Green Car Journal logo
One example of the zero emission hydrogen vehicles on the horizon.

Hydrogen has long held promise in delivering environmentally conscious power for transportation, homes, and life in general, but it’s been a long road. There are reasons. Holding hydrogen back has been its high cost, a near-complete lack of pipelines and fueling infrastructure, and the environmental impact of sourcing this amazingly clean fuel. At the same time, driving continuing interest is the very real benefit of moving on from hydrocarbons and transitioning to this energy source not only for hydrogen vehicles, but also for use as civilization’s primary fuel source. Let’s dive deeper to examine hydrogen’s story.

Why hydrogen? That’s easy. Hydrogen is the simplest and most abundant element on the planet, and in fact, in the universe. Hydrogen, with oxygen, makes up water (H2O) and is also found in nearly all organic compounds. Hydrogen is so highly combustible it has served as a primary rocket fuel, including in the U.S. Space Shuttle program. Hydrogen is also being explored by NASA for hydrogen hybrid fuel cell/gas turbine engines for commercial aviation and other missions.

Down-to-Earth Advantages

Toyota fuel cell used in hydrogen vehicles.

More importantly to us here on Earth, hydrogen burns in air without carbon emissions and its only byproducts are water vapor and oxides of nitrogen (NOx), the latter because air contains nitrogen. When used to create electricity through an electrochemical fuel cell, there is no combustion and thus no unwanted emissions at all, just heat and water vapor. This is the high-profile environmental calling card of hydrogen fuel cell vehicles. It’s also a growth market, with Research and Markets projecting the hydrogen fuel cell vehicle market growing from $8.21 billion this year to $20.49 billion in 2030. Overall, all this would appear to make hydrogen an ideal fuel for our time.

Ah, but things are not so simple. Pure geologic ‘white’ hydrogen does exist in its natural gaseous state but has been considered rare, found deep in the earth and deemed economically and logistically unrealistic as a resource. So, while we may be surrounded by hydrogen, the fact that it’s typically bonded with other elements means it must be separated to yield the ideal fuel we seek.

Sourcing and Creating Hydrogen

Today most hydrogen is created by steam reforming natural gas, a thermo- chemical process that extracts hydrogen from methane. The resulting product is known as ‘grey’ hydrogen because of the carbon created and a less-than-ideal over- all environmental impact. When steam reforming is combined with carbon capture and storage it’s known as ‘blue’ hydrogen, with the process considered low carbon or carbon neutral since the carbon created is sequestered from the atmosphere.

A more environmentally compatible way of creating hydrogen is by electrolyzing water. This electrochemical process strips water’s two hydrogen atoms from its oxygen atom to produce hydrogen gas. Electrolysis requires significant electrical energy so where this energy is sourced is paramount. If the electrolytic process uses electricity from renewable sources like solar, wind, or hydroelectric power, this is known as ‘green’ hydrogen. That color designator changes to ‘pink’ hydrogen if the electricity comes from nuclear energy. Color palette aside, today’s challenge is to devise the most efficient, low cost, low carbon, and environmentally positive ways to source clean hydrogen to help drive us to a zero carbon future.

Early Auto Industry Interest

The GM HydroGen3 was one of many hydrogen vehicles in early field trials.

Not so long ago, hydrogen generated serious interest among most of the auto industry’s major players as it competed with the commercialization of other alter- native fuels, most notably alcohol fuels, natural gas, propane autogas, and electricity. We’ve all seen battery EVs surge ahead with many breakthroughs, product commitments, and not inconsequentially, enormous government funding. But that doesn’t mean hydrogen is down and out.

There have been many hydrogen vehicles developed and fielded in relatively small numbers over the past three decades. While some early models like Honda’s FCX were available in limited numbers to consumers, most others were exclusive to fleets, destined for field trials, or introduced as driveable prototypes or concepts. Among these zero-emission fuel cell vehicles were the Ford Focus FCV, GM HydroGen3 and Sequel FCEV, Hyundai Tucson FCEV, Mercedes-Benz F-Cell, Nissan Xterra FCV, Toyota FCHV, and VW Touran HyMotion. Taking another approach, models like the Mazda RX8-RE and BMW Hydrogen 7 sedan burned hydrogen in their internal combustion engines, nearly emissions-free with the exception of minimal NOx.

Commercializing Hydrogen Vehicles

Efforts to commercialize hydrogen vehicles continue, though in ways different than what was seen in the recent past. There are fewer automakers making hydrogen a priority these days, though the ones that are involved count for a lot. Toyota, Honda, and Hyundai – and to a lesser extent GM and BMW – are seriously in the game on the light-duty side. Among the most notable hydrogen models are today’s Toyota Mirai and Hyundai Nexo hydrogen fuel cell vehicles, and in our recent past the Honda Clarity Fuel Cell sedan that was with us for a few short years until 2022.

Truck makers like Freightliner, Hyundai Motor, Volvo Trucks, and Nikola are also involved on the commercial end of the spectrum. Because of government regulations and the realities of the
market, it may be that hydrogen big rigs powered by fuel cells are destined to lead the way. As hydrogen power gains momentum in the commercial space, larger commercial trucks transporting weighty loads will likely be fueled with liquid hydrogen, rather than the gaseous hydrogen used by light-duty consumer and commercial vehicles. The reason is simple: hydrogen stored as a liquid in a cryogenic state (-253 degrees C) offers much greater energy density than gaseous hydrogen, which means more fuel can be carried on board for greater driving range.

Challenges and Opportunities

Shell station for fueling hydrogen vehicles.

A coordinated strategy involving hydrogen vehicles and fueling opportunities has always been required since one can’t exist without the other. Government has taken a lead role in providing grants and financial incentives for hydrogen fueling over the years and energy companies have stepped up to the plate, to a limited degree. We’ve seen automakers work hand-in-hand with energy giants like Shell and Chevron as limited rollouts of hydrogen vehicles have taken place exclusively in areas where hydrogen stations are available. There have also been coordinated efforts in developing hydrogen fueling along major highway corridors to support hydrogen commercial vehicles.

Hydrogen vehicles hold a distinct advantage over EVs since they can be refueled in about the same amount of time as a gas vehicle. However, they face a significantly greater challenge in finding a place to fill up. After Shell recently closed down seven public access H2 stations in California, this left just over 50 public hydrogen stations in the entire country, all of these in the Golden State with the exception of a single station in Hawaii. Shell continues to operate commercial hydrogen stations in California.

Hydrogen Vehicles Today

Innovations continue apace even amid these challenges. Though Honda’s Clarity FCV is behind us, this automaker is continuing on its hydrogen journey with a new plug-in hydrogen CR-V e-FCEV built in Ohio. The CR-V e-FCEV is being leased for $459 per month with a $15,000 hydrogen fuel credit. There’s other evidence of a growing emphasis on hydrogen power, like the hydrogen fuel cell joint venture between Honda and GM that aims to manufacture fuel cells at scale in Michigan to drastically lower their cost. Toyota is also assembling fuel cell modules at its Kentucky manufacturing plant for heavy-duty truck customers. Plus, major automotive suppliers are accelerating their activities with hydrogen vehicle systems and components.

Hydrogen’s potential is illustrated in interesting ways at Toyota’s port facility in Long Beach, California, where a FuelCell Energy Tri-gen system uses renewable biogas to create up to 1200 kg per day of hydrogen, 2.3 megawatts of renewable electricity, and 1400 gallons of water to support the automaker’s port operations. Hydrogen created here supplies a nearby heavy-duty fueling station for zero emission drayage operations and fuels Mirai FCEVs arriving at the port.

Hydrogen Hubs

One of the most important pushes for hydrogen in recent times comes from $8 billion in funding from the Bipartisan Infrastructure Law supporting the creation of regional clean hydrogen hubs. The focus at seven designated hubs includes hydrogen production and distribution, with hydrogen created by electrolysis and other means combined with carbon capture. The aim is to produce three million metric tons of clean hydrogen annually. Establishing hubs strategically located across the country will serve to create an interconnected hydrogen ecosystem that will expand nationally in an effort to support a growing hydrogen economy.

As always, technologies evolve and new innovations come to light. Such is the case with hydrogen, as a new frontier is being explored that could exploit potentially vast reserves of ‘white’ hydrogen recently discovered on multiple continents, including North America. Trapped in geologic fields like oil and natural gas, this source of naturally occurring hydrogen can be extracted in similar ways and has the potential to provide massive amounts of low carbon hydrogen in the future.

Illustration showing hydrogen vehicles are just one element in a hydrogen society.

Using the most abundant element in the universe to power our vehicles and lives is a compelling proposition, especially considering its ability to do so through fuel cells that produce only water vapor as a byproduct. That’s why so many scientists, engineers, companies, and governments are hard at work addressing hydrogen’s commercial challenges. Whatever direction hydrogen power takes in the years ahead in response to changing administrations and shifting clean energy strategies, trust that it will remain of interest as a potential answer to low- or no-carbon mobility. It promises to be an interesting journey

Green Car Time Machine - archive articles from Green Car Journal.

More people around the world recognize Arnold Schwarzenegger as the ‘Terminator’ rather than California’s 38th governor, a high-profile role he filled from 2003 to 2011. A prolific actor and world-class bodybuilder who achieved the titles ‘Mr. Universe’ and ‘Mr. Olympia’ many times over, Schwarzenegger was nominated for the President’s Council on Physical Fitness and Sports by President George H. W. Bush in 1990. Clearly, public service agreed with him. When the Republican ‘Governator’ successfully ran for office in a recall election against then-Governor Gray Davis in 2003, his chances for turning around a state in financial turmoil were widely debated. What occurred during his tenure was strong leadership and a surprising knack for championing both business and the environment. This interview 18 years ago by Green Car Journal editor Ron Cogan shares former Governor Schwarzenegger’s strong views on hydrogen, electric vehicles, alternative fuels, and the need to mitigate air pollution and carbon emissions.

This article shares a 2006 interview of Governor Schwarzenegger by editor/publisher Ron Cogan and is presented as it originally ran in Green Car Journal’s Spring 2006 issue.

California Governor Arnold Schwarzenegger.

Addressing California Air Pollution

Ron Cogan: Air pollution has represented one of California’s epic challenges. How would you say the state’s air quality is doing today?

