Following the recent addition of a fuel efficient V-6 diesel option, Ford’s perennial top-selling F-150 will also now be available with a powerful and efficient hybrid powertrain for 2021 model. The hybrid delivers performance from an all-new 3.5 liter V-6 PowerBoost engine that Ford claims makes it the most powerful in the full-size, half-ton pickup class. The gas-electric combination transfers power through a ten-speed Select-Shift automatic transmission. Hybrid power makes great sense in a pickup model where the instantaneous torque from an electric motor can be put to good use.
The hybrid F-150 stores electricity in a 1.5 kilowatt lithium-ion battery that powers a 47 hp electric motor, with the battery packaged under the truck between the F-150’s fully boxed frame rails. An optional Pro Power Onboard output system allows the hybrid F-150 to function as a mobile generator at worksites or campsites, with the generator cranking out enough juice to power the equivalent of 28 average household refrigerators. Plug-in connections include in-cabin outlets, four cargo bed-mounted 120 volt/20-amp outlets, and a 240 volt/30-amp outlet.
EPA fuel economy estimates for the hybrid variant are yet to be released, though we do know the PowerBoost hybrid F-150 is expected to travel over 700 miles on a single tank of gas. Fortunately, the hybrid model won’t compromise any of the F-150’s best-in-class hauling or towing capabilities. Tow rating should exceed 12,000 pounds. An array of other engine options are offered in the F-150 line including a 3.3-liter V-6 FFV, 2.7-liter EcoBoost V-6, 5.0-liter V-8, 3.5-liter EcoBoost V-6, and 3.0-liter Power Stroke turbodiesel V-6. EPA estimated mpg ratings for the 2021 F-150 have yet to be released.
Across the model lineup, there are 11 new grille options. The F-150 is available in Regular Cab, SuperCab, SuperCrew configurations with 5.5, 6.5, and 8.0 foot cargo beds. The 2021 model continues to offer excellent towing and cargo-carrying capabilities, though 2021 model specs have yet to be released.
This is one new pickup that doesn’t skimp on technology. The F-150 offer’s Co-Pilot360 2.0 drive assist and collision avoidance tech, plus Ford’s SYNC4 with over-the-air updates of road and traffic conditions in your path. A new 12-inch center display is standard on XLT models and above.
Ford took vehicle lightweighting to a new extreme a number of years ago when it shed the F-150’s stamped steel body in favor of an all-aluminum alloy skin. Full-size pickups in general and the F150 in particular are true bread-and-butter products for Ford.
The innovative PowerBoost hybrid model should keep the F-150 top-of-mind for many amid the field’s pack of half-ton, full-size pickup contenders.
The immensely popular pickup field is being electrified. Coming electric pickups from legacy automakers like Ford and GM are hugely important since pickups are among their most profitable models. And Tesla? Well, in its typical disruptive fashion, Tesla is introducing a wildly different take on pickups with the company’s signature performance and range characteristics built in. Even luxury electric vehicle maker Karma plans to join the party with an extended range electric pickup.
Names like Atlis, Bollinger, Lordstown, Nicola, and Rivian are new to the scene. These startups are in varying stages of development, some with a solid foundation of billions in investment, manufacturing facilities, and actual product in the works, and others a bit more aspirational. Will they succeed? Time will tell. Plus, we’ll have to see how some wishful launch schedules align with reality.
ATLIS MOTOR VEHICLES plans to offer its heavy-duty electric XT as a regular bed pickup, plus in flat-bed, service body, and dually configurations. Atlis says the truck will carry a 1,000 to 5,000 pound payload, tow 6,000 to 17,000 pounds with a conventional hitch, or 20,000 to 35,000 pounds with a fifth wheel or gooseneck hitch. The company claims a driving range of 300 to 500 miles. These capabilities depend on the battery capacity selected, which starts at 125 kWh. Rather than the lithium-ion batteries powering most EVs today, Atlis is using nickel-manganese-cobalt batteries. It says these batteries are fast-charge capable and can be charged in as little as 15 minutes.
ANALYSIS: The performance claimed by Atlis is quite ambitious, especially since it’s using a less mature battery chemistry and plans to offer a pickup starting at $45,000. This start-up has a concept model developed and is actively seeking investment.
BOLLINGER is looking at a late 2020 launch for its B2 electric pickup and B1 electric SUV. The B2 pickup will have a GVWR (gross vehicle weight rating) over 10,000 pounds, making it a Class 3 truck with a 5,000 pound payload capacity. It’s expected to offer a 7,500 tow capability and drive an estimated 200 miles with power from a 120 kWh battery pack. Portal axles mean excellent ground clearance for off-road duty. The Bollinger B2’s Class 3 rating and stark styling – flat glass, external door hinges, and aluminum body panels devoid of compound curves that can be formed by simple equipment – makes it clear the company is not aiming at buyers who want to make a fashion statement. Plus, prototypes shown to date have an austere interior without an infotainment system, surprising for a vehicle projected to have a $125,000 price tag. The cargo area’s unique pass-through into the cab makes the truck capable of handling a telephone pole.
ANALYSIS: With its substantial price, rudimentary styling, and austere interior, Bollinger’s B2 pickup appears aimed at commercial applications rather than mainstream pickup buyers. It looks like Bollinger recognizes this niche market role since the company is planning to make only 1500 vehicles in its first year.
FORD plans to offer as many as 16 pure electric vehicles by 2022 including an electric Ford F-Series pickup, which could appear later in 2021. Ford hasn’t released much information about the electric F-150, but it is expected that range, payload, and towing capability will be competitive with other electric pickups, and perhaps a bit better. That means a range of 250 to over 400 miles, at least a ton of payload, and the ability to tow 7,500 to 14,000 pounds. These numbers are based on battery kWh capacity and selected motors. Like options for conventional F-150s these will be items to be checked off by buyers.
ANALYSIS: Pickup buyers are a very loyal bunch, and if the electric F-150 doesn’t stray too far from the best-selling F-150 it should readily succeed with Ford pickup fans who want to go ‘green.’
GM will naturally have an electric pickup if its traditional competitor Ford has one, and in all likelihood, it will offer several. GMC will get a version that will be marketed as a Hummer, and a Chevrolet Silverado variant will surely emerge since this brand has such a huge pickup following. Both would be built on a similar platform with capabilities comparable to that of Tesla, Rivian, and Ford electric pickups. Again, buyers will be able to select battery/motor options. GM expects a 2021 launch for its electric GMC Hummer pickup. Rumor has it that a Chevrolet Silverado variant will be a more traditional pickup built on a smaller version of the platform, with the GMC Hummer pickup aimed at the off-road, adventure vehicle buyer.
ANALYSIS: Chevrolet and GMC, like Ford, have the advantage of decades of owner loyalty. An electric Chevy Silverado pickup will certainly find a strong following, while the Hummer will likely be a niche vehicle.
KARMA AUTOMOTIVE says it is developing an electric pickup that extends its battery range with electricity from an internal combustion engine-generator, similar to its existing electrified products. The electric pickup will be based on a newly developed all-wheel drive platform and cost less than the company’s $135,000 Revero GT, an extended range electric luxury sedan. A concept pickup is promised later in 2020. The new electric pickup will be built at the company’s existing manufacturing facility in Southern California.
ANALYSIS: A start-up that launched in 2015, Karma has shown it is committed to the electric vehicle market with several high-end models under its belt and others in the works. It has worked with Italy’s renowned car design and coachbuilder Pininfarina on a concept electric grand touring car with production potential, so we have yet to see if its coming electric pickup will be an entirely in-house project or involve others.
