Chrysler, the company that literally created the minivan with its Dodge Caravan and Plymouth Voyager models introduced more than three decades ago, now seeks to redefine the segment with its all-new Chrysler Pacifica. So unique is the Pacifica that it merits new terminology from the marketing department to underscore its versatility.
Classified as ‘Multipurpose’ by EPA, Pacifica transcends the traditional role of the venerable minivan with more on its plate than merely taking the kids to school or handling family errands. The Pacifica is now ready to play starring roles previously cast only for trucks, SUVs, or luxury cars.
In part, that’s because the Pacifica brings something to the segment not seen before: style. The model‘s sleek and sculpted exterior is not only wind-cheating but also pleasing to the eye, cutting a sharp image while offering a remarkable drag coefficient of 0.30, a figure low enough to typically be reserved for sports cars.
Image-conscious dads need no longer take a hit on their psyche while driving a minivan to the hardware store. Not that you’d necessarily want to, this amazingly versatile vehicle can carry 64 quarter-inch, four-by-eight foot sheets of plywood in the rear. For a double date night on the town, clear out the construction materials and fold down the Pacifica’s Stow ’n Go seats to provide limo-like spaciousness. In fact, make it a triple date night with the neighbors since the model’s choice of 2/2/3 or 2/3/3 front/mid/rear seating configurations handle the need with little effort.
Notably, while third row passengers typically get squeezed, not so in this vehicle. Third row legroom is 36.5 inches with 38.7 inches of headroom. That compares favorably with the typically roomier mid-row seat that offers legroom of 38 inches and 39.6 inches of headroom.
When it arrives later this year, the Pacifica Hybrid will be the industry’s first plug in hybrid minivan. That’s a pretty big deal since families have been waiting for a hybrid minivan for years with no options in sight. The Pacifica PHEV will feature a 30 mile range solely from its 16-kWh LG lithium-ion battery, with total gas-electric range an exceptional 530 miles. The Pacifica Hybrid is EPA rated at 80 MPGe (miles-per-gallon equivalent) while operating on electricity. The conventionally-powered Pacifica is rated by EPA at 18 mpg in the city and 28 mpg on the highway while driving on its 3.6-liter Pentastar V-6. There are five versions of the standard Pacifica with the Hybrid coming in Touring and Limited trim levels.
There’s more than exterior beauty and functionality to the Pacifica. These themes are also carried through in the interior, with the posh look highlighted in the Limited model’s perforated leather seats, a look that’s right out of a European luxury sedan. The same is true with the rest of the materials selected for the Pacifica with the vehicle offering an upscale look and feel. Cloth seats are standard with leather and premium leather as options. Four interior color choices are offered to accent the 10 exterior colors available, from Jazz Blue Pearl Coat to Molten Silver Metallic.
The Pacifica is as quiet as a luxury car due to its all-new platform that brings class-leading noise and vibration characteristics, something that was also noted by two fellow journalists during our test drives at Chrysler’s Chelsea Proving Grounds. While the Pacifica Hybrid was not available to drive at this time, the standard version tells a lot about the model’s overall performance, exhibiting quite impressive handling for a vehicle of its size and curb weight of 4,330 lbs (the hybrid will weigh in at 4,943 lbs). The Pacifica’s independent front and rear suspensions play a key roles in its cornering and comfortable ride as do the vehicle’s electronic stability and traction controls.
Manufactures realize that sales are now driven by tech as much as any of the traditional buying touchstones of the past. Chrysler designers and engineers have delivered big time by offering over 100 standard or available safety and security features. Among the model’s many notable tech features is a 360 degree Surround View camera that includes a bird’s-eye view of a driver’s surroundings. The Pacifica’s UConnect Theater system offers 7- or 8.4- inch displays with accompanying sound systems featuring six to 20 speakers and brands like Alpine to Harman Kardon. Six USB ports are standard.
Perhaps the most beneficial option is Pacifica’s Stow ’n Go seating that allows the rear compartment to be configured entirely flat for optimizing storage and hauling capability. Aluminum sliding doors are hands-free and the liftgate opens by raising your foot at the rear, both will sure to be favorite options as well. The most practical offering is the model’s Stow ’n Vac, a system hidden in the door that allows for quick and efficient cleaning of the massive carpeted interior without requiring a stop at the car wash. For animal owners there’s even an optional tie-down pet kennel. When removed it also doubles as a kennel for hotel or campsite.
Power comes from a transverse-mounted 3.6-liter V-6 with 287 horsepower and 262 lb-ft torque, a combination that delivers more than adequate performance for two-lane road passing. The coming Pacifica Hybrid is expected to provide 260 horsepower, although the addition of an electric motor with its immediate low-end torque will surely up the performance ante. The conventional Pacifica runs on unleaded regular fuel so there’s additional savings to be had at the pump. Both variants are front-wheel drive and well-balanced with a front-to-rear weight distribution of 56.5/43.5 in the Hybrid and 55/45 in the standard model.
A contributing factor to Pacifica’s performance and fuel efficiency is its use of a nine-speed electronically-controlled automatic transmission and a torque converter clutch. Gears six through nine are all overdrive ranging from 0.81 to 0.48. Translation: maximum fuel efficiency gained by tall gearing that keeps engine rpms low. The Hybrid will have an electronically variable transmission standard with dual-motor electric drive capability and start-stop technology.
Unlike the standard model, the Pacifica Hybrid is not recommended for towing. The Hybrid comes with a smaller gas tank at 16.5 gallons compared to the standard 19 gallon, although higher fuel efficiency will clearly make up the difference. Expect braking to live up to the model’s performance with standard 13 inch vented rotors front and rear plus ABS braking.
The final question for some will be, “Does it fit in my garage?” But of course. Pacifica features a length of 203.8 inches and a width of 79.6 inches. With the foldaway powered mirrors extended the width increases to 90.4 inches. The Pacifica will also fit in most folks' budgets with prices starting at $28,595 and moving up to the high $40,000s. As is customary, pricing for the Pacifica Hybrid will be announced closer to its debut.
Among owners and fans, it’s a foregone conclusion that Tesla will remain the dominant producer of electric vehicles (EVs) as the automotive world increasingly adopts this technology. And why shouldn’t it? Tesla produces the best EVs, and perhaps the best cars made, has developed an incredible brand, and fills waitlists years before a new car is delivered. This all seems to indicate that Tesla has developed a world-beating business model, but is it actually a signal of future trouble?
