Green Car Journal logo

BMW is planning to offer the i series of electric, plug-in hybrid, and range-extended electric vehicles beginning in late 2013. This entirely new model line will offer BMW’s usual focus on premium engineering and style, but critically, it will also feature a consistent focus on eco sustainability and urban living. BMW is serious enough about this to have worked with New York University to develop a report, ‘Urban Mobility in the 21st Century.’ The report finds that 80 percent of us drive less than 50 miles per day, and that by 2050 the world’s urban population will grow by 80 percent, from 3.5 billion to 6.3 billion. In short, BMW thinks we need cars that work in megacities and also don’t pollute.

The large volume, five-door i3 hatchback will be constructed of lightweight carbon-fiber reinforced plastic containing the i series ‘life’ passenger cell and ‘drive’ electric propulsion cell, powered by a 170 hp electric motor driving the rear wheels. A range-extender engine will be optional. In a departure for BMW, the i3 will have rear ‘coach doors’ hinged at the rear of the doors rather than the front, plus bench seats to make city living (and parking) easier.

The seductive, two seat i8 coupe/cabriolet combines the same lightweight engineering with a 131 hp electric motor driving the front wheels and a 223 hp, 1.5-liter 3-cylinder turbo gas engine at the rear. These powerplants can be used together or separately. The car’s combined 354 horsepower accelerates the i8 from 0 to 60 mph in under six seconds. The i8 also features an electric-only range of 20 miles, a top speed of 155 mph, and up to 80 mpg.

BMW’s long-term mobility plan seems a good one. It integrates lessons learned from data gleaned from its extensive Mini-E and ActiveE electric vehicle field trials and focuses on sustainable manufacturing, practicality, and pollution reduction in an entirely new series of vehicles. BMW’s new i series could be poised to make a huge impact on how electric vehicles are designed and built.

Automotive supplier Visteon is among many companies that clearly understand the importance of advanced electronics in future automobiles. The firm recently illustrated this with its e-Bee concept car that envisions mobility in the year 2020.

The eBee concept aims to explore new and alternative ways of using a vehicle from private ownership to car sharing and short-term rentals. It’s set up to take advantage of diverse powertrains including electric and hybrid power, using such innovations as an HVAC (heating/ventilation/air conditioning) system integrating smart energy technology to conserve energy. The system includes an electric compressor, interior pre-conditioning to conserve on-board battery power, and a cooled shopping box in the trunk.

The car’s sustainably-designed interior uses bio-based resin, hybrid natural fiber, and recyclable expanded polypropylene materials that address environmental performance and reduce weight.

The real story of the e-Bee is its advanced electronics…and there’s loads of it on board. Its driver interface includes a main display for journey information with two smaller touch screens on either side of the steering wheel, the latter providing vehicle controls and interaction with social connections. A projected head-down display provides driving information. Images from a 180-degree rear-view camera are shown in lieu of a rear view mirror.

Each occupant has a personal headrest-mounted audio system, door-mounted wireless charging bays for their electronics, and door-mounted control modules to adjust individual climate zones. User preferences stored in the Cloud set a driver’s preferences upon entry, defining the look and layout of the car’s displays and interior colors.

Clip-on modules like cup holders, cameras, and wireless charging devices – known as 'physical apps' – can be added by users to fit their needs and style sensibilities as desired.

With styling considered cute by some and out of the question by others, Mitsubishi’s i electric is clearly not for everyone. That begs the question: Just who is right for the i?

That’s not a question easily answered. There are no direct comparisons. Nissan’s LEAF is more sophisticated in most ways but costs about six grand more than Mitsubishi’s i. When the smart fortwo ed emerges this spring it will likely come in at a grand or so less than the i, but that savings brings with it the loss of a rear seat…a deal-breaker for many.

