVE, Volkswagen’s suite of advanced driver assist technologies, provides an array of desired features such as hands-on semi-autonomous driving, lane assist, and active cruise control.
Both single and dual motor ID.4 models are available in Pro and Pro S trim, with prices starting at $39,995 to $43,675.
The all-new five-door, five-passenger BMW i4 is right-sized for fans of the marque, similar in overall length and wheelbase to its 3 Series stablemates. Both i4 variants utilize BMW’s fifth-generation eDrive technology, which combines an 83.9 kWh lithium-ion battery pack with either a single electrically-excited synchronous motor on the rear axle (in eDrive 40) or motors front and rear (in M50). BMW expects up to 300 miles of driving range in the single motor i4 and an estimated 245 miles in the M50.
Taking its Ultimate Driving Machine strategy a step further, the all-wheel-drive i4 M50 – the first fully electric performance model from BMW’s M Group – ups the 335 horsepower of the standard i4 eDrive40 to a combined 536 horsepower. In addition, special attention is paid to chassis tuning and powertrain responsiveness in the M50 so it delivers the level of driving engagement expected from a BMW with the M badge.
The i4’s combined charging unit accepts either home-based AC power, at a rate of up to 11 kW, or up to 200 kW of DC power at a fast-charging station. BMW has partnered with EVgo to provide i4 owners access to EVgo and partner charging network stations. The partnership includes $100 in EVgo charging credit for buyers and lessees of qualifying BMW electric vehicles.
Helping to boost the i4 models’ efficiency are their adaptive energy recuperation systems, which use data from the navigation and driver-assistance systems to vary the intensity of brake energy recuperation. The driver may also select high, medium, or low brake energy recuperation via the iDrive menu. Putting the gear selector in drive mode B provides enough regen for one-pedal driving with little or no use of the brakes, depending on driving habits and current driving conditions.
The i4’s handling dynamics benefit from the battery pack’s location in the floor, which lowers its center of gravity below that of a 3 Series sedan. Both models are equipped with a rear air suspension using a self-leveling and lift-related shock system that controls damping force based on spring travel. An adaptive M suspension, optional on the eDrive 40 and standard on the M40, enables the driver to adjust shock settings electronically at each wheel.
Inside the i4, the BMW Curved Display puts the 12.3-inch driver information display and 14.9-inch control display behind a single piece of glass. Features in BMW’s new iDrive 8 system can be operated via the Curved Display or by voice commands. Among them is the new Cloud-based BMW Maps navigation system, which combines real-time information with forecasting models to improve navigation accuracy. Both Apple Car Play and Android Auto are programmed into the i4.
There are more than 40 driver assistance systems available for the i4 as either standard or optional equipment, including some Level 2 automated driving functions such as speed limit assist and route guidance when the optional active cruise control is engaged. Collision warning, pedestrian warning, and lane departure warning are all standard. Cross-traffic warnings, blind-spot detection, and rear-collision prevention are part of the optional driving assistant system. Optional parking assistant will control the i4 when entering or exiting parallel or perpendicular parking spaces, while its back-up assistant offers automatic reversing for up to 50 yards. A Driving Assistance Professional system utilizes three front cameras, one front-facing radar sensor ,and four side-facing radar sensors “to build a detailed picture of the car’s surroundings,” says BMW. That data is used for such functions as active navigation, steering and lane control assistant, lane-keeping assistant, emergency stop assistant, and evasion assistant.
The BMW i4 eDrive40 can be preordered now starting at $56,395 with the performance-oriented i4 M50 coming in at $66,895. Availability here in the States is spring 2022, according to BMW.
Similar in size to Audi’s Q5 SUV, the Q4 e-tron is powered by one or two electric motors depending on configuration. The base Q4 40 e-tron sends an estimated 240 horsepower to the rear wheels through a permanently excited synchronous motor. The Q4 50 e-tron quattro and Q4 50 Sportback e-tron quattro add a temporary on-demand asynchronous motor to drive the front wheels as needed. The second motor brings total output to an estimated 290 horsepower. When not in use, the front motor doesn’t consume any energy or add any load resistance, so the drivetrain’s efficiency is like that of the rear-wheel drive system.
Both drive configurations are powered by a single 77 kWh battery located between the axles to optimize weight distribution. Preliminary estimates put the Q4 40 e-tron’s range at approximately 250 miles.
The drivetrain is configured to regenerate energy using what Audi calls intelligent recuperation, which incorporates navigation and topographical data in addition to the three regen modes selectable via steering wheel paddles and brake pedal modulation. The battery can be charged using either alternating or direct current, up to 11 kW with AC and up to 125 kW DC using a high-speed charger.
The Q4 e-tron interiors feature a 10.25-inch digital instrument cluster in front of the driver and a second, 10.1-inch touchscreen to operate the infotainment and navigation systems. A new steering wheel has seamless touch surfaces to control the instrument cluster. Available as an option is an augmented reality head-up display, which superimposes relevant driving information over the real-world view out the windshield at what is perceived to be a distance of 30 feet ahead of the driver, “creating an integrated and eyes-forward experience,” says Audi.
Several driver-assist systems are packaged into the Q4 e-tron models, ranging from High-Beam Assist to Adaptive Cruise Assist. Combined with Traffic Jam Assist, the adaptive cruise control can guide the SUV through its entire speed range. A Predictive Efficiency Assist program optimizes energy consumption over the duration of a trip.
