Green Car Journal logo
Green Car Time Machine - archive articles from Green Car Journal.

An all-new generation Nissan LEAF is coming, morphing into a crossover electric vehicle that better fits the needs of today’s market. This new move by Nissan signals the rebirth of an iconic EV model that once pushed the boundaries of electrification as California was imposing its Zero Emission Vehicle Mandate on an unprepared auto industry. There was no shortage of EV concepts and prototypes during this time, and of course GM fielded its relatively short-lived, limited-production EV1 electric car. But it was Nissan that caught everyone’s attention with its LEAF prototype and then the unveiling of the production model that Green Car Journal viewed in Japan. Following that, the 2010 model Nissan LEAF emerged as a stylish electric car that embodied Nissan’s view of the future. This article pulled from Green Car Journal’s extensive archives is presented just as it ran 16 years ago to share just what a breakthrough this early EV was for enthusiasts and the auto industry.

Excerpted from Fall 2009 issue: The Nissan LEAF electric car coming to showrooms in 2010 promises a new chapter in battery electric driving that got a good start in the 1990s, but was dramatically sidetracked by serious political squabbling and economic realities. What we have here is an electric car being brought to market driven by business case rather than regulatory fiat, and the difference in approach means everything.

Nissan Eager to Introduce EV

Nissan LEAF dashboard.

Here’s a major automaker not only ready to bring a new from-the-ground-up electric car to U.S. highways, but also apparently quite eager to do so. It has created a stylish and sporty car to wrap around intelligent electronics, a smart battery design, and an overall driving experience that will be appreciated by wide-ranging new car buyers … not just electric car enthusiasts. But we’re getting ahead of ourselves. First, there’s a story to tell.

Nissan has always been somewhat of a wild card amid its Japanese competitors in the U.S. market, primarily Honda and Toyota. Toyota is a juggernaut with the leading eco-vehicle on the market – the Prius – plus lots of Toyota and Lexus hybrid models and sheer numbers in its favor. Being large has its advantages. Honda is innovative and agile, with an environmental focus that runs deep and a willingness to embrace imperatives like fuel economy, alternative fuels, and low emissions long before they’re in vogue.

Nissan LEAF a Statement

Pluggin in an electric car.

And Nissan? Well, the automaker has never been considered a front-runner in the environmental arena. It has but a single gasoline-electric hybrid in the U.S. and this model, the Altima Hybrid, was late in coming … an interesting turn of events since Nissan has been developing hybrid technology for quite some time. Simply, Nissan’s leadership didn’t see the business case for hybrids early on, although this was remedied when it became apparent that a hybrid model was pretty much a necessity.

As a result, it has been easy to appreciate Nissan for its many exceptional models and the overall quality of its products. But is has been just as easy for some to discount Nissan as a serious contender in the ‘green car’ field. That assessment would be a mistake.

A History of Alternative Fuels

Front view of electric Nissan LEAF.

Nissan’s Altima Hybrid deserves more attention than it gets. It’s true to the brand: stylish, sporty, and offers snappy performance. Car enthusiasts who drive competitive mid-level hybrids and don’t feel a connection should drive an Altima Hybrid before moving on. It can be surprising.

Over the years, Nissan has tested M85 methanol flexible-fuel vehicles (FFVs) on American highways, introduced several E85 ethanol FFVs to its product lineup, and showcased many electric and hydrogen concepts and demonstrators. While many automakers get well-deserved kudos for offering models powered by near-zero emission gasoline engines, it was Nissan that first introduced this groundbreaking technology in its 2000 model Sentra CA sedan. Nissan was also the only major automaker to feature forward-looking lithium-ion battery technology in its Altra EV minivan that was test marketed in the 1990s. All other automakers’ electric cars of the era used nickel-metal-hydride or advanced lead-acid batteries.

Leading with the Nissan LEAF

Nissan LEAF battery pack.