Those who want an affordable – as far as electric cars go – zero emission ride without high expectations may find the electric i a good fit. It is by design the least expensive, full-function four passenger electric vehicle on the market at present. That doesn’t mean it’s cheap. Rather, at a retail cost of $29,125 for the base ES model, it’s simply the EV that will strain a budget the least. Factor in the $7,500 federal tax credit and the cost drops to $21,625. Potential state and other incentives could drop the price even lower.

Think vintage ‘VW Bug’ and you’re in the ballpark in the way of driving experience. It’s fun to drive if your expectations are set somewhat low, sort of like those early Beetles. While it does have a host of modern features including an array of advanced entertainment, electronics, and safety systems, the Mitsubishi i cabin is generally Spartan by today’s automotive standards, also sort of like those early Beetles. Instrumentation is minimalistic with the obvious juxtaposition of an HDD navigation system with rearview camera, optionally available on the uplevel SE model.

Our initial driving experience was enlightening. We understood that running climate control or the stereo system would diminish range, but in the interest of driving the Mitsubishi i in ways that everyday motorists typically drive, we ignored that and did what we would normally do. Using the ‘Eco’ or ‘B’ transmission selections are also recommended to maximize range and regenerative braking, but again, we thought it instructive to see what tooling about town in ‘D’ (Drive) would bring.

It was a pleasant experience. We drove 65 on the freeway and merged readily enough. Driving around town was comfortable and confidence-inspiring with no downsides. We were driving electric with zero localized emissions, a real plus. Then we stole a look at the battery gauge, which had dropped to a disturbingly low three bars. Soon the charging icon was flashing and the realization hit that we wouldn’t be tooling around town much longer. Yikes! Back to the barn, pronto.

Driving range during our devil-may-care jaunt was a disappointingly low 32 miles. We probably deserved that and, honestly, such driving would slash the potential range of any electric car. This won’t be the experience for Mitsubishi I drivers who motor about conservatively and use the tools provided to optimize range, thus achieving something closer to the EPA’s combined range estimate of 62 miles. When you’re ready to charge up, the deed can be done in 7 hours from full discharge with a 220-volt home charger or in 22 hours with a 110-volt mobile charger that’s carried along in the vehicle.

We have lots of experience with neighborhood electric vehicles (NEVs) designed exclusively for around-town use at a governed top speed of 25 mph. The eggplant-like Mitsubishi i sort of reminds us of a NEV because of its minimalistic approach, but with much greater functionality, safety, and user-friendly features. It does not remind us of the delightfully drivable GM EV1 electric car we lived with for a year when that model was around, or for that matter any EVs at higher price ranges.

Considerably better than a NEV but offering less than other electric cars we’ve experienced, the Mitsubishi i aims at drivers who want their rides distinctive, eco friendly, and inexpensive to operate, with capabilities aimed at around-town driving or commuting. Obviously, Mitsubishi is banking on a large enough pool of like-minded buyers to make this approach a success.

How to extend the range of battery electric vehicles? A start-up company in Stuttgart, Germany has developed an answer in the form of the ‘ebuggy,’ a trailer carrying a lithium-ion battery designed to be towed behind an EV.

The ebuggy is viewed as an ‘on-demand’ solution since an EV would drive on urban trips without the trailer most of the time. Then, for longer trips, the EV would be driven to a service station where the ebuggy would be hooked up to provide extended range. It would be returned to the same service station or dropped off at another station at the destination.

The ebuggy can be towed at speeds up to 62 mph (100 km/hr) and has a four-hour battery capacity, which provides a range extension of about 240 miles for most electric cars. Add the standard range of the EV itself and trips of 300 miles on electricity alone are quite possible.

Envisioning franchised stations that could be co-located with gas stations, garages, or at highway rest stops, ebuggy GMBH says its system requires a much smaller initial investment compared to other range extension ideas like battery exchange stations. Battery recharging can be done using the same equipment used to recharge batteries in EVs. When an electric car owner signs up for ebuggy service, the user gets a kit for upgrading their car to the ebuggy system. This includes a tow hitch, power socket, and in-car display.