Audi expects to produce the Q4 e-tron models at its Zwickau, Germany, plant with a net carbon-neutral footprint. Zwickau will incorporate renewable electricity to help achieve this certification. The Q4 e-tron SUVs should be on sale in the U.S. in late 2021 with a starting MSRP of less than $45,000.
Henrik Fisker is one of the most fascinating figures in the auto industry today. After a distinguished career designing memorable vehicles for others like the Aston Martin DB9 – and notably the BMW Z8 and Aston Martin V8 Vantage famously driven by James Bond – he set off on his own path. His first effort, featuring the gorgeous plug-in Fisker Karma of his own design, ended abruptly in 2013. But everyone loves a good comeback story, and Fisker is delivering one with Fisker Inc., the company he and CFO wife/cofounder Geeta Gupta-Fisker launched in 2016.
RON COGAN: You’ve designed some amazing and iconic vehicles for legacy automakers. What drove you to become an automaker yourself?
HENRIK FISKER: “I felt like in my corporate career I had hit the ceiling, and the pinnacle was designing two cars for Aston Martin, the V8 Vantage and DB9. I wanted to get out and get my hands dirty, and start doing something where I challenged myself. I really had a passion for the idea of coming up with sustainable vehicles that were also emotional and exciting. That’s how I started Fisker Automotive, originally with the Fisker Karma.”
RC: What are the most important lessons you’ve learned from your experience with the former Fisker Automotive, and how are you applying those at Fisker Inc. today?
FISKER: “If you have the ability to de-risk something, then do it. That’s lesson number one. An example would be, originally with Fisker Automotive, we didn’t really have a choice of a battery maker. There were only three and we were left to take the third one, which was A123, because Panasonic was with Tesla at the time and I think LG Chem had an exclusive with GM.
“Today we have the possibility to either choose some untested battery technology from a new startup, or we take tested battery technology from a large battery maker. We have chosen the latter, because I believe there’s too big a risk there, and we don’t really need to take that risk because the technology is getting better and better. We think it’s going to take a lot longer to come up with radical new battery technologies than we, and a lot of people, originally thought…I think we’re at least seven to 10 years away.”
RC: How will you stay ahead of the advanced battery curve?
FISKER: “When you buy a car today, any new car, the technology in that car is probably three to four years old, because it was decided three or four years ago. What we are trying to do is shorten that time down to 18 to 24 months, where we can decide on technology that late. When you get our car in the next year, we decided on the battery technology this year, which means we have the latest, newest technology.
“To give you an example, when we looked at technology in 2020, only a year ago, we estimated a range of 300 miles. Because we could delay that decision to now, we now can have a better, more energy-efficient cell and a more energy-efficient pack, which means we are getting up to about a 350-mile range. That is the advantage of being able to choose technology very late in the development process.”
RC: Any other lessons learned?
FISKER: “Number two, I would say, is financing. Originally, at Fisker Automotive we had many, many financing rounds, and we saw other companies as well, like Tesla, having many financing rounds. What happens is you end up having delays, because you never get the financing when you need it. When you have a delay developing a car you actually end up increasing costs because time is cost. The other lesson learned: Go and get the total amount of money you need for your first car.”
RC: Does that mean you have enough now to fully produce the Ocean?
FISKER: “We needed slightly less than a billion dollars to get the Fisker Ocean to market, and said we aren’t going to kick off the program full speed until we raised the entire amount of money. We decided last year to do a SPAC merger, where we went public and we raised over $1 billion. To this date we have had no delays. We are going full speed, and we are still on target to launch the vehicle next year.”
RC: Can you share insight into your asset-light business model?
FISKER: “The advantage is that you’re taking less risk, specifically in manufacturing. We have seen what Tesla has gone through, ‘manufacturing hell.’ They have been pretty clear about it. I don’t know that either investors or customers have the patience that they may have had many, many years ago, where it was still the early adopters that bought electric cars.
“I think the competition is a lot stronger today, and I think the expectation is a high-quality car on par with any other traditional OEM out there. This was really important for us. Yes, there might be some car enthusiast fanatics that feel it’s super cool if you make your own car, but the reality is that I don’t want to risk our company or the quality just to prove we can manufacture a car better than Toyota. I don’t think it has any real relevance to our stakeholders or to our customers, quite frankly. Nobody questions the fact that Apple doesn’t make its own phones.”
RC: So you’ve contracted your manufacturing out to Magna.
FISKER: “Magna is probably one of the best automotive manufacturers in the world, manufacturing some of the highest-quality cars out there, for German luxury makers to even one large Japanese conglomerate. We know this is their job. We are paying them to do it, and they will deliver a high-quality vehicle straight out of the gate.
“If you are manufacturing in your own plant and you’re still in the learning process, that means you’re going to spend more hours per car, and that is cost. I’ll bet you our vehicle is actually at a lower cost-per-vehicle to manufacture than any of our startup competitors, because they aren’t going to make perfect vehicles in the lowest amount of time straight out of the box, like Magna can do it. They will do it at the right man-hours per vehicle, and therefore our costs per vehicle are already fixed. This gives us an advantage, which is why we can already announce pricing on our vehicle, because we know those costs.”