LORDSTOWN MOTORS says it plans a 2021 introduction for its Endurance electric pickup with a four-wheel-drive hub motor system. Limited information is available except that it will climb a 30 percent grade fully loaded, carry a 2200 pound payload, and tow 6000 pounds. Range is estimated at a minimum 250 miles. The company is now taking deposits for its 2021 Endurance pickup at a base price of $52,500. Its primary emphasis is on fleets, though private parties can also make a reservation.
ANALYSIS: Lordstown Motors has received a $40 million loan from General Motors and took over GM’s huge Lordstown Assembly Plant. GM is building a large battery factory nearby in partnership with LG Chem. Part of this effort might include taking up an option to lease space in the Lordstown Assembly Plant. In addition to its own manufacturing, Lordstown Motors hopes to provide overflow manufacturing capacity for Workhorse Group’s last-mile electric delivery vans.
NIKOLA MOTOR COMPANY has shown its Nikola Badger pickup that would presumably come in two models, one battery-electric and the other running on a combination of battery electric and hydrogen fuel cell power. Battery electric propulsion is said to feature a 160 kWh battery and a 300 mile range. Adding fuel cell power to the battery electric powertrain would incorporate a 120 kW fuel cell and a total 600 mile range, when hydrogen is available. The Badger is engineered to deliver 906 peak and 455 continuous horsepower, with a massive 980 lb-ft torque. An 8,000 pound tow capability is claimed. In addition, the pickup will feature a 15 kW power outlet for tools, lights, and compressors. Nikola says it will partner with an established OEM to build the Badger and initially announced a late 2020 launch plan, while identifying a $60,000 to $90,000 price range.
ANALYSIS: Nikola is leveraging the technology and expertise developed for its Nikola One and Nikola Two electric and fuel cell semi tractor-trailer trucks. Given the capabilities of the Badger pickup and the likely high price tag of a combined battery electric and hydrogen fuel cell powertrain, we would expect its target market to be primarily commercial operations. Nikola plans to build hydrogen filling stations along well-traveled truck routes to facilitate fuel cell use, a move that further underscores a focus on the commercial market.
RIVIAN plans to launch its R1T pickup in 2021. It will be available with 105, 135, and 180 kWh battery packs and corresponding ranges estimated at 230, 300, and 400 miles, starting at an estimated price of $69,000. All versions will have an 11,000 pound tow rating. The pickup features a ‘gear tunnel’ stowage space behind the rear seats and the ability to make a 360-degree turn in its own length, like a tank. In addition to the truck, Rivian will offer an R1S SUV using the same skateboard platform as the R1T truck.
ANALYSIS: While Rivian is a startup, it has billions in backing from the likes of Ford, Amazon, and T. Rowe Price. Amazon has placed an order with Rivian for 100,000 electric delivery vans, which will be built at Rivian’s manufacturing facility in Normal, Illinois, a former Mitsubishi assembly plant acquired by Rivian in 2017.
TESLA’S Cybertruck is by far the most high-profile pickup introduction and the one most talked about today. Coming from the well-established electric car leader, the Cybertruck is a combination of edgy and disruptive styling one might expect on the set of a dystopic sci-fi thriller infused with some pretty impressive innovations. Among these are a motorized metal tonneau cover that completely retracts below the truck’s rear window and a built-in ramp for loading gear and recreational toys. Tesla claims its stainless steel Cybertruck will deliver a range of 250 to 500 miles, offer a 3500 pound payload, and will be capable of towing between 7500 to 14,000 pounds. The range of capabilities varies on battery capacity – 75 to 200 kWh – and motor configurations, including Tri Motor AWD, Dual Motor AWD, or Single Motor RWD. Prices are said to range from $39,990 to $69,900, though Tesla’s track record of rolling out high-spec editions first means the lower-end model won’t be seeing daylight any time soon.
ANALYSIS: Tesla, which arguably can be credited with making electric vehicles a serious option to combustion engine models, could be the first startup to achieve long term success. The company sold 367,500 cars in 2019 and has four current models in its stable with plans for more, which means it has transcended the traditional definition of a niche automaker. Like previous Tesla products, expect the Cybertruck to exhibit many changes before deliveries presumably start in late 2021.
A shift to electric pickups is tantalizing to many, but it’s no easy thing. It’s true that electric pickups require less maintenance than their gasoline or diesel counterparts. Still, there are times when EV-specific service will be required beyond the usual tire, brake, and fluid maintenance that can be performed by mainstream service providers. Electric pickup manufacturers must provide for this service. That’s not a significant issue for legacy automakers like Ford and GM that have a widespread dealer sales and service network, even in sparsely populated states. Service personnel at dealerships can be trained in EV-specific work. Fledgling and start-up electric pickup companies will certainly be at a disadvantage here.
Are there other electric pickups in the works beyond the brands mentioned here? That’s certainly likely considering the interest already developing and the intensively competitive nature of the auto industry, though details on additional players are unknown. With the advent of electric pickups on the near horizon, that may change sooner than you would expect.
Mitsubishi’s Outlander PHEV, the world's best-selling plug-in-hybrid SUV, features innovative technology to provide welcome performance and family-friendly, fuel efficient all-wheel-drive capability. The combination of a gasoline engine and two electric motors, lithium-ion battery, and plug-in capability allows the Outlander PHEV to travel 310 miles on hybrid power and 22 all-electric miles on a completely charged battery. The Outlander PHEV has an EPA rating of 25 city/highway combined mpg when operating on gasoline and 74 MPGe (miles-per-gallon equivalent) when operating on battery power.
The Mitsubishi Plug-in Hybrid EV System features three modes to achieve its unique series-parallel operation. Plus, there’s the ability to select up to six levels of regenerative braking to tailor the driving experience.
An integral part of the vehicle’s plug-in hybrid drivetrain is a Mitsubishi Innovative Valve timing Electronic Control (MIVEC) engine that combines maximum power output, low fuel consumption, and a high level of clean performance. This 2.0-liter, 16-valve DOHC engine produces 117 horsepower at 4,500 rpm and 137 lb-ft torque at 4,500 rpm. It drives an electric generator that supplies electricity to the vehicle’s lithium-ion battery or directly to the electric motors. Each of its two AC synchronous permanent magnetic motors are rated at 80 horsepower (60 kW). A maximum combined 197 horsepower is available. The lack of a driveshaft or transfer case means response and control much faster than a traditional 4WD setup.
A 12 kilowatt-hour, high-energy density, lithium-ion battery is located beneath the floor where it contributes to a low center of gravity and stable driving performance. This battery can be charged in 10 hours with a household Level 1, 110-volt source or four hours with a Level 2, 240-volt charger. Using DC Fast Charging that’s available at commercial charging facilities, the Outlander PHEV will charge up to 80 percent capacity in as little as 25 minutes. The Outlander PHEV holds the distinction as being the first PHEV capable of DC Fast Charging capability.
The Outlander PHEV’s parallel-series hybrid features three operating modes that are automatically selected for maximum efficiency, according to the driving conditions. These modes are EV Drive, Series Hybrid, and Parallel-Series.
In the EV Drive mode the Outlander is powered exclusively by the electric motors, with no battery charging except from regenerative braking. EV Drive is used for medium- to low-speeds during city driving. The two electric motors power the Outlander when operating in Series Hybrid mode, except when battery power is low or quick acceleration or hill climbing is needed. Then, the gasoline engine automatically starts to drive the generator and provide electric power for the electric motors to augment battery power. The engine-generator also charges the battery.
In Parallel Hybrid mode the gasoline engine supplies power to the front wheels with the two electric motors adding additional power as needed. The engine also charges the battery pack in Parallel Hybrid mode under certain driving conditions. At high speeds, the Parallel Hybrid mode is more efficient since internal combustion engines operate with greater efficiency than electric motors at high rpms.
