Green Car Journal logo
Damian Breen, founder of Environmental Communications Strategies.
Damian Breen, founder of Environmental Communications Strategies.

In June, the CEO of German manufacturer MAN Truck & Bus SE (MAN), Alexander Vlaskamp, told Austrian Newspaper Der Standard that:“E-mobility is coming now. The technology is mature and most efficient. In our estimation 80 or even 90 percent of logistics trucks will be electrically powered…If hydrogen is to be used, it must be green. And we see today that hydrogen is far too expensive (and) therefore, hydrogen will only be used in a small segment in Europe, such as for special transport.”

I became aware of this pronouncement through a friend in the U.S. trucking industry, who attached the article to an e-mail, saying, “So, hydrogen is dead!” Even as someone who has never been afraid to hold strong opinions on technology, I remember reading my friend's e-mail and thinking, “Well, that’s a bit extreme isn’t it?” Then I took some time to read Mr. Vlaskamp’s full interview and, in fairness, what he said is nuanced. He is not saying all hydrogen is too expensive or that the technology doesn’t work. He is simply pointing out that the cost of ‘green’ hydrogen as a fuel is too high for his customers to do their business.

Fair enough, Vlaskamp knows his customers, and trucking has and will always be a bottom-line driven industry. However, he goes on to state that there is already enough electricity in Austria to deal with the trucking fleet transition, and that to support the 30 percent of trucks in Europe going electric by 2030, 20,000 fast-charging stations will be needed, at a cost of several billion euros! This is where he loses me and quite a few others, as we will see below.

Here in the U.S., as the battle over the California Air Resources Board (CARB) Advanced Clean Fleets (ACF) regulation spills over into Congress, companies and truckers are faced with impossible choices. Do they wait to see if the bills introduced by Rep. John Joyce (R-PA) in the House of Representatives and/or Sen. Markwayne Mullin (R-OK) in the Senate, forestall CARB’s rule, or do they start to plan for the zero-emission future now? They haven’t got much time to figure it out; CARB’s rule goes into effect for the first trucks in 2024. One thing is certain: Europe’s second-largest truck manufacturer muddying the waters regarding technology choices won’t help anyone! To try and make sense of whether hydrogen is an option for U.S. trucking, I decided to talk to three experts in the field.

Batteries Can't Do It All

Dr. Tim Lipman is an energy and environmental technology, economics, policy researcher and lecturer with the University of California, Berkeley. His research focuses on electric-drive vehicles, fuel-cell technology, combined heat and power systems, biofuels, renewable energy,  and hydrogen-energy systems infrastructure. When I spoke to Tim about the MAN CEO’s thoughts on hydrogen and electric trucks, he had this to say: “Batteries can’t do it all, that is for certain, and I think everyone is underestimating the level of effort needed to get the grid ready for transportation electrification.” He pointed to the fact that fast-charging infrastructure for trucks might require megawatts of power, and whether that power is drawn directly from the grid or from on-site battery storage, it will not be cheap. He also stated that the engineering and technology challenges for charging sites could be significant, given the geographic locations of California’s truck parking sites relative to the grid, the anticipated load growth from truck charging, and the capacity of certain electrical feeder lines. Tim believes these challenges and their costs have already made several public bus fleets (subject to a separate CARB zero- emission rule) reverse course on battery-electric buses in favor of hydrogen fuel cell electric buses.

Hydrogen Cost Will Come Down

On the costs of hydrogen, currently retailing somewhere between $16 to $36 per kg, Dr. Lipman was very clear that it is too high. He points to the war in Ukraine, and the entry of California refiners into the low-carbon fuel standard (LCFS) credits program, as being significant contributors to the current cost issue. The Ukraine war has caused the costs of natural gas, a raw material for the steam reformation of hydrogen, to rise sharply; and the conversion of some California refineries to renewable fuels has halved the payments available for LCSF credits from CARB for the sale of hydrogen. However, he believes that the recent announcement of $7 billion in federal grant funding to establish regional clean hydrogen hubs in 16 states will have a big impact on driving down costs. Because of his involvement in California’s successful application to the U.S. Department of Energy for one of these hubs, Tim was reluctant to give his thoughts on how much hydrogen could retail for, simply saying that the hubs will make hydrogen a lot cheaper.

