Our Prius Prime long-term test car was plugged in and ready for its usual around-town electric car duty, something it did with ease every day with its up to 44 mile range exclusively on batteries. It had been a while since we had to go beyond those all-electric miles and take advantage of the Prime’s long-range capabilities as a hybrid. Yep. A road trip was calling.
This time we’re heading out from Green Car Journal’s headquarters in San Luis Obispo on California’s Central Coast, up the Cuesta Grade, and through bucolic Paso Robles, one of the most important wine regions in California. But it isn’t wine we’re focused on this trip so we continue northbound amid wide-open countryside dotted with the occasional small city beckoning those needing fuel or food.
Our destination 145 miles ahead is the picturesque Monterey Peninsula, home of charming Carmel-by-the Sea, the laid-back Carmel Valley, and historic Monterey with its Fisherman’s Wharf and Cannery Row of Steinbeck lore. This is an area steeped in history that beckons one to experience and explore, with one of its highlights the dramatic 17 Mile Drive that winds along some of the most spectacular coastline on the planet. It’s no wonder that the Monterey Peninsula is an incredibly popular tourist destination that attracts visitors from all over the world.
Drawing our attention as auto enthusiasts is that the peninsula is the home of the annual Monterey Car Week, Pebble Beach Concourse de Elegance, The Quail Motorsport Gathering, and the Monterey Motorsports Reunion historic car races at nearby Raceway Laguna Seca. While this wasn’t our focus now, visiting Monterey in August provides some of the best auto enthusiast immersions possible anywhere. Beyond the week's many official gatherings, you'll find automotive eye candy in abundance plying the streets of Carmel-by-the-Sea and Cannery Row as classics and exotics show their stuff amid everyday life.
As the miles rolled by during our drive, we couldn't help but appreciate the accommodating features of our Prius Prime and how ideal it is for this, or really any, road trip. There were four of us this time – three adults and a child – with our Prius loaded with the gear and trappings required for a fun weekend getaway. As we made our way northbound it wasn’t lost on us that these days, a great majority of trips, local and long distance, are made in SUVs of one stripe or another. We've done plenty of that and the sheer number of these on the road during our drive illustrated their popularity. But we have a great interest in efficiency and the capabilities that family sedans and hatchbacks with a smaller footprint continue to bring to the highway. The Prius Prime is a poster child of this efficiency and functionality.
Speaking of efficiency, one can't help but be impressed with how frugal this Toyota plug-in hybrid is with a gallon of gas. While numbers can vary depending on speed, terrain, and driving style, it's a given that more often than not we're seeing 50-plus mpg displayed on our instrument panel, including on this trip. That's a testiment to the Prius Prime's newest-generation Hybrid Synergy Drive. This powertrain combines a 2.0-liter engine, 151 horsepower motor-generator, and 13 kWh battery pack to not only deliver this high level of efficiency, but welcome performance as well with its overall 220 horsepower. While we appreciate the ability to plug-in during travels to enable a degree of all-electric driving at an EPA rated 127 MPGe, we only did that before leaving home and upon our return from this quick weekend journey.
On our list of high points for this trip was stopping by Mission San Carlos Borromeo de Carmelo, also known as Carmel Mission, in Carmel Valley. The second of 21 missions established from 1769 to 1823 by Franciscan missionaries led by Padre Junipero Serra, the mission is fully restored and an important touchstone in the region’s history. We’ve traveled to all 21 missions in the California Mission System over the years and a stop at Carmel Mission was a must during this trip.
No trip to the Monterey Peninsula is complete without spending time exploring the many distinctive shops and eateries in quaint Carmel-by-the-Sea. There's no doubt this is an art town given the sheer number of art galleries present along its charming streets. Pastries? Sure. Unique and hand-made gifts? Absolutely, at an endless sea of shops. And dining experiences? There's no shortage to choose from, but you won't want to miss breakfast at Village Corner California Bistro or lunch at Clint Eastwood's Hog's Breath Inn.
There are so many activities to experience here that time isn’t on your side. A weekend getaway is always fun but additional days afford the luxury of taking in all the area has to offer. No matter how long a trip to this Central Coast jewel, you can't come to the Monterey Peninsula without a visit to the truly impressive Monterey Bay Aquarium, located on Cannery Row. That's how it was with us considering we had a five year-old in tow who patiently tagged along during our shopping in Carmel-by-the-Sea, visits to historic sites, and explorations of other points of interest. A visit here is truly a treat for kids and adults alike and a great way to cap off a Monterey Bay vacation.