A driver can also choose Charge Mode so the generator charges the lithium-ion battery at any time. Save Mode conserves the battery charge for later use. EV Priority Mode, which can be used at any time, ensures the gasoline engine only runs when maximum power is required. Mitsubishi’s Twin Motor S-AWC integrated control system delivers optimal power and control by managing Active Yaw Control (AYC), an Anti-lock braking system (ABS), and Active Stability Control (ASC) with Traction Control (TCL).
No matter the hybrid mode, whenever the Outlander PHEV decelerates regenerative braking charges the battery to augment electric driving range. There are six levels of regenerative braking –B1 to B5 plus a B0 coast mode – that are conveniently selected by a pair of paddles behind the steering wheel. Regenerative braking strength can also be selected by console-mounted controls. Automatic Stop and Go (AS&G) automatically stops and restarts the engine when the vehicle stops, further conserving fuel.
The Outlander PHEV benefits from Mitsubishi Innovative Valve timing Electronic Control system (MIVEC) technology that controls valve timing and amount of lift to achieve optimum power output, low fuel consumption, and low exhaust emissions. MIVEC adjusts intake air volume by varying intake valve lift stroke and throttle valves, reducing pumping losses and thus improving fuel efficiency. The MIVEC engine improves fuel consumption through other strategies, including improvement of combustion stability through optimization of the combustion chamber and reduction of friction through optimization of the piston structure.
The MINI E was a pretty cool car based on the MINI Cooper two-door hardtop, fun to drive and pretty attention-getting with its unique, yellow electric plug graphics. We were sorry to see it go and really expected to see a production version introduced shortly after the MINI-E’s 2009/2010 field trials came to an end…but that wasn’t to be.
More recently, MINI has been offering its Cooper SE Countryman ALL-4, a plug-in hybrid model featuring gasoline engine power and 18 miles of all-electric driving. It’s not all-electric, but does champion MINI’s continuing interest in electrification. Now, after a long wait by MINI fans, the follow-up all-electric 2020 MINI Cooper SE has arrived.
The earlier Mini E’s battery pack replaced the rear seat, making it a two-seater. Contrasting this is the T-shaped battery pack in the new MINI Cooper SE that’s located beneath the rear seat and runs between the front seats. Thus, the Cooper SE remains a four-seater without compromising passenger or luggage space. While the MINI E had a range of about 100 miles on its 35 kWh lithium-ion battery, the Cooper S E improves on this a bit with an EPA estimated range of 110 miles with power from a smaller 32.6 kWh battery. It’s also energy efficient with an EPA rated 108 combined MPGe (miles per gallon equivalent).
Powering the Cooper SE is a synchronous electric motor featuring 181 horsepower and 199 lb-ft torque. Since maximum torque is available from standstill, the front-drive Cooper SE accelerates from zero to 60 mph in a brisk 7.3 seconds. To prevent slip during launch, the electric traction control system was integrated into the MINI’s primary electronic control unit (ECU), enabling computer control to shorten the time between wheel slippage and system response.
Four driving modes are offered. The default MID setting brings comfort-oriented steering characteristics, while a GREEN mode results in greater efficiency to increase range. GREEN+ disables features like heating, air conditioning, and seat heating to further increase range. SPORT mode, as you would expect, provides more sporty driving.
A driver can control the car’s degree of regenerative braking to increase or decrease deceleration intensity. A stronger regen setting can be selected if one-pedal driving is preferred. With aggressive regen, a Cooper SE begins decelerating as soon as a driver’s foot is lifted from the accelerator, enabling the car to be slowed at low speeds without using the hydraulic brakes. The softer regen setting is available for those who prefer a more conventional driving and braking feel.
Cabin heating is provided by an energy-efficient heat pump system that collects waste heat from the motor, drive controller, high-voltage battery, and outside temperatures. The result is 75 percent less energy use than a conventional electric heating system, thus saving all-important battery power to gain additional driving range. On hot or cold days, cabin temperature can be pre-conditioned by activating heating or cooling through the MINI Connected Remote App on a smartphone. The app also displays battery state-of-charge, available range, and energy consumption statistics. A map shows nearby public charging stations.
Standard equipment includes either Connected Navigation or Connected Navigation Plus, depending on the trim level. Connected Navigation includes a 6.5-inch central touchscreen. It enables Real Time Traffic Information to help a driver navigate around traffic congestion, along with Apple CarPlay and the internet platform MINI Online. Connected Navigation Plus includes an 8.8-inch color screen and adds wireless cellphone charging.
Speed, remaining range, battery charge level, and power demand are shown on a 5.5-inch digital instrument cluster screen behind the steering wheel. Also shown are navigation directions, selected MINI driving modes, status of driver assistance systems, and traffic sign detection.
The Cooper SE can be charged with a 120 volt AC household outlet or quicker with a 240 volt Level 2 wall or public charger, the latter taking about 3 1/2 hours from depleted to full charge. When 50 kW Level 3 fast-charging is available, the Cooper SE can be charged to 80 percent battery capacity in only 35 minutes. Charging is via a charge port above the right-hand rear wheel, the same location where you refuel a conventional MINI.
MINI’s Cooper SE is what fans of the marque have been waiting for. It’s packed with technology and promises a fun driving experience, at a reasonable base price of $29,900. Sign us up!
We’ve been driving Mitsubishi’s Outlander PHEV for 6,000 miles now as part of an ongoing experience with this long-term test vehicle. Over the months, our plug-in hybrid crossover has served as a daily commuter as well as our go-to ride for quick weekend getaways and the occasional longer trip. This time, we decided to see what it’s like to be behind the wheel on a genuine road trip for a solid week, from our offices on California’s Central Coast to the southern reaches of Washington State.
First, let’s say this: The capabilities of the Outlander PHEV plug-in hybrid – Green Car Journal’s 2019 Green SUV of the Year™ – lend a sense of confidence. We knew that we could charge the Outlander’s batteries when desired and convenient to gain about 22 miles of all-electric range during our travels, a nice plus. But we were also aware that taking the time for charging wasn’t necessary. This crossover’s EPA-rated hybrid range of 310 miles would be plenty to get us where we wanted to go, without hesitation or delays. That’s an important thing when packing a few thousand miles of combined day and late-night driving into a seven day period.
Our trip began by heading northbound from San Luis Obispo, California on US-101, where we crested the Cuesta Grade and continued toward the busy San Francisco Bay corridor three hours ahead. We were hoping an early departure would allow avoiding the unpredictable traffic there. Success! It turns out that late morning near the Bay Area provides a decent travel window with reasonably free-flowing traffic. Then it was onward toward Oregon on US-101, transitioning to I-680 and I-505 and ultimately the long stretch of I-5 that would take us to Washington State.
Since this was a road trip, adventure is built into the journey. That means if something interesting presents itself along the way, we may just stop to check it out. Sure enough, this happened less than an hour north of Sacramento, where a series of highway billboards enticed travelers to stop at Granzella’s Restaurant in Williams, a sleepy, postage-stamp-size of a city that’s home to about 5,000 people. It was lunchtime, so why not?
We found plenty of cars in Granzella's parking lot but also no wait inside. Food choices here are plentiful, with options for ordering from a fully-stocked deli or sitting down for a home-style meal in their restaurant. Being traveler-oriented, Granzella’s encourages you to wander around inside, checking out their sports bar, wine room, coffee bar, and olive room, plus of course the array of gifts aimed toward travelers. There’s also a separate Granzella’s Gourmet & Gifts store across the street and Granzella’s Inn across the way if an overnight stop is needed. We were on a tight time schedule, so it was back on I-5 for another 550 miles of road time before our anticipated arrival in Vancouver.
Daily experience in a long-term test car lends a thorough sense of what it's like to live with a vehicle, offering an opportunity to fully experience its capabilities. Beyond that, longer drives like this allow uninterrupted hours behind the wheel to reflect on a vehicle's features, large and small, that either enhance the driving experience or fall short of expectations.