RC: How important is your deal with Foxconn to your future plans?
FISKER: “I think it’s extremely important and it has accelerated our business model. Through this partnership, we are able to get to an even more affordable vehicle much quicker than the Fisker Ocean. It also gives us the opportunity to revolutionize the future of the automobile in a way that would have taken longer under normal circumstances. We are partnering with a group that was part of the smartphone revolution, quite frankly, and they’re an amazing partner for making a revolution in the automotive industry.”
RC: Can you share more details?
FISKER: “It’s going to be very futuristic. I’m going to take a lot of risk in terms of design and certain features in this vehicle to really shake up things, and look at maybe new ways of usability in what I would call a mobility device. Let’s call it that right now. I think this vehicle will be hard to categorize – in the way we normally say, ‘it’s a sedan or an SUV, or so on’ – and it’s on purpose.”
RC: What’s ahead?
FISKER: “You can’t forget the fact that a car company really, in my opinion, only becomes a car company once you have multiple models. We did not want to launch the Fisker Ocean and then start the next program, because that way you’re waiting another two and a half years for the next vehicle. Instead, we are actually working on multiple vehicles right now, so we can have a quick cadence of products. Our plan is to come up with four vehicles before 2025, and so far, we are on course for that.”
Electrification has not been a primary interest at Mazda. Efficiency? Yes, SKYACTIV technology. Family friendliness? Yep, with four crossover/SUVs of varying stripes. Performance? Well, yeah, Mazdas are fun to drive and the MX-5 Miata is a perennial sports car favorite, plus the brand is competitive in all sorts of racing.
There clearly hasn’t been any urgency to embrace electrification at Mazda, even as most of its competitors have done so. The brand has dabbled, though. There was a Miata EV concept in the 1990s and a short-lived Demio EV demonstration project in Japan back in 2012, but little else. Now things have changed.
Enter the 2022 Mazda MX-30, a model representing the first step in this automaker’s journey toward electrification. Aimed initially at the California market this fall with a likelihood of expanding to other ‘green’ states, the electrified crossover is powered by a 144 horsepower electric motor with 200 lb-ft torque driving the front wheels. Energy is provided by a 35.5 kWh lithium-ion battery. Mazda has not provided U.S. range estimates for its new electric, though the MX-30 is rated at delivering 124 miles of single-charge driving range on the European WLTP testing cycle. Translating that to the more conservative EPA testing cycle is not a science, but you could reasonably conclude that a full battery would deliver about 100 miles of driving on U.S. roads.
Yes, that’s pretty limited range given the direction of new electric vehicle offerings in the U.S., which skew toward 200 miles of driving range or better, courtesy of larger battery packs. Charging via a standard 220-volt wall charger is convenient and assures that when you’re home for the night, just plug in and you’ll have a full charge in the morning. If you’re on the road or just want to pick up additional range while out, plugging into a rapid-charger will bring the battery from 20 to 80 percent charge in about 36 minutes.
Mazda has more in store for the MX-30 beyond this initial all-electric version. Coming later is a range-extended variant featuring the addition of Mazda’s signature rotary engine, with this powerplant operating exclusively as a rotary generator that creates electricity to augment battery power. This, in effect, creates a series-hybrid electric MX-30 with the ability to motor on long after battery power is gone.
Inside the handsome cabin is a floating center console with an electronic shifter and command knob. A 7-inch display is provided and flanked by controls. Adding to the new model’s innovations are rear doors that are hinged at the rear and swing outward at the front.
A handy MyMazda app allows locking doors, monitoring state-of-charge, and adjusting climate controls via a user’s cellphone. A full suite of the automaker’s i-Activsense safety and driver assist systems will be offered, though details about this and the model’s suggested retail price have not yet been revealed.
The MX-30 represents the first of Mazda’s electrification thrust, with a hybrid crossover option coming and a plug-in hybrid variant to be offered in a new large-platform SUV. All promise expected Mazda driving dynamics courtesy of an enhanced SKYACTIVE vehicle architecture. Base price of the MX-30 is $34,645 plus destination charge.
The EV6 paints a bold picture of Kia’s take on the booming electric vehicle experience. A close cousin to the Hyundai IONIQ 5, EV6 is compact and efficient yet also aggressive, with this five-door hatch presenting a sporty fastback profile. It offers the muscular styling cues of Kia rally cars with sleek and clean lines while prioritizing a spirited driving experience. It has a long wheelbase for the car’s overall footprint that should add to both on road stability and overall ride quality.
This is the first Kia model to be built on the South Korean automaker’s dedicated Electric-Global Modular Platform. It was designed from the ground up aa a pure electric vehicle, rather than being derived from an existing internal combustion engine model. Kia is signaling a serious commitment to the electric car market with the introduction of the EV6.
While diminutive on the outside, EV6 manages a very spacious interior due to the intelligent packaging of electric drive components. In fact, interior volume compares favorably to that of a midsize to large crossover or SUV, with its roomy cabin translating into a comfortable space for five occupants. Recycled materials are used throughout the cabin. Naturally, all the latest electronic driver assist tools are front-and-center in the EV6 cockpit, along with other innovative systems like an augmented reality head-up display that projects driving info in the driver’s line of sight, plus alerts from the car’s driver assist system.