The latest generation Prius Prime – now rebadged as the Prius Plug-In Hybrid for 2025 – has been a welcome change of pace from Toyota. Sleek, stylish, and unexpectedly fast, the debut of an all-new model in 2023 presented an unexpected departure from the pedestrian Prius stylings of old.
Don’t get us wrong: The Prius has always been a game-changer in its own right with its supreme efficiency and leading eco-consciousness. But it never was a model appealing to performance-focused auto enthusiasts or one drawing admiring looks from passers-by…until now.
Since we began our long-term test of a fifth generation Prius Prime XSE last year, we’ve found this hatchback’s overall driving experience to be just as we had hoped. While today’s Prime is similar to the previous generation with notable high efficiency and plug-in capability, there’s a world of difference that makes the model so much more compelling. First, there’s the styling. We don’t know what prompted Toyota to let its designers have at it with such a huge change in looks and an all-new ethos, but we do know what to say in response: “Thank you very much…great job!”
Beyond its now compelling appearance is the model’s newfound embrace of performance. The previous Prime used a 1.8-liter four-cylinder delivering 95 horsepower, augmented by its electric motor’s 71 horsepower. The new Prime ups the ante by nearly 100 horsepower, delivered by a 150 hp 2.0-liter engine and 161 hp electric motor. This extra power is immediately noticed and appreciated, especially during freeway driving when changing lanes and overtaking slower cars is a necessity. Plus, the extended range provided by the larger 13.6 kWh battery in this plug-in hybrid is a welcome addition, increasing electric driving range from some 25 miles to 44 miles of all-electric driving. EPA estimates the Prime XSE at an overall driving range of about 550 miles.
One of the things that often fascinates drivers is a plug-in hybrid’s ability to seamlessly blend the efficiencies of battery and hybrid drive during journeys beyond the Prime’s all-electric range. For example, on a recent roundtrip 600 mile drive down the California coast on the southbound 101 freeway, we experienced a peak combined 86.9 mpg during one segment of the trip after starting with a full charge. On the drive back and without having a charged battery, our mpg readings settled closer to 45 mpg while experiencing bouts of traffic and construction on the various highways heading back north.
On another 200 mile round-trip drive from California’s Central Coast to the Central Valley, our fuel economy remained an impressively stable 55 mpg on hybrid power alone. At times, driving conditions had degraded from a relatively clear evening and slowly gave way to dense fog. Despite the heavy fog conditions, the robust suite of technologies provided by Toyota’s Safety Sense 3.0 helped ensure a smooth and safe experience during this challenging drive with low visibility.
The assistive driving features on the Prius Prime have been indispensable on many drives taken during the past year. While many Toyota Safety Sense 3.0 systems are available, our favorites would be Proactive Driving Assist and the Traffic Jam Assist.
Adaptive cruise control typically feels more reactive than proactive, but the addition of features with the appropriately named Proactive Driving Assist helps make unfamiliar roads feel safer. Proactive Driving Assist complements Dynamic Radar Cruise Control and is a key component of the Toyota Safety Sense 3.0. Working in tandem with this system means that PDA is able to assist with breaking into curves, provide steering input to help keep you centered in the lane even during mild corners, and provide obstacle anticipation assist all at once.
Traffic Jam Assist is indispensable during drives with stop and go traffic, which was common during our drive down the California coast as we approached larger metro areas. This feature does require Toyota’s Drive Connect subscription to use, but I did find it worthwhile if stop and go traffic is a common experience. TJA operates at typical traffic jam speeds under 25 mpg and engages a host of other features, including hands free steering, acceleration, and braking during heavy traffic. Recording is also an option with Traffic Jam Assist as an added (but hopefully unneeded) feature during bumper to bumper traffic where collisions are statistically more likely. Recording is implemented during crash or crash-like events.
These driver assist features, in addition to the entire Toyota Safety Sense 3.0 suite, add comfort and an enhanced sense of safety during our frequent drives. Overall, longer drives feel less arduous with Prius Prime, which means we can focus on enjoying the road ahead and being behind the wheel of an entirely satisfying vehicle that’s comfortable and a joy to drive.