We can say it is hard to find fault with the Outlander PHEV. This crossover provides a spacious and well-appointed cabin offering very comfortable and supportive seating for long drives, plus plenty of room to store all the stuff needed for long trips. Our considerable time on the road was made all the more pleasant since the Outlander PHEV’s ride is smooth and handling confident, with plenty of power for any driving situation we encountered.
Along the way we made good use of this model’s Apple CarPlay capability. Of course, driver assist systems like adaptive cruise control, forward collision mitigation, blind spot warning with lane change assist, rear cross traffic alert, and rear-view camera enhanced the driving experience and sense of safety. Its heated steering wheel is a real plus. While always handy, we really came to appreciate this crossover’s retractable cargo cover that kept things out of sight and more secure while parked at restaurants and hotels during our week on the road. We also made use of its convenient power lift gate multiple times every day.
The Outlander PHEV’s total driving range of 310 miles is well-suited to longer trips like this. Range is something we rarely think about on a daily basis since our everyday driving is typically less than 20 miles, so often enough we’re driving on battery power and there’s no need for gas at all. When we do drive farther to nearby cities, the Outlander PHEV seamlessly transitions from electric to hybrid power once the battery is depleted. There is no range anxiety because we can travel as far as needed on gasoline. Back in the garage, we charge again overnight and we’re once again driving on battery power.
It’s worth noting that the Outlander PHEV has a smaller gas tank than the conventionally-powered Outlander, 11.3 versus 16.6 gallons, resulting in less overall driving range than the conventional gas model. This is due to design changes for accommodating this PHEV’s 12 kWh lithium-ion battery pack and other PHEV drivetrain components. Packaging the vehicle’s electric componentry in this way means the battery and other necessary equipment do not infringe on passenger or cargo space, something that’s bothered us for years in some other electrified models. So, all things considered, we’re good with trading some hybrid range for additional roominess, especially since refueling at a gas station is quick and easy.
Speaking of ‘refueling,’ there was the potential for quickly charging at an array of public fast charge locations during our drive. A growing number of Level 3 charging opportunities are located along major routes in California and other states, and the Outlander PHEV is capable of CHAdeMO DC fast charging to 80 percent battery capacity in 20 minutes. We didn’t feel the need on this trip, though we have done this at other times.
That said, charging at the Level 2 charger at our hotel in Vancouver, the Heathman Lodge, was a real plus. Once we arrived in Washington, we plugged in several times to get an overnight charge and enjoyed our no-cost electric drives around town. During these drives the Outlander PHEV motors along on zero-emission battery power at an EPA estimated 74 MPGe.
Driving through Northern California and the Pacific Northwest, there’s no denying you’ll find some pretty incredible scenery ranging from mountain ranges, imposing dormant volcanoes, and awe-inspiring redwood forests to scenic coastlines, rivers, and lakes. You will also find an obsession with the mythical Bigfoot. Suffice it to say there will be plenty of places to stop with ‘Bigfoot’ included in their theme, and lots of opportunities to buy souvenirs. As a side note, we did an ‘On the Trail of Bigfoot’ road trip adventure and article several decades back, so this definitely brought a smile to our face.
Along our drive we had the opportunity to visit cities large and small, drive through a redwood tree, take in scenic coastal areas in Oregon like Newport and Lincoln City, and in general enjoy the benefits of a real road trip. Of course, there were stops at roadside fruit stands, interesting eateries, and places with character that simply called to us for a closer look. Photo ops were abundant.
During our trip we came to truly understand why Mitsubishi’s Outlander PHEV is the world's best-selling plug-in hybrid vehicle. Taking advantage of technology development and learnings from this automaker’s earlier i-MiEV electric vehicle program, the Outlander PHEV combines advanced parallel and series hybrid drive, along with Mitsubishi’s Super All-Wheel Control system technology developed through Mitsubishi's Lancer Evolution. Plus, for those with the need, the Outlander PHEV can tow 1500 pounds.
This is one high-tech crossover, offered at a surprisingly affordable entry price point of $36,095, considering the cost of competitive crossover SUVs with similar capabilities at tens of thousands of dollars more. It features efficient hybrid power that integrates a 2.0-liter gasoline engine and generator along with a pair of high-performance electric motors, one up front and one at the rear.
The Outlander PHEV operates in three modes automatically chosen by the vehicle's control system to optimize efficiency and performance. In Series Hybrid mode the electric motors drive the vehicle with the engine augmenting battery power and generating electricity to power the motors. Electrical energy is also delivered to the battery pack. The 2.0-liter engine assists with mechanical power at times when quick acceleration or hill climbing are needed.
Parallel Hybrid mode finds the gasoline engine driving the front wheels with the two electric motors adding additional power as required. The engine also charges the battery pack in Parallel Hybrid mode under certain driving conditions.
Then there’s all-electric driving solely on batteries, selectable with an ‘EV’ control on the center console. We have found EV mode ideal for around-town travel or regional drives near our offices, and in fact we’ve noted no discernable difference when driving in all-electric or hybrid modes.
While regenerative braking in all modes is done automatically with the vehicle feeding electricity back to the battery pack during coast-down, there’s the added advantage of controlling how aggressively regen works. This capability is controlled through six levels of regenerative braking selectable by convenient steering wheel paddles, with one mode allowing coasting for blocks.
The Outlander PHEV proved to be an exceptional vehicle for our Pacific Northwest adventures, offering everything we could want in a long-distance cruiser. With our road trip adventure now a pleasant memory, we’re looking forward to our continuing daily drives and explorations in our long-term Outlander PHEV test vehicle over the coming months.
Start-up electric vehicle manufacturer Rivian is on a roll. The company plans to offer the five-passenger R1T electric pickup in late 2020, built on its innovative electric ‘skateboard’ platform. Now it has 500,000 more reasons supporting its success with a half-billion-dollar investment from Ford. This strategic investment buys Ford the ability to build its own electric models – presumably pickups and SUVs – on the Rivian ‘skateboard’ platform. Rivian received an earlier $700 investment from Amazon and others.
Rivian’s skateboard architecture locates the battery pack in the floor in the middle of the vehicle. The R1T has four motors, two per axle, with each motor individually controlling a wheel to provide precise control. These are not hub motors since each motor is mounted in the body. The skateboard chassis also includes braking, suspension, and cooling systems.
The R1T will be offered with three different battery packs and electric motor configurations. A 180-kWh battery pack version energizing motors with a total of 700 horsepower and 823 lb-ft torque is expected to deliver a range of over 400 miles. Another powertrain option is a 135-kWh pack model with 754 horsepower and 823 lb-ft torque provided by four motors, featuring a range of about 300 miles. The base R1T will come with a 105-kWh battery and motors delivering 403 horsepower and 413 lb-ft torque, with a range of more than 250 miles.
A substantial 14 inches of ground clearance plus the ability to wade through three feet of water and climb a 45-percent incline makes for some serious off-roading capability. In addition, the R1T has a payload capacity of 17,600 pounds and can tow 11,000 pounds. It’s smart, too, offering Level 3 autonomous driving capability, a suite of active-safety features, an adjustable air suspension, and automated trailer backup.
The cost of entry for Rivian’s R1T pickup is an expected base price of $69,000 before a federal tax credit and possible state incentives. It will be produced at Rivian’s manufacturing facility at a former 2.6 million square-foot Mitsubishi facility in Normal, Illinois. The company employs more than 1,000 people at development centers in Irvine and San Jose, California, and in Surrey, England. Along with the R1T pickup, Rivian is also developing its R1S SUV based on its skateboard chassis.