Kia will offer the EV6 with a variety of drivetrain and battery pack options, including a choice of standard 58 kWh and long-range 77.4 kWh packs. Two- and all-wheel drive versions will be available. The standard range two-wheel drive model uses a 168 hp motor powering the rear wheels or a 232 hp motor powering both front and rear wheels. The longer range variant integrates a 225 hp motor driving the rear wheels with a 320 hp motor delivering power to front and rear.
Those who desire a real performance rush will be interested in the high torque, high power EV6 GT that turns up the volume to deafening levels. Powered by dual motors producing 576 hp, this all-wheel drive EV6 accelerates from 0-60 in about 3.5 seconds, true supercar performance territory.
EV6 enables both 400 and 800 volt charging capability without the need for adaptors, delivering quick charge times and greater flexibility on the road. A high-speed charge bringing the battery from 10 to 80 percent in any EV6 variant takes just 18 minutes. Those in a hurry will find their 2WD 88.4 kWh model gaining about 60 miles of driving range in less than five minutes with a high-speed charge. EV6 features multiple drive modes to accommodate a range of driving styles, from aggressive regenerative braking with a one-foot driving experience to a sail mode that disengages the powertrain to deliver extended coasting.
Kia is planning to launch the EV6 in 2022 and round out their EV portfolio with a total of 11 electric models by 2026.
Chrysler was in the thick of it in the early 1990s as automakers explored ways to meet California’s new and increasingly stringent Low Emission Vehicle regulations, and in particular the state’s coming Zero Emission Vehicle (ZEV) mandate. Though there was a flurry of activity in the Chrysler camp at first, other auto brands took the lead and we didn’t hear much from Chrysler for quite some time. Then, in 2008 there was an October Surprise. Chrysler unveiled three electric concepts that got people pretty excited, electrifying models from three of the automaker’s brands – Dodge, Jeep , and Chrysler. At the time, these were to lead to at least one production EV model and a renewed electrification effort at the company over the next few years, something that history shows did not materialize. The following article detailing Chrysler’s renewed interest in electric vehicles and its exciting Dodge EV prototype is pulled from the Green Car Journal archives and presented as it was originally published in the fall of 2008.
Excerpted from Fall 2008 Issue: In many ways, Chrysler has been late to the party in recent years. While others like Ford, GM, Honda, Nissan, Mazda, and Toyota have forged ahead with eco-friendly advanced technology vehicle programs, Chrysler has largely sat it out in favor of a more traditional road. Maybe we can chalk it up to its former life as part of DaimlerChrysler, but with that automotive marriage behind it there’s no longer an excuse. And excuses are not being offered by Chrysler LLC, as evidenced by its stunning announcement of not one, but three production-intent electric vehicles.
Playing catch-up wasn’t always the way at Chrysler. In the early 1990s, Chrysler was on top of its alternative fuel game, with forays into virtually all of the important areas unfolding at the time from methanol and ethanol flexible-fuel vehicles to ones running on hydrogen, natural gas, and electricity. Then Chrysler seemed to all but disappear from the running, making news instead with such stylistic models as the Viper, Prowler, and 300, but with little in the way of alternative fuel vehicles beyond its GEM neighborhood electric vehicle and the occasional eco concept. Apparently, those earlier days are returning with a vengeance.
Now Chrysler has announced the coming of a production electric vehicle for the North American market. The automaker is showcasing its efforts with three prototypes – an all-electric Dodge sports car using Lotus Europa underpinnings and two range-extended electrics, a Jeep Wrangler and a Chrysler Town & Country. Chrysler says it will select one of these for production and sale to North American consumers in 2010. This will be preceded by 100 Chrysler electrics in fleet use in 2009.
All use what Chrysler says is ‘production intent’ technology, incorporating an electric drive motor, a motor controller to manage energy flow, and a lithium-ion battery pack. Chrysler will work with General Electric to develop batteries for the production model. It has also been reported that the automaker is in talks with battery company A123 Systems, which is separately working with GM on the Volt program and has contracts to provide its nanophosphate lithium-ion batteries for production Th!nk electric cars and BAE Systems hybrid bus powerplants. GE Energy Financial Services has invested $20 million in A123 Systems.
While Chrysler has not identified its other suppliers, photos of the Dodge sports car show the use of electric drive components from UQM Technologies, a company noted for its energy dense and high-performance electric drive motors and controllers. Specs provided by Chrysler indicate a 268 hp (200 kW) electric drive motor featuring a whopping 480 lbs-ft torque that powers the performance electric car from 0-60 mph in under 5 seconds. Top speed is said to be 120 mph. Charging at 110 volts is accomplished in 8 hours, or 4 hours at 220 volts.
The electric vehicles are being developed in an in-house effort that’s focusing on electric drive production vehicles and advanced technologies. This effort – called ENVI – is so-named by taking the first four letters of 'environmental.’
Lee Iacocca distinguished himself as an automotive icon over a career that spanned nearly six decades. A hero to many for his leadership role in saving the former Chrysler Corporation from extinction, Iacocca is revered as the father of the Ford Mustang and the man who brought many beloved performance vehicles to American showrooms. Not inconsequentially, he also shepherded to market the Dodge Caravan, the world’s first minivan, changing forever the way that families seek mobility. Iacocca ventured into the environmental automotive realm with Chrysler’s electric TEVan debut under his watch in 1992, and then with electric bicycles and low-speed electric vehicles – decades ahead of today’s trend toward electric bikes – after retiring from Chrysler. The son of Italian immigrants, he exemplified love-of-country by serving as chairman of the Statue of Liberty-Ellis Island Foundation in the effort to renew our national icon in the early 1990s, an appointment made by President Ronald Reagan. Lee Iacocca passed in 2019 at the age of 94.