There’s no doubt that plug-in hybrids loom large on the minds of drivers today. One might assume this is a recent phenomenon given the constant media attention today. But really, this has been an ongoing area of interest for quite some time. In fact, some 17 years ago, Green Car Journal technical editor Bill Siuru penned a feature offering an overview of this interest. This article from our archives is worth sharing today since it not only indicates the reasons why plugging in is such a positive thing, but considering the interest at the time, it also illustrates the surprisingly long time it has taken to reach where we are today. Other revelations are included here, like the potential for vehicle batteries to be used for V2G (vehicle-to-grid) and V2H (vehicle-to-home) energy, and of course Volvo’s growing commitment to its electrified future. Here, we present this article from Green Car Journal’s fall 2007 issue.
Excerpted from Fall 2007 Issue: The tremendous interest in plug-in hybrid vehicles (PHEVs) is driven by many things, from a desire for greater fuel efficiency to decreasing emissions, achieving long-term reductions in fuel cost, and promoting energy diversity so we’re much less dependent on imported oil. Each of these is important to our future. Together, they make a compelling case for the PHEV that bears further exploration.
Plug-in hybrids could provide most of the environmental and fossil fuel-savings benefits long promised by battery electric vehicles (BEVs), but not yet delivered. Also called grid-connected hybrids, PHEVs overcome the biggest challenge of BEVs – insufficient range. With all-electric range of up to 60 miles, under most driving scenarios a PHEV can be a true zero-emission vehicle (ZEV), just like a BEV. In reality, however, plug-in hybrids offer much more since gasoline-electric hybrid power is ready to take over from all-electric drive once battery energy is depleted.
Initially, aftermarket suppliers like EnergyCS in California and Hymotion in Canada developed PHEV retrofit kits for popular hybrids like the Toyota Prius, Ford Escape Hybrid, and Mercury Mariner Hybrid. These have been quite expensive and aimed exclusively at fleets because of cost. Major automakers have now joined in. General Motors’ much-publicized Chevy Volt will be a PHEV with an all-electric range of 40 miles. According to GM, 75 percent of all commuters drive 40 miles or less to and from work. A plug-in Saturn Vue hybrid, in the works and possibly available in advance of the Volt, could double the fuel economy of any current SUV and provide some 10 miles of electric-only propulsion. Toyota, Nissan, Ford, and several other manufacturers have PHEVs in the works, as well.
While most hybrid cars, SUVs, light trucks, and PHEVs unveiled to date are parallel hybrids, several have followed a different approach with a series hybrid configuration. One of the latest is the Volvo ReCharge Concept. The ReCharge series hybrid uses an internal combustion engine solely to drive a generator for producing electricity that powers the vehicle’s electric motors. Essentially, the ReCharge is a battery electric vehicle with an internal combustion engine for range extension. This drive configuration allows the 1.6-liter, four-cylinder Volvo Flexifuel engine to operate in its optimum rpm range for best fuel economy and minimum emissions. An added advantage when not directly connecting an internal combustion engine to the wheels is much more design flexibility.
In this instance, the ReCharge uses four individually controlled electric drive motors for all-wheel drive. Individual wheel motors also allow optimum weight distribution and maximizing both traction and mechanical efficiency. Since a transmission is no longer needed, mechanical gear friction is reduced substantially. The ReCharge can run on battery power alone for just over 60 miles and also operate its engine on biofuels like E85 ethanol, all the while retaining the sporty performance of the Volvo C30 sport coupe on which it is based. For a 93 mile (150 km) drive starting with a full charge via an ordinary electric outlet, it will use less than three-quarters of a gallon of fuel, which equates to almost 125 mpg. A driver would rarely need to fill up the tank if driven less than 60 miles daily.
PHEVs offer us more than just emissions reduction and increased efficiencies. They also have the unique ability to supply large amounts of electrical power for uses other than just propulsion. This feature is being exploited in the plug-in hybrid Trouble Truck Project by a consortium consisting of the Electric Power Research Institute, Eaton, Ford Motor Co., and California’s South Coast Air Quality Management District. Trouble trucks, used by utility repair crews, are typically operated in residential neighborhoods. Since their internal combustion engines are left idling to power buckets, power tools, lights, and accessories, emissions and noise occur at job sites as a matter of course. Providing power through a PHEV’s battery and electrical system means continuous engine operation is no longer needed.