This willingness to step out and get ahead of the curve brings us to an interesting new phase in Nissan’s ‘green’ evolution – its coming LEAF battery electric car. At a time when the number of gasoline-electric hybrid models is growing and plug-in hybrids are of increasing focus, Nissan is aiming to be the electric car leader by introducing an all-new model that’s not only technologically advanced, but affordable for the masses as well. That’s something that nobody has been able to pull off.

One of the secrets of this affordability is Nissan’s potential strategy to decouple battery cost from the price of the vehicle. While this isn’t yet a sure thing and various scenarios are being examined, the fundamental plan being explored is that the most cost prohibitive part of an electric car -- expensive lithium-ion batteries – is removed from the equation. You buy the car but separately lease the batteries at a monthly cost that’s presumably less than you would pay for gas. So, you get an advanced electric car that operates at pennies per mile, uses no fossil fuels, or produces any emissions that contribute to air pollution and, presumably, climate change. And it doesn’t cost you any more to own and operate than a comparable gasoline model.

Nissan LEAF Electric Drive

Nissan LEAF electric car rear view.

Green Car Journal traveled to Yokohama, Japan to drive a Nissan Versa (known as the Tilda there) outfitted with the LEAF’s advanced electric powertrain, and we sure didn’t come away disappointed. To place this in context, Green Car Journal editors have driven all the electric vehicle models that were test marketed by the major automakers in the 1990s, spent a year behind the wheel of GM’s EV1, and also drove many developmental electric vehicles on test tracks over the past two decades. It takes a lot to impress us. And we are, we must admit, impressed.

Our time behind the wheel of this electrified Nissan test mule left a strong impression that Nissan really has something here. The drive was sporty and largely indistinguishable from driving a conventional gasoline model. That’s a good thing, since any time you can drive an advanced vehicle running on unconventional power and it seems normal, well … mission accomplished. Acceleration was brisk because, after all, its 107 hp (80kW) electric motor delivers 100 percent of its 206 lb-ft torque from zero mph. Steering feel, handling, and braking were spot on. Nothing seems to have been sacrificed on the road to a zero emission future.

Test Driving the Nissan LEAF

Shifter and console in a Nissan LEAF.

There are some givens when driving any electric car, and time piloting this Nissan example presented no exception. There’s the unmistakable lack of all noise associated with internal combustion, with the absence of these familiar cues replaced with the sound of tires contacting the pavement and wind rushing past the windshield. It gets your attention at first, but take it from a long-time electric car driver – it fades away after a short time and becomes the new ‘normal.’

Besides the seamless way in which this electric Nissan performed during our test drive, what’s most impressive about Nissan’s new electric car program is its innovative use of multiple stacks of laminated compact battery modules integrated beneath the floor. These lithium-ion batteries can be readily configured in ways that accommodate the needs of different vehicle platforms. Yes, we’re thinking future models beyond Nissan’s purpose-built LEAF electric hatch. In the LEAF, Nissan says these batteries provide a real-world 100 mile driving range. More modules could conceivably provide that same kind of range in a larger sedan or crossover.

Sophisticated On-Board Electronics

Rear view of a first generation Nissan LEAF.

Also impressive is Nissan’s innovative use of sophisticated electronics that integrates with popular electronic devices. The LEAF’s advanced IT system connects to a 24 hour global data center that provides information, entertainment, and driver support. A monitor displays available charging stations and a ‘reachable area’ based on remaining power. Cellphones can be used to set charging times, communicate with the vehicle to determine when charging is done, and even remotely set the air conditioner to pre-cool the interior before getting in to drive.

Nissan’s coming electric LEAF, with its pleasing design that blends sharp and curvaceous lines and a suite of far-reaching advanced technologies, represents a brilliant addition to the Nissan product line. It reflects an intuitive knowledge of what consumers want and a willingness to lead … really lead. And it also shows that Nissan has its finger on the pulse of the market.

An EV that Leapfrogs the Competition

Nissan LEAF on a street.