Finally, Tim took some time to explore the comments on ‘green’ hydrogen by MAN’s CEO, noting that it might be more helpful to look at the fuel’s production and carbon intensity. Tim explained that the term ‘green’ hydrogen means production of the gas from the electrolysis of water using renewable electricity. This pathway is preferred by many in the environmental movement, as it dispenses with the steam reformation of methane completely. Hydrogen from any form of methane is viewed by some as a bait and switch strategy by a fossil fuels industry, the currently leading producer of U.S. hydrogen, seeking to extend the use of natural gas.

Low Carbon Hydrogen Production

However, Tim pointed out that other production methods, such as the steam reformation of bio-gas (i.e. methane created from animal manure or wastewater bio-digestors) could be less carbon intensive than ‘green’ hydrogen. This is due to the fact that the releasing of bio-gas directly to the atmosphere has a much more detrimental impact on climate than converting it to hydrogen. Therefore, if we look to carbon intensity and climate impacts as our north star (and don’t get hung up on the hydrogen color wheel), investing in these other low-carbon production methods could increase hydrogen supply and bring down costs significantly. This certainly would change the economics of the fuel dramatically for Mr. Vlaskamp and his customers.

Hyundai-XCIENT hydrogen fuel cell truck on the road.

I also spoke with Dr. Matt Miyasato, Vice President of Strategic Growth and Government Affairs for FirstElement Fuel, the largest retailer of hydrogen fuel stations in the world. Prior to joining FirstElement Fuel, Matt served as Deputy Executive Officer and Chief Technologist at the South Coast Air Quality Management District. Matt was taken aback by the MAN CEO’s comments, stating: “This is really premature! There is no silver bullet, and we are going to need all the solutions.”  Matt went on to say that electricity is a great solution for fleets traveling shorter routes (up to 40 miles), with fixed hubs that are well supplied with electricity and a duty cycle that allows for overnight charging. However, he too cautioned regarding the ability to install the charging infrastructure, even in the best of circumstances. He expressed concern with the existing grid infrastructure, the possible need for battery banks to charge multiple vehicles, the huge amount of electricity needed, and the rate at which vehicles can charge. In fact, Dr. Miyasato’s main objection to Mr. Vlaskamp’s comments was that they totally discounted the needs of many drivers and fleets. For some truckers, the time required to recharge batteries is simply not practical or cost effective. Time is money in the trucking business, and extensive wait times to recharge trucks won’t cut it.

Consider All Technologies/Fuels

That’s not to say that the hydrogen infrastructure is perfect. Matt did own up to issues related to the cost of the fuel and the ability to permit, roll out, and maintain stations. However, he also noted that no one had yet built an electrical retail infrastructure for long-distance truck routes (those over 200 miles), whereas his company planned to launch their first truck fueling station in Oakland, California, in December 2023. He said, “With what we know today about costs and engineering, it would be very short-sighted to write off any technology path at this point.”

Finally, I spoke with Jaimie Levin, Director of West Coast Operations and Senior Managing Consultant for the Atlanta-based Center for Transportation and the Environment (CTE). Jaimie previously worked as Director of Environmental Technology at the Alameda-Contra Costa Transit District (AC Transit) where he oversaw the alternative fuels deployment program. He currently heads up the NorCAL ZERO advanced technology demonstration project, which is bringing 30 Hyundai Xcient fuel cell electric trucks into service at the Port of Oakland in northern California. These Class 8 vehicles have a range of between 400 and 500 miles and a payload capacity of 39,000 lbs. This project is in the road trials phase, with 10 trucks currently deployed hauling steel from the port to California’s Central Valley.

