Green Car Journal logo

The iconic, box-like Kia Soul gets a redesign for 2020, sporting styling changes that include a more aggressive front end with horizontal strips containing daytime running lights. Headlamps are integrated in the bumper while taillights now practically encircle the rear window. The third-generation model rides on a 1.2-inch-longer wheelbase and is 2.2 inches longer, and while this really doesn’t translate into additional usable space, the doors do open a little wider and the rear hatch is a bit larger. Folding down the back seats expands cargo capacity from 24 cubic feet to 62 cubic feet.

Soul is available in base LX, X-Line, S, EX, GT-Line, and GT-Line 16T trim levels plus the all-electric EV. LED projector headlights are standard on the both GT-Lines and are optional on the EX. The X-Line gets tougher-looking bumpers and plastic fender flares. GT-Line has a center exhaust, monochromatic bodywork, and a sportier suspension tune. The GT-Line 16T also gets wider tires on 18-inch alloy wheels and larger front brakes.

Except for the GT-Line 1.6T and EV, all Soul variants are powered by an Atkinson-cycle, 2.0-liter DOHC four-cylinder engine producing 147 horsepower and 132 lb-ft torque. The GT-Line 1.6T features a turbocharged 1.6-liter DOHC four-cylinder boasting 201 horsepower and 195 lb-ft torque. All 2.0-liter engine cars except the base LX use a new continuously variable automatic transmission (CVT). The LX has a standard six-speed manual with the CVT optional. GT-Line 1.6T shifts through a seven-speed, dual-clutch automatic transmission with steering wheel-mounted shift paddles. All-wheel drive is not available on the Soul. EPA estimated fuel economy numbers are 29 city/35 highway for the 2.0-liter engine with CVT and 27 city/33 highway mpg for the 1.6T.

Forward collision avoidance assist with pedestrian detection, lane keeping assist, driver attention warning, blind spot collision warning, rear cross-traffic collision-avoidance assist, lane change assist, smart cruise control, and a head-up display are available as standard or optional equipment, but not on an all trims. A 7.0-inch color touchscreen is standard with a new 10.3-inch widescreen unit available. Apple CarPlay and Android Auto are standard on all trims. The controls on the steering wheel almost rival those on a F1 race car.

Making the 2020 Soul EV more competitive in the electric vehicle space is a driving range more than double that of its predecessor, with the distance traveled between charges EPA rated at 243 miles. This dramatic increase from the EV’s earlier 111-mile range is made possible with a new 64 kWh lithium-ion battery pack with DC fast-charge capability, quite a step up from the previous 30 kWh pack. A single-speed transmission delivers electric power to a 201 horsepower, 291 lb-ft torque permanent-magnet AC motor driving the front wheels. With max torque available from 0 to 3600 rpm, it’s not hard to squeal the tires. This same drivetrain is used in the Kia Niro EV and Hyundai Kona EV. The 2020 Kia Soul model has four drive modes including Eco, Eco+, Normal, and Sport. EPA rates the Soul EV’s efficiency at a combined 114 MPGe.

Soul EV is differentiated from its internal combustion cousins by a painted plastic insert in place of a front grille, a lower set of LED lights, and restyled fascias at both ends. The Soul EV gets its own version of Kia's UVO infotainment system and a 10.3-inch touchscreen. It includes information on charging and battery status, charging station updates, and scheduled charging functions. Drivers have the ability to remotely plan a trip and send the information, including waypoints, to the car's navigation system.

The gas-powered 2020 Soul’s base price starts at $17,490 for the LX and tops out at $27,490 for the GT-Line 16T Turbo. Available in late 2019, the new Soul EV will be offered in California EV compliant states at a price to be determined.

There’s something almost magical about plugging your car into an outlet at night and waking up to a full ‘tank’ in the morning. There’s no need for a stop at the gas station, ever. Plus, there’s no nagging guilt that the miles metered out by the odometer are counting off one’s contribution toward any societal and environmental ills attendant with fossil fuel use.

This is a feeling experienced during the year Green Car Journal editors drove GM’s remarkable EV1 electric car in the late 1990s. Daily drives in the EV1 were a joy. The car was sleek, high-tech, distinctive, and with the electric motor’s torque coming on from zero rpm, decidedly fast. That’s a potent combination.