Sure, it’s a risk to go so boldly into the electric realm, designing an innovative and cutting-edge compact car based solely on electric drive. Considering the competitive nature of the automotive field and the pace at which Nissan is shepherding this electric model to market, it’s a logical gamble that could pay off in a very big way. The electric LEAF may well be the vehicle that moves Nissan beyond the considerable environmental shadow cast by competitors Toyota and Honda, presenting the kind of leapfrog opportunity that comes rarely and offers a finite window. No doubt, Nissan's leadership is hoping this is so and appears poised to make that leap.

Green Car Time Machine - archive articles from Green Car Journal.

When GM officially ended its EV1 electric car program in 2003 and recalled all its leased-only models, there was a feeling that it had given up on EVs. That wasn’t the case. There were rumors early on that another electric vehicle program was in the works and more evidence of this emerged just a few short years later. This article, which shares early details on the concept that would lead to the production Chevrolet Volt, is presented from our archives just as it appeared in Green Car Journal’s Winter 2006 issue. While there’s more to the Volt’s story since this electric vehicle was also discontinued in 2019 – much to the chagrin of a great many Volt owners who universally loved this vehicle and its innovative electric drivetrain – that story will have to wait for another time.

Bob Lutz introduced the Chevy Volt concept.

Back in the Electric Car Business

Excerpted from the Winter 2006 Issue: General Motors is back in the electric car business. First, the company announces a plug-in hybrid version of the Saturn Vue at the L.A. Auto Show. Now, GM has turned up the juice by unveiling the Chevrolet Volt, an “EV range-extender” concept car that makes petroleum an even smaller part of the equation. In fact, with its 40 mile pure electric range – which GM says covers more than half of all Americans’ daily commute to work and back – the Volt may eliminate the need for gasoline altogether for some drivers.

Central to the Volt concept is the new E-flex System, which GM says represents a rethinking of automotive propulsion that places primary focus on electric drive. Plugging in to a 110-volt outlet for about six hours will fully charge the car’s lithium-ion batteries. When the batteries run out after 40 miles of electric-only driving, a 1.0-liter,three-cylinder turbocharged engine runs at constant speed, turning a generator that replenishes the batteries. That engine could be replaced in future iterations of the concept with powerplants that run on pure ethanol (E100) or biodiesel, or even with a fuel cell running on hydrogen...thus the “flex” in the E-flex System.

Chevy Volt concept rolling chassis.

Chevy Volt is a Different Kind of EV

In the Volt, the gas-powered engine gets about 50 mpg while it’s working to sustain the batteries. Some quick math reveals that overall fuel economy would be a staggering 150 mpg for a  60-mile drive. Run the engine on E85 ethanol, as the Volt is capable of doing, and even more gasoline use is displaced. Importantly, the Volt is able to do all this without compromising utility, which is a significant problem that plagued the truly wonderful but now infamously defunct GM EV1. The Volt will easily seat four passengers and their luggage, accelerate to 60 mph from a standstill in under 8.5 seconds, and cruise for 640 miles without refueling.

The Volt is about the size of the compact Cobalt and based on a similar vehicle architecture, yet with a much more athletic stance. The styling is sharp, edgy, and distinctively Chevrolet. One interesting feature is a transparent roof and beltline courtesy of glazed polycarbonate material from GE Plastics. The plug-in recharging ports are tastefully integrated into the front quarter fenders on either side of the vehicle.

Chevy Volt electric concept car.

Cheaper Batteries for Chevy Volt

Unfortunately, the Volt is being held back by the same culprit that actually killed the electric car the first time around: battery technology. GM admits that it is still waiting on a technological breakthrough to produce a large, production-ready lithium-ion battery pack.

GM thinks that could happen by 2010 or 2012, though we’ve been through times of optimistic predictions like this before when battery breakthroughs just didn’t come. Still, we’re crossing our fingers on the battery issue and it’s nice to see the General all charged up again.

GM EV1 - the first modern electric vehicle.