BMW’s i3 will roll off the assembly line in late 2013. This will be this automaker’s first production electric vehicle, the culmination of 40 years of development that started with a BMW 1602 that was converted to electric power in 1972. Since then, BMW has developed many electric prototypes and tested several EV fleets under real world conditions. Its electric-specific BMW i brand includes the i3, i8 Coupe, and the i8 Concept Spyder that’s also planned for production.

The latest BMW variant unveiled is the i3 Concept Coupe, a three-door model based on the five-door BMW i3. While riding on the same wheelbase, the coupe has a broader, lower-slung look. It has two individual rears seats and rear windows that are exceptionally large for great visibility. The elimination of the B-pillar makes for easier access to the rear seats as well. According to BMW, the interior illustrates how the i3 cockpit has evolved as it is readied for series production,

Like the i3, the BMW i3 Concept Coupe uses the automaker’s LifeDrive architecture with its Life and Drive modules. The passenger cell forms the core of the Life module and is built from light and strong carbon fiber-reinforced plastic (CFRP). The drive system, chassis, and battery, along with structural and crash functions, are found in the Drive module made mainly of aluminum.

The coupe uses the pure electric version of BMW’s eDrive technology, like the production-ready i3. This means an electric motor developed by BMW that makes 170 horsepower and 184 lb-ft peak torque delivered to the rear wheels via a single-speed transmission. Lithium-ion batteries are located beneath the floor.

A driver can chose between COMFORT, ECO PRO, and ECO PRO+ modes. Sportiness and comfort are best experienced in the standard COMFORT setting. ECO PRO modifies accelerator mapping so the same pedal travel delivers less power, providing more economical energy management and up to 20 percent better driving range. Heating and air conditioning are also switched to a more energy-efficient mode.

Maximum efficiency and range comes in the ECO PRO+ mode. Besides revised accelerator mapping, top speed is limited to 56 mph (90 km/h) and heating and air conditioning are run at minimum levels. Seat heating, mirror heating, and non-essential components of the daytime running lights are switched off. The BMW i3 Concept Coupe has a nominal range of 100 miles (160 kilometers).

The i3 Coupe navigation system features BMW i ConnectedDrive services tailored specifically for EVs. For example, battery charge status, driving style, electric comfort functions, and the selected driving mode – ECO PRO or ECO PRO+ – are taken into account along with the route’s topography and current traffic conditions. The system can make allowances for the extra energy needed for upcoming hills, stop/start traffic, or traffic jams. The most efficient route is shown as an alternative to the fastest. If necessary, the Range Assistant will recommend changing to ECO PRO or ECO PRO+ mode to increase range.

A driver is informed if his destination is within the vehicle’s range and is advised where to recharge. Shortly before arrival at the destination, charging stations in the vicinity are displayed and the driver can reserve one of them. The system presents charging time required before commencing the return trip or driving to the next destination. A smartphone app with an eRemote function developed by BMW ConnectedDrive for the BMW i also offers this information away from the vehicle.

Mitsubishi’s recently-unveiled Outlander plug-in hybrid electric vehicle (PHEV) is a first for this automaker, combining mainstream sport-utility appeal with advanced, plug-in hybrid efficiency. The Outlander PHEV promises drivers the flexibility of an affordable and spacious sport utility that can run in quiet, zero-emission electric mode for commuting, then turn around and handle weekend getaways for five with the cruising range of a conventional SUV. It builds upon the electric drive technology developed for the automaker’s all-electric i-MiEV.

The model’s all-new drivetrain includes a 2.0 liter gasoline engine-generator up front and 80 horsepower electric motors front and rear, with both motors connected to Mitsubishi’s Super All-Wheel Drive Control system. Motors are powered by a 12 kWh lithium-ion battery pack that can be charged in four hours with a conventional 240 volt charging sta­tion or just 30 minutes with a quick charger.