This article shares a 2004 interview of Lee Iacocca conducted by editor/publisher Ron Cogan and is presented as it originally ran in Green Car Journal’s Spring 2004 issue.
Ron Cogan: After a long and storied career in the auto business, what motivated you to get into light electric transportation like electric bikes?
Lee Iacocca: “Until 1950, the auto business was not that huge. But two things happened. Eisenhower created a 42,000 mile road system and the G.I. bill. The guys came home, moved to the suburbs, and had a new life outside of the city and had two kids. We caught them in the sixties with the Mustang but that was just for fun. Then twenty years passed, and we caught them with minivans because their lives changed.
“The reason I tell you this story is, naively enough, I thought I followed the baby boomers so long I knew them, even though I wasn’t one of them. I got them in 1964, I got them in 1984, and I would get them in 2004 with something electric. The same guy who now has kids and grandkids buys our bike and says it seems like an oxymoron to have a bike that you don’t have to pedal, but you can. It has a seven speed Shimano derailleur on it, first class. But when the kids come home he can’t keep up with the grandkids, so he goes for a ride and uses the electric one on the hills. It doesn’t embarrass him. That was a great theory, but I never made it work.
“I have a folding bike in my garage, it’s a knockout. It folds, it goes in the back of a minivan or Jeep, and I thought all the car dealers in America would have embraced it as an option because it gives you mobility where you can’t use internal combustion engines. I tried to force it, but in five years we’ve only sold about 25,000. But the market for bikes is so huge, all you have to do is get a small percentage of ‘em to say, ‘I’ll give electric a whirl.’
“The time is not here for electric cars. I’ve said that very openly. But the technology was here for light electric transportation and I thought there was demand, but I was wrong. I remember Pininfarina’s car. They had a hybrid in it, and I said, ‘Man this is off to the races, it might get support.’ In the background we’ll sell bicycles. It was light electric transportation systems and I said, ‘Let’s do it.’”
RC: So the vision was that electric bikes would lead to other light electric vehicles like neighborhood EVs and lightweight hybrids like the Pininfarina Ethos. How were you going to do this?
Iacocca: “I wanted every university to get on Lee’s Green Team. I wanted them to wear green jackets on campus, put a bike in every bookstore, and we’d get young people to say ‘Wow!’ If I get a bike in every garage, young kids are gonna say, ‘Hey dad, why do we have three cars and none of them are green?’ They’ll force the issue where older generations won’t. So, that’s what I tried to do when I came here.
“We’ve got a damn good product, at a damn good price. Why did it fail? Well, like fuel cells will fail…the distribution system. I chose car dealers to sell bikes because I knew most of them. Big mistake. It was introduced right in the heart of three years of all-time car and truck sales. Even my close friends who were dealers and bought 25 to 50 of them as a favor to me never put anybody on the showroom floor to sell them, never. So it didn’t work, and now we’re going to independent bike dealers.”
RC: You say that fuel cells will fail? What about the billions that automakers are spending developing fuel cell vehicles?
Iacocca: “Well, they’ll bet the farm on fuel cells, and it ain’t gonna happen easily. Not because I’m an expert here in California, but I’ve dealt with GM research guys and GM has so much going with fuel cells, although Chrysler, through Ballard, has also invested a ton of money in fuel cell technology. But they’re missing the whole problem here. The technology’s probably here now but the challenge is to change the distribution system. Once you’ve got the hydrogen – a challenge in itself – we’ve got to figure out how to deliver it to customers. Developing the infrastructure will require a huge investment. And what are you going to knock out? Wipe out the oil industry at retail levels? You can’t do that. Fuel cells are getting touted too heavily, I think. Am I for it? Yeah, but I don’t think I’ll live long enough to see it.”
RC: Where does politics fit into all this?
Iacocca: “I’ve written two books and I’ve taken the Japanese apart because of their trade practices, but what I’ve really taken apart is that this country does not have an energy policy. I’ve gone through nine Presidents of the United States and I can’t get them in twenty-five words or less to tell me what our energy policy is. I know that we’re at war because of oil, probably. Deep down, we don’t want to talk about it. We’re there for terrorism, right? We’ve got to make democracy come alive in the Mideast. That’s the oil capital of the world and we can’t avoid it. In a democratic nation, a free-enterprise nation, we’ve put up with a cartel and accepted it, and now we’re hooked on their oil.”
RC: What about China?
Iacocca: “Beijing announced they’re going to put restrictions on fuel economy that are stricter than the United States. They’re tweaking our tail here. They’re going to leapfrog and start with hybrids... they don’t want anyone coming over there and giving them a gas-guzzler. They have too much pollution, they depend too much on foreign oil, and they want to stop it.