It seems we’re well past the tipping point for electric cars now, 25 years after GM’s groundbreaking but short-lived EV1 electric car made its way to the highway. Back then, after daily life with an EV1 during a year-long test and then watching it sadly leave on a flatbed for parts unknown, I knew well the future potential that modern electric vehicles would hold. In the decades since then, automakers have committed to huge investments in expanding their electric vehicle offerings, suppliers have stepped up with new innovations,  and consumers are now interested like never before. Plus, of course, some serious government regulation and incentives are driving the electric car field ahead in ways that only government can.

But there are challenges ahead. It isn’t enough that far better electric cars are being built today with compelling features, attractive designs, and desirable performance and range. Many other elements must fall into place for electric vehicles to become the success story we all hope will come to pass, so addressing key inhibitors of an electric feature is crucial. Let’s take a look at the top 5 reality checks that are top-of-mind.

1) It's All About the Batteries

Back in the 1990s when there was great excitement at the prospect of electric cars, there were also big questions. There was no battery front-runner, though there were many technologies and chemistries at play including advanced lead-acid, nickel cadmium, nickel-metal-hydride, sodium-sulfur, sodium-bromine, zinc-air, lithium-ion, and more. Still, choices had to be made so EV programs could move forward. Ultimately, advanced lead-acid won out for small vehicle programs and the first  generation of GM EV1s, followed by better and more energy-dense electric car batteries like nickel-metal-hydride and lithium-ion.

Today, nickel-metal-hydride and lithium-ion batteries are primarily used for hybrid, plug-in hybrid, and battery electric vehicles. Lithium-ion, or one of its cousins like lithium-polymer, is used for electric vehicles due to its greater energy density and thus longer driving range. However, lithium batteries are costly and additional challenges remain.

Of great concern are instances of thermal runaway issues and a limited number of spontaneous vehicle fires caused by lithium-ion batteries. Some Teslas have suffered from such battery fires, and GM can certainly attest to this unexpected challenge since it has been involved in a recall of all Chevy Bolt EVs made due to potential fire issues, to the tune of about $1.8 billion. Hyundai went through its own recall with the Kona EV for similar issues with its batteries.

Battery technology continues to improve and costs have gravitated downward in recent years, making the cost of building electric vehicles more reasonable, though still considerably higher than building internal combustion vehicles. Yes, there are substantial cost savings realized by owning and driving an electric vehicle. But to truly be a success, at some point there must be truly affordable electric vehicles for everyone to buy, and battery safety issues must be fully resolved.

2) Where to Charge?

The ideal location for electric vehicle charging is at home with a 220-volt Level 2 wall charger. All mainstream electric vehicles support this type of charging, plus significantly slower charging with a portable ‘convenience’ charger plugged in a standard 110-volt household outlet.

Charging up with a 220-volt wall charger is convenient and efficient, with a full charge typically coming in about 2 to 10 hours, depending on the vehicle being charged and the battery’s energy level when you plug in. Simply, if your battery shows 40 miles of range left, it will take considerably longer to fully charge than if 140 miles of range is shown. For convenience, electric vehicle owners typically plug in at home during the evening so there’s a fully-charged EV waiting for them in the morning.

EV owners living in apartments, condos, and elsewhere – including dense urban areas where there may be no garage – need other solutions. To a limited degree, this is being addressed with pay-for-use chargers in common areas or even dedicated outside chargers at assigned parking spaces. Public chargers are also being installed in increasing numbers in urban developments as part of a growing public charging network. In addition, the number of chargers provided at the workplace is seeing greater interest, allowing EV owners to energize their batteries while parked at work.

Charging away from home is becoming easier with a significant expansion of a public charging network by companies like Electrify America, ChargePoint, Blink Charging, EVgo, SemaCharge, Volta, and Tesla. Still, this is a relatively nascent effort with charging opportunities far eclipsed by the abundant and convenient opportunities to refuel gasoline vehicles. Plus, to offer the kind of charging most meaningful to drivers, public chargers must ultimately offer fast-charge capability that enables gaining an additional 80 or 100 miles of range in just 20 to 30 minutes, if an EV is fast-charge capable. This network is growing but far from adequate, especially if it’s to  keep pace with the large number of electric vehicles coming to our highways. Building out a nationwide network of fast chargers is costly since the investment for each is in the neighborhood of $100,000.