What’s most interesting about the Outlander PHEV is how it seamlessly combines smart fuel efficiency and utility. Mitsubishi offers Eco, Normal and Battery Charge driver selectable modes, which focus on maximizing EV time, normal driving, or having the gasoline engine function mainly as a generator to keep the battery charged.

Depending on the state of battery charge, drive mode, and conditions, the integrated management system will automatically choose electric-only, series hybrid, or parallel hybrid mode. In series mode the gasoline engine charges the battery and the vehicle runs on the electric motors, but in parallel mode, like normal hybrids, the gas engine powers the car directly with help from the electric motors. As with other hybrids and EV’s the Outlander generates electricity from both its electric motors during deceleration and regenerative braking.

This new plug-in crossover/SUV offers minimum fuel consumption without sacrificing the four-wheel drive stability or the same dimensions and large 72.6 cubic feet of space that current Outlander owners enjoy (36.2 sq. ft with second row seats up). Gas prices probably aren’t going to be $2.00 any time soon, and customers will always need room to grow. The Outlander PHEV combines real utility with real efficiency. It could be the change that SUVs need.

Based on the Japanese JC08 driving cycle, an electric-only range of 34 miles is estimated with 547 miles achieved on combined gas and electric power. Coming to Japan in early 2013, Outlander PHEV sales will expand to Europe and then the U.S. and else­where.

This image has an empty alt attribute; its file name is RAV4-EV-Action-1-1024x576.jpgToyota is now selling its all-new RAV4 EV at select California dealerships. This all-electric SUV was jointly developed by Toyota and Tesla Motors, combining a Tesla designed and pro­duced battery and electric powertrain with Toyota’s most popular SUV model. No inte­rior space was lost due to EV components

Our editors who have driven the RAV4 EV have found it to be an excellent small SUV that performs seamlessly, with an intelligent approach to electric motoring. You’re not left wanting for power, comfort,  or the kind of driving experience expected of a Toyota product…it’s all there, but without the inherent drawbacks of burning gasoline. At nearly fifty grand, though, it’s likely not for everyone.This image has an empty alt attribute; its file name is RAV4-EV-Underhood-1-1024x576.jpgThe RAV4 EV’s 154-horsepower AC induc­tion motor drives the front wheels via a fixed-gear, open-differential transaxle. There are two drive modes, ‘Sport’ and ‘Normal.’ In the Sport mode with 273 lb-ft of peak torque brought to bear, the vehicle reaches 0-60 mph in 7.0 seconds and has a top speed of 100 mph. In the Normal mode with 218 lb-ft at the ready, acceleration to 60 mph takes 8.6 seconds and top speed is 85 mph.

Its liquid-cooled lithium-ion battery is a first for Toyota. Battery thermal management systems provide consistent performance in a variety of climates. The battery pack is mounted low and to the center of the vehicle, contributing to a more sedan-like ride. Two charge modes are available, with a Standard Mode charging up to 35 kilowatt-hours for an EPA-estimated range rating of 92 miles, optimizing battery life over range. An Extended Mode charges the battery to its full capacity of 41.8 kilowatt-hours to provide an anticipated range of 113 miles. The battery is warranted for eight years or 100,000 miles.This image has an empty alt attribute; its file name is RAV4-EV-Rear-1-1024x576.jpg

A drag coefficient of 0.30, the lowest of any SUV in the world, is an improvement over the conventional gas powered RAV4’s Cd of 0.35. To achieve this, Toyota restyled the front bumper, upper and lower grill, side mirrors, rear spoiler, and underbody design to optimize air flow. The Toyota/Tesla designed regenerative braking system increases driving range by up to 20 percent. A tire repair kit replaces the spare to reduce weight.