This image has an empty alt attribute; its file name is EV1-Rolling-Chassis-Illustration-1024x576.jpgThe EV1 is long gone, not because people or companies ‘killed’ it as the so-called documentary Who Killed the Electric Car suggested, but rather because extraordinarily high costs and a challenging business case were its demise. GM lost many tens of thousands of dollars on every EV1 it built, as did other automakers complying with California’s Zero Emissions Vehicle (ZEV) mandate in the 1990s.

Even today, Fiat Chrysler CEO Sergio Marchionne says his company loses $14,000 for every Fiat 500e electric car sold. Combine that with today’s need for an additional $7,500 federal tax credit and up to $6,000 in subsidies from some states to encourage EV purchases, and it’s easy to see why the electric car remains such a challenge.

This image has an empty alt attribute; its file name is Fiat-500-Underhood-1024x576.jpg

This isn’t to say that electric cars are the wrong idea. On the contrary, they are perceived as important to our driving future, so much so that government, automakers, and their suppliers see electrification as key to meeting mandated 2025 fleet-wide fuel economy requirements and CO2 reduction goals. The problem is that there’s no singular, defined roadmap for getting there because costs, market penetration, and all-important political support are future unknowns.

The advantages of battery electric vehicles are well known – extremely low per-mile operating costs on electricity, less maintenance, at-home fueling, and of course no petroleum use. Add in the many societal incentives available such as solo driving in carpool lanes, preferential parking, and free public charging, and the case for electrics gets even more compelling. If a homeowner’s solar array is offsetting the electricity used to energize a car’s batteries for daily drives, then all the better. This is the ideal scenario for a battery electric car. Of course, things are never this simple, otherwise we would all be driving electric.

This image has an empty alt attribute; its file name is EV-Charging-1024x576.jpgThere remain some very real challenges. Government regulation, not market forces, has largely been driving the development of the modern electric car. This is a good thing or bad, depending upon one’s perspective. The goal is admirable and to some, crucial – to enable driving with zero localized emissions, eliminate CO2 emissions, reduce oil dependence, and drive on an energy source created from diverse resources that can be sustainable. Where’s the downside in that?

Still, new car buyers have not stepped up to buy battery electric cars in expected, or perhaps hoped-for, numbers, especially the million electric vehicles that Washington had set out as its goal by 2015. This is surprising to many since electric vehicle choices have expanded in recent years. However, there are reasons for this.

This image has an empty alt attribute; its file name is Toyota-Tesla-RAV4-EV-Side-1-1024x576.jpg

Electric cars are often quite expensive in comparison to their gasoline-powered counterparts, although government and manufacturer subsidies can bring these costs down. Importantly, EVs offer less functionality than conventional cars because of limited driving range that averages about 70 to 100 miles before requiring a charge. While this zero-emission range can fit the commuting needs of many two-vehicle households and bring substantial fuel savings, there’s a catch. Factoring future fuel savings into a vehicle purchase decision is simply not intuitive to new car buyers today.

Many drivers who would potentially step up to electric vehicle ownership can’t do so because most electric models are sold only in California or a select number of ‘green’ states where required zero emission vehicle credits are earned. These states also tend to have at least a modest charging infrastructure in place. Manufacturers selling exclusively in these limited markets typically commit to only small build numbers, making these EVs fairly insignificant in influencing electric vehicle market penetration.

This image has an empty alt attribute; its file name is BMW-i3-Action-1024x576.jpg

Battery electric vehicles available today include the BMW i3, BMW i8, Chevrolet Spark EV, Fiat 500e, Ford Focus Electric, Honda Fit EV, Kia Soul EV, Mercedes-Benz B-Class Electric Drive, Mitsubishi i-MiEV, Nissan LEAF, Smart ForTwo Electric Drive, Tesla Model S, Toyota RAV4 EV, and VW e-Golf. While most aim at limited sales, some like BMW, Nissan, and Tesla market their EVs nationwide. The Honda Fit EV and Toyota RAV4 EV are being phased out. Fleet-focused EVs are also being offered by a small number of independent companies. Other battery electrics are coming.