3) Focus on the Grid

Many electric vehicle enthusiasts and electric utilities are quick to point out that our existing electrical grid can adequately handle the charging needs of millions of EVs on the road. We’re not so sure. Plus, if the aspirations of EV enthusiasts come to fruition, there will be many more than just a few million EVs on the road in the future.

For years, certain areas of the country have experienced power outages as electricity demand outpaced grid capacity. Heat waves exacerbate this as air conditioning use soars, something made even worse in recent times with record-setting temperatures attributed to climate change. Given the trends pointed out by climate experts, these extraordinary heat waves are likely to increase.

To this point, the California Independent System Operator, which manages electricity delivered through California’s long-distance power lines, issued multiple Flex Alerts last summer. The Flex Alerts included a request for EV owners to charge in the morning and early daytime hours to avoid placing additional load on an already-overtaxed grid. While that request is counterintuitive to the long-held notion that charging EVs overnight is ideal since electrical demand lessens during overnight hours, it may make sense in a state like California that increasingly relies on renewable power as an important, zero-emission component of electrical generation. Simply, renewables like solar and wind-generated power wane at night.

Another challenge to a future of large-scale electric vehicle charging is the increasing frequency and scope that wildfires pose to the reliable delivery of electricity. In California, a long-time leader in encouraging electric vehicles, this could become a particularly vexing issue as the state continues to battle historic wildfires. Because downed powerlines have sparked numerous catastrophic fires here, the state’s electric utilities can – and have – preemptively initiated Public Safety Power Shutoffs that cut power to regions expected to experience high winds that could cause trees to damage electrical lines. No power, no charging.

Still, this doesn’t mean that an increasingly ‘smart’ grid can’t support large numbers of electric vehicles or that strategic, system-wide upgrades can’t be made to allow the grid to effectively deal with the challenges of wind, wildfires, and climate change. It does mean we should be aware of the potential for problems and make no assumptions, but rather plan far in advance to ensure that electric vehicle charging can be done consistently and won’t overwhelm the nation’s electrical grid in any way.

4) Understanding EVs

Electric vehicles remain a very small part of today’s new vehicle market – perhaps 3% or so and growing – for a multitude of reasons. Among these are cost, the perception that a battery electric vehicle may not fulfill a driver’s varying needs, and a general hesitation to embrace what many perceive as an unfamiliar and unproved propulsion technology. When enough of your friends and neighbors are driving electric and others see how well EVs fit their driving needs, that’s all likely to change. But we have a long way to go.

There are more people today than ever who have a decent grasp of electric cars and how they work because of the much greater exposure these vehicles have in the general media. That said, there is a greater percentage that really have no clue. That must change if electric cars are to increase market share to the degree that people want and expect. EV education must happen at all levels, and fast.

New car dealers have a unique opportunity to share knowledge of electric cars with would-be buyers, especially if a dealership is committed to the cause and there’s a knowledgeable EV specialist on hand. While a new generation of automakers aiming to exclusively sell EVs have their educational and outreach strategy down, legacy automakers largely do not. Those coming to dealerships are generally prospecting for a new car purchase or lease, now or later. They want to compare models and features, sit behind the wheel, and take a test drive.

While more electric vehicle product is being offered than in previous years, most buyers will not gravitate toward them naturally. What better opportunity than to encourage a first drive of a new electric model? The experience will be enlightening for those who have never been behind the wheel of an electric, with the seamless driving experience and unexpected performance a likely surprise. Leaving a dealership with a greater understanding of electric vehicles and how they work will return rewards, whether in the short- or long-term.

5) If You Build It, They Will Come

If you bet everything on a decision that may drive you past the point of no return, is it the right choice? That depends on the outcome, of course. It worked for Kevin Costner’s character Ray Kinsella in the film Field of Dreams, as he literally bet the farm on blind faith that forces beyond understanding would beckon folks to the baseball diamond in his Iowa cornfield. The movie was compelling and its emotional attraction undeniable. So, too, is the prospect of millions of zero-emission electric vehicles plying our nation’s highways.