Gov. Schwarzenegger: “California has made great strides to improve air quality in the past 20 years. There are far fewer Stage One smog alerts, for example, than there were just five or 10 years ago. But so much more remains to be done. That’s why in my Action Plan for California’s Environment, I pledged to reduce air pollution by 50 percent by the end of this decade, and we’ve worked hard to achieve that goal. In my first year in office, we put $140 million a year of permanent funding into the Carl Moyer program and more money into the Breathe Easier campaign, two programs that take the most polluting cars, trucks, and buses off the road and put clean, alternative fuel vehicles in their place. We’ve also put state govern­ment on an ‘energy diet’ with my Green Buildings Initiative because electricity generation is another source of air pollution. And in my Strategic Growth Plan, I made air quality a component of our state infrastructure – right up there with roads, mass transit, water projects, and schools.”

RC: Your most high-profile vision for California’s transportation future involves hydrogen. Why this fuel?

Schwarzenegger: “Hydrogen is fan­tastic because the only emission from the tailpipe is water. It is also a fuel that we can produce in California, instead of relying on oil from foreign countries. In fact, we can make hydrogen from solar power and water; we can make it from biomass that comes from our farms; we can make it from waste materials. It’s the best hope we have to make California and the United States energy independent and end our oil addiction.”

Promoting Hydrogen with Industry

California Hydrogen Highway sign,

RC: Have you gained the support you were expecting for this hydrogen effort from auto and energy companies?

Schwarzenegger: “Absolutely. They are my partners in the Hydrogen Highway Network and we couldn’t do it without the car companies, the energy companies, the environmental groups, our amazing California universities, and my team at CalEPA. As I always say, we get much more done when we all work together.”

RC: What about political support?

Schwarzenegger: “That’s been fantas­tic too. The members of the Legislature are my partners and the Hydrogen Highway is a great example of how we can get great things done for the people of California when we work together. And may I add, that we have all enjoyed driv­ing the hydrogen cars that are being dem­onstrated throughout the state right now.”

California Hydrogen Highway map.

A Hydrogen Revolution

RC: How much do you expect a hydrogen fueling infrastructure to cost the state?

Schwarzenegger: “Thanks to the 200 partners who helped us draft the blue­print for the Hydrogen Highway Network, the state is actually investing a very small amount compared to the terrific invest­ments being made by energy companies, automakers, local air districts, the federal government, and many other partners.”

RC: What financial impact would you expect hydrogen vehicles, and the sup­porting industries surrounding a growing hydrogen vehicle fleet, to have on the state?

Schwarzenegger: “California is already the center of the hydrogen tech­nology revolution. Just like Silicon Valley is to computers, we will see more and more hydrogen businesses starting up or expanding in our state and that’s great for our economy.”

California Governor Arnold Schwarzenegger behind the wheel of a Hummer powered by hydrogen.

Promoting Hydrogen Partnerships

RC: Other states are also striving for hydrogen leadership. How can California stay ahead and attract hydrogen-related business?

Schwarzenegger: “By continuing our partnerships and implementing the vision of the Hydrogen Highway. That’s what was missing from the efforts in every state. No one wanted to build fuel­ing stations without vehicles; and no one wanted to mass produce hydrogen vehicles without a network of fueling stations. We’ve solved that problem and that’s why everyone is coming to California to start the hydrogen economy.”

RC: We’ve heard before that California’s Zero Emission Vehicle mandate had a direct influence on development of Partial Zero Emission Vehicles and on hybrids. Do you see a value in mandates like this?

Schwarzenegger: “Each advance stands on the shoulders of what came before. Hydrogen vehicles will benefit from battery electric car technology and so many other innovations that started right here in California.”

RC: How important are extremely low emission hybrids to our transportation mix?

Schwarzenegger: “Very important. When I visited Japan, Prime Minister Koizumi and I talked about how he was ‘greening’ the government fleet there, both to clean up air pollution and to get more out of limited fuel supplies. We’re doing the same thing here, which is why I launched the ‘Flex Your Power at the Pump’ campaign to educate drivers about how to save as much as 15% of their fuel, which saves money and spares the air.”

Alternative Fuels Play a Part

Former California Governor Arnold Schwarzenegger standing by an E-85 ethanol SUV.

RC: What about other alternative fuels like ethanol and natural gas?

Schwarzenegger: “These fuels are important too, because we must end our addiction to oil and while hydrogen vehi­cles are not yet affordable for everyone, right now you can go out and buy flex fuel vehicles or vehicles that run on natural gas and biofuels.”

RC: You’ve called for substantial reduc­tions in greenhouse gas emissions. What kind of changes will be required for motor vehicles to contribute their share to these reductions?

Schwarzenegger: “We know that vehicles contribute as much as 50 percent of the greenhouse gases, so they will have to make big reductions. That’s why I’ve said all along that I support California’s landmark greenhouse gas reduction law (AB 1493 Pavley) and will defend it in court from the challenges that we know are coming.”

Focus on All Transportation Modes

Former California Governor Arnold Schwarzenegger.

RC: How do you stand on cleaning up school buses?

Schwarzenegger: “My budget each year has provided money to scrap the dirt­iest, oldest buses and replace them with cleaner vehicles. I’ve seen the studies that show how bad the air quality is inside those old buses and we must protect our children.”

RC: How important is it to focus on non-road vehicles and other sources to address air pollution?

Schwarzenegger: “Of course, that’s important too. That’s why I appointed Bob Sawyer as Chair of the California Air Resources Board, because he’s the leading scientist on these matters and I know that with our other Board members and the great staff at CARB, we will win the battle against air pollution, no matter what the source.”

Hydrogen, Biodiesel, Other Clean Fuels

Former Governor Arnold Schwarzenegger and Green Car Journal publisher Ron Cogan.

RC: California uses an enormous amount of gasoline and diesel fuel. How can the state decrease its vulnerability to price spikes and possible motor fuel shortages?

Schwarzenegger: “We need to expand the use of biodiesel in California and get more of our trucks and buses running on natural gas and other cleaner fuels. Of course, if we reduce our demand for gaso­line that also allows refineries to produce more diesel, which reduces the potential for shortages. But the key thing is to move away from petroleum and towards hydrogen and other clean fuels.”

RC: If there was one thing you could do to improve air quality or energy diver­sity during your time as Governor, what would it be?

Schwarzenegger: “I’d say the key thing is to make sure every Californian under­stands that each of us is responsible to solve these problems of air pollution and oil addiction. Each of us can walk more or ride a bike, take a bus, drive a fuel-efficient car, promote energy efficiency in the work­place, and take other measures to improve air quality and reduce our dependence on oil. And of course, as soon as hydrogen cars are in the showrooms – within the next few years – I hope everyone will buy them and start driving on California’s Hydrogen Highway!”

Damian Breen, founder of Environmental Communications Strategies.
Damian Breen, founder of Environmental Communications Strategies.

In June, the CEO of German manufacturer MAN Truck & Bus SE (MAN), Alexander Vlaskamp, told Austrian Newspaper Der Standard that:“E-mobility is coming now. The technology is mature and most efficient. In our estimation 80 or even 90 percent of logistics trucks will be electrically powered…If hydrogen is to be used, it must be green. And we see today that hydrogen is far too expensive (and) therefore, hydrogen will only be used in a small segment in Europe, such as for special transport.”

I became aware of this pronouncement through a friend in the U.S. trucking industry, who attached the article to an e-mail, saying, “So, hydrogen is dead!” Even as someone who has never been afraid to hold strong opinions on technology, I remember reading my friend's e-mail and thinking, “Well, that’s a bit extreme isn’t it?” Then I took some time to read Mr. Vlaskamp’s full interview and, in fairness, what he said is nuanced. He is not saying all hydrogen is too expensive or that the technology doesn’t work. He is simply pointing out that the cost of ‘green’ hydrogen as a fuel is too high for his customers to do their business.

Fair enough, Vlaskamp knows his customers, and trucking has and will always be a bottom-line driven industry. However, he goes on to state that there is already enough electricity in Austria to deal with the trucking fleet transition, and that to support the 30 percent of trucks in Europe going electric by 2030, 20,000 fast-charging stations will be needed, at a cost of several billion euros! This is where he loses me and quite a few others, as we will see below.

Here in the U.S., as the battle over the California Air Resources Board (CARB) Advanced Clean Fleets (ACF) regulation spills over into Congress, companies and truckers are faced with impossible choices. Do they wait to see if the bills introduced by Rep. John Joyce (R-PA) in the House of Representatives and/or Sen. Markwayne Mullin (R-OK) in the Senate, forestall CARB’s rule, or do they start to plan for the zero-emission future now? They haven’t got much time to figure it out; CARB’s rule goes into effect for the first trucks in 2024. One thing is certain: Europe’s second-largest truck manufacturer muddying the waters regarding technology choices won’t help anyone! To try and make sense of whether hydrogen is an option for U.S. trucking, I decided to talk to three experts in the field.

Batteries Can't Do It All

Dr. Tim Lipman is an energy and environmental technology, economics, policy researcher and lecturer with the University of California, Berkeley. His research focuses on electric-drive vehicles, fuel-cell technology, combined heat and power systems, biofuels, renewable energy,  and hydrogen-energy systems infrastructure. When I spoke to Tim about the MAN CEO’s thoughts on hydrogen and electric trucks, he had this to say: “Batteries can’t do it all, that is for certain, and I think everyone is underestimating the level of effort needed to get the grid ready for transportation electrification.” He pointed to the fact that fast-charging infrastructure for trucks might require megawatts of power, and whether that power is drawn directly from the grid or from on-site battery storage, it will not be cheap. He also stated that the engineering and technology challenges for charging sites could be significant, given the geographic locations of California’s truck parking sites relative to the grid, the anticipated load growth from truck charging, and the capacity of certain electrical feeder lines. Tim believes these challenges and their costs have already made several public bus fleets (subject to a separate CARB zero- emission rule) reverse course on battery-electric buses in favor of hydrogen fuel cell electric buses.

Hydrogen Cost Will Come Down

On the costs of hydrogen, currently retailing somewhere between $16 to $36 per kg, Dr. Lipman was very clear that it is too high. He points to the war in Ukraine, and the entry of California refiners into the low-carbon fuel standard (LCFS) credits program, as being significant contributors to the current cost issue. The Ukraine war has caused the costs of natural gas, a raw material for the steam reformation of hydrogen, to rise sharply; and the conversion of some California refineries to renewable fuels has halved the payments available for LCSF credits from CARB for the sale of hydrogen. However, he believes that the recent announcement of $7 billion in federal grant funding to establish regional clean hydrogen hubs in 16 states will have a big impact on driving down costs. Because of his involvement in California’s successful application to the U.S. Department of Energy for one of these hubs, Tim was reluctant to give his thoughts on how much hydrogen could retail for, simply saying that the hubs will make hydrogen a lot cheaper.

