Green Car Journal logo

2017 Chrysler Pacifica HybridThe 2017 Chrysler Pacifica has earned 50 awards to date, the most unique its latest one awarded by Altair Corporation. This 2017 Chrysler minivan has been honored with the “Altair Enlighten Award” for weight loss, the only award of its type in the automotive industry. Altair recognizes advanced automotive engineering and its impact on fuel efficiency through the reduction of vehicle weight. Lighter by 250 pounds than its predecessor, Pacifica claims the highest mpg in the minivan segment.

"The 2017 Chrysler Pacifica is a testament to our team's engineering capability," says Phil Jansen, Head of Product Development at North America. "It's not only lighter than the vehicle it replaced, it's longer, wider, and more efficient. The Pacifica has also earned superior safety ratings and widespread media acclaim. We are proud to add the Altair Enlighten Award to its list of team achievements."

Jensen further acknowledged weight reduction as a contributing factor to improved fuel economy. The 2017 Chrysler Pacifica earns a best-in-class EPA rating of 28 highway mpg and a combined city/highway rating of 22 mpg.

Chrysler’s all-new Pacifica was further distinguished as a finalist for the 2017 Green Car of the Year® award at last year’s LA Auto Show. The Pacifica Hybrid is the only minivan among 40 plug-in models available during 2017 in the United States.

Foto: Hildebrandt/LorenzSafety has long been a hot topic in debates over increasing fuel efficiency, but this is less so today. In 2002, Senator Trent Lott warned of ‘purple people-eaters’ (read: silly-looking golf carts) taking over the market if CAFE standards were raised; Mr. Lott now drives a Mini Cooper. Effective occupant protections are proliferating, and U.S. vehicle fatalities continue to decline.

Manufacturers are improving fuel efficiency through a host of strategies that include reducing vehicle weight by removing unnecessary material and substituting lighter materials, which in turn permits downsizing of the engine and other components. Ford, for example, has indicated its intention to reduce the weight of its vehicles by 12 percent on average by 2020. As a rule of thumb, each 10 percent reduction in body weight can lower fuel consumption by 6 percent when component downsizing is taken into account. None of this means changing vehicle dimensions – there’s no need to sacrifice protective crush space to get a more fuel-efficient ride, especially when today’s CAFE standards require smaller vehicles to meet tighter fuel efficiency targets.

At this point, weight reduction is one of the least expensive approaches to saving fuel. Composites such as carbon fiber-reinforced polymers remain expensive for the time being, but lightweight steel, aluminum and other plastics are pressed into service in vehicle configurations that frequently yield net cost reductions. The need to retool and to master challenges such as joining dissimilar materials mean the transition to lighter vehicles is gradual. But there appear to be few obstacles to a long-term trend toward substantially lighter vehicles. The trend will be especially helpful to the adoption of electric vehicles, for which downweighting is critical due to its implications for sizing costly batteries.

There may be a limit to prudent downweighting, but as the fleet turns over and collisions between vehicles of widely disparate weights occur less frequently, any such limit would shift as well. Moreover, as drivers accept increasing automation of vehicle controls, in particular collision prevention, driving around surrounded by a couple tons of metal will begin to feel very 20th century.




It is an exciting time to be involved with the auto industry, or to be in the market for a new car. The auto industry has responded splendidly to the challenge of new emission, fuel economy, and safety standards. The public is offered a greater than ever selection of vehicles with different powertrains, lightweight materials, hybrids, and electric drive vehicles across many platforms. We see increasing numbers of clean diesel vehicles and natural gas is making a resurgence, especially in the heavy-duty sector.

alan-lloydThe positive response by the auto industry to the ever-tightening pollutant emission and fuel economy standards includes tactics such as the use of aluminum in the Ford F-150 and the increased use of carbon fiber by BMW, among many innovations introduced across many models and drivetrains. These evolutionary changes are a major tribute to the automobile engineers who are wringing out the most they can in efficiency and reduced emissions from gasoline and diesel engines. I view this evolutionary change as necessary, but not sufficient to meet our greenhouse gas goals by 2050.