Tesla’s strategy has always been to build EVs that are better than their internal combustion competitors and sell them for premium prices. In the language of innovation theory, strategies that offer existing consumers better products at higher prices are called sustaining innovations. Sustaining strategies tempt entrepreneurs because they appear so logical: build a better product and customers will come. But research shows that it is a losing strategy for new businesses. In sustaining competition, the industry incumbents nearly always win.
Incumbents are favored because sustaining strategies build on capabilities that they have developed over the course of their rise to dominance. Worse still, a sustaining strategy presents the entrant as a clear and direct threat to the incumbents. The combination of these two factors creates a response that often proves overwhelming for the entrant. Incumbents respond ferociously and deploy so many resources to the battle that the entrant is overcome.
Consider the situation for Tesla: It would be difficult enough for a company that sells 50,000 units per year to fight even one major automaker head-on. But Tesla has attacked not just the automakers but also every incumbent in the value network that produces automobiles, including the entire base of suppliers and dealers. The resources that these aligned interests can bring to bear are vast. Collectively, these firms spend more on R&D every year than Tesla has invested in its lifetime.
Many have argued that the move away from internal combustion is simply too technologically painful for automakers, but the technology underpinning EVs is largely a modular combination of standard components purchased from independent suppliers. The technology simply isn’t a constraining factor, and with every new auto show the automakers demonstrate this with new concept cars, such as the Porsche Mission E, squarely targeting Tesla. With its fantastic design and beloved product, Tesla might have written the playbook that the incumbent automakers will follow to dethrone it.
If better products and technological barriers aren’t enough to defeat incumbents, is there any hope for entrepreneurs? We’re believers in disruptive innovation strategy, which allows entrants to beat even the most-powerful incumbents. Disruptive innovation begins at the bottom of existing markets or by creating new markets where people don’t currently consume. They target the least-attractive customers and produce worse products for less money with lower-cost business models than conventional offerings. In doing so, they create the phenomenon of asymmetric motivation, which causes incumbents to ignore or flee them. But disruptive strategies don’t remain at the bottom of the market – they possess a technological core that allows them to improve their performance over time, capturing more of the market and pushing incumbents into ever-smaller segments at the high-end.
Many observers say this approach could never work in EVs, but we’re seeing it happen today. It takes the form of low-speed EVs driven by security guards on college campuses, retirees in the Sunbelt, and middle class families in China. The manufacturers are largely unknown and that’s the point. Each year they grow bigger and improve their products without any resistance from incumbents. Soon they will be good enough to lure the least-demanding customers away from traditional automakers and the disruption will have begun. While these companies improve their performance to capture more customers, Tesla’s only option is to reduce its performance. Which position would you rather be in?
Thomas Bartman is a Senior Research Fellow at the Forum for Growth and Innovation at Harvard Business School
With its very limited edition 918 Spyder and more mainstream Panamera S E-Hybrid – not to mention the coming electric Mission E – Porsche has shown that it takes electrification seriously. The premium automaker’s next step in its electrification strategy is represented by the 2016 Cayenne S E-Hybrid, a move that has brought plug-in hybrid power to its popular SUV model.
The Cayenne S E-Hybrid uses essentially the same components as its Panamera sibling to achieve plug-in capability. There have been some changes, like upgrading this S E-Hybrid model’s lithium-ion battery pack from 9.4 to 10.8 kilowatt-hours. This battery replaces the spare tire found in conventionally powered Cayenne models and allows the Cayenne S E-Hybrid to travel about 14 miles on battery power. Electric-only driving is possible at speeds up to 78 mph before the engine starts and the vehicle operates likes a regular hybrid. E-Power is the default mode so the Cayenne S E-Hybrid always starts on electric power, given sufficient battery charge.
An E-Charge mode modifies charging strategy so the electric motor becomes a generator, enabling the battery to recharge up to 80 percent while driving. This provides adequate battery power for electric-only driving once desired destinations are reached, such as urban areas where zero-emission driving may be preferred. Unlike most regenerative braking systems that are either on or off, the Cayenne S E-Hybrid’s regen system provides some modulation in the brake pedal while slowing down.
The Cayenne plug-in uses a supercharged 3.0-liter V-6 mated to an eight-speed Tiptronic automatic transmission, same as the Panamera. A single 95 horsepower permanent-magnet motor located between the engine and transmission provides hybrid capability. Power is delivered to all four wheels via a limited-slip center differential. The supercharged V-6 and electric motor deliver a combined 416 horsepower.
As expected from a Porsche, the Cayenne S E-Hybrid provides excellent performance, especially considering it is a 5,000-plus pound SUV that can carry 5 people and tow up to 7,716 pounds. It can accelerate from 0 to 60 mph in 5.6 seconds, 0 to 100 mph in 14.4 seconds, and has a top speed of 151 mph. Efficiency is a combined 22 mpg in hybrid mode and 47 miles-per-gallon equivalent (MPGe) during electric driving
All this goodness does not come cheap at a base MSRP of $78,700, but that is in line with what one would expect to shell out for a Porsche. The combination of performance, prestige, and greater efficiency combine to make this an attractive offering for Porsche fans.
The all-new, seventh-generation Hyundai Sonata that emerged in the 2015 model year proved this automaker’s ability to offer increasingly sophisticated and compelling models. It featured a more exciting design, improved road manners, and greater use of advanced on-board electronics. What it didn’t offer was a new hybrid variant.
Hyundai strategically retained its previous-generation hybrid Sonata for an additional year as it prepared to add new hybrid and plug-in hybrid models to round out the 2016 Sonata lineup. As Green Car Journal editors found during a recent 500 mile road trip in a 2016 Sonata Plug-In Hybrid Limited, the wait has been worth it. Simply, this efficient plug-in sedan is a joy to drive.
Powering both the standard hybrid and plug-in variants is a 2.0-liter, direct-injected four-cylinder engine producing 154 horsepower and 140 lb-ft torque. This engine is augmented by a 51 horsepower electric motor in the hybrid and a more powerful 67 horsepower motor in the plug-in, with torque output the same at 151 lb-ft.