Finally, Tim took some time to explore the comments on ‘green’ hydrogen by MAN’s CEO, noting that it might be more helpful to look at the fuel’s production and carbon intensity. Tim explained that the term ‘green’ hydrogen means production of the gas from the electrolysis of water using renewable electricity. This pathway is preferred by many in the environmental movement, as it dispenses with the steam reformation of methane completely. Hydrogen from any form of methane is viewed by some as a bait and switch strategy by a fossil fuels industry, the currently leading producer of U.S. hydrogen, seeking to extend the use of natural gas.

Low Carbon Hydrogen Production

However, Tim pointed out that other production methods, such as the steam reformation of bio-gas (i.e. methane created from animal manure or wastewater bio-digestors) could be less carbon intensive than ‘green’ hydrogen. This is due to the fact that the releasing of bio-gas directly to the atmosphere has a much more detrimental impact on climate than converting it to hydrogen. Therefore, if we look to carbon intensity and climate impacts as our north star (and don’t get hung up on the hydrogen color wheel), investing in these other low-carbon production methods could increase hydrogen supply and bring down costs significantly. This certainly would change the economics of the fuel dramatically for Mr. Vlaskamp and his customers.

Hyundai-XCIENT hydrogen fuel cell truck on the road.

I also spoke with Dr. Matt Miyasato, Vice President of Strategic Growth and Government Affairs for FirstElement Fuel, the largest retailer of hydrogen fuel stations in the world. Prior to joining FirstElement Fuel, Matt served as Deputy Executive Officer and Chief Technologist at the South Coast Air Quality Management District. Matt was taken aback by the MAN CEO’s comments, stating: “This is really premature! There is no silver bullet, and we are going to need all the solutions.”  Matt went on to say that electricity is a great solution for fleets traveling shorter routes (up to 40 miles), with fixed hubs that are well supplied with electricity and a duty cycle that allows for overnight charging. However, he too cautioned regarding the ability to install the charging infrastructure, even in the best of circumstances. He expressed concern with the existing grid infrastructure, the possible need for battery banks to charge multiple vehicles, the huge amount of electricity needed, and the rate at which vehicles can charge. In fact, Dr. Miyasato’s main objection to Mr. Vlaskamp’s comments was that they totally discounted the needs of many drivers and fleets. For some truckers, the time required to recharge batteries is simply not practical or cost effective. Time is money in the trucking business, and extensive wait times to recharge trucks won’t cut it.

Consider All Technologies/Fuels

That’s not to say that the hydrogen infrastructure is perfect. Matt did own up to issues related to the cost of the fuel and the ability to permit, roll out, and maintain stations. However, he also noted that no one had yet built an electrical retail infrastructure for long-distance truck routes (those over 200 miles), whereas his company planned to launch their first truck fueling station in Oakland, California, in December 2023. He said, “With what we know today about costs and engineering, it would be very short-sighted to write off any technology path at this point.”

Finally, I spoke with Jaimie Levin, Director of West Coast Operations and Senior Managing Consultant for the Atlanta-based Center for Transportation and the Environment (CTE). Jaimie previously worked as Director of Environmental Technology at the Alameda-Contra Costa Transit District (AC Transit) where he oversaw the alternative fuels deployment program. He currently heads up the NorCAL ZERO advanced technology demonstration project, which is bringing 30 Hyundai Xcient fuel cell electric trucks into service at the Port of Oakland in northern California. These Class 8 vehicles have a range of between 400 and 500 miles and a payload capacity of 39,000 lbs. This project is in the road trials phase, with 10 trucks currently deployed hauling steel from the port to California’s Central Valley.

Critical Factors for Truckers

Jaimie stated that the current crop of Class 8 battery-electric trucks, while working fine in the hub model described by Dr. Miyasato, were “really working against what truckers need.” He cited four critical factors for truckers – range, payload capacity, fueling speed, and resiliency. On range, Jaimie states that trucks with variable routes can’t have limits. They need to be able to do whatever route and distance are required by a job. On payload, he cited the total weight limits on the California and national highway system as being a serious issue for battery-electric trucks. The weight of current battery trucks that can travel 250 miles could be as much as 2,000 lbs. more than their diesel counterparts. In an industry where payload is ‘the’ thing, that would reduce carrying capacity and profit. On fueling speed, Jaimie stated that truckers can’t wait around for an hour for their rig to charge up. Costs and deadlines simply won’t allow it. Lastly, on resiliency, he talked about the strain put on California’s grid in the last few years by wildfires, extreme heat, and public safety power shutoff events. He notes that in trucking, you can’t have uncertainty on whether you can refuel your vehicle or not. An excellent point, considering that 77 percent of California communities rely solely on trucking for the movement of their goods.On the cost of fuel, Jaimie reiterated that it needs to come down, citing the same factors previously noted, and hopes that the hydrogen hubs will impact prices. On the cost of the trucks themselves, he believes that the economies of scale will have a big impact on driving down the total cost of ownership, making them comparable to diesel, but agrees that the initial cost of the truck itself will remain high.

I have spent some time looking at the future of battery technology – including lighter weight and faster charging options - and I discussed this with all three experts. While they see the new offerings as solving some issues with current battery trucks, they believe that they do not move the needle on power availability and the cost of infrastructure to charge electric trucks.

Conclusions

Hydrogen is far from done in terms of being a fuel for heavy-duty trucks, but its cost needs to come down quickly! Also, issues with the electric infrastructure and the location of California’s truck parking will hinder the rollout of battery-electric vehicles. This means neither technology is perfect and neither meets the needs of every trucking duty cycle. So, rather than trying to pick the winner in this technology horse race, truckers will need to explore their options based on their own unique locations and business needs. This won’t be easy but eliminating technologies out of hand makes no sense at this point.

Damian Breen is the founder of Environmental Communication Strategies and former Deputy Executive Officer of the Bay Area Air Quality Management District in California.

Patrick Lindemann, President of e-mobility at Schaeffler.
Patrick Lindemann, President of Transmission Systems & E-Mobility at Schaeffler.

The concept of mobility is rapidly changing, with sustainable energy, carbon footprint reduction, and  electrification driving the evolution. As a leading global mobility supplier whose enduring success is built upon unsurpassed quality, outstanding technology, and partnership, Schaeffler is dedicated to energizing the next generation with sustainable mobility solutions that satisfy customer demands.

The successful transformation of Schaeffler’s automotive business is evident from the fact that it secured $5 billion euros in order intake for e-mobility in 2022. Driving this success are Schaeffler’s products, technology, and people.

Schaeffler has worked to transform in products in three key areas: a mix of ICE, hybrid, and BEV powertrains to meet current and future customer needs; intelligent, safe and reliable chassis systems; and new mobility solutions geared towards a driverless future. Dedicated to a systems approach, Schaeffler innovations span from electronic propulsion systems to steer-by-wire systems to innovative bearing advancements.

The consumption and emissions targets of the future can be met through electrification of the powertrain. Schaeffler offers a full range of electrification options from 48-volt hybrids and plug-in hybrids to technologies for all-electric vehicles and alternative drives, such as key components for fuel cells. The company’s systems expertise makes it the ideal partner for customers evolving into the electrified future. Schaeffler predicts the global percentage of new electrified cars in the year 2030 will be 80 percent (40 percent all-electric and 40 percent hybrids).

The idea of a steer-by-wire system initially seems almost foolhardy, as the system eliminates the steering column and the mechanical connection between the steering wheel and the steering gear. But on further investigation, this type of system has a wide range of benefits, including advanced driver safety. Schaeffler leveraged its experience in mechatronic systems to develop its intelligent Rear Wheel Steering System and took its first step towards becoming a steering system supplier. This intelligent technology turns the rear wheels in the opposite direction to the front wheels, significantly reducing the turning radius and optimizes maneuverability in tight spaces. At higher speeds, it further improves handling by allowing the rear axle to turn in the same direction as the front axle, enhancing handling, stability, ride comfort, and improving vehicle safety.

schaeffler fuel cell power for sustainable mobility.

Innovative bearing solutions play a key role in sustainable mobility by making powertrain and chassis systems more efficient. Schaeffler has developed an alternative to tapered roller wheel bearings – called the TriFinity wheel bearing. The TriFinity wheel bearing can reduce friction by 50 percent and increases stiffness by 33 percent compared to a tapered roller wheel bearing while maintaining the same package envelope. This innovative ball bearing design provides an alternative to tapered roller wheel bearings that didn’t exist prior to TriFinity.

Technology Transformation

Schaeffler has been leading the successful transformation in mobility and in the areas of digitalization and sustainability. The company has made significant investments in its U.S.-based operations to support growth in this sector. To that end, Schaeffler’s facility in Wooster, Ohio, represents its E-Mobility Center of Competence in the Americas, leading the region’s development of the next generation of powertrain solutions.

This facility, which recently celebrated its 45th anniversary, has transformed from a team of six employees assembling manual clutches into approximately 1,700 highly skilled employees pioneering motion for products like the e-axle, which is responsible for moving the entire electric vehicle, gearboxes, hybrid systems, batteries, and more. The Wooster facility is supported by Schaeffler’s Troy, Michigan competence center for chassis mechatronics and ultra-low friction bearings like TriFinity. The Troy center leverages decades of expertise in engine and chassis developments, now focusing on the next generation of technologies for these components and systems.

Schaeffler Ohio plant focuses on sustainable mobility.

People Transformation

Schaeffler's nationally recognized apprenticeship program also helps the global supplier attract and cultivate top talent that it needs to drive its E-Mobility transformation. Schaeffler offers apprenticeship programs throughout the country, partnering with technical schools to offer a range of trades. The 3.5-year program consists of both classroom and on-the-job training with a high retention rate after graduation.

In addition to apprenticeship programs, Schaeffler has partnered with 30 universities in the Americas to grow its internship and co-op programs. The company recently also developed a unique collaborative partnership with The Ohio State University (OSU), launching its first North American Schaeffler Hub for Advanced Research (SHARE) program. Located on the OSU campus in Columbus, the collaborative program is dedicated to advancing energy storage technology by working with students and professors on solid state battery and fuel cell technology. Schaeffler has several successful SHARE programs in Europe and Asia, each with a distinct focus.