An innovative climate control system offers three modes. In the NORMAL mode, it operates just like that of a conventional vehicle for maximum comfort, drawing the most power and resulting in the least range. The ECO LO mode balances comfort with improved range through reduced power consumption by the blower, air condition­ing compressor, or electric heater. In cold weather, ECO LO automatically activates and controls seat heaters to optimal levels. ECO HI further reduces blower, compressor, and heater levels and also automatically activates the seat heaters as necessary. Efficiency achievements are notable. ECO LO can reduce power consumption by up to 18 percent compared with NORMAL, while ECO HI offers up to a 40 percent reduction. Remote Climate Control – set by a timer, by the navigation display, or by using a smart phone – pre-cools or pre-heats the interior while the vehicle is plugged into the grid to save on-board battery power.This image has an empty alt attribute; its file name is RAV4-EV-Instrumentation-1-1024x576.jpgDriving efficiently is assisted with an all-new instrument cluster that includes a power meter, driving range display, battery gauge, speedometer, shift indicator, and multi-information display. The latter has six screens that provide information on driving range, efficiency, trip efficiency, CO2 reduc­tion, and ECO coach and AUX power func­tions. Trip efficiency displays the average power consumption in intervals of five min­utes. Eco coach evaluates the level of eco-sensitive driving according to acceleration, speed, and braking and displays an overall score. CO2 reduction, displayed graphically via a growing tree, is compared to a conven­tional gasoline vehicle.

Premium Intellitouch Navigation features EV system screens that help maximize driv­ing range. The EV Charging schedule lets customers schedule when the vehicle will charge and activates pre-climate condition­ing based on departure time. A Range Map shows how far the car can travel on avail­able battery charge. A Charging Station app displays nearby charging stations.

 

This image has an empty alt attribute; its file name is RAV4-EV-Display-1-1024x576.jpgFor the shortest charge time of about six hours, Leviton offers a custom 240 volt, Level 2 charger with 40 amp / 9.6 kilowatt output. The RAV4 EV comes equipped with a 120 volt Level 1 charging cable operating at 12 amps for use when the recommended Level 2 charging is not available.

The RAV4 EV comes standard with the STAR Safety System that includes enhanced vehicle stability control, traction control, anti-lock brake system, electronic brake-force distribution, brake assist, and smart stop technology. While the RAV4 EV is pricy at $49,800, that price decreases a bit since it qualifies for a $2,500 rebate through California’s Clean Vehicle Rebate Program as well as a $7,500 federal tax credit. Toyota plans to sell about 2,600 units through 2014.

BMW's  Concept Active Tourer, a through-the-road plug-in hybrid, uses a front-mounted engine to drive the front wheels and an electric motor to drive the rear, with no mechanical connection between the two. In most hybrids the output of the engine and motor are combined. The Concept Active Tourer is the first additional application of the eDrive sys­tem used in the i8, which incorporates an electric motor, lithium-ion battery, and intelligent engine control. BMW will use the eDrive designation for all its electric and plug-in hybrid vehicles.

Like BMW’s latest four- and six-cyl­inder engines, the BMW Concept Active Tourer’s 1.5-liter three-cylinder gasoline engine uses BMW TwinPower turbo tech­nology. Even though it has only three-cylinders, BMW claims it is very smooth running even at low speeds and emits the sporty sound expected of a BMW.

The synchronous electric motor can power the car for up to 18 miles exclu­sively on a fully charged battery. It also augments the gasoline engine to provide over 190 horsepower when maximum power is required. BMW expects it will get an impressive 94 mpg, achieved partly through automatic engine start/stop and regenerative braking energy supplied the rear axle during deceleration. A high-volt­age generator connected to the 1.5-engine also charges the battery while driving.

BMW’s Concept Active Tourer has an ECO PRO mode to help reduce fuel con­sumption. When appropriate, it reduces air conditioning and other electrically powered creature comforts to increase fuel efficiency. Linked to the navigation system, ECO PRO mode gives drivers advice on how to reach a destination using minimum fuel. ECO PRO mode also completely shuts off the engine at speeds up to nearly 80 mph, and then decouples the engine from the drivetrain up to 100 mph to make full use of the kinetic energy already generated.