Critical Factors for Truckers

Jaimie stated that the current crop of Class 8 battery-electric trucks, while working fine in the hub model described by Dr. Miyasato, were “really working against what truckers need.” He cited four critical factors for truckers – range, payload capacity, fueling speed, and resiliency. On range, Jaimie states that trucks with variable routes can’t have limits. They need to be able to do whatever route and distance are required by a job. On payload, he cited the total weight limits on the California and national highway system as being a serious issue for battery-electric trucks. The weight of current battery trucks that can travel 250 miles could be as much as 2,000 lbs. more than their diesel counterparts. In an industry where payload is ‘the’ thing, that would reduce carrying capacity and profit. On fueling speed, Jaimie stated that truckers can’t wait around for an hour for their rig to charge up. Costs and deadlines simply won’t allow it. Lastly, on resiliency, he talked about the strain put on California’s grid in the last few years by wildfires, extreme heat, and public safety power shutoff events. He notes that in trucking, you can’t have uncertainty on whether you can refuel your vehicle or not. An excellent point, considering that 77 percent of California communities rely solely on trucking for the movement of their goods.On the cost of fuel, Jaimie reiterated that it needs to come down, citing the same factors previously noted, and hopes that the hydrogen hubs will impact prices. On the cost of the trucks themselves, he believes that the economies of scale will have a big impact on driving down the total cost of ownership, making them comparable to diesel, but agrees that the initial cost of the truck itself will remain high.

I have spent some time looking at the future of battery technology – including lighter weight and faster charging options - and I discussed this with all three experts. While they see the new offerings as solving some issues with current battery trucks, they believe that they do not move the needle on power availability and the cost of infrastructure to charge electric trucks.

Conclusions

Hydrogen is far from done in terms of being a fuel for heavy-duty trucks, but its cost needs to come down quickly! Also, issues with the electric infrastructure and the location of California’s truck parking will hinder the rollout of battery-electric vehicles. This means neither technology is perfect and neither meets the needs of every trucking duty cycle. So, rather than trying to pick the winner in this technology horse race, truckers will need to explore their options based on their own unique locations and business needs. This won’t be easy but eliminating technologies out of hand makes no sense at this point.

Damian Breen is the founder of Environmental Communication Strategies and former Deputy Executive Officer of the Bay Area Air Quality Management District in California.

Rear view of a Ford hydrogen hybrid SUV.

Plug-in electric vehicles. Hydrogen fuel cell cars. Hybrids. Plug-in hybrids. All have come to the fore over the years, and we’ve noted their unique impact on the automotive landscape. While these technologies share similarities in that they all employ different ways of managing electricity to power electric motors, it’s been pretty easy to draw lines between them. But what if those lines were blurred in the interest of creating a new and possibly better answer, like maybe…a plug-in hydrogen hybrid?

Actually, that question was on the minds of creative souls at Ford some 15 years ago. Back then, the automaker explored new paths with its Ford Edge HySeries, a drivable demonstration vehicle unveiled at the Washington, D.C. Auto Show.

Display showing operation of a hydrogen hybrid vehicle.

This Hydrogen SUV Plugs In

The HySeries combined power from the grid by plugging into an electrical outlet, just like an electric car or plug-in hybrid. It used a hydrogen-powered fuel cell to provide electricity, just like other fuel cell vehicles. And it managed its two power supplies via on-board battery storage, just like hybrid and plug-in hybrid cars do today.

Central to the HySeries Drive, both figuratively and physically, was a 336-volt lithium-ion battery pack that powered the electric motors at all times. Electricity from the grid and the fuel cell didn’t get to the wheels without first going through this battery pack. In this single-path flow of power, the power unit – the fuel cell – and the batteries were designed to act in series.

Illustration of a hydrogen hybrid drivetrain.

Series Versus Parallel Hybrid

With the notable exception of a few models like the Chevrolet Volt, in most hybrids the batteries and engine operate in parallel. That is, the engine can still directly send power to the wheels with the battery stepping in to provide boost or take over as necessary. These hybrids do periodically act like a series configuration by using the engine to charge the batteries back up, for instance. The difference is that the HySeries Drive runs exclusively in series mode…thus, the name.

What’s the advantage? In a word, simplicity, according to Ford at the HySeries’ auto show debut. Operating in series streamlined the process by eliminating the extra hardware – and complex management software – of two propulsion systems in favor of a single power flow. By the same token, this made the HySeries Drive remarkably versatile.

Hydrogen fueling inlet in a vehicle.

In the Ford Edge prototype presented here, the fuel cell acted as a range extender, providing electrical power when the batteries ran low on their grid-sourced charge. But that range extender could just as well have been an engine powered by gasoline or some other alternative fuel. The thinking was that any new fuel or propulsion technology could be swapped in as it became available, with the underlying architecture of the HySeries Drive the same in any case.