The primary difference between the two hybrid variants is the size of their lithium-polymer battery. The hybrid we’ve driven before used a 1.6 kilowatt-hour battery, while the plug-in we drove this time uses a much larger 9.8 kilowatt-hour battery pack to provide extended electric driving range of up to 27 miles in electric-only mode. Once battery power is depleted the plug-in variant operates just like the Sonata Hybrid.
An ability to travel those electric miles does come with a bit of trade-off since the plug-in’s larger battery takes up additional space beneath the trunk floor. For comparison, the standard Sonata has 16.3 cubic feet of trunk space versus 13.3 in the hybrid and 9.9 in the plug-in. Still, there’s plenty of trunk space available in our judgment. Charging the plug-in takes about three hours with an available 220 volt Level 2 charger or nine hours with a 120-volt recharging unit that plugs into a standard household outlet.
The plug-in hybrid is distinguished from the standard Sonata with styling ques that include an aero kit, unique front fascia and rear diffuser, and model-specific aluminum wheels. Part of this sedan’s welcome fuel economy comes from enhanced aerodynamics that result in a very impressive 0.24 drag coefficient.
Inside, the five-passenger plug-in hybrid is essentially the same as the conventional Sonata except for a modified gauge cluster with a new color LCD multi-purpose display showing operating data on the hybrid system.
Fuel efficiency is impressive, with the Sonata Plug-In Hybrid rated at an EPA estimated 40 mpg combined fuel efficiency and 99 MPGe while driving on battery power. It features a total driving range of some 600 miles, a welcome feature during our daily drives and our road trip from California’s Central Coast to Los Angeles.
The Sonata Plug-In uses MacPherson strut suspension with a 24.2 mm stabilizer bar up front and an independent multi-link design with coil springs and a 17 mm stabilizer bar at the rear. High performance shocks are used at all four corners. During our drives on highways and twisty canyon roads we came to appreciate the Sonata Plug-In’s comfortable ride and handling dynamics that found us firmly planted through sweeping turns and switchbacks alike. The Sonata’s engine rpm-sensing power rack-and-pinion steering is pleasing and responsive.
While you can get a standard Sonata or Sonata Hybrid at Hyundai dealers nationwide starting at $21,750 and $26,000, respectively, the $34,600 Sonata Plug-In Hybrid is a bit more exclusive and available in just 10 California emissions states.
Chevrolet’s milestone Bolt EV will be coming to showrooms in late 2016 as a 2017 model, representing the first truly affordable battery electric vehicle with a sought-after 200 mile driving range. This is a big win for Chevrolet since the Bolt beats the 200 mile Tesla Model 3 to market, likely by a long shot. Unlike the Chevy Spark EV, an adaptation of a gasoline-powered model that’s been available in select markets since 2013, the Bolt EV was designed from the ground-up as an electric vehicle. Thus, there are no compromises along the way.
The heart of the Bolt EV is a nickel-rich lithium-ion battery pack developed with LG Electronics. The 200 mile range provided by this pack is about twice that of competitive EVs now on the market. New battery chemistry delivers desired levels of power, in this case 160 kW, and energy of 60 kWh. The chemistry also provides improved thermal performance that requires a smaller active thermal conditioning system to keep the battery operating at its optimum temperature, delivering longer battery life and maintaining peak performance under varying climates and driver demands.
The battery pack consists of 288 lithium-ion cells in a configuration that spans the entire floor to maximize interior space. The five-door Bolt EV seats five passengers and has 16.9 cubic feet of cargo space behind the rear seat. Thin-frame seats enhance rear-seat roominess.
A standard 7.2 kilowatt onboard charger allows overnight charging from a 240 volt wall charger. A typical commute of 50 miles requires a charge of less than two hours. The Bolt also features an optional SAE Combo DC fast charging connector so the battery can be charged to deliver up to 90 miles of range in just 30 minutes at a public fast charger, if one is available.
Electricity is supplied to a 200 horsepower drive motor featuring 266 lb-ft torque that delivers 0-60 mph acceleration under 7 seconds and a top speed of 91 mph. Power delivery is controlled by Chevrolet’s first Electronic Precision Shift system. This shift and park-by-wire system sends electronic signals to the Bolt EV’s drive unit to manage precise feel and delivery of power and torque based on drive mode selection and accelerator inputs. A by-wire shifter requires less packaging space than a traditional mechanical shifter resulting in more interior space and improved interior layout.
Regenerative braking has become more than a means to boost range by recapturing energy. Now it can also can provide an improved EV driving experience. The Bolt EV has a new regenerative braking system that can provide one pedal driving through a combination of increased regenerative deceleration and software controls. When operating in Low mode or by holding the Regen-on-Demand paddle located on the back of the steering wheel, a driver can bring the vehicle to a complete stop under most circumstances by simply lifting their foot off the accelerator. However, the system does not eliminate the need to use the brake pedal altogether. Operating in Drive mode without pulling the paddle while decelerating requires using the brake pedal to stop.
he Bolt EV will offer connectivity and infotainment technologies that seamlessly integrate smartphones and other electronic devices. Low energy Bluetooth, designed specifically for the Bolt EV to minimize energy usage, seamlessly connects a smartphone to the car as an owner approaches the vehicle. Many of the Bolt’s technologies are supported by OnStar 4G LTE, which turns the Bolt EV into a Wi-Fi hotspot that provides easier access to apps and services via a high-speed wireless connection.
Additional connectivity and infotainment features include a 10.2-inch MyLink color touchscreen display, rear camera mirror, and Surround Vision that provides a bird’s-eye view around the Bolt for improved safety during low-speed driving and while parking. An all-new MyChevrolet Mobile App combines important owner and vehicle information and functions including battery charge status, OnStar Map service, remote start, cabin pre-conditioning, owner’s manual information, and dealer service scheduling. EV-specific navigation capability provides routes that maximize range and while identifying nearby charging locations. In the future an accurate driving range projection will be based on the time of day, topography, weather, and an owner’s driving habits.
The Bolt will be built at GM’s Orion, Michigan assembly facility while its battery pack, motor, and drive components will come from Korea. Its price is expected to be $37,500, a figure that dips below $30,000 after full federal tax credits.
Illustrating once again that technologies proved on the race track ultimately trickle down to production cars, NVIDIA is applying its artificial intelligence (AI) prowess to driverless electric race cars that will compete next year in the FIA Formula-e Roborace Championship series. Being used is NVIDIA’s DRIVE PX2 graphics processing unit (GPU) that has the computing power of 150 MacBook Pros and is the size of a lunchbox.