Range Rover’ stylish Evoque enters its second generation with a complete redesign that features the automaker’s Premium Transverse Architecture and little in common with the outgoing version. Conventionally-powered and mild hybrid (MHEV) versions will be sold in the U.S., with the hybrid coming at a base cost of $46,600. A plug-in hybrid variant is planned for offshore markets but it’s not yet clear if it will make it to the States.
The model’s extended, 105.6-inch wheelbase is identical to that of the Jaguar E-Pace, bringing with it more interior space and extra rear knee room. Evoque also gets a version of the E-Pace 's Integral Link rear suspension. The new Evoque platform uses more high-strength steel as well aluminum to save weight. The Evoque also contains about 70 pounds of recycled material.
A 48-volt, lithium-ion battery pack mounted beneath the floor in the MHEV variant connects to a belt-driven motor-generator mounted at the side of the SUV’s turbocharged, 2.0-liter Ingenium engine. The engine turns off while coasting with the system recovering and storing energy normally lost during deceleration. The engine will also shut off while braking at speeds below 11 mph to increase efficiency, restarting as soon as it is needed. This reduces fuel consumption by about 6 percent.
The battery stores up to 200 watt-hours of electrical energy that can be used to generate up to 103 lb-ft torque to assist during acceleration. The MHEV system delivers a combined 296 horsepower and 295 lb-ft torque. This compares to 246 horsepower and 269 lb-ft for the conventional Evoque. A sprint from 0 to 60 mph is quicker in the hybrid at 6.3 seconds, down from 7.0 seconds.
Gear transitions are handled by a 9-speed automatic transmission with paddles in the AWD Evoque. Driveline Disconnect allows running in front-wheel drive to reduce transmission losses when four-wheel drive is not needed, with this system automatically detecting surfaces and adjusting settings accordingly. Terrain Response offers six drive modes – General, Eco, Sand, Grass-Gravel-Snow, Mud-Ruts, and Auto – with the latter automatically selecting the most appropriate mode for road conditions and adjusting suspension and electronic systems as needed. Evoque also includes hill-descent control and all-terrain progress control capabilities that enable the vehicle to handle throttle and braking automatically when driving tricky off-road trails, allowing the driver to focus on steering and watching for obstacles.
The Evoque is the first vehicle that can be equipped with Land Rover’s ClearSight ground camera system. Cameras in the radiator grille and side mirrors project images in the infotainment display that allow viewing what‘s in front, under, and to the sides of the front wheels. Through the optional ClearSight rear view mirror, a driver also gets a crystal-clear, unobstructed wide-angle view to the rear for backing up and parking. Cameras are covered with a hydrophobic coating that repels water and mud, a handy feature since the Evoque can wade through water up to 23.6 inches deep.
Plug-in hybrid power combines a 197-horsepower, 1.5-liter three-cylinder Ingenium engine driving the front wheels with a 107-horsepower electric motor powering the rear. There is no mechanical connection between the front and rear axles. The Evoque PHEV is capable of operating as a front-wheel drive vehicle, rear-wheel drive electric vehicle, or as an AWD hybrid with both power sources combined.
Subaru’s first plug-in hybrid vehicle, the 2019 Crosstrek Hybrid, uses the Subaru Global Platform designed for hybrid and electric powertrains. It features new Subaru StarDrive Technology that integrates two electric motors, a 2.0-liter direct-injection SUBARU BOXER engine, Subaru Symmetrical All-Wheel Drive, and a new Lineartronic continuously variable transmission. With the series-parallel StarDrive Technology, one motor functions as an engine starter and as a generator powered by the engine to charge the lithium-ion hybrid battery. The second motor powers the vehicle in hybrid and electric driving modes. It also charges the hybrid battery during regenerative braking.
The plug-in SUV can reach speeds up to 65 mph in full electric mode and achieve 90 MPGe. It drives up to 17 miles exclusively on lithium-ion battery power and features a total range of 480 miles when using both gas and electric power.
The Crosstrek Hybrid features a Linerartronic CVT plus X-MODE and Hill Descent Control for enhanced performance in low-friction and off-road conditions. SI-DRIVE powertrain performance management allows tailoring throttle characteristics by choosing between Intelligent and Sport modes. Active Torque Vectoring applies light brake pressure to the inside front wheel while cornering for improved handling.
Crosstrek is well-equipped with the latest advanced driver assist technologies. Subaru EyeSight includes Pre-Collision Braking and Throttle Management, Adaptive Cruise Control, Lane Departure and Sway Warning, and Lane Keep Assist. Reverse Automatic Braking can apply the vehicle’s brakes if an obstacle is detected while reversing. Blind Spot Detection with Lane Change Assist and Cross Traffic Alert is standard. Pedestrian Alert provides an audible warning to pedestrians within the proximity of the vehicle while traveling below 20 mph.
The model’s STARLINK Multimedia Plus offers an 8-inch high-resolution touchscreen, Rear Vision Camera, Bluetooth hands-free phone and audio streaming connectivity, AM/FM stereo, and smartphone integration with Apple CarPlay, Android Auto, Aha, and Pandora as standard equipment. Multimedia Plus includes a single-disc CD player and voice activated controls for phone and Near Field Communication. Multimedia with Navigation adds navigation powered by TomTom, voice activated navigation, and over-the-air updates.
Remote Battery Charging Timer manages the Crosstrek Hybrid’s charging schedule and monitors its status. A STARLINK Safety and Security Plus package includes Remote Climate Control and Remote Battery Charging Timer, SOS emergency assistance, and automatic collision notification.
Jaguar’s first electric vehicle, the I-PACE offers a pleasing and aggressive design, luxury appointments, and exceptional driving characteristics. Part of Jaguar’s PACE family of vehicles along with the gasoline-powered E-PACE and F-PACE, the electric I-PACE blazes its own trails with great acceleration and handling on purely battery power, something it proved time after time in Green Car Journal’s drives on interstates, in the city, and on twisty canyon roads.
The I-PACE is is available in three trim levels, S, SE and HSE, starting at $69,500. Besides being Jaguar Land Rover’s first all-electric vehicle, it is also the first one that can receive over-the-air system software updates as new capabilities become available.
I-PACE is powered by two identical 197 horsepower electric motors that produce a total of 394 horsepower and 512 lb-ft torque. One motor drives the front wheels while the other powers the rear, resulting in all-wheel-drive. It can also operate on a single motor for more efficient two-wheel drive motoring when appropriate. Acceleration from 0-to-60 mph is a claimed 4.5 seconds, a performance characteristic we enjoyed throughout our drives.
This Jaguar electric SUV is essentially equal to its all-electric competitors when it comes to range between charges at 234 miles. Electrical energy is stored in a 90 kilowatt-hour, underfloor battery pack consisting of 432 high-energy density lithium-ion pouch cells. The battery pack's location provides a low center of gravity that enhances driving dynamics.
The I-PACE has an aluminum body like other current Jaguar Land Rover vehicles. In this case the underfloor battery pack housing is used as a structural component, which provides I-PACE the greatest torsional stiffness of any model in Jaguar Land Rover’s lineup. The battery pack can be charged to 80 percent capacity in 40 minutes from a 100 kW source or in 85 minutes with a 50 kW charger.
Because there is no engine up front, the base of the windshield has been moved forward compared to the E-PACE and F-PACE to provide more interior space. Thus, while being similar in dimensions to its conventionally-powered siblings, it has a roomier interior. While a battery electric vehicle, it retains the appearance of an internal combustion model. For instance, there’s a radiator behind the front grille for the battery's liquid-coolant system. The grille also directs airflow through the hood scoop to reduce drag, and active vanes in the grille and front bumper can close to further improve aerodynamics when battery cooling and the climate-control system aren’t needed. Other aerodynamic features include powered hideaway door handles. Air springs are standard and can lower the car by as much as 0.4 inches at highway speeds to further reduce drag.