The Efficient Dynamics strategy uses information from the navigation system to optimize electric motor and battery ef­ficiency. For example, it calculates in ad­vance the most suitable driving situations and sections of a route for electric-only operation or to charge the battery. This optimized charging strategy can achieve an energy savings up to 10 percent and thus increase electric range.

While small on the outside, the Tourer is very roomy on the inside. It rides on a long 105 inch wheelbase and has an over­all length of 171 inches. A tall roof allows a raised seating position for an excellent all-around view. Batteries are located entirely beneath the floor so there’s no intrusion into passenger or cargo space.

Will the BMW Concept Active Tourer appear in dealer showrooms? BMW has a good track record for putting concept vehicles into production, so here’s hop­ing.

 

Integrating photovoltaic cells on vehicles is nothing new. In fact, solar-powered race cars have been around for more than 25 years, proving that the power of the sun can indeed provide enough energy to propel a car down the road.

Of course, these cars are ultra-lightweight and plastered with solar cells on every conceivable surface, tasked with carrying just a driver at a constant speed.

While not practical for driving as we know it, they are valuable engineering exercises that helped move the bar in developing electric vehicle efficiencies. Just one example is GM’s Sunraycer solar race car, built under the guidance of the renowned master of efficiencies, the late Paul MacCready of AeroVironment, which won the World Solar Challenge in Australia in 1987.

Lessons learned were applied to the GM Impact electric car prototype – precursor to the GM EV1 – that AeroVironment built under contract for GM and was unveiled by the automaker at the 1990 L.A. Auto Show.

Solar panels were notably integrated on the hood and rear deck of Solar Electric Engineering’s Destiny 2000, an electric car upfitted from a gasoline powered Pontiac Fiero we test drove back in 1994. Today, Audi uses a solar panel on its top-of-the-line A8. Toyota offers an optional Solar Roof package for the Prius.

While some might think these can help power an electric car, their relatively low energy output can realistically do little more than trickle-charge batteries or, more appropriately, power low-demand ventilation systems while an electric car is parked to help keep interior temperatures cooler on hot days without draining the battery.

Today there’s a new champion of solar ingenuity on the road. The Fisker Karma plug-in electric hybrid luxury sedan features probably the most sophisticated solar roof ever offered on a production model, using the world’s largest continuous-formed glass solar panel on an automobile. Not only does it keep the Karma’s interior cool on a hot day, but also supplies electricity to the car’s 12 volt system used for starting and accessories, relieving the high voltage lithium-ion battery system from tapping energy needed for driving. This can increase range, though admittedly a small amount.

To create the large solar panel, 80 small monocrystalline cells are individually hand-laid under automotive safety glass to follow the contours of the roof.  The solar panel has four electrically separate zones, each consisting of 20 cells in series. Each of the four zones incorporates MPP (maximum power point) tracking to optimize power output under various solar radiation angles and partial shading conditions. The splayed solar cell array design maximizes solar ray absorption under various lighting conditions, while the graphic accent running between the cells lends a unique and futuristic appearance.

A Karma driver can choose three solar power modes. In the Charging mode, as much solar energy as possible is stored in the battery. When Climate is chosen, solar power is used to ventilate the passenger compartment to reduce the effects of radiant heating. In the default Auto mode, the Karma will use solar power to maximize energy recovery and usage.

On a typical day, the solar panel supplies 0.5 kilowatt-hours of electricity. When used for battery charging, Fisker says over the course of a year that translates to maybe 200 emissions-free miles. That’s free energy, for sure. But how meaningful is that in the scheme of things? Like others before it, the Karma’s solar roof – with its imposing look and obvious green credentials – is a step in the right direction, showcasing innovation and yet another way to embrace renewable energy. It is an environmental friend, with benefits…but it’s hardly a statement that solar powered, highway capable cars are upon us. Still, free energy is, well…free energy…and we like it.

