Green Car Journal logo

Even amid the huge effort now underway to gain market share with new and coming battery electric vehicles, automakers show a continuing interest in keeping the potential of hydrogen vehicles alive. Indeed, the most high-profile players in this space are taking the next steps toward normalizing the way we look at zero-emission hydrogen fuel cell vehicles, models that drive on electricity generated by an electrochemical reaction of hydrogen and oxygen.

One of the advantages of a hydrogen fuel cell vehicle has been its ability to refuel in five minutes and then deliver 300 or more miles of driving range. That’s about the same amount of time it takes to fill a gas tank, an important baseline. Electric vehicle batteries, on the other hand, typically take many hours to charge. Today’s electric vehicle fast-charging, and the potential for newly-developed extreme fast charging (XFC) technology, could diminish the hydrogen fuel cell vehicle’s rapid refueling advantage.

Still, high-profile players in the auto industry like Honda, Hyundai, and Toyota apparently feel strongly that hydrogen fuel cell electric vehicles (FCEVs) may play an important part in our driving future. Honda currently leases the Clarity Fuel Cell sedan to California residents living or working in areas where hydrogen fueling stations are available. Hyundai also offers its NEXO hydrogen fuel cell crossover model and Toyota its Mirai fuel cell sedan. Since there are only 47 hydrogen stations in the U.S. with 42 of these in California, it’s really no surprise that all three automakers focus their fuel cell vehicle sales exclusively to limited areas with hydrogen fueling.

Underscoring hydrogen’s continuing momentum, Toyota will shortly release its second generation Mirai sedan. Introduced five years ago as the first fuel cell model offered for sale to retail customers, Toyota’s current Mirai is as notable for its styling as it is for its advanced zero-emission propulsion. Its swoopy, angular, and stylistically forward design does speak ‘future” – which, by the way, is what ‘Mirai’ actually means in Japanese – but that design has been a bit too much for most folks’ taste. The coming, all-new 2021 Mirai changes all that.

As shown by the new model’s concept, the second-generation Mirai is nicely sculpted with smooth-flowing lines, presenting as a stylish mainstream sedan with coupe-like design influences. Evolving from the front-drive first-generation Mirai, it uses a new rear-drive platform with a more rigid body structure that’s longer, lower, and wider than its predecessor, riding on a 114.9-inch wheelbase and featuring a length of 195.8-inches with a 74.2-inch width.

This new design is accompanied by a reimagined interior that’s more spacious and now allows for five passenger seating rather than four. Its multimedia system includes navigation and dynamic audio provided by a JBL sound system with 14 speakers. The Mirai’s handsomely sculpted dash features a 12.3-inch, high resolution TFT touchscreen. Drivetrain advancements are also part of the package. While full details have not yet been disclosed, the 2021 Mirai is expected to feature a more advanced fuel cell system featuring increased performance and up to 30 percent greater driving range. Like the model before it, the new Mirai is capable of filling up its hydrogen tank in just five minutes.

Beyond light-duty vehicles, where hydrogen could become a major transportation fuel is in over-the-road trucks that travel fixed routes, where hydrogen refueling stations are available. While adding larger and heavier batteries to increase the range of personal-use electric vehicles is not a big problem, every pound of battery capacity added to increase the range of commercial trucks means a pound less of payload, impacting the bottom line. Thus, fuel cells could prove to have a large advantage over electric trucks and be appealing in the commercial world.

While adding larger and heavier batteries to increase the range of personal-use electric vehicles is not a big problem, every pound of battery capacity added to increase the range of commercial trucks means a pound less of payload, impacting the bottom line. Thus, fuel cells could prove to have a large advantage over electric trucks and be appealing in the commercial world.

Supporting this notion is Anheuser-Busch, which has ordered up to 800 Nikola Two hydrogen fuel cell semi-tractor trucks for its operations. Two prototypes are already delivering Budweiser beer. On another front, Hyundai and big-rig producer Cummins may jointly develop and commercialize fuel cell powertrains by combining Hyundai’s fuel cell systems with Cummins’ electric powertrain, battery, and control technologies. Toyota and Kenworth are building 10 fuel cell semi tractors for use in and around the Port of Los Angeles and Port Heuneme, California, where decreasing port-related emissions is a significant challenge.

Where is this all leading? Toward the future, of course…one that continues to evolve with an as-yet unknown mix of conventional, electrified, and alternative fuel vehicles being developed by legacy and newly-launched auto and truck manufacturers. Each has its own vision of what our driving future will look like. Time will tell what role hydrogen will play in this unfolding transportation world.

There are challenges ahead even as electric pickups are poised to enter a potentially enthusiastic market. Those challenges could mean a more gradual market trajectory than that of electric sedans and SUVs, which have already taken quite some time to gather momentum. For example, cars and SUVs used for commuting or running errands are typically driven less than 40 miles daily, with occasional trips of several hundred miles with passengers. That’s a reasonable and flexible duty cycle for electric passenger vehicles. It’s different for trucks.

With the exception of work trucks in urban areas, pickups in many rural areas travel hundreds of miles every day without refueling. That’s not an issue for conventionally powered pickups with their considerable driving range. It could be for coming electric pickups since their battery range is about half that of most full-size gas pickups. When conventional pickups do need to refuel, it takes but a few minutes to fill up with gasoline compared with the hours required for electrics. Realistically, it's difficult to see electric pickups meeting the duty cycles of work trucks like these until fast charging becomes widespread, especially in rural areas.

Towing presents additional food for thought. It’s well-known that fuel economy, and thus range, is reduced when conventional vehicles tow trailers, boats, or any load. Range is impacted more dramatically in electric vehicles, a fact that could make electric pickups less desirable for towing a boat or heavy load any significant distance since charging would likely be required every couple hundred miles. Illustrating the challenge is that towing a 5000 pound trailer with a Tesla Model X or Audi e-tron has been shown to result in a range reduction of up to 40 percent. Increasing range by adding batteries in an electric pickup may bring longer range, but it also means reducing payload and towing capacity pound for pound.

Looking at the demographics of pickup owners and comparing this with available charging stations presents a stark reality. The 13 states where pickups represent 25 percent or more of new vehicle sales have about 2600 public charging stations, less than 10 percent of all public charging stations in the country. That’s quite a disconnect. These are typically large states where long distance travel is the rule. This underscores the importance of charging opportunities and the formidable challenges electric pickups may face in areas where charging infrastructure is behind the curve.

Another challenge is maintenance. Even though electric pickups require significantly less maintenance than their gasoline or diesel counterparts, there are times when EV-specific service will be required. While the usual tire, brake, and fluid maintenance can be performed by mainstream service providers, electric pickup manufacturers must provide for other potential servicing involving an electric drivetrain, on-board electronics, and the many other controls and systems unique to an electric vehicle. That’s not a significant issue for legacy automakers like Ford and GM that have a widespread dealer sales and service network, even in sparsely populated states. Service personnel at dealerships can be trained in EV-specific work. Fledgling and start-up electric pickup companies will certainly be at a disadvantage here.

Will electric pickups succeed? Time will tell. Plus, we’ll have to see how some wishful launch schedules align with reality since COVID-19 has caused auto manufacturing delays and shutdowns. Plus, with today’s extraordinarily low gas prices, the value equation for electrics of any kind is skewed, at least for the present time. That doesn’t mean there won’t be demand for electric pickups…just that expectations for timing and market penetration should be tempered.