Torque Vectoring by Braking gives the I-PACE sports car-like agility. Controlled independent braking on the individual inside front and rear wheels adds to the turning forces acting on the car. Under most conditions, more braking pressure is applied to the rear inside wheel as this best supports increased cornering capability, while the front inside wheel is braked for greater effectiveness and refinement. Adaptive Surface Response constantly monitors the car's driving environment and adjusts appropriate motor and brake settings.
The I-PACE offers a wide array of driver assist and connectivity features that vary with trim level. The Park Package includes Park Assist, 360-degree Parking Aid, and Rear Traffic Monitor. A Drive Package provides Blind Spot Assist, Adaptive Cruise Control with Stop & Go, and High-Speed Emergency Braking. Connectivity features include Remote, Navigation Pro, Connect Pro, 4G Wi-Fi Hotspot), and Stolen Vehicle Locator.
Audi's new 2019 e-tron electric SUV joins Jaguar and Porsche in giving Tesla some serious competition. The automaker’s first-ever all-electric vehicle looks much like the rest of the Audi lineup, foregoing the temptation to go too futuristic or quirky in an effort to stand out as an electric. Its iconic Audi grille reinforces the sense of normalcy even as it handles the distinctly-electric job of directing cooling air to pass under the battery pack. Some electrification cues are provided, though, as the e-tron features slats running across the rear bumper that highlight the lack of tailpipes. Lights in the front are also designed to look like the bars of a charge status indicator. A dark colored section along the sides show battery pack location.
Efficient aerodynamics and other efficiency-enhancing touches were important in designing the e-tron, which features a drag coefficient of just 0.30. Features include cooling ducts for the e-tron’s front brakes and its adaptive, speed-dependent air suspension. Standard ultra-low rolling resistance 20-inch wheels are aerodynamically optimized. Full underbody cladding incorporates an aluminum plate to help protect the battery and also lower drag.
The e-tron's electric quattro all-wheel drive uses two asynchronous motors, each driving one set of wheels. Single-stage transmissions transfer torque to the axles via differentials. At moderate cruising speeds, the e-tron is powered mainly by the rear motor. The battery pack's location between the axles plus the low positioning of other drive components results in low center of gravity. Weight distribution is approximately 50:50. A driver can select from seven different driving modes, from comfortable to sporty, that alter suspension stiffness, steering responsiveness, and how aggressively the SUV accelerates.
Two electric motors accelerate the e-tron from 0-60 mph in 5.5 seconds with a top speed of 124 mph. It can tow up to 4000 pounds when equipped with the optional tow package. While EPA has yet to provide driving range numbers, testing in Europe resulted in 248 miles from the 95 kWh battery pack. EPA's testing here tends to yield somewhat lower range numbers.
Audi put heavy emphasis on recuperating as much energy as possible. Depending on driving conditions, terrain, and driving style, regenerative braking can provide as much as 30 percent of the e-tron’s range. The driver can select how aggressively the car uses this system, allowing for "one pedal" driving where taking the foot off the throttle will bring the car to a full stop using only regenerative braking.
The e-tron is available with a full range of standard or optional driver assistance packages including adaptive cruise assist, intersection assist, rear cross traffic assist, lane change and vehicle exit warning, and park steering assist. It comes in three trim levels - Premium Plus, Prestige, and First Edition. A panoramic glass sunroof is standard.
The third-generation Honda Insight features an all-new design that brings the model more into the mainstream and clearly carries the Honda DNA forward. It’s a significant departure from the quirky, wheel-skirted first-generation Insight hybrid that came to our shores in the 2000 model year and quite different from the second-generation Insight hatchback that looked way too similar to Toyota’s Prius. What the new Insight does have in common with the often-benchmarked Prius is pretty phenomenal fuel economy topping out at 55 mpg, along with a very satisfying driving experience expected of the Honda brand, at an accessible price of $22,830.
Taking its place between Honda’s Accord and Civic, the new Insight looks bigger than the Civic despite sharing many elements, like many of the key suspension pieces that make the Civic so great. It rides on a 106-inch wheelbase that provides comfortable cruising manners. Alloy wheels and low friction tires provide virtually no road noise, while additional dashboard, front inner fender, and hood insulation along with a fender enclosure seal out heat and sound to make for a quiet cabin. It earns a five-start NHTSA crashworthiness rating.
The Insight features an advanced two-motor hybrid system that generates class-leading total system output of 151 horsepower and 197 lb. ft. of torque, plenty to deliver satisfying acceleration and an overall driving experience that doesn’t sacrifice performance for the sake of efficiency. Beneath the skin are technological touches like electric-servo braking and responsive, variable-ratio electric power steering. Batteries located low in the chassis avoid encroaching on trunk space and contribute to a lower center of gravity for better handling.
Inside the Insight’s comfortable and well-appointed interior, the instrument panel, climate controls, and entertainment system are dramatically improved from the previous Insight. An 8-inch center display allows ready operation of all controls, though a volume knob is retained for easy volume adjustment. A 7-inch instrument panel display is customizable to suit the driver’s data requirements. Apple CarPlay and Android Auto are standard. Drivers can select from Normal, Sport, and Econ driving modes, each delivering varying transmission shift points adjustment adjustments to improve mileage and acceleration. Steering wheel paddle shifters adjust the degree of battery regeneration to further tailor the driving experience.
Insight comes standard with Honda Sensing, a full suite of driver assist features that include Forward Collision Warning with Collision Mitigation Braking, Lane Departure Warning, Lane Keeping Assist, Road Departure Mitigation, and Traffic Sign Recognition. Also included is Adaptive Cruise Control with Low-speed Follow, which allows a driver to set the distance between cars when in cruise control mode. In stop-and-go traffic Insight will follow without need for driver input.
The Mitsubishi Outlander PHEV, Green Car Journal’s 2019 Green SUV of the Year™, has been sold quite successfully in other parts of the world since 2013 but has just finally made it to our shores. During its absence here in the U.S. the Outlander PHEV has not inconsequentially become the best-selling plug-in hybrid SUV in the world. There are reasons for this, including this spacious plug-in SUV’s ability to accommodate five with plenty of room for gear, its quiet cabin finished in premium leather, and its array of desired features prominent on today’s buyer wish lists.
This model’s most high-profile feature, of course, is its plug-in powertrain. The Outlander plug-in hybrid features a 2.0-liter gas engine and generator along with a pair of high-performance electric motors, one up front and one at the rear. The combustion engine provides 117 horsepower with the front and rear electric motors each contributing an additional 80 horsepower, for a total system rating of 197 horsepower at the ready. Power is delivered to the road through a continuously variable transmission. Adding to the model’s already-functional nature is Mitsubishi’s Super All-Wheel Control system and a 1500 pound tow rating.
All-electric driving is a big plus delivered by plug-in hybrids, and the Outlander PHEV is no exception. It can drive 22 miles on battery power alone and has an overall driving range of 310 miles. Its battery can be charged in about 10 hours by plugging into a standard 120-volt household plug, in four hours with a home or public 240-volt Level 2 charger, and up to 80 percent battery capacity in just 25 minutes at a public DC Fast Charger.
The Outlander’s parallel-series hybrid drivetrain operates in three distinct ways that are automatically chosen by the vehicle’s control system to optimize efficiency and performance. In Series Hybrid mode the electric motors power the vehicle. When lithium-ion battery power is low or quick acceleration is required, the two electric motors are powered by both the gasoline-powered engine-generator and the battery pack, with the generator also charging the battery. Parallel Hybrid mode uses the gas engine to drive the front wheels with the two electric motors kicking in when additional power is needed. The engine also charges the battery pack in Parallel Hybrid mode under certain driving conditions.
