Electric drive vehicles of all types are increasingly in the news, often led by a near-nonstop focus on Tesla and its Model S, Model X, and planned Model 3 battery electric vehicles. People want electric cars. Some feel they need them, or more accurately, that we all need them. It has been so for quite some time.
I was one of those pushing hard for electric vehicles in the 1990s, driving prototypes on test tracks and limited production models on the highway as I shared their benefits on the pages of Green Car Journal and Motor Trend before that. It was an exciting time filled with hope that battery breakthroughs would come, bringing full-function EVs offering the same driving range as conventional vehicles.
Expectations were high that a public charging infrastructure would expand to make topping off batteries convenient. New ideas like 15-minute rapid charging and battery swap stations would allow drivers of all model EVs the ability to renew on-board energy in the time it takes to enjoy a cup of coffee, enabling them to head back on the road in short order with a full battery charge. Importantly, there was an expectation that EVs would be affordable, both to manufacture and to buy.
If only this unfolded as expected, automakers would commit to developing battery electric vehicles of all types to meet the needs of an emerging market. But things have not unfolded as expected.
California’s Zero Emission Vehicle mandate drove the electric car surge in the 1990s and it’s a huge influence today. While less refined than electric models we have now, electrics of the 1990s like the Toyota RAV4 EV, Nissan Altra minivan, and Honda EV Plus were quite well engineered. Then there was GM’s EV1. Sleek, sexy, and fun, it provided a daily driving experience unparalleled in the field, something I came to appreciate well during the year I drove an EV1.
The challenge then was the same as now: cost. The EV1 was so costly to build with such massive losses there was no business case for it to continue, and so it ended, as all other electric vehicle programs of the 1990s ended, for the same reason.
Early on, Volvo had the foresight to challenge the status quo. While evaluating ways to meet California’s impending ZEV mandate, the automaker concluded there was no way to do this realistically with a vehicle powered exclusively by batteries. In 1993, I test drove Volvo’s answer – its high-tech Environmental Concept Car (ECC) that added a high-speed turbine-generator to an electric drivetrain, thus creating what we now call a range-extended electric vehicle (think Chevy Volt). Sadly, the ECC’s high cost turbine-generator meant this innovative car never saw production. But it was at the leading edge of a movement that brought us hybrids and range-extended electric cars. Today, even BMW – a high-profile champion of electrics with its innovative i3 – understands the importance of offering a range-extended variant with a gas engine-generator for those who prefer the convenience of longer range.
In answer to the chorus of Tesla enthusiasts sure to raise their voices, I am aware that Tesla is committed to all-electric vehicles and the range of the $70,000-$95,000 Model S (before the addition of popular options) is substantially greater than its competitors. The coming Model X electric crossover is expected to be in the same aspirational category as the Model S with a price suitable for premium buyers. The company's planned Model 3, presumably a vehicle accessible to the masses at a price Tesla says will be about $35,000, is said to be three years away. That's a good thing since significant battery cost reductions will be required to make this Tesla-for-the-masses electric an affordable reality. Will three years be enough? Achieving battery cost reductions of the magnitude required is no sure bet and, as history has proved, battery technology advances move at their own pace.
One stock analyst recently quoted in a major newspaper article shared that Tesla has the ability to reduce battery costs by nearly half in the coming three to five years. Of course, the backstory is that this ‘ability’ is really but a ‘potential’ based on batteries that do not yet commercially exist. The past 25 years are replete with examples of major government and industry efforts aimed at developing energy-dense, safe, and affordable electric car batteries that deliver the range and cost expectations of auto manufacturers and consumers. Over these years there have been many incremental improvements in battery design and chemistry, a slew of failures, and pending ‘breakthroughs’ that have often been promoted only to have expectations and actual production sidelined for a plethora of reasons du jour.
As just one recent example, Panasonic's 2009 announcement of a lithium-ion battery breakthrough using a silicon alloy cathode was accompanied with a claim it would be manufactured in 2012. Many positive reports on electric vehicles take into account this very ‘breakthrough’ and others like it, with the considerable cost reductions that would follow. Yet, Panasonic did not begin mass production of this battery technology in 2012. According to a Panasonic spokesman, the company’s work on developing high-capacity battery cells using a silicon-based negative electrode is ongoing. Hopefully, developments like these will lead to the kind of mass production that could bring long-hoped-for battery performance and cost reductions. Perhaps this will come to pass with a mass effort by Tesla through its proposed $5 billion battery ‘Giga Factory,’ and perhaps not. But after 25 years of following battery development I have learned not to count on claims or development, but rather actual production and availability in the real world.
Tesla continues to develop its Supercharger quick-charge network and has potential plans for a battery swap system, both exclusively compatible with its own vehicles. An innovative and expanding infrastructure for battery electrics will be required for their ultimate success and these are very positive moves, although only for those with a Tesla product and not electric vehicle owners as a whole.
Battery electric vehicles priced at levels accessible to everyday buyers will continue to grapple with cost and marketing challenges until a battery breakthrough comes. This is illustrated by Fiat Chrysler Automobiles CEO Sergio Marchionne's comment earlier this year that the company is losing $14,000 on every one of the Fiat 500e electric cars it sells. Is it so different for other automakers also selling EVs in limited numbers and in constrained geographic locations? Not inconsequentially, to bolster the market battery electric cars will also require continuing federal and state incentives that combined typically total $10,000 or more. Hopefully, innovative thinking and real technology and cost breakthroughs will emerge in the years ahead.