We were able to relive Field of Dreams in 2021 as the Yankees and White Sox played a real-life game at a Major League Baseball stadium amid the cornfields, next to the Dyersville, Iowa diamond seen in Field of Dreams. And now we’re living with the very real prospect of an electric vehicle future, with many dedicated people, companies, and institutions focused on making it happen. Still, will that brand of faith work for electric cars?

Amid all the challenges, automakers new and old are betting their future – and possibly ours – that it will.

There’s something almost magical about plugging your car into an outlet at night and waking up to a full ‘tank’ in the morning. There’s no need for a stop at the gas station, ever. Plus, there’s no nagging guilt that the miles metered out by the odometer are counting off one’s contribution toward any societal and environmental ills attendant with fossil fuel use.

This is a feeling experienced during the year Green Car Journal editors drove GM’s remarkable EV1 electric car in the late 1990s. Daily drives in the EV1 were a joy. The car was sleek, high-tech, distinctive, and with the electric motor’s torque coming on from zero rpm, decidedly fast. That’s a potent combination.

This image has an empty alt attribute; its file name is EV1-Rolling-Chassis-Illustration-1024x576.jpgThe EV1 is long gone, not because people or companies ‘killed’ it as the so-called documentary Who Killed the Electric Car suggested, but rather because extraordinarily high costs and a challenging business case were its demise. GM lost many tens of thousands of dollars on every EV1 it built, as did other automakers complying with California’s Zero Emissions Vehicle (ZEV) mandate in the 1990s.

Even today, Fiat Chrysler CEO Sergio Marchionne says his company loses $14,000 for every Fiat 500e electric car sold. Combine that with today’s need for an additional $7,500 federal tax credit and up to $6,000 in subsidies from some states to encourage EV purchases, and it’s easy to see why the electric car remains such a challenge.

This image has an empty alt attribute; its file name is Fiat-500-Underhood-1024x576.jpg

This isn’t to say that electric cars are the wrong idea. On the contrary, they are perceived as important to our driving future, so much so that government, automakers, and their suppliers see electrification as key to meeting mandated 2025 fleet-wide fuel economy requirements and CO2 reduction goals. The problem is that there’s no singular, defined roadmap for getting there because costs, market penetration, and all-important political support are future unknowns.

The advantages of battery electric vehicles are well known – extremely low per-mile operating costs on electricity, less maintenance, at-home fueling, and of course no petroleum use. Add in the many societal incentives available such as solo driving in carpool lanes, preferential parking, and free public charging, and the case for electrics gets even more compelling. If a homeowner’s solar array is offsetting the electricity used to energize a car’s batteries for daily drives, then all the better. This is the ideal scenario for a battery electric car. Of course, things are never this simple, otherwise we would all be driving electric.

This image has an empty alt attribute; its file name is EV-Charging-1024x576.jpgThere remain some very real challenges. Government regulation, not market forces, has largely been driving the development of the modern electric car. This is a good thing or bad, depending upon one’s perspective. The goal is admirable and to some, crucial – to enable driving with zero localized emissions, eliminate CO2 emissions, reduce oil dependence, and drive on an energy source created from diverse resources that can be sustainable. Where’s the downside in that?

Still, new car buyers have not stepped up to buy battery electric cars in expected, or perhaps hoped-for, numbers, especially the million electric vehicles that Washington had set out as its goal by 2015. This is surprising to many since electric vehicle choices have expanded in recent years. However, there are reasons for this.

This image has an empty alt attribute; its file name is Toyota-Tesla-RAV4-EV-Side-1-1024x576.jpg

Electric cars are often quite expensive in comparison to their gasoline-powered counterparts, although government and manufacturer subsidies can bring these costs down. Importantly, EVs offer less functionality than conventional cars because of limited driving range that averages about 70 to 100 miles before requiring a charge. While this zero-emission range can fit the commuting needs of many two-vehicle households and bring substantial fuel savings, there’s a catch. Factoring future fuel savings into a vehicle purchase decision is simply not intuitive to new car buyers today.