 

Two electric Mitsubishi race cars will compete in this year's annual running of the Pikes Peak International Hill Climb in Colorado Springs, Colorado this July. One of these will be an essentially stock version of the 2012 Mitsubishi i with a more aerodynamic front bumper, roll cage, and safety equipment, which will be driven by SCORE International off-road series race-winning driver Beccy Gordon.

The second entry will be the advanced race-spec i-MiEV Evolution shown that has little physical resemblance to the production Mitsubishi i but uses the same motor, battery, and other major components as the production version, integrated in a tube-frame chassis. It will be piloted by two-time Paris-Dakar Rally champion Hiroshi Masuoka.

The prototype racer incorporates an enhanced Mitsubishi innovative Electric Vehicle (MiEV) electric motor, lithium-ion battery pack, and braking system. A single motor drives the front wheels with two motors powering the rear, providing sure-footed four-wheel-drive for the Pikes Peak race. All this is wrapped in a wild-looking carbon-fiber bodyshell we wish could make it to the showroom, at least in some iteration.

Engineers and researchers from Mitsubishi and its component and systems suppliers will be on hand to record and analyze data from both cars. This underscores the growing role that racing will have in the development and refinement of electric vehicles, just as it has for internal combustion cars over the past century.

 

Most electric vehicle owners expect free public charging opportunities. Still, plenty of charging providers aim to sell such services and have built business plans around this.

Even as a pay-for-play network of charging stations emerges, we do expect many businesses to offer free charging as a way to attract environmentally-inclined customers. As all this unfolds, there’s substantial partnering going on as electric vehicle makers try to send the right message that charging stations are coming in greater numbers and many of them will indeed offer charging for free.

Case in point: Electric vehicle owners will now have access to free charging at an additional 15 charging stations in California because of an arrangement between Nissan North America and Adopt a Charger, a nonprofit group that works with companies and organizations to fund fee-free electric vehicle chargers in public places. Nissan is paying for three 220 volt Level 2 chargers at the Los Angeles County Museum of Art and four Level 2 chargers at the Music Concourse Garage in San Francisco’s Golden Gate Park. An additional eight 120 volt Level 1 outlets are also being sponsored at the Music Concourse.

These charging locations should get maximum visibility and use since both are at highly-visited family attractions with large concentrations of electric vehicle owners in the regions. This 'best-bang-for-the-buck' approach is sure to influence both free and pay-for-play charging locations in the future.

 

It should be no secret that electric vehicles are pricey because of the extraordinarily high cost of their advanced lithium batteries. Yet, most folks still wonder why the purchase price of a battery powered vehicle is so high. Here’s a clue: Ford’s CEO Alan Mulally has now shared that the cost of the lithium-ion batteries used in the $39,200 Ford Focus Electric – Green Car Journal’s 2011 Green Car Vision Award winner – is $12,000 to $15,000 per vehicle.

Obviously, this kind of battery cost is limiting the number of electric vehicles automakers are willing to make since building them is just one part of the equation. The other important part is selling them…and that means either convincing buyers to step up to their higher price or relying on federal or internal subsidies, or both.

We’ve been through this before. During the test marketing of battery electric vehicles in the 1990s, people wondered why electric cars couldn’t be a success. We pointed out then, as we are again now, that the batteries in the EVs of the day – the GM EV1, Honda EV Plus, Toyota RAV4 EV, and others – were likely $20,000 to $30,000 per vehicle. The latter figure was confirmed to us by the late Dave Hermance of Toyota’s electric vehicle program some years ago.

So what really killed the electric car back then? The cost of batteries. We’re just hoping that battery development costs for a new generation of electric car batteries – whether lithium-ion or other technologies – can be overcome to provide the momentum needed by the emerging electric vehicle market.