These PHEV trouble trucks use Eaton’s parallel pre-transmission hybrid system with either a Ford 6.8-liter V-10 gasoline engine or 6.0-liter V-8 diesel engine. Along with reducing consumption and emissions while traveling to and from worksites, the PHEV trouble trucks provide engine-off cab air conditioning and standby AC electrical generating capacity, including 5 kW of exportable power for at least six hours to power equipment. PHEV trouble trucks based on Ford’s F-550 truck chassis are used by Southern California Edison, Los Angeles Department of Water and Power, and Pacific Gas & Electric. This project will later expand to 50 Ford F-550-based trucks and E-450-based vans for utility and public fleets. Since the F-550 and E-440 chassis are widely used as shuttle buses, urban delivery trucks, cable service trucks, and even motorhomes, there’s every potential that volume production could reduce per-vehicle cost. In fact, PHEV technology could find a home in high-end motorhomes where, perhaps in conjunction with solar panels, it could replace noisy and polluting generators typically used to power on-board electrical components while parked.
PHEVs can produce so much electricity that excess energy could be supplied to the electrical grid using vehicle-to-grid (V2G) technology. V2G allows two-way sharing of electricity between PHEVs, BEVs, and the electric power grid. With V2G, an electric or plug-in hybrid vehicle not only could be plugged in for battery recharging, but under certain conditions could also send electricity back from the batteries to the grid. For instance, vehicles could store electrical energy generated during off hours for use during peak power demands. This would eliminate the need for utilities to buy expensive overcapacity electricity on the spot market or fire up older, and high-polluting, fossil fuel ‘peaker’ generating plants. To encourage consumers to participate in a V2G program, utilities could pay motorists for the use of their PHEV or BEV, or owners could sell back energy to the utility when demand is highest.
In what’s called V2H – or emergency home backup – a PHEV could be used for emergency power. For instance, the PG&E demonstrator supplies 9 kW hours of electricity and the average home uses about 2.5 kW of electricity an hour, which means that hours worth of backup power is available if needed. Volvo says the ReCharge Concept’s efficient generator, essentially an Auxiliary Power Unit (APU), is powerful enough to supply an entire house with electricity. Thus, with minor modifications it could be used in case of a power failure.
Like the BEV, the practicability and affordability of the PHEV is governed by battery technology and cost. Its greater all-electric range capability requires larger, heavier, and much more expensive battery systems to store additional electric energy. Plug-in hybrid Dodge Sprinter vans have a 14 kW-hour nickel-metal-hydride or lithium-ion battery system that provides 20 miles of electric-only power. In contrast, the Prius uses a 1.5 kW-hour battery pack for normal gasoline-electric hybrid operation. Ordinary hybrids require batteries that supply short bursts of electrical boost with a nearly constant state-of-charge to ensure battery longevity. PHEV batteries must provide this high power burst while additionally handling full charge to deep discharges like a BEV. Another concern focuses on whether enough electric power will be available should PHEVs become extraordinarily popular. However, a study by the Department of Energy’s Pacific Northwest National Laboratory says the nation’s existing electric power grid could support up to 180 million PHEVs.
All this is unfolding, now. Technology marches on, costs diminish through efficiencies, and interest drives further development...all good things that should bring the plug-in hybrids we desire to our highways sooner than later.
Today’s developments surrounding EVs are not a surprise. They were predictable, an awakening of sorts, to the realities of personal mobility needs and the true desires of a driving public amid a significant and sustained push toward electrification.
Unsold inventories of battery EVs at dealer lots, significant price cuts to move metal, and a rethinking of strategies are just part of today’s electric vehicle universe. We are seeing this new reality across the automotive spectrum as companies previously committed to being “all-in” for EVs – from Ford and GM to Volkswagen and Volvo – reassess the way forward.
Yes, interest in battery electric vehicles has grown substantially in recent years. EV sales have captured a larger slice of the new car market than might have been imagined in just the recent past and that percentage has been growing faster than before. This should rightfully be celebrated by EV enthusiasts. An impressive expansion of the zero-emission EV market should also be celebrated because of the considerable impact this has on decreasing carbon emissions, though it’s becoming increasingly clear that the hoped-for wholesale move toward battery EVs will not resolve our carbon challenges.
After more than three decades of documenting the commercialization of electric vehicles, I feel compelled to point out that EVs still represent a fraction of the overall automotive market and there remains great interest in more familiar options. Battery electric vehicles simply do not meet everyone's needs at this time. Barring significant breakthroughs in technology, cost, and convenience – the latter bolstered by an expansive and reliable national charging network and a resilient electrical grid to support it – there’s a possibility they may not meet all motorists’ needs for some years in the future. To our collective detriment, that has not stopped the powers-that-be from forcing an EV-first agenda.