Schaeffler electronics.

Additionally, the Schaeffler Academy has developed a variety of Fit4 qualification programs to support the required re- and upskilling of employees. The programs consist of modular training options with defined learning paths that consider the target groups’ different backgrounds and areas of experience. The ‘Fit4Mechatronics’ program currently offers more than 100 training courses providing research and development engineers with knowledge about mechatronics and electronics.

With a dedicated focus on the transformation of its products, technology, and people, Schaeffler is embracing disruptive change as it continues its mission of energizing the next generation of future mobility.

Patrick Lindemann is President of Transmission Systems & E-Mobility at Schaeffler.

Green Car Time Machine - archive articles from Green Car Journal.

Carroll Shelby was one of the auto scene’s most beloved icons. During his storied career he achieved racing wins around the world including the 24 Hours of Le Mans. Sports Illustrated named him “Driver of the Year.” He was inducted into the Automotive Hall of Fame and the International Motorsports Hall of Fame. Shelby worked with Ford on such legendary vehicles as the GT40 and the Shelby GT350/GT500 Mustangs. Perhaps most importantly, Shelby exemplified American ingenuity when he took an underpowered English AC Cars sports car, stuffed in a high-power Ford V-8, and debuted his legendary Cobra, a car that went on to achieve legendary status in the automotive world. While racing and performance were in his blood, Shelby also had a great interest in cars and the environment later in life, and served as a juror for Green Car Journal’s Green Car of the Year award program until his passing in 2012 at the age of 89. In this piece from our archives, Shelby shared his thoughts with publisher Ron Cogan on hybrids, alternative fuels, and the roles of government and the auto industry in dealing with advanced vehicles and environmental performance..

This article shares an archive interview of Carroll Shelby conducted by editor/publisher Ron Cogan and is presented as it originally ran in Green Car Journal’s 2003 Special Edition.

Carroll Shelby with Cobras in background.

Ron Cogan: How would you define performance these days, Carroll? You see a lot of advanced technology engines out there, and we’re doing a lot more with a lot less …

Carroll Shelby: “A lot more with a lot less what? Hell, no. Everybody is going for these bigger and bigger engines, six and seven liters with superchargers and turbochargers and 16 cylinders. And that’s fine. But at what cost?

“What’s going to happen is the same thing that happened in 1965. Then, the federal government and public opinion saw that seven liters in a 6,000-pound car hauling one person to work was pretty foolish. So, what happened? They decided to emissionize the cars and get into the safety aspects, which I think was a wonderful thing, although bureaucrats didn’t know very much about safety then. The automobile companies tried to explain to them what safety should be, and when the automobile companies try to explain anything, they explain it from their pocketbooks and not from what they really believe should be put into a safe car. They do as little as they have to…to interfere with their profits to the least extent.

“Instead of doing the things they did back in 1965 – choking engines up with all that (emissions controls) crap they put on them – they could have gone to compressed natural gas. They could have set up the entire infrastructure system at the time for what they spent over the next three or four years with all those regulations they put into effect. And we all know that it’s taken 20 years to get the Otto cycle (internal combustion) engine back so it performs decently.”

Carroll Shelby with Ford GT40 race car.

RC: So natural gas is the way to go?

Shelby: “Well, our big problem is imported oil. It’s causing so many financial problems … problems of us depending on antagonistic countries for our oil. It would seem to me that we’re not taking advantage of the two most obvious answers to this, which is compressed natural gas and hydrogen. Hydrogen works just fine in the engines we have now. It doesn’t give as much horsepower, but there are many ways to overcome that. Most of the cars would run on compressed natural gas – we flare off enough in Texas alone to power every car and truck in the United States – and we have hydrogen available to run in the same engines. Rather than depend on imported oil, why don’t we take advantage of these two energy sources that are here?”

RC: Where do hybrids fit in all this?

Shelby: “For 20 years we’ve had the potential for hybrid vehicles. All the technology is there, but why haven’t we gotten to that? It’s for the simple reason that they couldn’t make a profit building those things. Here we are now, finally, 20 years later just inching into the hybrid systems. Automobile companies are squealing and screaming all the way and building what I think are pretty stupid systems on these big SUVs that are picking up two or three miles to the gallon and spending hundreds of millions of dollars on it. And the Japanese have seen that this is what’s going to happen, so we’d better get with the system. That’s the reason, I think, that Toyota and Honda are leading the world right now in hybrids, which will lead us into fuel cells somewhere down the road ... but it looks to me like we’re still a lot of years away from that.”

Carroll Shelby next to engine block.

RC: So what’s next?

Shelby: “We’re going to have all these federal mandates. One of the options that should have been looked at was, let’s form an automobile company that uses the technology of the future the same way that the federal government has gotten us into all these super, super airplanes. That’s the defense department spending the money to see that all this R&D is done, but we’ve never done that in the automobile industry. We’ve depended on the automobile companies to tell the politicians what they can and can’t do, which seems a lot of bull to me. If we had a small automobile company that would be government funded and would hire the people to use the technology we know is already out there, we could build something to show the automobile companies that it is possible, and then move into the mainstream much quicker than the way they’ve done it.”

RC: The government should develop advanced vehicles and then turn these over to the automakers to build?

Shelby: “Well, I’m saying that we’re never going to get there in the automobile industry as far as the environment is concerned with the system we have now. I don’t have all the answers, and anything I come up with is going to be very controversial anyway. Nobody wants to talk about it because the automobile companies, with their huge political impact in Washington, don’t want things like this to happen. They want things to go along just like they are.

“I’m not really criticizing them because in a capitalist system, profits are the only thing that the people who put the money up – the investors – care about. And that’s the motivating factor for them to invest their money. There has to be a better system in place to see that the environment is better looked after than it is in our political system.”

Carroll Shelby with Series 1.

RC: Like what?

Shelby: “Let’s take racing. Let’s take performance. There’s no reason to think that if we wanted to have a racing program, like CART or drag racing, it couldn’t be done just as competitively with smaller engines and cars racing against each other in certain classes. If they were all hybrids now, you’d be improving the quality of the hybrids out there, and they’d be coming out a lot quicker than if the automobile companies weren’t fighting it. You could have all of these little Hondas that go out to the drag strip and all of these wonderfully intelligent young kids, 18 to 30 years old, who have all these Hondas and Focuses and all that going to the drag strip. What if they had to do it with hybrids? Would it be just as competitive?

“That’s the reason I get so frustrated. It’s my business. I’m building a Cobra now with 900 horsepower. You’ve got to do it to be competitive in the world as it is – profit centered – but I’d much rather be building something that I know is much friendlier to the environment, has rules and regulations that we all have to go by, and competes with the other competitors in something that is much more friendly to the environment. I don’t know … I’m frustrated about the whole thing, but at 80 years old, I know that I’m not going to change anything.

“It will be just like it was in 1966 if we don’t wake up in this country and see what it takes to build automobiles – to build a transportation system – that’s friendly to the environment. It has to be done, but it’s going to take a long time under the present system because the present system isn’t working … on a timely basis.

“I’m not trying to say I have any of the answers, I just know from living 80 years and watching the automobile industry that it has a long way to go environmentally. So many Americans, so many people all over the world – not half the number that are going to be using the automobile 20 years from now – and it seems so slow.”

RC: So after 80 years, Carroll, what’s next for you?

Shelby: “The things I’ll probably spend the rest of my life doing will be the things that are the least profitable, because I really feel that the environment is something that needs to be taken care of and it has to blend in with the automobile industry. That’s where the most fun is for me.”

Green Car Time Machine - archive articles from Green Car Journal.

Hydrogen has been on the minds of automakers for decades. Ever since GCJ editors experienced the hydrogen fuel cell Mercedes-Benz NECAR 2 (New Electric Car) on the streets of Berlin back in the mid-1990s, we’ve been believers that hydrogen could prove to be an important part of our zero-emission driving future. Over the years, concept, demonstration, and production hydrogen vehicles have been fielded by many automakers, from Chrysler, Ford and Nissan to Honda, Hyundai, and Toyota. One of the most notable was GM’s Sequel unveiled some 18 years ago, which followed in the footsteps of the automaker's Hi-wire hydrogen fuel cell concept Green Car Journal editors drove in 2003. The Sequel hydrogen fuel cell electric vehicle (FCEV) was decidedly ahead of its time with its skateboard platform, sandwich-style floor, steer-by-wire technology, lithium-ion batteries, and 10,000 psi fuel tanks. Read our take on GM’s groundbreaking Sequel, pulled from our archives just as it appeared in the magazine's Spring 2005 issue.

Excerpted from Spring 2005 Issue: Reality check time. When General Motors debuted the AUTOnomy and Hy-wire advanced technology concept cars at the Detroit and Paris auto shows three years ago, the vision of real-world hydrogen powered fuel cell cars still seemed very far away. Sequel brings those concepts home in a ‘do-able’ vehicle that is suddenly a lot less like science fiction and more like Main Street.

Hydrogen and Battery Power

Cutaway of GM Sequel FCEV.

Clearly, GM hasn’t lost sight of what seemed to many a lofty goal when the company announced its intention to design and validate a fuel cell propulsion system that could be manufactured and sold by 2010. While this date certainly won’t see mass commercialization of fuel cell vehicles at GM’s new car showrooms, the General is surely aiming at reaching that milestone with technology and vehicles that can be sold – at a cost far lower than today’s fuel cell vehicles – to fleets and others willing to pay the price to be early adopters.

Sequel utilizes GM’s concept of a separate, low-profile skateboard chassis that completely houses the fuel cell propulsion system. By decoupling the rolling chassis from the bodyshell and utilizing bi-wire control technology, Sequel’s architecture offers incredible flexibility for future models. That flexibility could provide a significant advantage as merging technologies bring fuel cells closer to the showroom.

Electric All-Wheel Drive FCEV

Front view of GM Sequel hydrogen fuel cell vehicle.

While a concept, Sequel aims to create fuel cell performance that meshes well with the kind of driving experience expected of modern vehicles. By utilizing three lightweight, high-pressure carbon composite hydrogen storage tanks, completely housed in the 11-inch thick chassis, Sequel boasts a driving range of about 300 miles. Combining electric motor front-wheel-drive with separate electric wheel hub motors at each rear wheel, Sequel is able to deliver all-wheel-drive traction and a noticeable increase in acceleration.  According to GM, Sequel will scoot from 0-30 mph in three seconds and reach 60 mph in just over nine seconds. Top speed is said to be 90 mph.