“Well, that sounds like us in L.A. – we have too much pollution, we want to stop it. We’ve been talking, clacking our gums for 20 years, and nobody really wants to pay an extra dime for clean air. They just don’t want to do it. I’ve been in California 10 years and I’ve never heard people talk more about smog and clean air and do nothing about it, absolutely nothing. The Air Resources Board has tried their best and Detroit fought ‘em like hell, let’s face it.”
RC: Honda and Toyota were the first to market with hybrid vehicles. Many consider them to be in the lead as U.S. automakers are just now striving to bring their own hybrids to the showroom. What’s your take on this?
Iacocca: “I’ve worked with hybrids probably all my life and, by the way, the time has come. I’ve said this many times recently, that Detroit better get cracking or we’re going to be lost in the dust. What are they waiting for? Hybrids are complex and they’re more expensive, but they give you terrific gas mileage and it’s a start towards zero emissions. Is it going to happen? As sure as we’re sitting here…can’t fight it any longer. So it might be by small increments, but I would predict within three years from today, if you don’t have a hybrid car or hybrid SUV, you’re not going to be selling them.
“Every invention brings with it a set of opportunities but also a set of problems, and that’s where you’ve got to direct your attention today. I don’t think anybody has more incentive than the Big Three or whoever is left, maybe the Big Two after the Germans bought Chrysler. So the greatest incentive is for the petroleum industry and the biggest user of that petroleum, the U.S. car and truck industry, to get going or somebody’s going to knock the hell out of them.”
Somewhat smaller than Lincoln’s first plug-in SUV, the Aviator Grand Touring, the Corsair is a luxury-oriented, two-row crossover that injects comfort and class into a compact premium crossover segment dominated by European offerings. It's offered in both conventional gas- and plug-in hybrid-powered variants.
When one looks to Corsair, its distinguishing characteristics and luxury appointments mean there’s no mistaking it for anything other than a Lincoln. Its attractive design features creased and organic dynamic bodylines, a Lincoln-esque diamond patterned grille, and oversized alloy wheels. Inside is a premium leather-upholstered, wood-accented, and tech-rich cabin. The compact Lincoln Corsair Grand Touring lives large enough for four to five well-sized adults and a complement of weekend luggage.
At the heart of 2021 Corsair Grand Touring beats a 2.5-liter inline 4-cylinder, Atkinson cycle gas engine and a twin electric motor planetary drive system. A constant variable transmission transfers torque to the front wheels. A third motor producing 110 lb-ft torque is dedicated to driving the rear wheels, bringing the confident traction of all-wheel drive. Combined, this powertrain delivers an estimated 266 horsepower.
EPA fuel efficiency is rated at 33 combined mpg and 78 MPGe when running on battery power. It will drive 28 miles on its lithium-ion batteries with a total range of 430 miles. Conventionally-powered Corsairs net an estimated 22 city and 29 highway mpg, and 25 mpg combined .
A driver-centric cockpit offers infinitely adjustable and heated leather seating surrounded by wood and burnished metal accents. A comprehensive dash and infotainment display, back-up dashcam, pushbutton drive commands, head-up display, parking assist, and smartphone keyless access are standard or available. Top-of-the-line Co-Pilot 360 driver assist, electronic safety, and personal connectivity features are offered. Corsair Grand Touring’s 14.4 kWh battery module is located beneath the model’s body pan, resulting in a lower center of gravity and unobstructed rear deck cargo space.
The Corsair Grand Touring has an MSRP of $50,390, about fourteen grand more than the conventionally-powered base model. It's expected to make its way to Lincoln showrooms sometime this spring.
The Ford Mustang Mach-E, a slick crossover SUV with a name harkening back to the marque’s performance-based Mustang Mach 1 that debuted some five decades back, presents a new twist in Mustang heritage. Unlike the Mach 1, there’s no rumbling 428 cubic-inch big block V-8 and no emissions…because there’s no tailpipe. That’s because the Mach-E is powered by an all-electric powertrain that provides zero-emission driving.
As a five-door crossover, The Mach-E is far afield from the two-door Mustang coupe it joins in the Ford lineup. But key Mustang influences throughout let us know this is indeed of Mustang lineage, even as Mach-E exhibits more futuristic DNA. Among its signature Mustang styling cues are a long hood, aggressive headlights, tri-bar taillights, and of course all the expected Mustang badging. What’s different is decidedly a departure from the familiar Mustang form, most notably a silhouette that blends elements of crossover and coupe design.
The Mach-E is available as Standard Range and Extended Range variants featuring differing battery capacities, with rear- or all-wheel drive. The Standard Range version uses a 75.7 kWh lithium-ion battery that’s expected to offer a 230 mile range in rear-wheel drive trim. Up to 300 miles will be delivered by the Extended Range version with its larger 98.8 kWh battery. A single permanent magnet motor is used on the rear axle of the rear-wheel drive Mach-E and one on each axle for all-wheel drive models. Performance specs for these Mach-E models range from 255 to 332 horsepower and 306 to 417 lb-ft torque.