Ten teams will compete with identical driverless cars in the series’ one hour races. Teams will develop their own real-time computing algorithms and artificial intelligence technologies to gain a competitive edge as they strive to beat their competition.
Featuring design cues from the iconic VW Microbus, the BUDD-e is VW's first concept vehicle using the all-new Modular Electric Toolkit (MEB) designed specifically for plug-in vehicles. The MEB architecture represents a fundamental change in future electric-powered Volkswagens, from body and interior design to packaging and drive characteristics. An all-electric range of about 230 miles means a vehicle like the BUDD-e could serve a family's primary transportation needs. Options to keep batteries topped off include cordless inductive charging and the ability to be charged to 80 percent in about 30 minutes with an available rapid charger.
BUDD-e is probably more ‘connected’ than any car before it and thus gives a comprehensive look at the future of connectivity with the Internet of Things (IoT). Not only does the car’s completely new infotainment system make traveling more interactive and media more tangible, it also creates a seamless link between the car and the outside world. As an example of connectivity to a Smart Home, a driver or passengers could control air conditioning, turn lights on or off, determine if their kids are at home, or even put the whole house into energy-saving sleep mode. Plus, in the future the BUDD-e will automatically turn on lights in and around the house as soon as the car approaches.
Toyota has added ‘Prime’ to the branding of its second generation plug-in hybrid electric vehicle (PHEV) to emphasize it’s the most technologically advanced, best-equipped Prius ever. Prime is the first Toyota hybrid to feature a dual-mode generator drive system that enables the Hybrid Synergy Drive’s electric motor and generator to both provide power for maximum acceleration. A new 8.8 kWh lithium-ion battery pack delivers up to 22 miles of all-electric driving, double that of the first-generation plug-in Prius. Toyota estimates 120 MPGe or greater or the model, which is expected to be the highest MPGe rating of any PHEV.
Prime features an array of connected and advanced electronics systems including an available 11.6-inch HD multimedia screen. Prius Prime will start appearing in U.S. showrooms in late fall and will be available in all 50 states.
There’s something almost magical about plugging your car into an outlet at night and waking up to a full ‘tank’ in the morning. There’s no need for a stop at the gas station, ever. Plus, there’s no nagging guilt that the miles metered out by the odometer are counting off one’s contribution toward any societal and environmental ills attendant with fossil fuel use.
This is a feeling experienced during the year Green Car Journal editors drove GM’s remarkable EV1 electric car in the late 1990s. Daily drives in the EV1 were a joy. The car was sleek, high-tech, distinctive, and with the electric motor’s torque coming on from zero rpm, decidedly fast. That’s a potent combination.
The EV1 is long gone, not because people or companies ‘killed’ it as the so-called documentary Who Killed the Electric Car suggested, but rather because extraordinarily high costs and a challenging business case were its demise. GM lost many tens of thousands of dollars on every EV1 it built, as did other automakers complying with California’s Zero Emissions Vehicle (ZEV) mandate in the 1990s.
Even today, Fiat Chrysler CEO Sergio Marchionne says his company loses $14,000 for every Fiat 500e electric car sold. Combine that with today’s need for an additional $7,500 federal tax credit and up to $6,000 in subsidies from some states to encourage EV purchases, and it’s easy to see why the electric car remains such a challenge.
This isn’t to say that electric cars are the wrong idea. On the contrary, they are perceived as important to our driving future, so much so that government, automakers, and their suppliers see electrification as key to meeting mandated 2025 fleet-wide fuel economy requirements and CO2 reduction goals. The problem is that there’s no singular, defined roadmap for getting there because costs, market penetration, and all-important political support are future unknowns.
The advantages of battery electric vehicles are well known – extremely low per-mile operating costs on electricity, less maintenance, at-home fueling, and of course no petroleum use. Add in the many societal incentives available such as solo driving in carpool lanes, preferential parking, and free public charging, and the case for electrics gets even more compelling. If a homeowner’s solar array is offsetting the electricity used to energize a car’s batteries for daily drives, then all the better. This is the ideal scenario for a battery electric car. Of course, things are never this simple, otherwise we would all be driving electric.
There remain some very real challenges. Government regulation, not market forces, has largely been driving the development of the modern electric car. This is a good thing or bad, depending upon one’s perspective. The goal is admirable and to some, crucial – to enable driving with zero localized emissions, eliminate CO2 emissions, reduce oil dependence, and drive on an energy source created from diverse resources that can be sustainable. Where’s the downside in that?
Still, new car buyers have not stepped up to buy battery electric cars in expected, or perhaps hoped-for, numbers, especially the million electric vehicles that Washington had set out as its goal by 2015. This is surprising to many since electric vehicle choices have expanded in recent years. However, there are reasons for this.
Electric cars are often quite expensive in comparison to their gasoline-powered counterparts, although government and manufacturer subsidies can bring these costs down. Importantly, EVs offer less functionality than conventional cars because of limited driving range that averages about 70 to 100 miles before requiring a charge. While this zero-emission range can fit the commuting needs of many two-vehicle households and bring substantial fuel savings, there’s a catch. Factoring future fuel savings into a vehicle purchase decision is simply not intuitive to new car buyers today.
Many drivers who would potentially step up to electric vehicle ownership can’t do so because most electric models are sold only in California or a select number of ‘green’ states where required zero emission vehicle credits are earned. These states also tend to have at least a modest charging infrastructure in place. Manufacturers selling exclusively in these limited markets typically commit to only small build numbers, making these EVs fairly insignificant in influencing electric vehicle market penetration.
Battery electric vehicles available today include the BMW i3, BMW i8, Chevrolet Spark EV, Fiat 500e, Ford Focus Electric, Honda Fit EV, Kia Soul EV, Mercedes-Benz B-Class Electric Drive, Mitsubishi i-MiEV, Nissan LEAF, Smart ForTwo Electric Drive, Tesla Model S, Toyota RAV4 EV, and VW e-Golf. While most aim at limited sales, some like BMW, Nissan, and Tesla market their EVs nationwide. The Honda Fit EV and Toyota RAV4 EV are being phased out. Fleet-focused EVs are also being offered by a small number of independent companies. Other battery electrics are coming.