That performance is made possible by a transversely mounted, three phase 80 horsepower (60 kW) electric motor at the front of the chassis and two 34 hp (25 kW) three phase electric wheel hub motors at the rear, which together deliver a total torque output of 2,506 lb-ft at the wheels. 

Advanced Skateboard Chassis

Skateboard chassis for GM Sequel FCEV.

GM’s skateboard chassis design holds several key advantages. Most significant is its inherent low center of gravity, which dramatically increases vehicle stability. With Sequel, GM engineers were able to deliver an ideal 50-50 weight distribution by placing the lithium-ion battery pack at the rear of the chassis, offsetting the motor mass up front. The hydrogen fuel cell stack is placed directly behind the front wheels beneath the driver/passenger compartment. 

Midship, you’ll find the three high-pressure hydrogen storage tanks mounted in the sandwich style chassis, a location that provides the best protection from crash intrusion. These tanks have a service pressure of 10,000 psi, allowing them to carry much greater amounts of hydrogen than the 5,000 psi tanks used in the Hy-wire concept.

More Powerful Fuel Cell Stack

Interior of GM Sequel FCEV.

A high-power 65 kW lithium ion battery is employed for the power demands of launch and acceleration, but once up to speed, Sequel can cruise solely on the fuel cell.  Auxiliary power generated by the fuel cell at cruising speed is combined with regenerative braking to top off the battery charge. Sequel utilizes aluminum substructures in the chassis design and extensive use of aluminum in the body panels and structure to minimize weight.

Sequel is also the showcase for GM’s next-generation fuel cell technology. The fuel cell stack delivers 25 percent more power than previous models. GM’s Fuel Cell Product Engineering facility in Honeoye Falls, New York, is working to simplify and better integrate the overall fuel cell stack and power module system design, which will ultimately drive down the cost of production. 

Electronic Bi-Wire Control

Roof detail of GM Sequel FCEV.

”A fuel cell system is more efficient than an internal combustion engine, but its energy conversion is totally different and requires much more heat to be removed via the coolant,” points out Lothar Matejcek, project manager of GM Fuel Cell Activities in Mainz-Kastel, Germany. To extract the heat, Sequel uses multiple radiators with three large openings in the front of the vehicle and two additional openings in the rear. These openings are well integrated into the overall vehicle design and lend a very aggressive look to the body profile. This attention to cooling demands are said to allow the Sequel to operate at maximum power with full air conditioning even on 100 degree F days. 

By-wire controls are utilized for all Sequel systems. Steering, braking, and acceleration are all free of mechanical and hydraulic control linkages. Pushing a pedal or turning the steering wheel sends an electronic signal from the vehicle controller to modulate power output, apply braking, and precisely control steering. Steer-by-wire on the Sequel processes steering inputs through a computer, actuating the front steering rack and two rear wheel steering actuators based on vehicle speed and driving conditions. 

Advanced Interior Design

Instrument panel in GM Sequel FCEV.

A major advantage to the separate low-profile chassis design is incredible flexibility in body and interior design, configuration, and packaging. Sequel is addressing a hot spot in the current vehicle market – the sport/luxury crossover SUV. In fact, GM compares Sequel’s size to the current Cadillac SRX crossover, with its measurements of 196.6 inches in overall length, 66.8 inches in height, and its 119.7 inch wheelbase. 

Styling is contemporary, with a broad shouldered and aggressive stance enhanced by crisp lines that blend hard edges with flowing curves. The chassis design delivers wheels pushed to far corners of the body structure with little intrusion into the cabin area. GM stylists were careful not to push the design envelope too far with this concept, though, to deliver the notion that this is a real-world vehicle.

A Spacious Cabin

GM Sequel FCEV cabin.

The five passenger interior is accessed through a pair of conventional doors up front with rear suicide-style door on either side of the cabin. There is no obstruction to the spacious interior with both doors open. Innovations inside are tempered by practicality. While this is a concept, the message is clear that Sequel is credible transport. One of the more striking design elements is the unique center glass sunroof that runs the length of the top.  It is actually a series of individual glass panels that slide rearward and pivot up to provide a very airy cockpit.

The front passenger seat rotates 180 degrees to provide a conference-style seating configuration. Although it is drive-by-wire, all controls are familiar with a traditional steering wheel, accelerator, and brake pedals. The center console travels on a track that allows it to move from its normal location between the front seats to an aft position closer to rear seat passengers. Hinged at the front, the console’s lid pivots forward to reveal the Sequel’s audio, DVD, and navigation system. When in use as an entertainment center, the console is easily moved to the rear seat passengers for DVD movie viewing. The interior look and feel is contemporary and tasteful with metal and wood accents combined with a palette of plum, rice, and wasabi hue trim.

Sequel is the culmination of a global effort by General Motors to advance fuel cell vehicle design. Nearly 200 suppliers from around the world were sourced to fuse the latest technology into a vehicle that brings a clean, hydrogen fueled future a bit closer to home. 

Kristina Fritz, California Hydrogen Business Council.
Katrina Fritz is Executive Director of the California Hydrogen Business Council.

In recent years, state energy and regulatory agencies have modeled plans that conclude hydrogen is required to achieve deep decarbonization targets. Air pollution continues to worsen across the U.S. with hydrogen and fuel cells seen as part of the answer. For example, as a one-to-one replacement for diesel powered vehicles, equipment, and generators, hydrogen fuel cells have significant potential to decrease the negative air quality impacts this diesel equipment causes and eliminate their carbon emissions.  

With California’s current grid reliability challenges and need for more power generation capacity – coupled with the state’s continuing “overdemand” – all energy and mobility solutions must be brought to bear. National Lab studies have demonstrated the grid infrastructure required to charge battery electric vehicles of all sizes. The use of fuel cell electric vehicles, fueled by hydrogen, avoid further compounding grid reliability challenges.  The California Air Resources Board recent Hydrogen Station Self-Sufficiency Report  determined that an additional $300 million investment in hydrogen infrastructure, coupled with existing incentives like the Low Carbon Fuel Standard,  would lead to financial self-sufficiency of a fuel cell electric vehicle and hydrogen station network by 2030, avoiding additional upgrade costs and strain on the grid.

At the federal level, the multi-billion-dollar commitment to hydrogen and fuel cell programs in the 2021 Infrastructure Investment and Job Act (IIJA) has spurred a flurry of planning, project development, and investment in the hydrogen sector. States in every U.S. region have expressed support for project applications to the $8 billion Department of Energy hydrogen hub program. The awarded hubs will showcase production of hydrogen, distribution and delivery infrastructure, and broad end uses of hydrogen and fuel cells in the electricity, industrial, and transportation sectors.

Strong Support for Hydrogen

States from California to New York to Texas are committing significant funding and resources to support the development of these hydrogen hubs. The DOE and other agencies are launching additional energy manufacturing, clean electricity, zero-emission vehicle, and goods movement programs funded by the IIJA to further support hydrogen use alongside other clean energy technologies. Project developers and investors are simultaneously seeking guidance on the use of tax credits for hydrogen and fuel cells that came from the Inflation Reduction Act of 2022.

Hydrogen fuel cell big rig truck.

On the passenger light-duty vehicle side, Toyota and Hyundai continue to sell Mirai and Nexo hydrogen fuel cell vehicles in California. There are now over 15,471  fuel cell electric cars sold and leased in the U.S. In February, Honda announced a joint venture with General Motors to deliver a new fuel cell system not only for its light-duty vehicles but also for use in heavy-duty trucks, stationary power generation, and construction equipment. In early 2022, BMW announced its continued commitment to develop hydrogen-powered fuel cell vehicles with on-road demonstration of the iX5 to begin in 2023. 

Traditional manufacturers of engines and heavy-duty vehicles are partnering with clean energy companies to rapidly bring fuel cell electric vehicles to market in high volume, heavily polluted transportation corridors, with the assistance of the Hybrid and Zero-Emission Truck and Bus Voucher Incentive Program.  Already, on-road testing of fuel cell systems and vehicles made by Ballard Power Systems, Cummins, Hyzon Motors, Nikola Motors, and Toyota is underway. Off-road, the Port of Long Beach is working with Toyota and FuelCell Energy using a fuel cell to generate power, heat, and hydrogen, the latter used to fuel Toyota equipment at the port and Toyota Mirai vehicles coming off the ship. Byproduct water from the fuel cell’s hydrogen production is used to wash the cars.

Off Road and Materials Handling

Hydrogen fuel cell mining truck.

Presently, the largest throughput of hydrogen is in the off-road and materials handling sectors. In creating the first commercially viable market for hydrogen fuel cell technology, Plug Power has deployed more than 60,000 fuel cell systems and over 200 fueling stations, more than anyone else in the world, and is the largest buyer of liquid hydrogen. Plug customers have completed more than 55 million hydrogen fills into forklifts and other material handling equipment used in warehouses, including those operated by companies like Amazon and Walmart, showing the economic value of fuel cell powered forklifts. Contributing to their increased productivity throughput are advantages like rapid hydrogen refueling and a smaller overall footprint than battery electric counterparts that require space for chargers.

The State of California is considering the level of support needed for the required hydrogen fueling infrastructure to service all on-road fuel cell electric vehicles. Documents from the Hydrogen Fuel Cell Partnership illustrate the fueling stations needed for light-duty passenger vehicles and heavy-duty trucks  that would create a refueling network for launching a self-sustaining market. This would serve to quickly decarbonize key transportation corridors and improve air quality in the urban, rural, and agricultural communities along these corridors.

Hydrogen Powers Clean Transit

Hydrogen fuel cell bus on street.

Public transit agencies have been operating or conducting real-world testing of hydrogen fuel cell buses in their fleets . Following operational bus trials, many agencies concluded that both battery and fuel cell electric buses are required. Among the benefits cited for fuel cell buses are lower operating costs, often due to avoiding the investment required for battery electric buses such as charging stations and the need to expand capacity at local electric substations. In addition, the longer range and greater power density of fuel cell electric vehicles can support transit operations that must deal with varied, hilly terrain and longer routes.

California currently has 66 fuel cell electric buses in service with another 100+ committed to be placed in operation. Many transit agencies are set to follow the pioneering efforts of Alameda-Contra Costa Transit and SunLine Transit with their fleets of fuel cell electric buses and hydrogen refueling infrastructure. Among these are California’s Foothill Transit, Orange County Transit, and Humboldt Transit. Outside California, Stark County Transit in Ohio and Southeastern Pennsylvania Transportation Authority (SEPTA) in Philadelphia are committed to using hydrogen fuel cell buses to meet their service needs.