The assumption that government can severely restrict consumer vehicle choices without alienating huge numbers of car buyers, creating financial havoc and uncertainties within the auto industry, and bringing an array of unintended consequences in coming years is simply an act of hubris. I've witnessed other examples of this over the years. Ultimately, the outcomes have not favored those in power who overstep and assume they know more about the needs and desires of car buyers than buyers themselves.
There are many reasons for this, but fundamentally let’s remember that a motor vehicle – beyond serving as a social conveyance for projecting image, status, values, or nuances of all sorts – is a crucial tool to get folks safely and reliably to work, school, the market, or wherever they need to be, regardless of distance or driving conditions. And lest we forget, a new car typically represents the second largest consumer purchase after a home. That makes buying a car an important financial decision beyond just being a very personal choice.
The battery EV’s rather eye-opening depreciation, identified by car search engine and research firm iSeeCars as averaging 49.1 percent over the first five years, isn’t very comforting from the standpoint of a financial strategy. It’s worth noting that iSeeCars doesn't see this same kind of depreciation across the board for electrification, identifying hybrids as having a nearly 12 percentage point advantage over EVs in value retention over a five year period, slightly better than the depreciation rate for all types of cars.
How much has changed for electric cars over the years? A lot…and too little. To share some perspective, I’d like to offer up a Green Car Journal editorial I wrote in 2012, Curb Your (EV) Enthusiasm. It seems prescient today. In it, a dozen years ago, I pointed out that:
– After decades of battery development, the expectation that battery breakthroughs would come to make EVs cost competitive with internal combustion vehicles had not materialized.
– Battery electric cars still required significant federal subsidies to encourage sales because of their high battery cost and retail price.
– In a normal world, a compact electric SUV should not cost $50,000, a four-door electric sedan $40,000, or a small electric hatchback over $30,000.
– A small number of electric vehicles might be available under $30,000, but comparable internal combustion models would typically be priced many thousands of dollars less while offering greater functionality.
– Government agencies viewed EVs as a panacea for decreasing CO2 emissions, improving air pollution, and enhancing energy security.
- States embraced electric vehicles in their State Implementation Plans as a strategy for showing how they would meet air quality standards mandated by the Clean Air Act.
– Automakers recognized electric propulsion as a strategy for meeting increasingly higher fleet fuel economy targets.
– Electric utilities viewed EVs as a pathway to selling electricity as a motor fuel.
The conclusion about the way forward a dozen years ago? Battery electric vehicles are one part of the solution along with advanced combustion vehicles, hybrids, plug-in hybrids, and extended-range electric vehicles that create on-board electricity to provide full functionality.
It appears there’s a growing consensus today that we’ve come full circle to this way of thinking. As electric vehicle sales cool, multiple automakers have shared they are backing off from previously-announced timelines for EV model introductions, new EV assembly lines, and greenfield battery plants. There’s also a new emphasis on producing an expanding lineup of hybrid and plug-in hybrid models that consumers increasingly desire, even on the part of major automakers that have previously announced plans to exclusively build battery electric vehicles and have shown little interest in hybrid power.
All this underscores that as much as we’re enamored with modern battery electric vehicles and their ability to address carbon emissions, they are not the singular answer to future mobility. They are a choice among other vehicles and technologies that also speak to individual needs, desires, and environmental sensibilities. And that’s the way it should be.
We’ve spent hundreds of thousands of miles behind the wheel of a great many electric vehicles, hybrids, and plug-in hybrid models over the years. They all have their advantages and appeal…and each speaks to the very specific needs of different types of drivers and their daily rhythms. If you’re inclined to go electric as a way of addressing efficiency and environmental concerns – but hesitant to rely exclusively on battery power for reasons compelling to you and your situation – then you’re an excellent candidate for a plug-in hybrid.
Beyond its advanced technology and user friendliness, there’s an elegant beauty inherent in a PHEV. Within the capabilities of its battery powered range, a plug-in hybrid allows driving on electric power, internal combustion power, or a combination of the two. You are effectively in an electric vehicle with options and the transition from electrons to gas is essentially seamless.
Plug-in hybrids present a logical choice because they present no limitations. These days, chief among these limitations with battery electric vehicles is range anxiety, whether imagined or real. When driving an electric vehicle, remaining battery power is always top of mind to ensure there’s adequate on board energy to get you to where you need to be. This is less of an issue today with popular electric models offering much longer range in the many hundreds of miles, but the concern persists.