New car ownership is currently down in Europe and is leveling off in the U.S. For global automotive manufacturers, however, this trend is offset by the dramatic growth in places like China and India. The potential for dramatic growth in the developing world is clearly evident: In the U.S., there are about 500 cars per thousand people, compared to about 60 and 20 in China and India, respectively.

How can these trends be reconciled with the environmental and health concerns due to climate change and adverse air quality in the developing world? The evidence for climate change accumulates by the day. Hazardous air quality in many major cities in China has drawn global attention, providing a visual reminder of how far the developed world has come and how much environmental protection needs to be accelerated in the developing world. Damaging air pollution is increasingly seen as a regional and even worldwide challenge. Dramatic economic growth in many developing countries is generating pollution that knows no boundaries. Air pollution from China, for example, fumigates Korea and Japan and is even transported across the Pacific to impact air quality in California and other Western states.

It will take a revolutionary change to provide personal mobility without unacceptable energy and environmental consequences. As a recent National Academy of Sciences (NAS) document states, it is likely that a major shift to electric drive vehicles would be required in the next 20 to 30 years. Electric drive vehicles, coupled with renewable energy, can achieve essentially zero carbon and conventional pollutant emissions. The NAS report also predicted that the costs of both battery and fuel-cell electric vehicles would be less than advanced conventional vehicles in the 2035-2040 timeframe.

This transition will not occur overnight and we will be driving advanced conventional vehicles for many years to come. In a study for the International Council on Clean Transportation, Dr. David Greene calculated that the transition could take 10 to 15 years, requiring sustained investment in infrastructure and incentives in order to achieve sustained penetration. While this investment is not inexpensive, it is projected that the benefits of this investment will be 10 times greater than the costs.

So where do we stand today on electric vehicles? We are seeing an unprecedented number of hybrid, plug-in hybrid, and battery electric vehicles across many drivetrains and models. There were about 96,000 plug-in electric vehicles sold or leased in the U.S. last year and more than 10 new PEV models are expected this year. While the sales fall short of some optimistic projections, it is an encouraging start after many years of more hope than delivery. The FC EV is expected to see significant growth after the initial limited introduction of fuel cells in the 2015-2017 timeframe by five major automobile companies.

It will take many years of sustained increasing penetration into new car sales to make this revolution a success. It is indeed a marathon and not a sprint. The challenge is how to ensure sustained sales of electric drive vehicles in the face of the many attributes of advanced technology conventional vehicles.  Electric drive vehicle drivetrains have an affinity with the increasing amount of electronics on board the vehicle, which might ultimately yield very interesting, capable, and competitive vehicles.

I have little doubt that if we are serious about our energy, environmental, and greenhouse gas goals the revolution in technology will occur. All the major automobile companies seem to recognize this in their technology roadmap, which includes advanced conventional vehicles, plug-in hybrid vehicles, battery and fuel cell electric vehicles.

In conclusion, the next 20 years promise to be equally as challenging and exciting as the last 20 years. I have little doubt that the automobile engineers are up to the task ahead, but whether we have the political fortitude to stay the course to achieve the necessary air pollution and GHG reductions is far less certain.

Dr. Alan Lloyd is President Emeritus of the nonprofit International Council on Clean Transportation (ICCT). He formerly served as Secretary of CalEPA and Chairman of the California Air Resources Board.



bmw-i3-production-aRace car designers go to extreme measures to make competition vehicles as light as possible. Lighter is faster. It’s simple physics; less horsepower is required to accelerate a light vehicle compared to a heavy one. So on a given amount of horsepower, a lighter race car will be faster than one that weighs even a few pounds more. It also takes less energy to slow the car, providing better braking performance. A lighter car will generally handle better, too, since there is less mass working on the chassis through the corners.