Hydrogen is here. Debates on energy resources should include discussion of best fit, rather than either-or. There is significant public and private recognition across the U.S that an all-of-the-above strategy is needed to meet our varied energy requirements and decarbonization goals, and hydrogen is poised to make an immediate and growing contribution to a global decarbonization strategy.

Katrina Fritz is the Executive Director of the California Hydrogen Business Council (CHBC).

Frank Wolak, president and CEO of the Fuel Cell and Hydrogen Energy Association.
Frank Wolak, Fuel Cell and Hydrogen Energy Association

There is no denying the recent growth in the hydrogen and fuel cell industry – growth in interest and awareness; in public and private sector investment; in federal, state, and regional commitments; in the overall portfolio and scale of product offerings; and in the range of new players entering the marketplace.

As the national advocate for the industry, the Fuel Cell and Hydrogen Energy Association (FCHEA) has long been active on Capitol Hill in Washington, DC, and around the country, working with champions in Congress, key allies, and our diverse membership on key issues such as policies and programmatic funding, codes and standards development and harmonization, and education and outreach.

Over the past year, FCHEA has grown as well, expanding the association not just in size, but also in scope of market sectors, innovative technologies, and hydrogen generation pathways, representing the full spectrum of the industry from production to utilization, including mobility.

Around the world, hydrogen is increasingly recognized as a key tool in the decarbonization of society, specifically hard to abate sectors, including medium- and heavy-duty transportation, both on the road and off. Here in the U.S., there are already tens of thousands of fuel cell-powered cars, buses, and material handling vehicles deployed across the country, all running on hydrogen. In parallel, fuel cells are also providing resilient, reliant backup power to hybrid zero-emission EV charging solutions. Customers include major retailers such as Walmart and Amazon, as well as transit agencies and delivery companies.

Hydrogen’s potential to reduce emissions and fossil fuel use, and with the advantages of fast refueling, lighter weight, and long range, are opening pathways in logistics, aviation, and shipping. We are seeing more fuel cell trucks, utility vehicles, and even planes, trains, and ships enter operation and testing in the U.S. and around the world.

Hydrogen Hubs Across America

Hydrogen fueled mobile electric vehicle charging center.

At the federal level, hydrogen and fuel cell technologies received a well-deserved boost in funding and support through the bipartisan Infrastructure Investment and Jobs Act. The law, signed in November 2021, included $9.5 billion for clean hydrogen, with the bulk ($8 billion) allocated to developing ‘Hydrogen Hubs’ that will demonstrate diverse methods of production, processing, delivery, storage, and end-use of clean hydrogen across America.

While the hub funding has deservedly received a lot of attention from interested parties seeking to stake a claim in their respective region or state, the Infrastructure Act also contained numerous other provisions where hydrogen and fuel cells could make a significant impact in decarbonizing the nation’s transportation network. This includes programs focused on Congestion Mitigation and Air Quality Improvement; Alternative Fuel Infrastructure; Zero-Emission Ferries and Buses; Port Infrastructure; and more.

Increasing Hydrogen Production

Hydrogen fuel cell emblem on vehicle.

FCHEA’s membership includes automotive, trucking, and fuel cell original equipment manufacturers (OEMs) with products geared towards light, medium, and heavy-duty transportation applications. These companies are developing and deploying a range of zero-emission vehicles for land, sea, and air, as well as working with other members and partners on the necessary hydrogen infrastructure to support them. As these other sections of the Infrastructure Bill start to take shape, we expect more prospects for our members and the technologies they offer, especially in support of the Hydrogen Hubs once that funding is awarded, as well as initiatives to green the nation’s ports, airports, and highways.

Outside of federal funding, members are investing billions of dollars in new and expanded facilities to increase U.S. hydrogen generation capacity across the country, and into new states and areas. These investments will not only expand supply but will also create jobs and boost economic growth in and around those locations.

Decarbonizing Transportation

Fueling hydrogen fuel cell Toyota Mirai.

FCHEA is excited for these opportunities because we believe in hydrogen and fuel cells and see firsthand the tremendous benefits they already bring to a range of applications and customers.  With significant plans for scale-up of hydrogen production and utilization across the country, those benefits will be amplified, helping us reach the necessary environmental goals to decarbonize across industry sectors and stay competitive with the rest of the world down the road.

Frank Wolak is President and CEO of the Fuel Cell and Hydrogen Energy Association in Washington DC.

Hydrogen fuel cell vehicle illustration.

Our journey of discovery with hydrogen vehicles started with the Mercedes-Benz’ fuel cell-powered NECAR II (New Electric Car II) in Berlin back in the mid-1990s. Since then, we have driven an array of hydrogen fueled vehicles from the world’s automakers on test tracks and on the highway. Along the way we have analyzed their capabilities and the strides being made in the hydrogen vehicle field over time, always impressed with constant improvement in their technology, cost, durability, component downsizing, and packaging.

What we’ve found in recent years is that hydrogen fuel cell vehicles drive like their more conventional counterparts, exhibiting satisfying levels of power and an overall positive driving experience. Their cabins are quiet, devoid of earlier developmental issues like gear whine or compressor noise. There is no sound or vibration from internal combustion because power is generated electrochemically without combustion. This electricity powers one or more electric motors that drive the vehicle, just like a battery EV. No greenhouse gases are produced and no emissions other than water vapor.

Driving the Equinox Fuel Cell

While there have been many important milestones over the years from the automakers pursuing hydrogen power, perhaps none was as notable as our experience driving GM’s Chevrolet Equinox Fuel Cell in 2007. At the time we knew the crossover we were piloting was one of the most advanced vehicles on the planet, Yet we set out on our drive chatting away with our GM guide almost oblivious to the high technology at work as we motored along, as if this was an everyday journey. That was a telling moment.

It may be that this crossover vehicle was fueled with hydrogen, created its power through an electrochemical process in lieu of combustion, and used the same kind of technology that created electricity and water onboard the Space Shuttle of the era. No matter. Driving it felt so normal . We were completely at ease during the drive with little thought of the processes at work behind the scenes. And that’s just what GM – and in fact, the entire automotive industry – was after. The deed was done.

It wasn’t always so, though developers of fuel cell vehicles had come ever-closer over the years. The ultimate goal was to create hydrogen fuel cell vehicles that disguised all the advanced technology at work. From the driver’s seat, some fuel cell vehicles leading up to our Equinox Fuel Cell drive were more seamless than others, like Toyota’s FCHV and Honda’s FCX. In many cases, though, developmental fuel cell vehicles functioned quite well but were still a degree of separation from production vehicles in certain areas.

Hydrogen Fuel Cell Challenges

Among the many challenges of the day was making the electrically powered drive-by-wire systems required in fuel cell vehicles act and feel like familiar mechanical systems of the day. At times, accelerator and brake pedal input routed through central control units felt a bit too much like on-off switches in developmental fuel cell vehicles. While otherwise eerily silent, high-pitched electric motor whine and sometimes fuel cell compressor noise were present. These challenges were being aggressively addressed as fuel cell vehicle development marched ahead, and they appeared fully resolved in the Chevy Equinox Fuel Cell crossover we were driving.

Soon after our time behind the wheel of the Equinox, drivers in suburban Los Angeles, New York City, and Washington D.C. also had the ability to experience these vehicles through the automaker’s “Project Driveway.” This program placed more than 100 Equinox Fuel Cell vehicles in the hands of private motorists ranging from regular families to celebrities. Drivers were provided free use of an Equinox Fuel Cell and the hydrogen fuel needed to run it for an average period of about three months. In return, participants provided GM feedback about the vehicles’ performance and their views about the experience.

Following our test drive of the Equinox Fuel Cell, , we were certain these advanced hydrogen vehicles would have no problems keeping up with the daily driving demands of Project Driveway participants. Plenty of space for four passengers and 32 cubic feet of cargo volume were afforded by careful packaging of GM’s fourth-generation fuel cell propulsion system, including a 1.8 kWh nickel-metal-hydride battery pack and three 10,000 psi hydrogen storage tanks.

Driving 160 Miles on Hydrogen

The Equinox Fuel Cell’s 160 mile driving range was designed to meet the needs of most driving chores. Sub-freezing operating capability was an additional advancement of particular importance to East Coast drivers. As is the case with most fuel cell vehicles, fueling up the Equinox with hydrogen was done in about the same amount of time as filling up a gasoline car. The hydrogen-powered Equinox Fuel Cell met the same federal safety standards as all cars. Importantly, it also attained the important benchmark of being certified a zero-emission vehicle (ZEV) by EPA, the ultimate goal for all motor vehicles of the future.

Chevrolet’s Equinox Fuel Cell so impressed Green Car Journal editors at the time that it was recognized with the magazine’s Green Car Vision Award™. This marked the first time the magazine honored a limited production vehicle for its forward-thinking technologies and potential for influencing the future of personal mobility. For a highly advanced developmental hydrogen vehicle tasked with shepherding in an entirely new age of transportation, that’s perhaps the highest praise we could give.

Green Car Time Machine.

The past few decades have seen plenty of electrified concept vehicles come and go. Many were merely design or technology exercises to generate interest and excitement for an automaker’s future direction. Some concepts led the way to production vehicles in the short years ahead. One that stands out as being well ahead of its time is Volkswagen’s Space Up! Blue concept that was unveiled in 2007. The interesting thing about this concept is that it clearly shared a vision that has led the way to the VW I.D. Buzz concept of today, and the production version of this newest iteration of the microbus that’s being revealed soon. This article shares details of VW’s early exploration of an electric microbus some 15 years ago, presented as it originally ran in Green Car Journal’s Winter 2007 issue.

VW Space Up! Blue electric microbus concept.

Take a look at the Volkswagen Space Up! Blue concept car, and the company hopes you’ll conjure up fond memories of the 1950s VW Microbus. With four roof windows, butterfly doors, and a motor at the rear, the concept resembles a modern, 7/8th scale take on the original. But unlike the ‘hippy van’ of yore that came to symbolize the eco lifestyle, this concept’s powerplant actually bears it out.

Li-Ion Batteries for This Electric Microbus

Replacing the boxer engine is a 60 horsepower electric motor that draws its power from a dozen lithium-ion batteries. These batteries provide enough energy for a 65 mile all-electric trip. After that the Space Up! Blue is either refueled by  plugging into an electrical outlet or seamlessly powered by an on-board fuel cell for another 155 miles. A nice touch is provided by a large solar panel on the roof that feeds up to 150 watts to the battery.