BMW’s i3 offers buyers an optional two-cylinder gasoline range extender that generates on-board electricity to double this electric car’s battery electric driving range. A growing number of electrified models like the current generation Prius Plug-In and Chevy Volt can also run exclusively on battery power for a more limited number of miles (10-15 for the Prius and up to 40 miles in the Volt), and then drive farther with the aid of a combustion engine or engine-generator. Both will offer greater all-electric driving range when they emerge as all-new 2016 models. Many extended range electric vehicles and plug-in hybrids like these are coming soon from a surprising number of auto manufacturers.
It has been an especially tough road for independent or would-be automakers intent on introducing electric vehicles to the market. Well-funded efforts like Coda Automotive failed, as have many lesser ones over the years. Often enough, inventors of electric cars have been innovative and visionary, only to discover that becoming an auto manufacturer is hugely expensive and more challenging than imagined. In many cases their timeline from concept and investment to production and sales becomes so long that before their first cars are produced, mainstream automakers have introduced models far beyond what they were offering, and at lesser cost with an established sales and service network to support them.
A high profile exception is Tesla Motors, the well-funded Silicon Valley automaker that successfully built and sold its $112,000 electric Tesla Roadster, continued its success with the acclaimed $70,000-$100,000+ Model S electric sedan, and will soon deliver its first Tesla Model X electric crossovers. While Tesla has said it would offer the Model X at a price similar to that of the Model S, initial deliveries of the limited Model X Signature Series will cost a reported $132,000-$144,000. It has not yet been announced when lower cost 'standard' Model X examples will begin deliveries to Tesla's sizable customer pre-order list.
Tesla’s challenge is not to prove it can produce compelling battery electric cars, provide remarkable all-electric driving range, or build a wildly enthusiastic – some would say fanatical – customer base. It has done all this. Its challenge is to continue this momentum by developing a full model lineup that includes a promised affordable model for the masses, its Model 3, at a targeted $35,000 price tag. It will be interesting to see if the Model 3 ultimately comes to market at that price point.
This is no easy thing. Battery costs remain very high and, in fact, Tesla previously shared that the Tesla Roadster’s battery pack cost in the vicinity of $30,000. While you can bury the cost of an expensive battery pack in a high-end electric car that costs $70,000 to over $100,000, you can’t do that today in a $35,000 model, at least not one that isn’t manufacturer subsidized and provides the 200+ mile range expected of a Tesla.
The company’s answer is a $5 billion ‘Gigafactory’ being built in Nevada that it claims will produce more lithium-ion batteries by 2020 than were produced worldwide in 2013. The company’s publicized goal is to trim battery costs by at least 30 percent to make its $35,000 electric car a reality and support its growing electric car manufacturing. Tesla has said it’s essential that the Gigafactory is in production as the Model 3 begins manufacturing. The billion dollar question is…can they really achieve the ambitious battery and production cost targets to do this over the next few years, or will this path lead to the delays that Tesla previously experienced with the Tesla Roadster, Model S, and Model X?
Tesla is well-underway with its goal of building out a national infrastructure of SuperCharger fast-charge stations along major transportation corridors to enable extended all-electric driving. These allow Tesla vehicles the ability to gain a 50 percent charge in about 20 minutes, although they are not compatible with other EVs. For all others, Bosch is undertaking a limited deployment of its sub-$10,000 DC fast charger that provides an 80 percent charge in 30 minutes. A joint effort by ChargePoint, BMW, and VW also aims to create express charging corridors with fast-charge capability on major routes along both coasts in the U.S.
The past 25 years have not secured a future for the battery electric car, but things are looking up. The next 10 years are crucial as cost, infrastructure, and consumer acceptance challenges are tackled and hopefully overcome to make affordable, unsubsidized electric cars a mass-market reality. It is a considerable challenge. Clearly, a lot of people are counting on it.
Now here’s something you don’t see every day: A pretty cool rendition of how to blend eco transport, human hybrid power, solar charging, and cool factor into an eye-catching mode of sustainable transportation.
Durham, North Carolina-based Organic Transit offers the ELF, an egg-shaped production vehicle designed for urban mobility with scant environmental impact. The three-wheeled vehicle uses a 740 watt UpDrive DC motor, NuVinci CVT transmission, and a 30 amp-hour lithium-ion battery to provide electric drive when electrical assist is needed or you tire of pedaling. Top pedal/electric speed is 30 mph.
The manufacturer says charging the battery takes 2 1/2 hours via a standard household outlet or 7 hours with power generated by the vehicle’s 100 watt solar roof panel. Since it’s legally a bicycle, the three-wheeled ELF can be driven on bike paths and even parked on sidewalks.
The lightweight, 160 pound ELF uses a color impregnated composite bodyshell and Lexan polycarbonate windscreen atop a 6061T aircraft grade aluminum frame with stainless steel hardware. It features 26 inch wheels, triple disc brakes, and dynamic dampening. LED headlights, taillights, brake lights, and turn signals are provided. Inside is a single ergonomic sliding seat said to accommodate riders up to 6 foot, nine inches tall, plus a locking cargo compartment. The base model is priced at $5,495. Two-seat variants are available plus a black-and-white tactical version for police and security use.
For a decade, Green Car Journal has been recognizing vehicles that significantly raise the bar in environmental performance. With automakers stepping up to offer ever-more efficient and ‘greener’ vehicles in all classes, the magazine’s awards program has naturally expanded to include a greater number of awards for recognizing deserving vehicles.
This prompted the recent suite of Green Car Awards presented during Policy Day at the Washington Auto Show in the nation’s capital – the 2015 Green SUV of the Year™, 2015 Green Car Technology Award™, and 2015 Luxury Green Car of the Year™.
BMW’s gull-wing i8 earned the distinction as the 2015 Luxury Green Car of the Year, outshining competitors Audi A8 L TDI, Cadillac ELR, Porsche Panamera S E-Hybrid, and Tesla Model S. Aimed at aspirational buyers who value superb styling and exceptional performance combined with the efficiency of plug-in hybrid drive, the i8 is unique among its peers with an advanced carbon fiber passenger body shell. It also features a lightweight aluminum drive module with a gasoline engine, lithium-ion batteries, and electric motor. The i8 can drive on battery power for 22 miles and up to 310 miles on hybrid power.