In the meantime, gasoline-electric hybrids and plug-in hybrid models, plus range-extended electric vehicles that combine all-electric drive with an on-board electric generator, are providing functionality for everyone even as battery-only electric cars fight hard to establish their place in the automotive market. Let's hope that mass-market, nationally-available models like BMW's innovative i3 electric car change this dynamic sooner than later.
Tesla, the upstart Silicon Valley company that’s proved an entrepreneurial automaker far from Detroit can make an exceptional and aspirational electric car, is embroiled in yet another fire controversy. Even as the National Highway Transportation Administration (NHTSA) continues its investigation into two crash-related Model S fires in the U.S. (but not a third fire in Mexico that’s out of its jurisdiction), this advanced electric car’s safety continues to raise questions.
The latest is the subject of media reports involving a fire in Toronto, Canada earlier this month, in which a Model S is involved while reportedly parked in a garage and unplugged. While conclusions have not yet been reached by Canadian authorities, a Tesla statement says the company has identified that the fire did not originate in the car’s battery or any components involved in charging.
Tesla maintains that the Model S has no battery issues and has an exceptional safety track record, and indeed the model achieved top five star crash testing scores across the board in NHTSA test protocols. However, what remains unexplained is whether there are specific issues that must be addressed to prevent further crash-related fires, thus NHTSA’s ongoing investigation.
This is a topic of sometimes passionate debate as Tesla proponents vigorously defend the model while others point to unintended consequences of battery power. It will be interesting to watch reactions and commentary once the NHTSA investigation is complete.
Batteries remain the electric car’s most pervasive challenge. After decades of research and development plus billions of dollars of investment, an energy-dense and affordable electric car battery remains elusive. Automakers are acutely aware of this as high battery costs can mean significant losses on every unit sold.
Ford is aiming to meet the challenge head-on with a new $8 million battery lab that’s now operating at the University of Michigan. The goal is to develop smaller and lighter batteries that are also less expensive to produce, resulting in more efficient and affordable battery electric vehicles with greater driving range.
The automaker’s existing battery labs focus on testing and validating production-ready batteries. This new effort will address batteries earlier in the development process, serving as a stepping-stone between the research lab and the production environment. The new lab includes a battery manufacturing facility supporting pilot projects, testing, and state-of-the-art manufacturing to make test batteries that replicates the performance of full-scale batteries.
Battery development is in its infancy and this kind of research is critical, says Ford, as is the need for new chemistries to be assessed in small-scale battery cells that can be tested in place of full-scale production batteries, without compromising test results. The automaker points out that in the span of 15 years, the industry has gone from lead-acid to nickel-metal-hydride to lithium-ion batteries, and it’s too early in the battery race to commit to one type of battery chemistry.
Challenges with advanced batteries have cropped up with automakers, aircraft manufacturers, and laptop companies alike in recent years. One of the most notable has been thermal runaway issues with lithium-ion (Li-Ion) batteries, the most advanced battery technology now in widespread use in transportation and consumer electronics. While appropriate engineering fixes have been made to move advanced battery power forward and ensure safety, problems still occasionally occur.
The latest involves Zero Motorcycles, which is recalling certain 2013 FX electric motorcycles manufactured from January 28 through May 21 of this year, plus 2013 XU motorcycles manufactured form January 16 through May 20 of this year. According to the National Highway Transportation Safety Administration (NHTSA), a manufacturing defect with the sealant material in the battery may allow water to penetrate the battery and contact the cells.
NHTSA says this may lead to corrosion of the cells, possibly resulting in a rapid temperature increase and off-gassing of the cells’ electrolyte that may cause a burn to the rider. Zero is remedying this by replacing the battery modules in affected models free-of-charge. This follows a recall of certain 2012 model Zero electric motorcycles last year due to insufficient weatherproofing, which the agency reported may short circuit the battery management system when subjected to wet conditions and possibly cause the motorcycle to inadvertently lose power.
It should be pointed out that conventional gasoline powerplants and fuel systems have suffered their share of recalls over the decades involving cars, motorcycles, and recreational vehicles. Alternative fuel vehicles have also had the occasional challenge, such as natural gas storage issues in GM’s natural gas pickups in the early 1990s. As always, the importance is in identifying the problem, effecting an engineering remedy, and moving on.
Leave it to Audi to continue making electric drive news at the track. The automaker’s R8 e-tron – an electrified version of the way-cool R8 supercar – has set a world record for electric production vehicles at Nürburgring’s Nordschleife loop, regarded by many as one of the most demanding test tracks in the world.
Piloted by race driver Markus Winkelhock, the electric sports car powered its way around the 12.92-mile track in 8:09.099 minutes to achieve its electric drive milestone. To place this in perspective, the current record lap driven in a Gumpert Apollo Sport powered by a 700 horsepower Audi V-8 stands at 7:11.57 minutes.
The record-setting Audi R8 e-tron was powered by the same electric drivetrain that will be offered in the production R8 e-tron coming to market late this year. Specs for the production car include acceleration from 0 to 62 mph (100 km/h) in a blistering 4.6 seconds. While the track effort allowed a 155 mph top end for the run, the production variant will be limited to a ‘mere’ 124 mph.
A pair of electric motors generating 375 hp and massive torque power the R8 e-tron. It’s energized by a 9 KWh lithium-ion battery pack that allows an approximate 134 mile range, although obviously not at speed. The pack is positioned in a ‘T’ configuration along the center tunnel and behind the passenger compartment.
Light weight is typically a hallmark of a high performance electric cars and the Audi R8 is no exception. The R8’s bodyshell is largely constructed of aluminum with carbon fiber reinforced polymer components. The result is a supercar weighing in at 3,924 pounds, batteries included.