Of particular interest to ‘green’ drivers is the Outlander’s EV Drive mode, which powers the Outlander exclusively via battery electric power. This mode is also driver-selectable with an EV Mode button. There are six levels of regenerative braking—B1 to B5 plus a coast-for-blocks B0 mode— selected by a pair of paddles behind the steering wheel.
There’s plenty of desirable tech that comes with the Outlander beyond its advanced drivetrain. Safety technologies include blind spot warning, rear cross traffic alert, forward collision mitigation, lane departure warning, and automatic high beams. A multi-view camera system provides a birds-eye view of the vehicle’s surroundings. Adaptive cruise control uses radar to maintain a selected distance from the car ahead. And lower-tech yet decidedly handy are a pair of available 120-volt outlets in the cargo and rear seat areas.
Green Car Journal will be embarking on a long-term test of the Outlander PHEV shortly and will present what we learn about driving this notable plug-in model during daily driving and on longer trips as well, so stay tuned.
Hyundai’s 2019 Kona joins a growing list of long-range EVs aiming to entice new car buyers to go electric. The Kona Electric subcompact crossover looks like its conventionally-powered counterpart save for its closed front grille, silver side sills, unique 17-inch alloy wheels, and appropriate badging. It is available in three trim levels – SEL, Limited, and Ultimate. Like the gasoline Kona, the Kona Electric is available with a two-tone roof if the sunroof is not ordered.
Power is provided by a 201-horsepower electric motor driving the front wheels, energized by a 64-kWh lithium-ion polymer battery that enables an estimated 250-mile range. It can be recharged from a depleted state in about 54 minutes via a fast 100 kW Combined Charging System (CCS), or in 75 minutes with the more common 50 kW CCS. Charging with a 240-volt Level 2 charger takes about 10 hours. An EPA estimated 117 MPGe is expected. The Kona Electric accelerates from 0-60 mph in 7.6 seconds and has an electronically limited top speed of 104 mph.
A 7-inch TFT screen instrument cluster shows the speedometer, battery charge level, energy flow, and driving mode. There’s also a 7-inch infotainment touchscreen system that offers HD and satellite radio as well as BlueLink data connectivity. The system is also compatible with Apple CarPlay and Android Auto. Navigation with an 8-inch screen is optional. BlueLink app-based remote charge management and charge scheduling is fitted. Other available features include a flip-up head-up display and wireless inductive charging for personal electronics.
Push button shift-by-wire controls are located on the center console. Adjustable regenerative braking is controlled by steering wheel paddles. Electrically-assisted power steering has been tweaked to accommodate the enhanced low-speed performance of an electric vehicle.
A host of driver assist features are provided depending on the trim level. All trim levels get Forward Collision-Avoidance Assist, Blind-Spot Collision Warning, Lane Keeping Assist, Rear Cross-traffic Collision Avoidance Assist, Rear View Monitor, and Smart Cruise Control. The Ultimate trim level adds Parking Distance Warning for reverse, Smart Cruise Control with Stop and Go, and a head-up display.
The Kona Electric will initially be sold only in California. It will eventually be available in states that have adopted the California ZEV mandate.
Sharing drive components and integrated technology with Volvo’s XC90 T8, the latest rendition of the Swedish maker’s best-selling vehicle comes to market more powerful and smarter than ever. Volvo’s upscale 2018 XC60 T8 PHEV (plug-in-hybrid) presents a premium and rugged, yet refined, SUV where high performance meets advanced technology and comfort. It is the most powerful two-row SUV in Volvo history. The editors at Green Car Journal take a closer look.
Volvo Rightfully Calls 2018 XC60 T8 the Most Powerful Two-Row SUV on the Market
How it works: Volvo’s XC60 T8 successfully follows in the footsteps of its larger XC90 T8 crossover sibling. Both upscale plug-in hybrids use a 313 horsepower, supercharged and turbocharged 2.0-liter four-cylinder engine with an eight-speed automatic transaxle and two permanent-magnet AC motors.
In this through-the-road AWD hybrid system, a 46-horsepower electric motor drives the front wheels while an 87 horsepower AC motor powers the rear wheels. This results in total system output of 400 horsepower and 472 lb-ft torque. There is no mechanical connection between the two axles.
2018 Volvo XC60 T8 Lithium-Ion Battery Pack Enables Extended Electric-Only Drive Range
A lithium-ion battery pack is positioned in the center tunnel where a driveshaft would normally be located. This 10.4 kWh pack enables the 2018 Volvo XC60 T8 to travel about 18 miles on electricity alone. Total driving range on gas and electric power is 370 miles. The battery can be recharged in as little as three hours from a 240-volt source and six hours from a standard 120-volt outlet.
Regenerative braking, stop/start capability, and a Pure EV electric-only mode contribute to a 59 MPGe rating, quite good for a vehicle with a nearly 4,600-pound curb weight. The twin electric motors and 472 lb-ft torque bring impressive acceleration for a SUV that can carry five people, propelling the vehicle from 0 to 60 mph in 4.9 seconds.
The Re-Engineered 2018 Volvo XC60 Offers State-of-the-Art Active Safety and Driver Assist
Momentum, R-Design, and Inscription versions of the XC60 T8 are available, offering similar standard and optional equipment to non-hybrid T6 models. Optional driver assistance packages are available including a Vision package that includes blind-spot and cross-traffic alerts, automatic mirror dimming, power-retractable outside mirrors, and a parking-assist function.
The XC60’s Convenience package includes adaptive cruise control with Volvo's semi-autonomous Pilot Assist, a Level 2 partial-automation system that assists with driving tasks like remaining in a lane and matching traffic speed on the highway, while still relying on a driver as the primary monitor of the driving environment. Optional Steer Assist, which is linked with Volvo’s Blind Spot Information System and Oncoming Lane Mitigation, helps the driver steer around an obstacle if a collision is likely.
Volvo Takes 2018 XC60 to a Higher Level in Personal Electronic Connectivity
A 9.3-inch Sensus Connect screen in the dashboard center stack offers tablet-like swipe-and-pinch gestures. It’s large enough that it can be divided into four independent sections to provide quick and easy access to any controls needed. Sensus Connect provides 4G/LTE connectivity and offers its own suite of apps including Pandora, Spotify, Glympse, Local Search, Yelp, Weather, and Wiki Locations. The main Sensus screen interacts with 8-inch or 12.3-inch driver information displays and the optional head-up display showing navigation, infotainment, and basic information.\
Volvo’s XC60 T8 is offered at a base price of $52,900, about 10 grand more than its conventionally-powered sibling. It’s an exceptional compact crossover providing the luxury appointments and advanced technology we’ve come to expect from Volvo. It’s also a compelling option for new car buyers looking for an upscale crossover experience with the efficiency of plug-in hybrid power.
So what to do with old electric vehicle batteries? Here’s one approach: Toyota and Chubu Electric Power Co. will be constructing a large-capacity storage battery system that reuses recycled batteries from Toyota electric vehicles. This aims at addressing two key issues. It deals with ways to make use of aging EV batteries that have reached the end of their useful life for vehicle propulsion, while also enabling Chubu Electric to mitigate the effects of fluctuations in the utility’s energy supply-demand balance, a growing issue caused by the expanding use of renewable energy.
Initially, the focus will be on repurposing nickel-metal-hydride (Ni-MH) batteries since these have been used in large numbers of electric vehicles for nearly two decades. The focus will then expand to include lithium-ion (Li-Ion) batteries by 2030. Li-Ion batteries have generally powered the second generation of electric vehicles and plug-in hybrids in more recent years, and thus will not reach their end-of-use for electric propulsion for some time still.
The energy storage capabilities of EV batteries diminish over time and after continuous charging and discharging. Eventually they become insufficient for powering electric cars but can still store adequate energy for other purposes. Even with their diminished performance, combining them in large numbers makes them useful for utilities and their efforts to manage energy supply-demand.