Lighter vehicles are also more environmentally friendly since they require less energy to move from point A to point B. Shaving a few hundred pounds off a car design can yield major improvements in fuel economy. In addition to improved mileage, electric vehicles will see longer range between charges if they can be made lighter.


Trimming pounds off a production car is not as easy as it seems, however. Today’s road worthy vehicles must feature hundreds of pounds of federally mandated safety equipment that wasn’t required or available a few decades ago. Equipment like antilock brake systems, multiple airbags, advanced computer controls, and crash mitigating high-strength body structures all add weight to a vehicle design. Pile on the comfort and convenience equipment that most new car buyers expect in a modern car or light truck and the extra bulk adds up fast.

That’s why vehicle designs like the new BMW i3 and i8 are so intriguing. These models are revolutionary for mass production vehicles, featuring clean sheet designs that found BMW designers throwing traditional materials and production methods out the window, resulting in lightweight electric-drive cars with maximum strength for safety.


For example, the i3’s primary body and chassis structure are composed of two separate units that form what BMW calls the LifeDrive architecture. The primary body structure is the Life module and the Drive module incorporates the powertrain components. The passenger cell module is made from Carbon Fiber Reinforced Plastic, or CFRP. This is the first ever use of CFRP in a mass production vehicle. Carbon Fiber Reinforced Plastic is every bit as strong as steel yet is 50 percent lighter. When you can trim half the weight off something as large as a body structure, you are talking major weight savings.

Aluminum has been used as a lightweight material in the transportation industry for many years. The i3’s rear Drive module that houses the electric drive motor, rear suspension, and optional range extending gasoline engine is made of aluminum. While both are light and strong, Carbon Fiber Reinforced Plastic is even 30 percent lighter than aluminum. Materials throughout the i3 were selected for their weight saving properties and for their sustainability characteristics.

bmw-i3-doors-openBeneath the flat floor (there is no transmission tunnel) of the i3 is a space-saving 22-kWh lithium-ion battery pack that tips the scales at 450 pounds. Power is delivered by a hybrid synchronous electric motor. The motor produces 170 horsepower with 184 lb-ft torque and can spin up to 11,400 rpm. The compact electric motor offers immediate torque and weighs just 110 pounds. With a curb weight of just 2,700 pounds, the i3 is nimble and great fun to drive. As in racing, automakers strive to save weight because it gives them a competitive edge. Sometimes, less is more.

audi-a6-tdi-sideIt’s hard not to wear a broad grin while driving Audi’s 2014 A6 TDI. One of a growing array of upscale TDI models in the Audi stable, the $57,500 A6 TDI presents a compelling case for premium mid-size sedan buyers to go clean diesel. Time behind the wheel illustrates the well-balanced nature of the A6 TDI, which artfully blends luxury, comfort, performance, and efficiency in a very desirable package. Plus, it’s just fun to drive.

The A6 TDI’s 3.0-liter turbocharged direct injection V-6 is surprisingly quiet and smooth, dispensing with the two inherent challenges that diesel as a whole has faced in attracting U.S. buyers in the past. Ride quality, handling, and overall driving characteristics are excellent. The A6 TDI is powerful, with strong low-end torque pressing you back in the seat with ease while delivering 240 hp and an impressive 428 lb-ft torque. All this power is channeled to the highway via an 8-speed tiptronic transmission and quattro all-wheel drive. Acceleration from 0-60 mph is achieved in a quick 5.5 seconds.


This level of power-at-the-ready does not sacrifice efficiency as one might expect, particularly in highway driving as the model achieves a rather impressive 38 mpg. Total driving range of over 700 miles is possible. The TDI clean diesel’s inherent efficiency is bolstered with other efficiency measures including a relatively lightweight chassis and aluminum body panels, plus a start-stop efficiency system that shuts the engine down under specific conditions such as extended idling or at stoplights. The engine restarts instantly when a driver releases the brake pedal.