Many drivers who would potentially step up to electric vehicle ownership can’t do so because most electric models are sold only in California or a select number of ‘green’ states where required zero emission vehicle credits are earned. These states also tend to have at least a modest charging infrastructure in place. Manufacturers selling exclusively in these limited markets typically commit to only small build numbers, making these EVs fairly insignificant in influencing electric vehicle market penetration.

This image has an empty alt attribute; its file name is BMW-i3-Action-1024x576.jpg

Battery electric vehicles available today include the BMW i3, BMW i8, Chevrolet Spark EV, Fiat 500e, Ford Focus Electric, Honda Fit EV, Kia Soul EV, Mercedes-Benz B-Class Electric Drive, Mitsubishi i-MiEV, Nissan LEAF, Smart ForTwo Electric Drive, Tesla Model S, Toyota RAV4 EV, and VW e-Golf. While most aim at limited sales, some like BMW, Nissan, and Tesla market their EVs nationwide. The Honda Fit EV and Toyota RAV4 EV are being phased out. Fleet-focused EVs are also being offered by a small number of independent companies. Other battery electrics are coming.

BMW’s i3 offers buyers an optional two-cylinder gasoline range extender that generates on-board electricity to double this electric car’s battery electric driving range. A growing number of electrified models like the current generation Prius Plug-In and Chevy Volt can also run exclusively on battery power for a more limited number of miles (10-15 for the Prius and up to 40 miles in the Volt), and then drive farther with the aid of a combustion engine or engine-generator. Both will offer greater all-electric driving range when they emerge as all-new 2016 models. Many extended range electric vehicles and plug-in hybrids like these are coming soon from a surprising number of auto manufacturers.

This image has an empty alt attribute; its file name is Coda-EV-1024x576.jpgIt has been an especially tough road for independent or would-be automakers intent on introducing electric vehicles to the market. Well-funded efforts like Coda Automotive failed, as have many lesser ones over the years. Often enough, inventors of electric cars have been innovative and visionary, only to discover that becoming an auto manufacturer is hugely expensive and more challenging than imagined. In many cases their timeline from concept and investment to production and sales becomes so long that before their first cars are produced, mainstream automakers have introduced models far beyond what they were offering, and at lesser cost with an established sales and service network to support them.

A high profile exception is Tesla Motors, the well-funded Silicon Valley automaker that successfully built and sold its $112,000 electric Tesla Roadster, continued its success with the acclaimed $70,000-$100,000+ Model S electric sedan, and will soon deliver its first Tesla Model X electric crossovers. While Tesla has said it would offer the Model X at a price similar to that of the Model S, initial deliveries of the limited Model X Signature Series will cost a reported $132,000-$144,000. It has not yet been announced when lower cost 'standard' Model X examples will begin deliveries to Tesla's sizable customer pre-order list.

This image has an empty alt attribute; its file name is Tesla-Model-S-on-Road-1-1024x576.jpgTesla’s challenge is not to prove it can produce compelling battery electric cars, provide remarkable all-electric driving range, or build a wildly enthusiastic – some would say fanatical – customer base. It has done all this. Its challenge is to continue this momentum by developing a full model lineup that includes a promised affordable model for the masses, its Model 3, at a targeted $35,000 price tag. It will be interesting to see if the Model 3 ultimately comes to market at that price point.

This is no easy thing. Battery costs remain very high and, in fact, Tesla previously shared that the Tesla Roadster’s battery pack cost in the vicinity of $30,000. While you can bury the cost of an expensive battery pack in a high-end electric car that costs $70,000 to over $100,000, you can’t do that today in a $35,000 model, at least not one that isn’t manufacturer subsidized and provides the 200+ mile range expected of a Tesla.