Based on the results of their initial work, the plan is to provide power generation capacity of some 10,000 kW by 2020. In a related effort, Toyota and Chubu Electric will be exploring ways to ultimately recycle reused batteries by collecting and reusing their rare-earth metals. The automaker has explored battery recycling in the past including at the Lamar Buffalo Ranch field campus in Yellowstone National Park. Here, 208 used Toyota Camry Hybrid battery packs are used to store renewable electricity generated by solar panel arrays.
Porsche says it plans to invest more than $7 billion (six billion euro) in electrified vehicles over the next four years. As part of this, the automaker will be devoting some $600 million toward the development of is coming Mission E electric sports car and other electrified variants. About $1.25 billion will be dedicated to hybrid and electric powertrains for existing Porsche models
“We are doubling our expenditure on electromobility from around three billion euro to more than six billion euro”, said Oliver Blume, Chairman of the Executive Board of Porsche AG. “Alongside development of our models with combustion engines, we are setting an important course for the future with this decision.”
Porsche’s stunning battery electric Mission E sports car will boast an output of 600 horsepower and deliver quick 0-60 mph sprints in less than 3.5 seconds. Driving range is claimed to be over 300 miles between charges. It will be fast-charge capable.
In addition to its investment in electrification, Porsche will invest some $250 million on manufacturing sites and facilities plus an additional $850 million on smart mobility, charging infrastructure, and new technologies.
Green Car Journal editors previously experienced 10,000 miles of driving in BMW’s i3, with those miles behind the wheel of a 2015 i3 REx several years ago. We were convinced then, as we are now, that BMW’s i3 is an indispensable, right-sized urban car that’s not only super-efficient to drive around crowded city environs but loads of fun as well.
Chalk that up to its easy maneuverability, great handling, and lightweight construction using a carbon fiber reinforced plastic (CFRP) body over an aluminum and CFRP passenger cell. Plus, of course, there’s the instant torque and surprisingly quick launch provided by the i3’s 170 horsepower electric motor. The i3 became our go-to vehicle for everyday drives.
Now, two years later, we’re 7,500 miles into a long-term test of a 2017 BMW i3 REx and experiencing even more satisfying results. While driving range in the earlier i3 was limited to 81 miles on the model’s 22 kWh lithium-ion battery pack, or 72 miles on batteries with an overall range of 150 miles using electricity from its REx gasoline engine-generator, those numbers substantially increased in the 2017 model year i3 we’ve been driving.
We knew from the start that BMW hit upon something extraordinary with its range-extended REx i3 variant. Simply, BMW recognized that range is a big issue with drivers considering an electric vehicle, and while the i3’s electric range is suitable for a great many drivers, the confidence of extending range with a small engine-generator is real. With the REx variant, most driving can be done exclusively on battery power for convenient, efficient, and zero-emission transport. Occasional trips beyond the i3’s battery range are possible with electricity produced by the REx system.
While a 22 kWh battery pack still powers the 2017 base model, BMW reengineered the 2017 i3 with an optionally available 94 kWh battery pack for greater battery electric range, plus an available REx variant with a slightly larger 2.4 gallon gas tank. The result is notable. The 2017 i3 with the larger battery offers an EPA estimated 114 miles on battery power. Opting for the 2017 i3 REx variant delivers an EPA estimated 97 miles of battery range (somewhat less than the electric-only model due to the REx system’s additional weight), and 180 miles of overall driving with the range extender.
We did find that the shorter 72 mile battery range of our 2015 i3 REx found us using the range extender somewhat regularly. With the longer 97 mile range we’ve only been into the range extender a few times, other than those times the range extender was required to automatically run for service since we hadn't been using it. Yes, it’s only a difference of 15 additional battery electric miles, but with our everyday routes and driving habits those additional miles have made a difference.
The i3 is a kick to drive and we tend to smile a lot as our off-the-line acceleration regularly surprises others between traffic lights. The twin displays offer easy-to-reference information and controls are intuitive. For such a small car, the i3 provides a surprising amount of headroom and overall passenger comfort. The trunk is small but adequate for our everyday needs. Charging with our wall-mounted 240-volt charger is a breeze. It's also economical since we set the i3 to charge at off-peak times and enjoy a discounted electric vehicle rate from our local electric utility.
Green Car Journal editors continue to find our 2017 BMW i3 tester a favored go-to vehicle for daily drives because it’s fun and easy to drive in addition to being clean and economical. We expect that will continue to be the case in the months ahead because it's a combination that’s just hard to beat.
Lexus’ all-new flagship LS 500 series, built on the automaker’s new Global Architecture-Luxury (GA-L) platform, includes the LS 500h hybrid powered by the latest Lexus Multi Stage Hybrid System. It features a sleek, coupe-like silhouette in a package that’s longer and lower than the previous LS model, at a premium price that’s still worlds lower than the former flagship model.
The exterior is striking, a blending of aggressive yet sophisticated elements with a distinctive shoulder line, flared fenders, and a bold front fascia featuring dramatic three-projector headlamps and L-shaped LED running lights. Lexus’ signature spindle mesh grille features thousands of hand-adjusted surfaces to lend a jewel-like quality in changing light. Those who want to go even more upscale can opt for an LS 500h F-Sport variant.
n keeping with the Lexus philosophy, the LS 500h accommodates driver and passengers in a welcoming and luxurious cabin replete with the high-end features desired by premium car buyers. The dash is designed at a uniform height so a driver can comfortably access all controls without changing body posture. Nearly all surfaces are leather-wrapped, and the interior’s artisan wood is created through intricate sliced wood and laser-cutting processes.
Both driver and front passenger can enjoy available 28-way power adjustable front seats, while rear passengers also get special attention like heated seats that integrate two heaters focused on the shoulder and lower back areas, thus providing warmth in these areas rather than heating the entire body. A Shiatsu massage feature is also available. We tried that feature in the model’s optional rear reclining ‘Relaxation Seat,’ that features a raised ottoman and front passenger seat that articulates forward to provide substantial space and ideal positioning for a massage. Trust us…once you’re in that seat you won’t want to get out.
The Lexus Multi Stage Hybrid System in the LS 500h combines a naturally aspirated, Atkinson-cycle 3.5-liter V-6 engine with two electric motor/generators that together deliver 354 horsepower. That’s plenty of juice for serous driving sessions on twisty roads, as we can attest from our time behind the wheel in Northern California.
This system essentially incorporates a four-speed automatic transmission coupled to a continuously variable transmission (CVT). A first for any Lexus hybrid is the inclusion of a selectable ‘M’ (manual) mode controlled by steering wheel paddles, which simulates driving with a 10-speed transmission and provides a more dynamic driving experience. Dual Variable Valve Timing with Intelligence (Dual VVT-i) ensures ample torque across the engine's speed range.
Driver assist systems are replete in the 500h. Lexus' Integrated Safety Management safety systems include Pre-Collision, Pedestrian Alert, and Lexus CoDrive, the latter combining All-Speed Dynamic Radar Cruise Control with Lane Trace Assist. There’s also Front Cross Traffic Alert, Road Sign Assist, Intelligent High-beam with Adaptive Front Lighting, and Lane Departure Alert plus a continuing list of intelligent and driver assist/safety systems. Side clearance and cornering views have been added to the vehicle’s Panoramic View Monitor to provide periphery safety checks, imaged on the car’s 12.3-inch display monitor.
The fifth-generation LS flagship sedan accomplishes its mission by providing impressive design and high levels of premium content, combined with dynamic performance and a hybrid powertrain that nets estimated fuel economy up to 33 highway mpg. Slated to go on sale later this month, the LS 500h luxury hybrid delivers all this goodness at a premium price that’s yet to be announced, but is expected to be in the high $90,000 range.