A Mustang Mach-E GT Performance Edition slated for next summer raises performance levels with 459 horsepower and 612 lb-ft torque that should deliver 0 to 60 mph sprints in the mid-three second range. This performance model is equipped with a MagneRide Damping System, an adaptive suspension technology that enables the car to hug the road while delivering an exciting and comfortable ride
Batteries are located inside the underbody of the Mach-E between the axles. Liquid cooling optimizes performance in extreme weather. Positioning batteries outside the passenger and cargo areas allows ample room inside for five adults and 33.8 cubic feet of cargo, with capacity increasing to 59.6 cubic feet with the rear seat folded. Mach-E buyers can opt for a 240 volt Ford Connected Charge Station for home charging. A 120-volt mobile charger included with the Mach-E conveniently plugs into a standard household outlet, but charges considerably slower. The Mach-E can handle 150 kW fast charging at public charge stations offering this capability.
Three Mach-E models are currently available to order – Select, Premium, and California Route 1 – priced at $42,895 to $49,800. The Mach-E GT coming later next year can be pre-ordered at an entry price of $60,500.
The 2021 all-electric Polestar 2 arrives in North America this year as the brand’s first pure electric vehicle, aiming to take on Tesla in a market that’s seeing increased interest in EVs. Produced in China through a collaboration of Volvo and Geely Motors, this 5-door midsize electric hatchback proudly forwards the Polestar nameplate that was formerly dedicated to Volvo’s performance arm. Now, Polestar represents the maker’s global electric car initiative as a stand-alone car brand.
At first glance, there’s no mistaking the Volvo pedigree of Polestar 2 as it embraces the design language of Volvo’s XC40. Manufactured on Volvo’s CMA (compact modular architecture) platform, it presents premium fit and finish seamlessly blended with the utmost in functionality. This eye-catching model gets high marks for attention to detail, clean lines, and an unapologetically conventional front facade and grille design that fits its persona, without giving way to the whims of those who seem convinced an electric must look decidedly different.
No performance is lost here in the transition to zero-emissions electric power. Polestar 2 is motivated by dual electric motors, one at each axle, producing a combined 408 horsepower and 487 ft-lb torque in the Performance Pack all-wheel drive variant. This delivers a claimed 0 to 60 sprint in just 4.5 seconds.
A 292 mile range is estimated on the electric’s 78 kWh LG Chem lithium-ion battery pack, which is said to be 10 percent more powerful than Audi and Jaguar offerings. Polestar integrates the battery module as a crash-protected unibody stress member, improving overall road handling characteristics through strategic weight distribution. There are multiple charging options with integrated dual inverters and AC/DC at-home and network charge capability. Charging to 80 percent capacity can be had in 45 minutes at a fast-charge station.
Polestar 2’s regenerative braking enables one-pedal driving, a feature pioneered by the BMW i3 some years back and now adopted in an increasing number of electric models. In effect, strong regenerative braking slows a vehicle down sufficiently to often allow coming to a gradual stop without using the brakes, a fun feature that enhances the joy of driving. Although not fully autonomous, Polestar 2 comes standard with the automaker’s Polestar Connect, Pilot Assist, and adaptive cruise control for Level 2 partial automation.
Inside, driver and passengers enjoy a more conventional cockpit and cabin environment than that presented by some competitors. Polestar 2 is minimalistic but also business class posh in its interior design, placing emphasis on low environmental impact manufacturing practices and materials like repurposed Birch and Black Ash wood accents, plus soft touch ‘vegan’ synthetic seat fabrics.
Heated and cooled seats, inductive cellphone charging, ample points for device connectivity, and a standard panoramic digitized sunroof are provided. Information is intelligently presented in the instrument cluster and a large center stack navigation/infotainment touchpad. A familiar center console select shift is used. Easy access to an ample cargo deck is afforded by a power lift rear hatch, with additional room provided by a fold-down second row seat.
The price of entry for Polestar 2 is $59,900 before federal or state incentives, with the model offered in three trim groups, five color combinations, and four add-on price upticks. It’s currently available for order in Los Angeles, San Francisco, and New York. Buyers will discover a no-salesman showcase approach with a take-your-time-and-look buying and lease environment. As the market reacts, Volvo intends to make Polestar 2 available in all 50 states.
Early electric vehicle efforts took many forms, with automakers striving to compress the learning curve in order to meet California’s impending 1998 zero emission vehicle mandate. While a few automakers like Honda developed their electric vehicle programs around all-new designs, most turned to electrifying existing car, truck, minivan, or SUV platforms. Some were recognizable models sold in the U.S. Others, like the Ford Ecostar, were built on platforms sold only abroad. The Ecostar was unique in many respects, not the least of which was its use of an experimental sodium-sulfur “hot” battery, which provided exceptional on-board energy. Ultimately, this battery didn’t make the cut and was abandoned, although the Ecostar itself still shines as one of the era’s true stars. This article shares details of Ford’s Ecostar program and is presented as it originally ran in Green Car Journal’s December 1993 issue.
Excerpted from December 1993 Issue: It was just over a year ago when Ford debuted its Ecostar electric vehicle to the skeptical motoring press in Los Angeles, Calif. The unusual vehicle, based on the automaker's European Escort Van built in Britain at Ford's Halewood, Merseyside, manufacturing facility, seemed normal enough at first blush. But its powertrain made it the most unique vehicle ever to hit Hollywood's Sunset Strip.
Green Car Journal editors who drove the Ecostar found it to be an extremely capable EV, perhaps the best to date. But there were a few small glitches including an occasional drivetrain shudder and a degree of inverter noise. A recent test drive in a more refined Ecostar example illustrates just how far Ford has come in its electric vehicle project. The only two glitches we had noted were conspicuously gone, and the Ecostar drove better than ever.