This image has an empty alt attribute; its file name is Tesla-Model-X-Falcon-Wing-Doors-1024x576.jpgThe company’s answer is a $5 billion ‘Gigafactory’ being built in Nevada that it claims will produce more lithium-ion batteries by 2020 than were produced worldwide in 2013. The company’s publicized goal is to trim battery costs by at least 30 percent to make its $35,000 electric car a reality and support its growing electric car manufacturing. Tesla has said it’s essential that the Gigafactory is in production as the Model 3 begins manufacturing. The billion dollar question is…can they really achieve the ambitious battery and production cost targets to do this over the next few years, or will this path lead to the delays that Tesla previously experienced with the Tesla Roadster, Model S, and Model X?

Tesla is well-underway with its goal of building out a national infrastructure of SuperCharger fast-charge stations along major transportation corridors to enable extended all-electric driving. These allow Tesla vehicles the ability to gain a 50 percent charge in about 20 minutes, although they are not compatible with other EVs. For all others, Bosch is undertaking a limited deployment of its sub-$10,000 DC fast charger that provides an 80 percent charge in 30 minutes. A joint effort by ChargePoint, BMW, and VW also aims to create express charging corridors with fast-charge capability on major routes along both coasts in the U.S.

This image has an empty alt attribute; its file name is Chargepoint-Charger-1-1024x576.jpgThe past 25 years have not secured a future for the battery electric car, but things are looking up. The next 10 years are crucial as cost, infrastructure, and consumer acceptance challenges are tackled and hopefully overcome to make affordable, unsubsidized electric cars a mass-market reality. It is a considerable challenge. Clearly, a lot of people are counting on it.

General Motor has debuted its first all-electric car since the sporty EV1 that was sold for a time in the 1990s. The Chevrolet Spark EV is basically a Korean-built, five-door Spark subcompact sedan converted into an electric vehicle. However, the drive unit and motor will be assembled at GM’s White Marsh, Maryland manufacturing facility using parts sourced from U.S. and global suppliers.

The Spark EV is powered by a GM-designed, coaxial drive unit and electric motor. Rated at 130 horsepower and 400 lb-ft torque, this motor can accelerate the four passenger EV to 60 mph in under eight seconds. Electric energy is stored in the 20 kilowatt-hour lithium-ion battery. The 560 pound battery pack consists of 336 prismatic cells. It’s warranted for eight years or 100,000 miles. GM has not provided range estimates for the Spark EV, but it is expected to match or exceed that of competitive EVs like the Nissan LEAF and Ford Focus EV, or about 80 miles under real world conditions.

SAE Combo DC Fast Charging will be optional. This will allow the Spark EV to reach 80 percent of full battery charge in as little as 20 minutes in fast-charge mode. A common on-board charging receptacle accommodates all three charging systems – DC Fast Charge, AC 240V, and AC 120V. Using a dedicated 240V outlet, the Spark EV recharges in less than seven hours.

Owners can control charging according to their expected departure time or when electric rates are lowest. Managing and monitoring the vehicle is also possible remotely via computer at OnStar.com, or with a special Chevrolet Mobile App powered by OnStar Remote Link. Drivers can view critical vehicle functions on one of two reconfigurable, high-resolution, seven-inch color LCD screens. Information includes a confidence gauge showing expected driving range based on driving habits and other conditions.

Many external changes are made from the regular Spark to improve aerodynamic efficiency and reduce range-killing drag. The result is a drag coefficient of 0.325 Cd and 2.5 additional miles of range. Low rolling resistance tires add another five to seven miles.

GM says the Spark EV will go on sale in summer 2014. It will initially be sold in California and Oregon, thus at least for now it is considered a ‘compliance’ EV that is being marketed mainly to meet California’s ZEV mandate. The mandate will require 15 percent of cars sold in this state by 2025 to be zero emission vehicles. It will also be available in Canada, Korea, and other global markets. The Spark EV will list for just under $32,500 and qualify for a $7,500 federal tax credit. Even with this incentive, the electric version is nearly double the base price of Chevy’s gasoline-powered Spark. Californians could get an additional $2,000 to $2,500 rebate to help soften the price differential.