The Ford Edge with HySeries Drive was designed to demonstrate the logic of this approach. According to Ford, the size, weight, cost, and complexity of this particular drivetrain was reduced by more than 50 percent compared to conventional fuel cell systems at the time. By relying more on the battery pack and the grid-sourced electricity, the demands on the fuel cell system were reduced as well. This meant the Ballard-supplied fuel cell would last longer and less hydrogen would need to be stored on-board.

Ford Edge hydrogen hybrid SUV.

Hydrogen Hybrid Operation

Out on the road, the Edge was designed to drive 25 miles on battery power alone. When the battery pack was depleted to 40 percent charge, the fuel cell turned on and began generating electricity to replenish the batteries. The 4.5 kg of hydrogen stored in a 5,000 psi tank was enough to extend the range another 200 miles, for a total of 225 miles. Ford pointed out that range was highly dependent on driving conditions. In fact, it was also said that careful driving could potentially squeeze more than 400 miles from the fuel supply. Given that on-board hydrogen is now typically stored in 10,000 psi cylinders rather than the earlier 5,000 psi variants of the HySeries’ time, that driving range had the potential to be significantly greater.

Actual fuel economy would depend on the length of a trip. For those driving less than 50 miles a day, the Edge with HySeries Drive would be expected to return a miles-per-gallon equivalent of 80 mpg. Longer drives tapping further into the hydrogen supply would bring combined city/highway equivalent fuel economy down to 41 mpg, still respectable for a crossover SUV. Of course, while the fuel economy rating may have had a gasoline equivalent, the emissions did not. That is, there weren’t any emissions at all…at least not from the vehicle itself.

Ford Edge HySeries hydrogen hybrid.

As innovative as Ford’s HySeries Drive was, it was not totally unique. Also in 2007, Chevrolet showcased its Volta concept using GM’s E-Flex System, which later evolved into the Chevrolet Volt powertrain. Both Ford and GM approaches relied on a large lithium-ion battery pack operating in series with a separate power source that charged batteries when they ran low. Notably, both systems offered plug-in capability. While the HySeries incorporated advanced hydrogen fuel cell power, the Chevy Volta did not, though GM did share this was a future possibility. Rather, the Volta, like the production Chevrolet Volt to come, used a 1.0-liter gasoline engine as its range-extender,

Birth of the Plug-In Hybrid

What we saw in the Ford Edge with HySeries, the Chevrolet Volta, and other concepts to follow was the underlying development of a drivetrain showcasing a new propulsion category carving its place into the mainstream – the plug-in hybrid vehicle. At the same time, both GM and Ford seemed eager to link their conception of the plug-in hybrid to the trek toward hydrogen-based transportation, which at the time was the official long-term goal of these two major automakers and others. In this sense, the plug-in hybrid would conceptually follow the conventional hybrid as another intermediary step on the path to hydrogen power.

Rear view of the Ford HySeries hydrogen hybrid vehicle.

Of course, to expect such a simple, linear progression – gasoline, hybrid, plug-in hybrid, hydrogen – is, and was, naïve. But that’s the core challenge with predicting the future of any industry, or of life in general, for that matter. Emergent and divergent technologies, parallel paths, and new alternatives are guaranteed along the automobile’s evolutionary path. In particular, we have seen that in recent years with the breakout of all-electric vehicles into the automotive mainstream, in numbers that were not envisioned by most at the time the HySeries was revealed.

With the HySeries-equipped Edge, Ford presented a surprisingly realistic look at how HySeries Drive – or something like it – could one day take to the road. It sat on the cutting edge of a broad trend away from petroleum-burning internal combustion and toward electrically-powered transportation, a trend that is accelerating today.

Hydrogen fuel cell vehicle illustration.

Our journey of discovery with hydrogen vehicles started with the Mercedes-Benz’ fuel cell-powered NECAR II (New Electric Car II) in Berlin back in the mid-1990s. Since then, we have driven an array of hydrogen fueled vehicles from the world’s automakers on test tracks and on the highway. Along the way we have analyzed their capabilities and the strides being made in the hydrogen vehicle field over time, always impressed with constant improvement in their technology, cost, durability, component downsizing, and packaging.

What we’ve found in recent years is that hydrogen fuel cell vehicles drive like their more conventional counterparts, exhibiting satisfying levels of power and an overall positive driving experience. Their cabins are quiet, devoid of earlier developmental issues like gear whine or compressor noise. There is no sound or vibration from internal combustion because power is generated electrochemically without combustion. This electricity powers one or more electric motors that drive the vehicle, just like a battery EV. No greenhouse gases are produced and no emissions other than water vapor.