Power illustration for VW Space Up! Blue electric microbus concept.

Fueled by an underbody compressed hydrogen tank, the fuel cell is a new high temperature unit developed by VW’s dedicated research center in Germany. A new high temperature membrane and electrodes allow operating temperatures of up to 320 degrees F, far beyond current low temperature fuel cells whose water-containing membranes are limited to water’s boiling point. VW points out that higher  operating  temperatures mean a much simpler cooling and water management system is needed, making the whole system more compact, affordable, and efficient.

The Space Up! Blue concept is the third variant of VW’s new small family of concept cars to appear at major auto shows in just a few months, following the Up! concept  from Frankfurt and the larger Space Up! concept from Tokyo. Despite the resulting unwieldy naming scheme, the concepts collectively offer VW’s vision for a new kind of small car that is cleverly packaged and simply styled. Now with electric drive, plug-in capability, and advanced fuel cell technology, we like where this vision is aimed.

Solar panels on the roof of the VW Space Up! Blue concept.

Green Car Time Machine.

Hydrogen fuel cell vehicles have been in development for decades now as automakers strive to show how zero-emission, carbon-free hydrogen may be the ideal motor vehicle of the future. But focus hasn’t always been exclusively on hydrogen power generated through an electrochemical fuel cell. Some, like Mazda, showed us how internal combustion may present an easier and more seamless transition to the use of hydrogen. This automaker’s highest profile hydrogen project was the RX-8 RE that debuted 17 years ago, a model that could alternatively run on hydrogen or gasoline in its combustion rotary engine. Here, we present this article from the Green Car Journal archives as it was originally published in the Spring 2004 issue.

Mazda Hydrogen RX8-RE.

Excerpted from Spring 2004 Issue: No stranger to hydrogen power, Mazda recognized some time ago that its rotary engine and clean hydrogen fuel operate quite well together. Green Car Journal editors understood this first-hand when driving the automaker’s developmental MX-5 Miata hydrogen rotary sports car a decade ago. These days, reinforcing Mazda’s enduring interest in what many consider  the ultimate environmental fuel is its latest developmental vehicle, which is based on the automaker’s acclaimed RX-8.

Hydrogen Rotary Engine

The Mazda RX-8 RE integrates Mazda’s Renesis hydrogen rotary engine, a lean-burn powerplant based on the automaker’s next-generation rotary engine launched earlier this year in the all-new RX-8 sports car. Even when running on conventional gasoline, the new Renesis features significant environmental improvement over previous generation rotary engines with better fuel economy and reduced emissions.

A rotary engine is especially well-suited for burning hydrogen since it uses separate chambers for induction and combustion. This overcomes the troublesome backfiring issues often faced when using hydrogen in piston engines.

In addition, Mazda says the separate induction chamber also provides  a safer temperature for the engine’s dual hydrogen injectors with their rubber seals, which can be damaged by the higher temperatures of conventional engines. Dual injectors are used in each of the engine’s twin rotor housings since hydrogen has an extremely low density, thus greater volumes of this fuel must be injected than gasoline.

Dual Fuel Hydrogen/Gasoline

Mazda’s RX-8 RE aims to provide a traditional driving experience as it achieves extremely low emissions with hydrogen. This is accomplished by integrating a dual-fuel approach that allows seamlessly operating on hydrogen as available, or gasoline when it’s not. This is important and reflects Mazda’s belief that a dual-fuel system promotes the use of hydrogen and a developing hydrogen refueling infrastructure. The RX-8 RE uses both a conventional gas tank and a high-pressure hydrogen tank.

The Renesis hydrogen engine features 210 horsepower when running on gasoline and 110 horsepower on less energy-dense gaseous hydrogen. Power is transferred to pavement through a five-speed manual transmission. Performance is enhanced with 225/45R18 tires over 18x8JJ alloys and double wishbone multi-link suspension front and rear, with stop- ping power supplied by four-wheel ventilated disc brakes.

Electric Assist Turbocharger

An array of advanced technologies is used in the RX-8 RE to allow exploring their value for a future production hydrogen vehicle. These include an electric motor to boost engine torque at low rpm and an electric motor-assisted turbocharger, both used to improve acceleration at low revs. An idle-stop system turns the engine off when the car is stopped and then starts again automatically when the driver is ready to accelerate. Regenerative braking recovers energy during  deceleration and braking to charge the car’s 144-volt battery.

Other environmentally-conscious elements are incorporated into this high-profile hydrogen car, including water-based paint, interior parts made of plant-based plastics, optimized tires, and reduced overall weight. Reduced friction hub carriers and a fast-fill tandem master cylinder also serve to reduce brake drag.

This latest foray into the hydrogen world is a strong message that Mazda is giving hydrogen propulsion serious consideration, as it has for many years now. This automaker’s interest in hydrogen rotary power has been duly noted since the debut of its HR-X hydrogen concept car at the 1991 Tokyo Motor Show. A series of other hydrogen efforts have evolved at Mazda over the years including the HR-X2, MX-5, and Capella Cargo, all powered by hydrogen rotary engines, and the Demio FC-EV and Premacy FC-EV, powered by hydrogen fuel cells.

Hydrogen Vision at Mazda

What has driven Mazda to pursue hydrogen fuel with such vigor for so long? A focus on environmental issues, of course, but also an apparent vision that this fuel stood at least a decent chance of coming out on top. That vision has now culminated in the Renesis hydrogen rotary engine and the outstanding RX-8 RE.

BMW, Ford, and now Mazda are raising the volume on the potential for using hydrogen in more conventional engines and not just in fuel cells. This adds additional motivation to create a hydrogen refueling infrastructure, promising to make things even more interesting as this alternative fuel is driven ever closer to the showroom in the years ahead.

Toyota has ‘fully rebooted’ the second-generation Mirai fuel cell electric vehicle (FCEV) for an evolving automotive arena. While the first-generation Mirai was a four-passenger, front-wheel-drive sedan with a decidedly futuristic design, the new Mirai is Toyota’s flagship sedan, a premium, rear-wheel-drive, five-passenger sports-luxury car in the vein of the Lexus LS, on whose GA-L platform the Mirai is now based. It’s offered in XLE and Limited trim levels, with corresponding differences in equipment and interior materials.

The new Mirai is larger in every dimension except height, more powerful, and has a longer cruising range. Its four-wheel independent multi-link suspension, replacing the previous car’s strut-type front and rear beam axle, improves the car’s handling and performance, as does the change to rear-wheel-drive and the configuration of its new fuel cell system. In combination, those latter two revisions give the Mirai a near 50/50 front/rear weight distribution.

The fuel cell stack in the new-generation Mirai, like the one in its predecessor, takes in hydrogen and oxygen to create electricity without combustion to power its rear-drive motor. Water vapor is the only emissions produced during the process. The stack is about 20 percent smaller and 50 percent lighter, and now fits under the sedan’s hood. A new power control unit and other changes to the stack result in a 12-percent power increase, boosting the Mirai’s rear-drive motor output to 182 horsepower and 221 lb-ft torque (versus the outgoing model’s 151 horsepower and 247 lb-ft).

Electricity is stored in a lithium-ion battery that’s smaller, lighter, and has greater capacity than the Mirai’s previous nickel-metal-hydride battery. The battery rides between the rear seat and the trunk. Three 10,000-psi carbon-fiber-reinforced tanks hold about 11 pounds of hydrogen, giving the Mirai 402 miles of range in XLE models, and 357 in the Limited. Toyota is continuing the practice of offering up to $15,000 of complimentary hydrogen with each Mirai.

Inside the Mirai are seats trimmed in SofTex synthetic leather. The dashboard is dominated by two digital displays, an 8-inch LCD gauge cluster in front of the driver and a 12.3-inch touchscreen in the center of the dash to operate the climate control, infotainment, and navigation systems. To bring down cabin temperatures and reduce the load on the Mirai’s air-conditioning system, Toyota engineers installed extra insulation in the roof and added UV protection in the side windows.

Both Mirai models come standard with Toyota’s Safety Sense 2.5+, a suite of active safety systems with several enhanced functions. Among them is the Pre-Collision System with Pedestrian Detection, which not only registers a vehicle ahead but a bicyclist or pedestrian in front of that vehicle.

Initially the Mirai is available in California only, but Toyota says it is fully optimized for cold-weather operation, hinting that broader availability may be in the works. The Mirai XLE is priced at $49,500 with the uplevel Limited coming in at $66,000 before substantial federal and California state incentives, and potential Toyota incentives as well.

Hyundai, part of a very exclusive club offering hydrogen fuel cell vehicles in the U.S., has followed its initial Tucson FCEV with the all-new Nexo. It’s available only in California where hydrogen fueling opportunities, while limited, exist in greater numbers compared to other states.

The Nexo represents a step forward for FCEVs in that Hyundai is selling the 5-passenger hatchback and not just leasing it, as is typically the case with hydrogen vehicles. It also uses a purpose-built platform rather than being based on an existing model like the Tucson FCEV.

As a hydrogen fuel cell vehicle, the Nexo’s fuel cell takes in hydrogen and oxygen to create electricity for powering an electric motor, with zero emissions. The heart of the Nexo is its 95-kW proton-exchange membrane fuel cell stack and 1.6-kWh lithium-ion battery pack. These supply electricity to a 161-horsepower, 291 lb-ft AC induction motor located beneath the hood. Power is transferred to the road through a single-speed, direct-drive gearbox. Hydrogen is stored in three 10,000 psi tanks with a total capacity of 156 liters, delivering an EPA estimated driving range up to 380 miles.

Hyundai reduced the size and weight of the fuel cell compared to that used in the earlier Tucson FCEV. The new fuel cell uses only 56 grams of expensive platinum rather than the Tucson’s 78 grams. Hyundai also improved cold-weather performance so the fuel cell starts in temperatures as low as -22 degrees F. Like the Tucson and other fuel cell vehicles, refueling with hydrogen can be done in as little as five minutes.

2017 Honda Clarity Fuel CellThe Honda Clarity family of vehicles has earned Green Car Journal’s 2018 Green Car of the Year Award® amid a field of finalists that all featured electrification as part of their market strategy, including the Honda Accord, Hyundai Ioniq, Nissan LEAF, and Toyota Camry. The award was announced at a Green Car Journal press conference during AutoMobilityLA at the LA Auto Show.

