It’s the 1990s and you’re looking to drive something different. Imagine piloting a car that was as technologically advanced as a Lamborghini Diablo was fast, and more exclusive in numbers than that decade’s Ferrari F40. Now picture it with a GM emblem on its hood. In your mind’s eye, you’re behind the wheel of the legendary EV1, the first mass produced electric car of our modern age.
This is the car that started it all. While many automakers pursued electric vehicle development programs in the 1990s, it was GM’s Impact concept car, and then the production EV1 that followed, that literally set the modern EV field in motion.
GM turned to efficiencies-focused AeroVironment in California to develop an advanced electric vehicle unlike any other. When it debuted this car, the Impact prototype, at the 1990 LA Auto Show, the mission was to generate excitement. And that it did, courtesy of the Impact’s show-stopping teardrop-shaped plastic body, aluminum spaceframe, and a revolutionary electric propulsion system created by AeroVironment engineer and EV pioneer Alan Cocconi.
The electric EV1, based on the Impact concept but highly refined beneath the skin, emerged at Saturn dealers six years later. The EV1 was special, it was silent, and it was fast. Without the engine braking effect of a gas engine and with its regenerative braking setting adjusted accordingly, after lifting off the throttle it seemed to coast forever in a relatively friction-free state. Overall, it was seductive to drive, and if your mind wandered you could imagine piloting the era’s F-14 Tomcat on the street… and that doesn’t happen every day. We know, because we spent a year driving an EV1 on the roads and highways of California, one of the select areas where the EV1 was available.
The EV1 came to market with a slew of all-new technologies that are common today, from low rolling resistance tires to regenerative braking and keyless ignition. Accelerating from 0 to 60 mph took about eight seconds. The Gen 1 model had an estimated 50 to 95 mile driving range on its advanced lead-acid batteries.
Later, GM introduced Gen 2 EV1s with more advanced and power dense nickel-metal-hydride batteries that enabled an EV1 to travele an estimated 75 to 140 miles. Energizing both Gen 1 and Gen 2 batteries was handled with a unique charging paddle that transferred electrical energy via magnetic induction, without a hard connection between the paddle and car.
During its short lifetime, only 1,117 EV1s were built and these were leased only, with no purchase available. Leasing was a nod to GM’s need to maintain ultimate ownership over highly advanced and extremely expensive-to-produce vehicles, using all-new technology, that were being fielded in a limited way to feel out the market. Initially offered at a lease cost of $640 per month with financial incentives that brought this down to $480, the EV1’s lease terms evolved over time to be as low as $349.
Ultimately, this chapter of GM’s continuing electric vehicle story ended abruptly. The program was discontinued in 2002 and all EV1s were required to be returned at their end-of-lease, either making their way to the crusher or donated as inoperable examples to museums and other institutions, never to be seen on the highway again.
Over the years I’ve driven many battery electric vehicle prototypes and all production EVs in the U.S., spending a year living with a GM EV1. I have also spent time behind the wheel of many electric car conversions from small and hopeful new EV companies ranging from U.S. ElectriCar to those founded by entrepreneurs like Malcolm Bricklin and Miles Rubin. Test drives took place on highways and test tracks on multiple continents, sometimes for short drives out of necessity and sometimes for weeks at a time. Electric cars were my beat as feature editor at Motor Trend in the 1990s, by choice. I’ve been a vocal advocate for electric cars since the first issue of Green Car Journal 20 years ago…sometimes very vocal.
Time has a way of tempering not only perspective but expectations. One example: Over two decades of following battery development, I recall clearly the high expectations many have had that battery breakthroughs would come. Affordable and energy-dense batteries would be the enabling technology that could encourage full-function battery electric cars to market, making them cost competitive with internal combustion and readily displacing cars that for 100-plus years have relied on petroleum, a commodity that has grown costlier and in tighter supply.
That battery breakthrough has yet to occur. Yes, we have batteries with better chemistry and advanced designs. But they don’t represent the breakthrough that’s been widely anticipated and they remain quite expensive, so much so that battery electric cars must still be federally subsidized because of their high battery cost and retail price. In a normal world, a compact electric SUV should not cost $50,000, nor should a four-door electric sedan be $40,000, or a small electric hatchback priced over $30,000. Yet they are. And yes, there are a few electrics priced under $30,000, but as internal combustion models they would typically be priced $10,000 to $15,000 less while offering greater functionality.
It’s understandable why electric cars are being pushed so hard. Historically, EVs have spoken to a lot of needs. States have included them in State Implementation Plans as a way to show how their state would meet air quality standards under the Clean Air Act. Electric utilities see them as a pathway to selling electricity as a motor fuel. Government agencies often view electric vehicles as a panacea for (you choose) improving air pollution, mitigating petroleum use, decreasing CO2 emissions, and enhancing energy security. Automakers realize the dramatic impact that electric propulsion can have in helping achieve increasingly higher fleet fuel economy averages in coming years. Thrifty and eco-minded consumers understand the value of a smaller environmental impact by driving oil- and emissions-free, at a low cost per mile.
I remain an electric car enthusiast. But as a seasoned auto writer and industry analyst I’m also obliged to focus on reality. Today’s reality is that if we’re to make a real difference in petroleum reduction and environmental impact, battery EVs are not the short-term answer. While important and deserving of continuing development and sales, they are just one part of the solution, along with advanced gasoline, alternative fuel, hybrid, plug-in hybrid, and extended-range electric vehicles that create on-board electricity to provide full functionality. That’s the way forward.
Ron Cogan is editor and publisher of Green Car Journal.