"The shudder was an interaction between the drive system and the mechanical system it was driving, creating a resonance," Ford's Bob Kiessel told Green Car Journal. "What we had to do was compensate for that resonance. It's all done electronically.” Evolutionary changes in the controller also eliminated the high-pitched noise noted on the earlier drive. The Ecostar's gauges and diagnostics were also working this time around, a simple matter of more time spent dialing in the EV's many functions and subsystems.
During this most recent drive, we were aware of a significant amount of tire noise making its way to the cabin. Because this also created its own unique resonance, it was cited by some drivers as motor noise, a suggestion that Kiessel denies. Even so, he offers that improvements are in the works.
"We're testing a next-generation motor-transaxle that cuts the noise level down by an order of magnitude," Kiessel shares. Tire noise will be engineered out, at least to a greater degree, as R&D work on the Ecostar continues.
There was a reason for the Ecostar's recent coming out party. Ford has completed a number of the Ecostar examples it began assembling in June and was preparing to deliver them to fleets for real world testing over a 30-month period. Fleets taking delivery: Southern California Edison (Los Angeles, Calif.); Pacific Gas & Electric (San Francisco, Calif.); Allegheny Power (Frederick, Md.); Commonwealth Edison (Chicago, Ill.); Detroit Edison (Detroit, Mich.); and the U.S. Dept. of Energy (Washington, D.C.).
Ecostars now being driven on U.S. highways are milestone vehicles in that they're the first to travel under power of advanced batteries. The 37 kWh, 780-pound sodium-sulfur battery, built by ABB (Heidelberg, Germany) for Ford, allows the 3100-pound Ecostar to achieve a conservative Federal Urban Driving Schedule range of 100 miles. Acceleration on the highway is brisk enough to meet daily driving needs. Ford estimates 0-60 mph acceleration at about 16.5 seconds, in the realm of a Volkswagen EuroVan powered by a 2.5-liter inline 5-cylinder engine. Top speed is cited as 75 mph.
Once the entire 105 vehicle fleet is fielded in the U.S., Mexico, and Europe, it's expected that Ford will get plenty of feedback on how these vehicles perform and how they can be fine-tuned for the real market.
"This vehicle is a learning tool for us in several different ways," says Kiessel, "from a design standpoint to an engineering skills standpoint, and from a supplier development standpoint to market development and service. It's a probe to learn. What we're trying to do is focus on the things that will help us make better electric vehicles in the future."
It’s no surprise that the move toward electrics is also being driven by growing consumer interest in vehicles that address the challenges of greenhouse gas emissions and climate change. Those who don’t see this this transition aren’t paying attention. However, taking this as a sign that the imminent end of the internal combustion vehicle is upon us assumes too much. The numbers and trends do not bear this out.
While our focus here is on all ‘greener’ vehicles offering lower emissions, higher efficiency, and greater environmental performance, we give significant focus to electrification on GreenCarJournal.com because, to a large degree, this represents our driving future. There are many electrified vehicles now on the market that have met with notable success, particularly gasoline-electric hybrids. In fact, hybrids have become so mainstream after 20 years that most people don’t look at them differently. They simply embrace these vehicles as a normal part of their daily lives, enjoying a familiar driving experience as their hybrids deliver higher fuel efficiency and fewer carbon emissions.
Less transparent are electric vehicles of all types because they have a plug, something that’s not familiar to most drivers. This includes plug-in hybrids that really are seamless since they offer both electric and internal combustion drive. The challenge is especially pronounced for all-electric vehicles that drive exclusively on batteries.
A recent survey of consumers and industry experts by JD Power underscores this. Even as the overall survey indicated most respondents had neutral confidence in battery electric vehicles, many said their prospect for buying an electric vehicle was low. They also had concerns about the reliability of battery electric vehicles compared to conventionally powered models. Clearly, there’s work to be done in educating people about electric vehicles, and it will take time.
Overall, automakers do a good job of providing media with the latest information on their electrification efforts, new electric models, and electrified vehicles under development. That’s why you’ll read so much about electric vehicles in mainstream media and learn about them on the news.
What’s less evident is that consumers truly learn what they need to know about plug-in vehicles at new car showrooms. Car dealerships are critical even in an era where online car buying is starting to gain traction. Showrooms are still where the vast majority of new car buyers shop for their next car, and the influence salespeople have on a consumer’s purchase decision is huge.
The JD Power study illustrates consumers’ lack of understanding about the reliability of electric vehicles…even though reliability is a given since electrics have far fewer moving parts to wear and break than conventional vehicles. Dealer showrooms can help resolve this lack of understanding with readily-available materials about electric car ownership, a sales force willing to present ‘green’ options to conventional vehicles, plus adequate stock of electrified vehicles – hybrid, plug-in hybrid, and battery electric – to test drive.
Sales trends tell us that conventional internal combustion vehicles will represent the majority of new car sales for quite some time. More efficient electrified vehicles will continue to make inroads, but not at the pace many would like, even at a time when greater numbers of electric models are coming to market. In the absence of forward-thinking dealerships willing to invest in change, an enthusiastic sales force eager to share the benefits of electrics, and auto manufacturers willing to incentivize dealers to sell electric, this promises to be a long road. It’s time to change this dynamic.