Not so with plug-in hybrids. With PHEVs, you get the benefits of an electric vehicle while driving on batteries like zero emissions, near-silent operation, and improved performance. When battery energy in a PHEV is depleted you keep on going with combustion or hybrid power as long as there’s gas in the tank.
Like hybrids, plug-in hybrids take several forms. The most common of these is the parallel plug-in hybrid, which uses an internal combustion engine and one or more battery powered electric motors to directly drive the wheels. A series plug-in hybrid, also known as an extended range electric vehicle (EREV), delivers power to the wheels through its electric motor, or motors, with the combustion engine and batteries providing electricity to power the motors. In this configuration the engine operates exclusively as a generator with no mechanical connection to the road. An example of this is Karma’s GS-6. Some models, like the Toyota Prius Prime and Mitsubishi Outlander PHEV, are series-parallel hybrids that use both power strategies for motive power, along with the zero-emission electric driving for which plug-in hybrids are known.
Both plug-in hybrids and conventional gas-electric hybrids achieve their higher efficiency through an intricate computer-controlled dance that blends electric and combustion power in response to real-time driving conditions. While each benefits from the efficiencies that gas-electric hybrid power delivers, at best a hybrid may drive exclusively on battery power for very short distances with a light touch on the accelerator pedal.
Plug-in hybrids are different. They’re equipped with larger battery packs than hybrids, though these packs are still quite smaller than full electric vehicles. These larger batteries, and the ability to plug in and charge up, allows a PHEV to drive greater distances on battery power alone. The Volvo S60 T8 Recharge plug-in hybrid sedan, for example, features 40 miles of electric driving and an overall 530 mile range, while the Kia Sportage PHEV delivers 34 miles on battery power with a total 430 mile driving range.
Determining your needs is an important step in deciding whether a plug-in hybrid is the right choice. For example, if your daily drives average 30 miles or so, then either of the above examples – and quite a few other PHEV models – will allow driving electric without the need for hybrid power to kick in. Just charge your PHEV’s battery overnight and you’re ready to go again the next day, with no need for a trip to the gas station. Even plug-in models with shorter electric driving range will still do for your commute if there’s charging available at your workplace, since a workplace charge opportunity can effectively double a PHEV's round-trip battery electric range.
Here’s the underlying advantage of a plug-in hybrid vehicle: If you do need to drive farther than a PHEV’s electric range, then you’ll take advantage of the zero-emission efficiencies of battery power with gas-electric hybrid drive handling the rest of your miles. The same holds true for those longer drives, such as visits with far-away friends or longer vacations and road trips. Easy.
So is a plug-in hybrid right for you? It’s a personal decision based on preferences and the degree to which you want to go electric. For those who want to ease into an electric future without limitations, then a plug-in hybrid may well be the best choice for you.
It’s pretty amazing that it has taken over 20 years for hybrid electric vehicles to generate truly significant interest. Yet, that’s the story today as many who are interested in electrification have decided to try a gas-electric hybrid first to sate their appetite for an electrified vehicle. It’s an easy choice since there is no real downside to a hybrid – great fuel efficiency, no range anxiety, and a more affordable price of entry compared to a fully electric vehicle. But how do they work? This article, which ran in Green Car Journal a dozen years ago, explained hybridization in an easy-to-understand way that still resonates today. We’re sharing it here just as it originally ran in Green Car Journal’s Summer 2012 issue.
Excerpted from Summer 2012 Issue: The term ‘hybrid vehicle’ covers a lot of territory. Motivated by two or more different power sources, a hybrid electric vehicle (HEV) uses an internal combustion engine (ICE) and one or more electric motors with batteries that store electrical energy. The ICE is usually a gasoline engine, but diesel engines can be used.
In the future, we will see hydrogen fuel cell hybrids where a fuel cell replaces the ICE. Then, there are hydraulic hybrids, now found in large trucks and buses. Here, energy in the form of high pressure hydraulic fluid is stored in accumulators and reservoirs rather than batteries, and hydraulic pressure rather electric motors drive the wheels.
There are both series hybrids and parallel hybrids, with the latter configuration currently far more popular in automotive applications. Cars like the Chevrolet Volt and Fisker Karma are series hybrids. Here, the ICE’s sole or primary job is to drive a generator that supplies electric energy to the battery or directly to an electric motor, or motors, that power the wheels. The engine in a series hybrid can operate at an optimum speed for best fuel economy since its focus is generating electricity rather than providing mechanical power to the wheels.