Driving performance and efficiency are just part of the story with the Audi A6. This model makes a point of enveloping driver and passengers in a luxurious and accommodating interior, paying great attention to detail throughout the cabin with a curved wraparound dash, fine leather, and high-end materials. Instrumentation and controls are well placed and intuitive.


Infotainment and connectivity features are extensive with MMI Navigation plus and Audi connect, which offers Google Earth mapping and in-vehicle Wi-Fi connectivity for up to eight wireless devices. Available are an array of sophisticated features including night vision assistant, heads-up display, and Audi pre sense plus, the latter system helping to detect imminent collisions and initiate protective measures.

The A6 TDI presents a very upscale exterior with sharp lines and unmistakable Audi design cues, among these Audi’s signature LED lighting technology. Add in efficient and responsive TDI power and the package gets even more compelling.


carbon-fiberCan cost-efficient carbon fiber be created from renewable, non-food-based feedstocks like agricultural residues and woody biomass? The Department of Energy believes so and is now putting up $12 million in funding to help make it happen. The agency says that carbon fiber created from biomass offers greater environmental benefits than traditional carbon fiber produced from natural gas or petroleum, and also believes it may be less costly to manufacture.

Lightweighting is a growing trend in auto manufacturing as one of many strategies to help create more efficient vehicles. Advanced materials like carbon fiber may play an important role if this material can be created more sustainably and, importantly, more affordably. DOE points out that reducing vehicle weight just 10% can improve fuel economy by 6% to 8%. More information is available at DOE’s Funding Opportunity Exchange website.

Lightweighting vehicles is a big deal. The lighter the car, the less relative energy required to move it down the road. This thinking has been influencing car design and manufacturing for some time now as automakers strive to make models with higher fuel efficiency, but the momentum has increased because of the much higher mpg that will be required from automakers in the years ahead. Now, each and every part of a car is examined for lightweighting potential and new answers are emerging all the time.

Take the new ultra lightweight car door solution devised by ArcelorMittal, the world’s largest steel and mining company and supplier to many auto manufacturers. In a world where lightweight aluminum, plastics, and other materials vie for roles once exclusively played by steel, it’s no wonder that steel companies have a vested interest in illustrating how advanced steel can continue to dominate.

ArcelorMittal’s lightweight car door example demonstrates that using steels and technology currently available, a 27 percent weight and cost saving can be achieved without compromising safety and structural requirements. But it gets better. The company also points out that its global research and development team has identified that even greater door weight savings of up to 34 percent is achievable with new advanced high strength steels and technology that will emerge during the next few years.

How important is this? The current 27 percent weight reduction of a baseline C-segment door using high strength steels and ultra-high strength steels decreases weight from about 40 pounds to 29 pounds. Considering that automotive weight savings is typically measured in grams, this is a significant weight reduction for a single automotive application.

It’s a given that it will take more than just better powerplants to reach the 54.5 mpg federal fuel economy standard set for coming years. To this end, automakers are exploring every part of an automobile for ways to eke out greater efficiencies.

An interesting new exploration is taking place at General Motors, which is testing an industry-first thermal-forming process and proprietary corrosion resistance treatment for lightweight magnesium sheet metal. GM’s aim is to enable its suppliers to use the process and provide magnesium sheet in lieu of steel and aluminum that trims pounds from vehicle mass.

This is no small thing. Magnesium weighs 33 percent less than aluminum, 60 percent less than titanium, and 75 percent less than steel. Despite its advantages, there have been challenges and automakers have found it difficult to make strong and non-corroding magnesium sheet metal panels through traditional methods. GM’s has now overcome this with a new, patented process that heats the magnesium to 842 degrees F to allow molding it into precise, rigid shapes. GM has used this process to develop a production-ready magnesium rear deck lid inner panel that’s undergone rigorous testing without any issues.

The U.S. Automotive Materials Partnership estimates that 350 pounds of magnesium will replace 500 pounds of steel and 130 pounds of aluminum per vehicle by 2020, achieving a vehicle weight reduction of 15 percent. This weight savings would lead to a fuel savings of 9 to 12 percent.