Driving the Equinox Fuel Cell

While there have been many important milestones over the years from the automakers pursuing hydrogen power, perhaps none was as notable as our experience driving GM’s Chevrolet Equinox Fuel Cell in 2007. At the time we knew the crossover we were piloting was one of the most advanced vehicles on the planet, Yet we set out on our drive chatting away with our GM guide almost oblivious to the high technology at work as we motored along, as if this was an everyday journey. That was a telling moment.

It may be that this crossover vehicle was fueled with hydrogen, created its power through an electrochemical process in lieu of combustion, and used the same kind of technology that created electricity and water onboard the Space Shuttle of the era. No matter. Driving it felt so normal . We were completely at ease during the drive with little thought of the processes at work behind the scenes. And that’s just what GM – and in fact, the entire automotive industry – was after. The deed was done.

It wasn’t always so, though developers of fuel cell vehicles had come ever-closer over the years. The ultimate goal was to create hydrogen fuel cell vehicles that disguised all the advanced technology at work. From the driver’s seat, some fuel cell vehicles leading up to our Equinox Fuel Cell drive were more seamless than others, like Toyota’s FCHV and Honda’s FCX. In many cases, though, developmental fuel cell vehicles functioned quite well but were still a degree of separation from production vehicles in certain areas.

Hydrogen Fuel Cell Challenges

Among the many challenges of the day was making the electrically powered drive-by-wire systems required in fuel cell vehicles act and feel like familiar mechanical systems of the day. At times, accelerator and brake pedal input routed through central control units felt a bit too much like on-off switches in developmental fuel cell vehicles. While otherwise eerily silent, high-pitched electric motor whine and sometimes fuel cell compressor noise were present. These challenges were being aggressively addressed as fuel cell vehicle development marched ahead, and they appeared fully resolved in the Chevy Equinox Fuel Cell crossover we were driving.

Soon after our time behind the wheel of the Equinox, drivers in suburban Los Angeles, New York City, and Washington D.C. also had the ability to experience these vehicles through the automaker’s “Project Driveway.” This program placed more than 100 Equinox Fuel Cell vehicles in the hands of private motorists ranging from regular families to celebrities. Drivers were provided free use of an Equinox Fuel Cell and the hydrogen fuel needed to run it for an average period of about three months. In return, participants provided GM feedback about the vehicles’ performance and their views about the experience.

Following our test drive of the Equinox Fuel Cell, , we were certain these advanced hydrogen vehicles would have no problems keeping up with the daily driving demands of Project Driveway participants. Plenty of space for four passengers and 32 cubic feet of cargo volume were afforded by careful packaging of GM’s fourth-generation fuel cell propulsion system, including a 1.8 kWh nickel-metal-hydride battery pack and three 10,000 psi hydrogen storage tanks.

Driving 160 Miles on Hydrogen

The Equinox Fuel Cell’s 160 mile driving range was designed to meet the needs of most driving chores. Sub-freezing operating capability was an additional advancement of particular importance to East Coast drivers. As is the case with most fuel cell vehicles, fueling up the Equinox with hydrogen was done in about the same amount of time as filling up a gasoline car. The hydrogen-powered Equinox Fuel Cell met the same federal safety standards as all cars. Importantly, it also attained the important benchmark of being certified a zero-emission vehicle (ZEV) by EPA, the ultimate goal for all motor vehicles of the future.

Chevrolet’s Equinox Fuel Cell so impressed Green Car Journal editors at the time that it was recognized with the magazine’s Green Car Vision Award™. This marked the first time the magazine honored a limited production vehicle for its forward-thinking technologies and potential for influencing the future of personal mobility. For a highly advanced developmental hydrogen vehicle tasked with shepherding in an entirely new age of transportation, that’s perhaps the highest praise we could give.

Chevrolet Equinox Fuel Cell vehiclesIt may be more straightforward to add hydrogen fueling stations than previously thought. One of the many challenges faced by a developing hydrogen fueling infrastructure is where to site new stations. Thus, the thought: What if hydrogen fueling could be added to existing gas stations at a more affordable cost?