The Jeep Grand Cherokee EcoDiesel rose to the top as the magazine’s 2015 Green SUV of the Year, besting finalists Honda CR-V, Hyundai Tucson Fuel Cell, Lexus NX 300h, and Mazda CX-5. Offering excellent fuel efficiency for an SUV of its size, the Grand Cherokee EcoDiesel’s 3.0-liter EcoDiesel V-6 offers up to 30 highway mpg and is approved for B20 biodiesel use. An Eco Mode optimizes the 8-speed transmission’s shift schedule, cuts fuel feed while coasting, and directs the air suspension system to lower the vehicle at speed for aerodynamic efficiency.
The Ford F-150 was honored with the 2015 Green Car Technology Award for its milestone use of an all-aluminum body. Competing for the award were advanced powertrains in the BMW i3, BMW i8, Chevrolet Impala Bi-Fuel, Ford F-150, Honda Fit, Kia Soul EV, Tesla Model S, VW e-Golf, and Volvo Drive-E models. The F-150’s aluminum body enables the all-new 2015 pickup model to shed up to 700 pounds for greater efficiency and performance.
While the Green Car Technology Award has a history at the Washington Auto Show, the first-time Green SUV of the Year and Luxury Green Car of the Year awards could not have existed just a short time ago. Simply, SUVs and luxury vehicles were seldom considered ‘green,’ and for good reason. An SUV/crossover’s mission was to provide family transport and recreational capabilities, while aspirational/luxury vehicles were expected to deliver the finest driving experience combined with high-end appointments and exceptional design. Both categories held few environmental champions and ‘green’ was hardly an afterthought.
The evolving nature of ‘green’ cars has brought about a fundamental shift in which environmental performance is now important in SUVs and luxury vehicles. Even so, not all models in these classes are created equal. The challenge has been finding the right balance – the ‘sweet spot’ – that finds SUVs and luxury vehicles delivering the efficiency and environmental qualities desired without sacrificing the conventional touchstones – quality, safety, luxury, value, performance and functionality – that consumers demand. This year’s winners of the 2015 Green Car Awards clearly achieve this balance.
Presenting these important awards at the Washington Auto Show is compelling considering its reputation as the ‘Policy Show,’ a result of the show’s proximity to Capitol Hill and the influence that Washington DC has in driving a more efficient generation of vehicles to market. The 2015 Washington Auto Show has also expanded in recent years, receiving accreditation from the Organisation Internationale des Constructeurs d'Automobiles (OICA) as one of the five top tier auto shows in America. This year’s Washington Auto Show featured more than 700 vehicles from over 42 domestic and import auto manufacturers, plus a Green Car Awards exhibit showcasing 15 finalist vehicles within the show’s Advanced Technology Superhighway exhibit area.
The evolving world of 3D printing is nothing less than astonishing. Today, 3D printing is being used to help create everything from body parts to car parts. As demonstrated at last year’s SEMA Show, an entire car can also be created in real time and driven off under its own power. Now students at Nanyang Technological University in Singapore have built the first solar electric car with a 3D-printed body shell that has 150 individually 3D printed parts.
Mounted on a carbon fiber chassis and designed from scratch by NTU undergraduates, the solar NV8 and companion NV9 three-wheeled racer were built within a year at the Innovation Lab housed at the School of Mechanical and Aerospace engineering. The team’s 16 students and mentor Associate Professor Ng Heong Wah collaborated with various NTU schools and research centers, plus sponsors and institutions including Stratasys, Creatz3D, and the Singapore-MIT Alliance for Research and Technology (SMART).
The cars will race in the Shell Eco-Marathon Asia hosted in Manilla at the end of this month. According to the mechanical engineering students Kam Sen Hao and Ng Jun Wen who designed the NV8, the solar car was originally envisioned to feature a supercar design but the competition’s dimensional requirements resulted in a more sensible micro-car with vertical opening doors.
Expanding the driving range capabilities of electric cars through fast charging is of growing interest. Tesla has keyed in on this with its high-profile Supercharger network of fast chargers along major transportation corridors. While this is great for Tesla owners, it’s not a comfort to drivers of other EVs since the SuperCharger network is not compatible with their cars.
Enter ChargePoint, VW, and BMW, which have joined together to offer similar capabilities for other electric vehicle models. The three are developing express electric vehicle charging corridors with fast charging stations that allow EV drivers to recapture up to an 80 percent charge in just 20 minutes. Fast charging sites will be strategically spaced no more than 50 miles apart to make longer trips possible for EVs that incorporate a DC fast charging capability.
Initial efforts will focus on heavily-traveled routes on the East and West Coasts, providing 100 DC fast chargers at existing ChargePoint sites. The aim is to expand fast charging capabilities to other sites within the ChargePoint network, which already offers more than 20,000 charging spots in North America. EV drivers can access the network with a ChargePoint or ChargeNow card or with the ChargePoint mobile app.
Well, this should be no surprise. Reuters reports what we’ve suspected all along because there’s a long history of this happening: Low gasoline prices are negatively impacting the sale of alternative fuel vehicles including those running on natural gas and electricity.
Not surprisingly, with lower gasoline prices comes a decided uptick in purchases of larger and lower efficiency vehicles, especially SUVs. Beyond personal transportation, the commercial sector is also being hit hard because the cost differential involved in buying large natural gas trucks presently fails to pencil out well compared to conventionally powered models.
Is this a trend? Only short term, really. Green Car Journal editors have noted such occurrences over the past two decades and the trend has always ebbed and flowed with varying fuel prices, incentives, and other factors. While the long-term prospects for battery electric vehicles hinge on lower cost batteries in the future, hybrids and high efficiency conventional vehicles are here to stay.
Plug-in hybrid electric vehicles (PHEVs) combine the functionality of a gasoline-electric hybrid with the zero-emission capabilities of an all-electric vehicle. Unlike conventional hybrids that rely solely on an internal combustion engine and regenerative braking to charge their batteries, PHEVs also allow batteries to be charged through an electrical outlet or EV charging station.
A PHEV’s battery pack is significantly larger and more powerful than a conventional hybrid, but still quite smaller than that of a dedicated battery electric vehicle. Thus, a PHEV’s electric driving range is shorter than an electric vehicle. Still, the added functionality of 20 to 40 miles of zero-emission electric driving is a real plus to many hybrid owners.