BMW’s i3 offers buyers an optional two-cylinder gasoline range extender that generates on-board electricity to double this electric car’s battery electric driving range. A growing number of electrified models like the current generation Prius Plug-In and Chevy Volt can also run exclusively on battery power for a more limited number of miles (10-15 for the Prius and up to 40 miles in the Volt), and then drive farther with the aid of a combustion engine or engine-generator. Both will offer greater all-electric driving range when they emerge as all-new 2016 models. Many extended range electric vehicles and plug-in hybrids like these are coming soon from a surprising number of auto manufacturers.

This image has an empty alt attribute; its file name is Coda-EV-1024x576.jpgIt has been an especially tough road for independent or would-be automakers intent on introducing electric vehicles to the market. Well-funded efforts like Coda Automotive failed, as have many lesser ones over the years. Often enough, inventors of electric cars have been innovative and visionary, only to discover that becoming an auto manufacturer is hugely expensive and more challenging than imagined. In many cases their timeline from concept and investment to production and sales becomes so long that before their first cars are produced, mainstream automakers have introduced models far beyond what they were offering, and at lesser cost with an established sales and service network to support them.

A high profile exception is Tesla Motors, the well-funded Silicon Valley automaker that successfully built and sold its $112,000 electric Tesla Roadster, continued its success with the acclaimed $70,000-$100,000+ Model S electric sedan, and will soon deliver its first Tesla Model X electric crossovers. While Tesla has said it would offer the Model X at a price similar to that of the Model S, initial deliveries of the limited Model X Signature Series will cost a reported $132,000-$144,000. It has not yet been announced when lower cost 'standard' Model X examples will begin deliveries to Tesla's sizable customer pre-order list.

This image has an empty alt attribute; its file name is Tesla-Model-S-on-Road-1-1024x576.jpgTesla’s challenge is not to prove it can produce compelling battery electric cars, provide remarkable all-electric driving range, or build a wildly enthusiastic – some would say fanatical – customer base. It has done all this. Its challenge is to continue this momentum by developing a full model lineup that includes a promised affordable model for the masses, its Model 3, at a targeted $35,000 price tag. It will be interesting to see if the Model 3 ultimately comes to market at that price point.

This is no easy thing. Battery costs remain very high and, in fact, Tesla previously shared that the Tesla Roadster’s battery pack cost in the vicinity of $30,000. While you can bury the cost of an expensive battery pack in a high-end electric car that costs $70,000 to over $100,000, you can’t do that today in a $35,000 model, at least not one that isn’t manufacturer subsidized and provides the 200+ mile range expected of a Tesla.

This image has an empty alt attribute; its file name is Tesla-Model-X-Falcon-Wing-Doors-1024x576.jpgThe company’s answer is a $5 billion ‘Gigafactory’ being built in Nevada that it claims will produce more lithium-ion batteries by 2020 than were produced worldwide in 2013. The company’s publicized goal is to trim battery costs by at least 30 percent to make its $35,000 electric car a reality and support its growing electric car manufacturing. Tesla has said it’s essential that the Gigafactory is in production as the Model 3 begins manufacturing. The billion dollar question is…can they really achieve the ambitious battery and production cost targets to do this over the next few years, or will this path lead to the delays that Tesla previously experienced with the Tesla Roadster, Model S, and Model X?

Tesla is well-underway with its goal of building out a national infrastructure of SuperCharger fast-charge stations along major transportation corridors to enable extended all-electric driving. These allow Tesla vehicles the ability to gain a 50 percent charge in about 20 minutes, although they are not compatible with other EVs. For all others, Bosch is undertaking a limited deployment of its sub-$10,000 DC fast charger that provides an 80 percent charge in 30 minutes. A joint effort by ChargePoint, BMW, and VW also aims to create express charging corridors with fast-charge capability on major routes along both coasts in the U.S.

This image has an empty alt attribute; its file name is Chargepoint-Charger-1-1024x576.jpgThe past 25 years have not secured a future for the battery electric car, but things are looking up. The next 10 years are crucial as cost, infrastructure, and consumer acceptance challenges are tackled and hopefully overcome to make affordable, unsubsidized electric cars a mass-market reality. It is a considerable challenge. Clearly, a lot of people are counting on it.