In a parallel hybrid, both the ICE and electric motor(s) can power the wheels together or individually. The ICE can also keep the battery charged. The ICE in parallel hybrids can be smaller and more fuel efficient since their electric motors can supply supplemental power for peak loads.
Then there are mild hybrids and full hybrids. In a mild hybrid, the ICE and motor/generator operate in parallel, with the motor/generator used for regenerative braking, stop-start capability, and battery charging. While the ICE provides most of the propulsion power, the electric motor can supply additional power, such as during acceleration and hill climbing. A mild hybrid cannot travel solely on its electric motor. The Chevrolet Malibu Eco, Buick eAssist, and BMW ActiveHybrids are examples of mild hybrids.
A full hybrid adds the ability to operate on electric power alone, at least for short distances. Sometimes a full hybrid is called a series-parallel hybrid since, like a series hybrid, its ICE and motor/generator can charge the battery that in turn powers the wheels. Examples include Toyota, Lexus, and Nissan hybrids, including the Prius with its Hybrid Synergy Drive (HSD) and Ford’s Fusion and C-Max hybrids.
Microhybrids are not really hybrids according to the above definition since they save fuel simply by shutting off the engine when a vehicles stops, such as at traffic lights. Their advantage is that microhybrids can deliver a 5 to 10 percent improvement in fuel economy with only minor modifications to a powertrain, while adding only a small amount to a vehicle’s cost. They do require more robust and powerful starters to handle the greater number of starts, plus more capable batteries to keep the air conditioning, radio, and other electronics running during the stop-and-start process when the engine is shut down. . As expected, maximum fuel economy comes in stop-and-go urban driving with no savings achieved during long-distance highway drives.
Often, stop-start is combined with regenerative braking for further fuel savings. This adds complexity since the braking system must have the ability to recoup braking energy and convert it to electricity that’s used to keep batteries charged. Virtually every mild and full hybrid features stop-start and regenerative braking. In fact, these two systems are what help hybrids achieve greater EPA estimated fuel economy in city driving compared to driving on the highway, where steady speeds have traditionally resulted in much better mpg than when driving in stop-and-go traffic.
As the name implies, the plug-in hybrid electric vehicle (PHEV) operates as a conventional hybrid but can also be plugged into the electric grid to recharge its batteries. This is in contrast to conventional hybrids that recharge only by their onboard generator and regenerative braking. PHEVs, which have a larger battery pack than standard hybrids so they can be driven longer on battery power alone, may never need a drop of gasoline if driven relatively short distances. Longer drives use a combination of battery and internal combustion engine power. Examples include the Toyota Prius Plug-In, Ford Fusion Energi, and C-Max Energi hybrids.
An Extended Range Electric Vehicle (EREV), sometimes called a Range-Extended Electric Vehicle (REEV), is designed for battery electric driving. It creates its own on-board electricity when batteries are depleted to extend all-electric driving range. EREVs can have either series or parallel hybrid configurations. The series hybrid Chevrolet Volt and Fisker Karma are high-profile examples that travel 25 to 50 miles on battery power and then hundreds of miles more with on-board generated electricity. Other similarly-powered extended range electric vehicles are on their way. The upcoming BMW i3, for example, will have a REx option with a small ICE that extends its nominal 100 mile all-electric range.
Green Car Journal has closely followed the evolution of the Toyota Prius since our early hands-on experience at Toyota’s Arizona Proving Grounds in mid-1997. Here, we piloted a Toyota Corona test mule powered by an exotic gas-electric powerplant concept that was unlike anything we had driven before. Little did we know that this test car’s Toyota Hybrid System would make its way in production form to the automaker’s all-new Prius, a model that debuted later that year at COP 3, the third United Nations climate conference. This is where the landmark Kyoto Protocol international treaty was adopted to mitigate greenhouse gases and climate change.
The Prius was there to make a statement that Toyota recognized the environmental challenges ahead and was prepared to lead. Prius sales began in Japan in 1997 and expanded worldwide in 2000. The rest is history. In the 27 years since the Prius was introduced, this hybrid has stayed true to its original mission as a model of high efficiency and low carbon emissions. It has shape-shifted over time, starting out as a quirky subcompact sedan and then morphing into a hatchback with a distinctive and easily-recognizable profile.