Examples of PHEVs already available to U.S. consumers include the BMW 13 and i8, Chevrolet Volt, Cadillac ELR, Ford C-MAX Energi, Ford Fusion Energi, Honda Accord Plug-in Hybrid, Porsche Panamera S E-Hybrid, and Toyota Prius Plug-In. Other PHEVs from various automakers are in the works.
The larger battery pack in a PHEV can add several thousand dollars to a hybrid’s purchase price. For example, Ford's Fusion and C-MAX Energi models use a 7.6 kilowatt-hour lithium-ion battery that provides about 21 miles of electric-only driving. This compares to the smaller and less expensive 1.4 kilowatt-hour battery in Ford hybrids without plug-in capability. The kilowatt-hour capacity of a battery is an indicator of the miles a PHEV can travel in electric-only mode, much like the gasoline in a conventional car's tank indicates its range.
A PHEV’s greatest advantage is that driving range is not limited by the finite battery capacity carried on board, thus there is no ‘range anxiety.’ Once battery power is depleted, a PHEV reverts to conventional gasoline-hybrid operation or, depending on its configuration, powers its motors with electricity created by an on-board internal combustion engine-generator. For this reason, PHEVs are often called extended range electric vehicles (EREVs).
Calculating PHEV fuel economy is complicated due to differing operating modes – all-electric with no gasoline used, combined electric and gasoline use, and gasoline-only operation. Plus, series and parallel plug-in hybrids operate differently. For this reason, federal PHEV fuel economy labels have been established to illustrate a plug-in hybrid’s expected efficiency measured in miles-per-gallon (MPG) when running on gasoline-electric hybrid power and MPGe (miles-per-gallon equivalent) when running on electricity.
I was changed by the 1990 introduction of the GM Impact electric car prototype at the Los Angeles Auto Show, then again by the amazing array of electric, hydrogen, and ‘green’ vehicles I witnessed at the 1991 Tokyo Motor Show. I knew that 'green' cars would be important. So, for 25 years now, this has been my focus at Green Car Journal and also at GreenCarJournal.com, plus an additional six years while feature editor at Motor Trend.
Covering this field for 25 years lends an invaluable perspective that’s important to understanding not only where we’ve been, but where we’re headed. There’s plenty of ‘green’ car news to share these days so it’s important to place it in context…and yes, that comes again with perspective and having been there while this all unfolded.
It has been enlightening to document the early research and development of the vehicles we take for granted today. While there is no crystal ball for predicting the automobile’s future, I’ve long been fascinated by researching patents for advanced and alternative fuel vehicle technologies because this does reveal what automakers and their technology suppliers have in mind for the years ahead.
Several decades ago, many of these vehicles and technologies were but ideas to potentially pursue, the subject of technology deep dives I attended, or opportunities that allowed driving advanced technology test mules on the track at automakers’ proving grounds.
Two of these experiences in the 1990s come readily to mind – driving a Japanese-market Toyota Crown sedan outfitted with an early gasoline-electric hybrid drive and a Geo Storm equipped with a prototype battery electric powertrain. These powerplants evolved to become the Hybrid Synergy Drive powering Toyota’s Prius and the electric drivetrain powering the GM EV1. The production versions were worlds better than the early prototype powertrains, lending the perspective to see just how far the technology had come.
Early developmental electric drive vehicles were often quirky and unexpectedly noisy in myriad ways, with high-pitched motor controller frequency noise and gear whine very apparent against a near-silent background devoid of internal combustion. The first natural gas vehicle prototypes often suffered from an annoying high-volume gaseous fuel injector clatter. Developmental hydrogen fuel cell vehicles sacrificed loads of space for large and cumbersome fuel cells and hydrogen storage. High efficiency diesel vehicles of decades past were unacceptably loud and emitted soot. Gasoline cars with high fuel economy were small, often lacking the creature comforts consumers expect and an illustration that sacrifice was required to achieve efficiency. Accomplishing extremely low tailpipe emissions often came at the expense of performance.
Drive an electric, natural gas, hydrogen fuel cell, high mpg gasoline, or high efficiency diesel personal-use vehicle today and they are quiet, usually quick, and ‘normal’ in all respects. A great many conventional internal combustion vehicles are now near-zero emission…not that you’d know it because they achieve this so seamlessly. We have great ‘green’ vehicles today because a lot has transpired over the past 25 years. Perspective.
I am confident that all of these vehicles, technologies, and fuels will play an important part in our motoring future. If the past 25 years are any indication, the vehicles we’ll be driving in the years ahead will be just amazing.
Over the 10 year history of Green Car Journal’s Green Car of the Year award program, there has never been a battery electric car that has been compelling enough to be recognized as the best-of-the-best in an ever-expanding field of ‘green’ cars. That has changed with the groundbreaking BMW i3, Green Car Journal’s 2015 Green Car of the Year®.
The BMW i3 came out on top of a field of finalists that included the Audi A3 TDI, Chevrolet Impala Bi-Fuel, Honda Fit, and VW Golf. The array of technologies and fuels represented included high efficiency gasoline, electric drive, clean diesel, and natural gas.
BMW’s i3 stands out as one of the most innovative vehicles ever to be introduced by any major automaker. It breaks the mold – literally – with a strong and lightweight body using materials and technology at home on the race track, and now used for the first time to construct a mainstream production car. It is a milestone, forward-thinking approach.
Meeting both near-term and far-reaching goals is no easy thing. The challenge is to design and build cars that offer meaningful environmental achievement while delivering the traditional touchstones desired by new car buyers, among them comfort, safety, convenience, connectivity, performance, and value. Also important in the world of advanced vehicles like battery electric cars is a significant commitment to the manufacturing and sale of these vehicles that goes beyond a few thousand units sold in select geographical areas. BMW’s commitment with the i3 is focused not only nationally in the U.S., but globally as well.
Offering a lightweight carbon fiber reinforced plastic (CFRP) body on an aluminum space frame, BMW’s innovative i3 brings environment-conscious drivers all-electric drive with an optional internal combustion range extender. The most unique aspect of the i3 is the car’s body structure, which incorporates the first-ever use of carbon fiber reinforced plastic (CFRP) to form the body and passenger cabin of a mass-production vehicle. CFRP is as strong as steel and 50 percent lighter. It is also 30 percent lighter than aluminum.