A recent study by Sandia National Laboratories concludes that a number of existing gas stations in California can safely store and dispense hydrogen, illustrating that a broader network of hydrogen fueling stations may be within reach. Seventy gas stations in California – the state with the largest number of existing hydrogen stations – were examined to determine if any could add hydrogen fueling based on the 2011 NFPA 2 hydrogen technologies code published by NFPA (National Fire Protection Association).

The result? It appears that 14 of the 70 stations explored could readily accept hydrogen fuel, with an additional 17 potentially able to integrate hydrogen with property expansions. The code provides fundamental safeguards for the generation, installation, storage, piping, use, and handling of hydrogen in gaseous or cryogenic liquid form. According to Sandia, a key factor in the codes is the separation required for fueling infrastructure, including fuel dispensers, air intakes and tanks, and storage equipment. The code defines required distances between such components and public streets, parking, on-site convenience stores, and perimeter lines around the site.

The study shows that more hydrogen fueling stations can be built if safety issues are examined within a technical framework that focuses on the real behaviors of hydrogen. Under the previous code, which was developed through an expert opinion-based process rather than the risk-informed process developed by Sandia, virtually no hydrogen fuel cell stations could be sited at existing stations. Also, the previous code was developed for flammable gases in an industrial setting, which carries different risks compared to hydrogen fuel at a fueling station.

ron-cogan-test-driverI was changed by the 1990 introduction of the GM Impact electric car prototype at the Los Angeles Auto Show, then again by the amazing array of electric, hydrogen, and ‘green’ vehicles I witnessed at the 1991 Tokyo Motor Show. I knew that 'green' cars would be important. So, for 25 years now, this has been my focus at Green Car Journal and also at GreenCarJournal.com, plus an additional six years while feature editor at Motor Trend.

Covering this field for 25 years lends an invaluable perspective that’s important to understanding not only where we’ve been, but where we’re headed. There’s plenty of ‘green’ car news to share these days so it’s important to place it in context…and yes, that comes again with perspective and having been there while this all unfolded.

It has been enlightening to document the early research and development of the vehicles we take for granted today. While there is no crystal ball for predicting the automobile’s future, I’ve long been fascinated by researching patents for advanced and alternative fuel vehicle technologies because this does reveal what automakers and their technology suppliers have in mind for the years ahead.

Several decades ago, many of these vehicles and technologies were but ideas to potentially pursue, the subject of technology deep dives I attended, or opportunities that allowed driving advanced technology test mules on the track at automakers’ proving grounds.

Two of these experiences in the 1990s come readily to mind – driving a Japanese-market Toyota Crown sedan outfitted with an early gasoline-electric hybrid drive and a Geo Storm equipped with a prototype battery electric powertrain. These powerplants evolved to become the Hybrid Synergy Drive powering Toyota’s Prius and the electric drivetrain powering the GM EV1. The production versions were worlds better than the early prototype powertrains, lending the perspective to see just how far the technology had come.

Early developmental electric drive vehicles were often quirky and unexpectedly noisy in myriad ways, with high-pitched motor controller frequency noise and gear whine very apparent against a near-silent background devoid of internal combustion. The first natural gas vehicle prototypes often suffered from an annoying high-volume gaseous fuel injector clatter. Developmental hydrogen fuel cell vehicles sacrificed loads of space for large and cumbersome fuel cells and hydrogen storage. High efficiency diesel vehicles of decades past were unacceptably loud and emitted soot. Gasoline cars with high fuel economy were small, often lacking the creature comforts consumers expect and an illustration that sacrifice was required to achieve efficiency. Accomplishing extremely low tailpipe emissions often came at the expense of performance.

GM Impact electric car prototype.Drive an electric, natural gas, hydrogen fuel cell, high mpg gasoline, or high efficiency diesel personal-use vehicle today and they are quiet, usually quick, and ‘normal’ in all respects. A great many conventional internal combustion vehicles are now near-zero emission…not that you’d know it because they achieve this so seamlessly. We have great ‘green’ vehicles today because a lot has transpired over the past 25 years. Perspective.

I am confident that all of these vehicles, technologies, and fuels will play an important part in our motoring future. If the past 25 years are any indication, the vehicles we’ll be driving in the years ahead will be just amazing.

toyota-fcvToyota has unveiled its hydrogen fuel cell vehicle that will be available for sale to California customers in summer 2015. The Toyota FCV four-door sedan is forward-looking with its blending of traditional sleek styling and aggressive futuristic exterior touches.