Honda’s Clarity sedan is a future-thinking model that redefines how to deliver what drivers desire today, while also anticipating the shifting needs of a more environmentally positive driving future. It is offered in three electrified variations – one powered by plug-in hybrid power, another exclusively by battery power, and a third by a hydrogen fuel cell that creates electricity on board. This distinguishes Honda as the first-ever automaker to do this.

2017 Honda Clarity ElectricThe Clarity Fuel Cell, Clarity Electric, and Clarity Plug-in Hybrid use the same advanced platform and many of the same powertrain components, enabling Honda to amortize manufacturing costs. This  also makes it straightforward to increase or decrease production of each variant to meet changing demand.

The winner was selected by a jury of environmental and efficiency leaders including Jean-Michel Cousteau, President of Ocean Futures Society; Matt Petersen, President and CEO of Los Angeles Cleantech Incubator and Board Member of Global Green USA; Dr. Alan Lloyd, President Emeritus of the International Council on Clean Transportation; Mindy Lubber, President of CERES; and Kateri Callahan, President of the Alliance to Save Energy, plus celebrity auto enthusiast Jay Leno and Green Car Journal editors.

2017 Honda Clarity Fuel Cell

There was never a doubt that Honda could achieve its goal in developing a production fuel cell vehicle powered by hydrogen. This automaker already proved it could build and sell another gaseous fuel model – the Civic Natural Gas – that ran as seamlessly as a more conventional gasoline-powered Civic. Hydrogen is just another fuel in gaseous form, right?

Ah, but hydrogen. This zero-emission fuel is more of a challenge since hydrogen wouldn’t be used in an internal combustion Honda engine, but rather in a fuel cell powerplant to electrochemically create electricity, without combustion or emissions. This electricity would provide energy to power electric motors, no differently than in a battery electric vehicle. Make no mistake that this is a very advanced powertrain technology…a future technology, aimed at today.

This image has an empty alt attribute; its file name is Honda-Clarity-Fuel-Cell-Cabin-1024x576.jpgThere have been many developmental milestones along the way. The Honda FCX developmental vehicle we drove at Sears Point Raceway in 2003 offered proof that Honda was up to the challenge. Testing the FCX Clarity Concept at Laguna Seca Raceway in 2006 showed how quickly Honda’s fuel cell vehicle development could progress in a short time.

The all-new 2017 Clarity Fuel Cell is the finished product, currently available in California at a $369 per month lease that includes up to $15,000 of hydrogen fuel. It features an aerodynamic and stylish design nuanced with futuristic touches like angled rear wheel side skirts and eye-catching LED exterior lighting, combined with a pleasing cabin and significant on-board tech.

This image has an empty alt attribute; its file name is Honda-Clarity-Fuel-Cell-Underhood-1024x576.jpgClarity Fuel Cell's new fuel cell powertrain is substantially evolved from earlier iterations and offers an impressive 366 mile driving range. Importantly, Clarity Fuel Cell delivers satisfying driving dynamics that made us smile during our recent seat time on twisty roads and highways on California’s Central Coast.

Apparently, the future has arrived.

While hydrogen fuel cell electric vehicles represent but a blip on the radar at present, there has been a 300 percent growth in hydrogen fuel cell vehicles sold in 2016, with an unprecedented 2500 FCVs making it to highways. It’s an important development in a field that has been striving to gain traction for some time. In fact, several mainstream automakers look to FCVs as the logical path to mass market vehicle electrification.

“Despite the growth, the number of fuel cell vehicles sold and leased are minuscule compared to the market,” says Naqi Jaffery, president and CEO of Information Trends. “However, the growth portends well for the future of hydrogen fuel cell vehicles. Information Trends’ report, Global Market for Hydrogen Fuel Cell Vehicles 2017, points out that California grew the fastest in terms of sales and leases, but remained behind Japan in terms of volume.

2016-sales-by-marketsTo date, Toyota’s Mirai FCV leads the global market with 2,000 units produced and placed with consumers in 2016. The Hyundai Tucson FCV is a distant second, trailed by Honda Clarity. The Clarity, however, is just getting ramped up with a major commitment by Honda.

As Japan implements its ‘hydrogen society’ efforts and California expands the state’s hydrogen fueling network, Green Car Journal anticipates a continued market growth momentum in the rarified fuel cell electric car segment.

clarity-fuel-cellGreen Car Journal’s recent drive of Honda’s new Clarity Fuel Cell in Los Angeles delivered what we expect from Honda. Simply, our experience with this sleek and high-tech hydrogen sedan during the Green Car Tour ride-and-drive at GreenBuild 2017 underscored how seamless Honda has made driving a hydrogen powered electric vehicle. Now, others are enjoying the experience as well since the first retail deliveries of Honda’s third-generation Clarity Fuel Cell model have taken place in Southern California. This marks yet another milestone for this automaker as it sets its sights on growing a hydrogen vehicle market.

According to Steve Center, vice-president of American Honda’s Environmental Development Office, this is just the beginning as Honda continues to roll out the new Clarity series of electrified vehicles. Based on an earlier discussion at the LA Auto Show with Honda public relations lead Sage Marie, plus reading between the lines of previous announcements, it’s expected that the present ‘world’ Clarity FCEV will serve as the manufacturing platform for Honda’s electrified lineup including, but not limited to, a plug-in gasoline/electric hybrid, an extended range stand-alone battery EV, and eventually an electrified crossover or SUV offering. While looking at the futuristic body line of this production five-passenger fuel cell electric vehicle, we are in fact also looking at Honda’s near-future autonomous driving design directive.2017 Honda Clarity Fuel CellDictated by low-drag aerodynamics and inspired by the ‘folded wings of a bird,’ the Clarity brings an eye pleasing and futuristic four-door, five-passenger sedan to the world of hydrogen fueled electric cars and SUVs. Clarity begins with specifically compounded low friction tires, aerodynamic wheels, and slip-stream designed roof and side panels engaged to reduce fuel consumption and maximize the power generated through Clarity’s efficient hydrogen fuel cell generator. With a range of 366 miles between fill ups, the Clarity features greater electric-drive range than Tesla’s Model S.

Thanks to Honda’s downsized yet super-efficient hydrogen fuel cell, Clarity also comes to market with greater interior passenger volume and trunk space than Toyota’s hydrogen Mirai. Here, one discovers a minimalist yet rather spacious world of well-balanced, driver-centered features inspired by the executive office work place. A large touchscreen monitor, informative eye-forward gauge cluster, graph bar, and heads-up display intuitively inform the driver. Pleasing leather, hard and soft plastic molded surfaces, a hint of wood, and brushed metals surround driver and passengers. This may in fact be one of the finest-finished interiors in Honda’s stable.

2017 Honda Clarity Fuel CellOn the business side, the initial Clarity offering is presently exclusive to Southern California at 12 select Honda dealerships where nearby hydrogen fueling stations are readily available. Among the first lessees are Jon Spallino, private securities investor and the world's first individual fuel cell vehicle customer. Jon began with the 2005 Honda FCX fuel cell vehicle and the new Clarity Fuel Cell is his third hydrogen-powered Honda. Also taking initial delivery were Jack Cusick, assistant principal of Newport Harbor High School; Jackie Keller, founder of NutriFit healthy meal services; Jim Salomon, president at Questar Construction; Karen Thorp, deputy district attorney for the County of Los Angeles; and Terry Tamminen, CEO of the Leonardo DiCaprio Foundation.

Clarity may be leased in select markets for $369 per month with $2868 due at signing. Honda provides some enticing incentives including a generous mileage allowance of 20,000 miles per year and a fuel allowance of up to $15,000 in hydrogen fuel. Also provided are an Avis luxury rental car allowance for vacations and other extended trips plus 24/7 roadside assistance.

2017-honda-clarity-rear

ron-cogan-capitol-hillThere are many outspoken and polarizing proponents of the various fuels and technologies at play today. This has been the case for several decades now and isn’t likely to disappear anytime soon. Many electric car enthusiasts do not see a future for internal combustion or even hydrogen fuel cell vehicles. Hydrogen proponents point out that fuel cell vehicles make more sense than battery electrics since hydrogen generally offers greater driving range and fuel cell vehicles can be refueled in under five minutes, while battery electrics cannot. Biodiesel enthusiasts point out the obvious benefits of this biofuel and even as this fuel gains momentum, wonder why support isn’t stronger. Natural gas advocates see huge and stable supplies of this clean-burning fuel now and in our future, without the truly significant commitment to natural gas vehicles this should bring. And those behind internal combustion vehicles achieving ever-higher efficiency simply wonder what the fuss is all about when conventional answers are here today.

So in the midst of all this, where are we headed? Simple. In the right direction, of course.

As I was writing about these very fuels and technologies some 25 years ago, it wasn’t lost on me that the competition for dominance in the ‘green’ automotive world of the future would be hard-fought and long, with many twists and turns. As our decades-long focus on the ‘green car’ field has shown us, the state-of-the-art of advanced vehicles in any time frame is ever-changing, which simply means that what may seem to make the most sense now is likely to shift, and at times, shift suddenly. This is a field in flux today, as it was back then.

When Nissan powered its Altra EV back in 1998 as an answer to California’s Zero Emission Vehicle mandate, it turned heads with the first use of a lithium-ion battery in a limited production vehicle, rather than the advanced lead-acid and nickel-metal-hydride batteries used by others. Lithium-ion is now the battery of choice, but will it remain so as breakthrough battery technologies and chemistries are being explored?

Gasoline-electric hybrids currently sell in ever-greater numbers, with plug-in hybrids increasingly joining their ranks. Conventionally-powered vehicles are also evolving with new technologies and strategies eking levels of fuel efficiency that were only thought possible with hybrid powerplants just a few years ago.

What drives efficiency – and by extension determines our future path to the high efficiency, low emission, and more sustainable vehicles desired by consumers and government alike – is textbook evolution. Cars are adapting to meet the changing needs of future mobility and the imperative of improved environmental performance. Some of these evolutionary changes are predictable like lightweighting, improved aerodynamics, friction reduction, and enhanced powertrain efficiencies. Other answers, including the fuels that will ultimately power a new generation of vehicles, will be revealed over time.

So here’s to the cheerleaders who tell us quite vocally that their fuel, technology, or strategy is the answer to our driving future. One of them may be right. But the fact is, the evolutionary winner has yet to be determined.