This BMW’s drive module includes an electric drivetrain, 5-link rear suspension, and an aluminum structure. Its lithium-ion battery pack is mounted mid-ship beneath the floor. Strategic placement of the 450 pound battery pack and drive components provides a very balanced 50-50 weight distribution to enhance handling and performance.
Acceleration is crisp, with a 0-60 elapsed time of 7.2 seconds provided by an electric motor producing 170 horsepower and 184 lb-ft torque. With a curb weight of just 2,700 pounds, the i3 has is sprightly even at highway speeds. Strong regenerative braking characteristics often allow the i3 to be driven with just the accelerator pedal in city driving. When a driver lets off the accelerator, regen slows the car quickly and allows it to come to a complete stop without touching the brake pedal.
Charging at home with an available 220 volt charger delivers a full charge in about three hours. Where available, public DC fast charging can bring an i3 to 80 percent state-of-charge in 20 minutes and a full charge in 30 minutes. The i3 BEV features an 81 mile EPA estimated range on batteries. The i3 REx, equipped with an internal combustion range extender that creates on-board electricity as needed to help keep batteries charged, features a 72 mile battery driving range and 150 miles total with the range extender.
Efficiency is a given. EPA rates the i3’s city fuel economy at 137 MPGe (miles per gallon equivalent) and 111 MPGe on the highway, with a combined 124 MPGe. For the REx-equipped model, EPA rates mileage at 117 MPGe combined.
The 2015 Green Car of the Year® is selected by a majority vote of an award jury comprised of Green Car Journal staff and invited jurors, including TV personality and car aficionado Jay Leno plus leaders of the nation’s most high-profile environmental and efficiency organizations. These jurors include Jean-Michel Cousteau, president of Ocean Futures Society; Matt Petersen, board member of Global Green USA; Mindy Lubber, President of CERES; Kateri Callahan, President of the Alliance to Save Energy; and Dr. Alan Lloyd, President emeritus of the International Council on Clean Transportation.
The diversity of new car models at showrooms today reflects an evolving and sophisticated market in which a growing number of new car buyers have decided that environmental performance must meet their needs and expectations, on their terms. As it happens, 2015 Green Car of the Year jurors have clearly decided that this year, the electric BMW i3 does it best.
It is an exciting time to be involved with the auto industry, or to be in the market for a new car. The auto industry has responded splendidly to the challenge of new emission, fuel economy, and safety standards. The public is offered a greater than ever selection of vehicles with different powertrains, lightweight materials, hybrids, and electric drive vehicles across many platforms. We see increasing numbers of clean diesel vehicles and natural gas is making a resurgence, especially in the heavy-duty sector.
The positive response by the auto industry to the ever-tightening pollutant emission and fuel economy standards includes tactics such as the use of aluminum in the Ford F-150 and the increased use of carbon fiber by BMW, among many innovations introduced across many models and drivetrains. These evolutionary changes are a major tribute to the automobile engineers who are wringing out the most they can in efficiency and reduced emissions from gasoline and diesel engines. I view this evolutionary change as necessary, but not sufficient to meet our greenhouse gas goals by 2050.
New car ownership is currently down in Europe and is leveling off in the U.S. For global automotive manufacturers, however, this trend is offset by the dramatic growth in places like China and India. The potential for dramatic growth in the developing world is clearly evident: In the U.S., there are about 500 cars per thousand people, compared to about 60 and 20 in China and India, respectively.
How can these trends be reconciled with the environmental and health concerns due to climate change and adverse air quality in the developing world? The evidence for climate change accumulates by the day. Hazardous air quality in many major cities in China has drawn global attention, providing a visual reminder of how far the developed world has come and how much environmental protection needs to be accelerated in the developing world. Damaging air pollution is increasingly seen as a regional and even worldwide challenge. Dramatic economic growth in many developing countries is generating pollution that knows no boundaries. Air pollution from China, for example, fumigates Korea and Japan and is even transported across the Pacific to impact air quality in California and other Western states.
It will take a revolutionary change to provide personal mobility without unacceptable energy and environmental consequences. As a recent National Academy of Sciences (NAS) document states, it is likely that a major shift to electric drive vehicles would be required in the next 20 to 30 years. Electric drive vehicles, coupled with renewable energy, can achieve essentially zero carbon and conventional pollutant emissions. The NAS report also predicted that the costs of both battery and fuel-cell electric vehicles would be less than advanced conventional vehicles in the 2035-2040 timeframe.
This transition will not occur overnight and we will be driving advanced conventional vehicles for many years to come. In a study for the International Council on Clean Transportation, Dr. David Greene calculated that the transition could take 10 to 15 years, requiring sustained investment in infrastructure and incentives in order to achieve sustained penetration. While this investment is not inexpensive, it is projected that the benefits of this investment will be 10 times greater than the costs.
So where do we stand today on electric vehicles? We are seeing an unprecedented number of hybrid, plug-in hybrid, and battery electric vehicles across many drivetrains and models. There were about 96,000 plug-in electric vehicles sold or leased in the U.S. last year and more than 10 new PEV models are expected this year. While the sales fall short of some optimistic projections, it is an encouraging start after many years of more hope than delivery. The FC EV is expected to see significant growth after the initial limited introduction of fuel cells in the 2015-2017 timeframe by five major automobile companies.
It will take many years of sustained increasing penetration into new car sales to make this revolution a success. It is indeed a marathon and not a sprint. The challenge is how to ensure sustained sales of electric drive vehicles in the face of the many attributes of advanced technology conventional vehicles. Electric drive vehicle drivetrains have an affinity with the increasing amount of electronics on board the vehicle, which might ultimately yield very interesting, capable, and competitive vehicles.
I have little doubt that if we are serious about our energy, environmental, and greenhouse gas goals the revolution in technology will occur. All the major automobile companies seem to recognize this in their technology roadmap, which includes advanced conventional vehicles, plug-in hybrid vehicles, battery and fuel cell electric vehicles.
In conclusion, the next 20 years promise to be equally as challenging and exciting as the last 20 years. I have little doubt that the automobile engineers are up to the task ahead, but whether we have the political fortitude to stay the course to achieve the necessary air pollution and GHG reductions is far less certain.
Dr. Alan Lloyd is President Emeritus of the nonprofit International Council on Clean Transportation (ICCT). He formerly served as Secretary of CalEPA and Chairman of the California Air Resources Board.