This is quite a departure from the Hyundai Tucson Fuel Cell now on sale in California that packages hydrogen fuel cell power within a conventional-looking Tucson SUV. Honda took a more middle-of-the-road approach with its FCX Clarity fuel cell sedan that it began leasing to limited numbers of California customers in 2008, offering an advanced body design that, while not necessarily wildly futuristic, did preview many of the styling cues that would show up in Honda’s model lineup in future years.

toyota-fcv-rearLike its fuel cell competitors, the Toyota FCV is driven by electric motors powered by electricity electrochemically generated by a hydrogen fuel cell. Since there is no combustion, no CO2 is produced and the car emits only water vapor. The Toyota FCV is expected to travel 300 miles on a tank of hydrogen, providing the advantages of an electric car without the limitations of short driving range. Refueling is said to take less than five minutes.

While hydrogen fueling opportunities are admittedly sparse these days, Toyota is working toward a solution in California through its partnership with FirstElement Fuels. The aim is to support the long-term operation and maintenance of 19 new hydrogen refueling stations in that state, accessible by all model fuel cell vehicles. The availability of hydrogen fueling will determine where automakers initially offer their first fuel cell vehicles, thus the interest in California.

 

hyundai-tucson-fuel-cell-front-1Many believe that the ultimate goal for electric transportation is the hydrogen fuel cell vehicle (FCV), with battery electric vehicles being just a step along the way. Hyundai is skipping this step and concentrating on developing and marketing FCVs.  The automaker notes that affordable electric vehicle technology is best suited to smaller urban vehicles, not to larger family and utility vehicles that many families require to meet all of their needs.

To that end, Hyundai is poised to offer its next-generation Tucson Fuel Cell vehicle in Southern California Hyundai dealers starting sometime this spring. Production is taking place at the automaker’s Ulsan plant in Korea. Hyundai already began production of the ix35 Fuel Cell, the Tucson’s equivalent in Europe, at Ulsan in January 2013. Since the Ulsan plant builds the gasoline-powered Tucson CUV, this allows Hyundai to take advantage of both the high quality and cost-efficiency of its popular gasoline-powered Tucson platform.

hyundai-tucson-fuel-cell-diagram

Hyundai’s third-generation fuel cell vehicle features significant improvements over its predecessor, including a 50 percent increase in driving range and 15 percent better fuel efficiency. The Tucson and ix35 Fuel Cell are equipped with a 100 kilowatt electric motor, allowing a top speed just shy of 100 mph. Instantaneous 221 lb-ft torque from the electric motor means spritely acceleration.

Sufficient hydrogen for an approximate 370 mile range is stored in two hydrogen tanks. Refueling is accomplished in less than 10 minutes, providing daily utility comparable with its gasoline counterpart. Electrical energy is stored in a 24 kilowatt-hour lithium-ion polymer battery that’s been jointly developed with LG Chemical. The fuel cell reliably starts in temperatures as low as -20 degrees C (-4 degrees F). Unlike battery electric vehicles there is minimal capacity decrease at very low temperatures.

hyundai-tucson-fuel-cell-side

Hyundai’s fuel cell fleet has completed over two million durability test miles since 2000. Extensive crash, fire, and leak testing have been successfully completed. Hyundai says that high reliability and long-term durability come as a matter of course with the power-generating fuel cell stack, which has no internal moving parts.

The Hyundai Fuel Cell will be leased for $499 per month on a 36 month term, with $2,999 down. This includes unlimited free hydrogen refueling and At Your Service Valet Maintenance at no extra cost. Hyundai will initially offer the Tucson Fuel Cell in the Los Angeles/Orange County areas at four dealerships that will have hydrogen refueling capability.  The automaker says that availability will expand to other regions of the country consistent with the accelerating deployment of hydrogen refueling stations.

hyundai-tucson-fuel-cell-emissions-chart

Hyundai is also partnering with Enterprise Rent-A-Car to rent the Tucson Fuel Cell at select locations in the initial lease regions. This will allow interested consumers to evaluate the Tucson Fuel Cell for their lifestyles on a multi-day basis. Rentals are also planned sometime this spring.