Now in its all-new fifth generation, Toyota’s Prius is a true game changer presenting as a wondrous liftback with a whole new outlook that far transcends eco consciousness, though that is still the core of its being. Today’s Prius is now sleek and visually compelling, extraordinarily fuel efficient at up to 57 combined mpg, and delivers surprising levels of performance for an eco-champion priced at just $27,950.
For an additional five grand the model’s plug-in hybrid variant, Prius Prime, features all this along with a more powerful 13 kWh lithium-ion battery that brings an EPA estimated 45 miles of electric driving and up to 600 miles of overall range. Along with its admirable EPA estimated 52 combined mpg as a hybrid, Prime achieves up to 127 MPGe when running on its batteries.
Prius Prime’s considerable battery electric range makes it the ideal electric vehicle for a great many who wish to drive zero emission every day, but also want the ability to tackle longer trips seamlessly. This characteristic, and so many others that elevate the model above its peers, distinguished Toyota’s Prius Prime as Green Car Journal’s 2024 Green Car of the Year®.
Performance in a traditional sense, like quick acceleration and impressive driving dynamics, has never been expected of a Prius. That wasn’t its mission. This changes in a big way with the new Prius presenting as a driver’s car, a model that speaks to car enthusiasts who value appealing style and a fun-to-drive nature alongside environmental performance. The new Prius Prime’s 220 system horsepower, delivered by a 2.0-liter engine and 161 hp electric motor-generator, changes the performance equation with nearly 100 more horsepower and a third greater torque than the previous generation Prime. That extra power is a big deal and drivers will appreciate Prius Prime’s surprising ability to sprint from 0-60 mph in just 6.6 seconds.
Greater performance aside, the most noticeable change in the new Prius is clearly its attention-grabbing, smoothly sculpted design. We know this first-hand. Over the past few months, we’ve spent significant time behind the wheel of an uplevel ($39,670) Prius Prime XSE long-term test vehicle equipped with this model’s full complement of advanced electronics and a cabin smartly upholstered in leatherlike SofTex. Inevitably, we get looks, questions, and overt signs of appreciation from a great diversity of people during our drives, many of them drivers of earlier Prius models and others who simply love the car’s forward-leaning and distinctive look.
We get it. The new Prius exudes a sporty appearance with its low roofline and sweeping aerodynamic profile, lending homage to the Prius of old while transforming its look into something more compelling. Once attention moves beyond the car’s most noticeable and eye-catching feature, there’s plenty inside to appreciate as well. Here, one finds a comfortable and functional cabin featuring a pleasing balance of tech, comfort, and style, with a distinctive instrument panel design that takes its cues from Toyota’s bZ4X electric car.
We’ll be sharing our experiences of daily life with the Prius Prime in the months ahead, and no doubt, more stories of interactions with others who find the all-new Prius as compelling as we do.
Alfa Romeo, one of Italy’s legendary performance brands, returned to the U.S. market in 2006 to reassert its Italian heritage with the sporty 4C. Since then, the Guilia coupe and Stelvio SUV have done an admirable job relaunching the brand.
The newest Alfa, the Tonale luxury subcompact SUV, speaks to buyers here that overwhelmingly skew toward crossover and SUV models. The Tonale, with its performance styling, advanced engine/battery technology, all-wheel drive, and high levels of utility, offers a combination that has never before been available in an Alfa Romeo.
Tonale is not only Alfa’s first hybrid powered car of any kind, but also its first plug-in vehicle. When fully charged – which takes somewhere under three hours with a Level 2 charger – the Tonale will deliver an EPA estimated range of 33 miles on battery power alone. With a combined average rating of 29 mpg and 77 MPGe (miles per gallon equivalent) on electric power, total range on both gas and electric power brings about 360 miles of driving.
Green Car Journal editors' recent time behind the wheel of a Tonale allowed experiencing how this sporty and efficient Alfa performs on the open road and while negotiating the meandering, twisty canyons of California's Central Coast. As with all Alfa Romeos, performance is expected, and in this case delivered via Tonale’s 1.3-liter MultiAir turbocharged four-cylinder engine that provides 180 horsepower to the front axle. The rear axle is separately powered by a 121 horsepower electric motor generating 184 lb-ft torque. The sum of all this is a best-in-class power rating of 285 hp and 347 lb-ft. torque, all in. A 15.5 kWh lithium-ion battery provides power for the electric drive system. An integrated high-voltage belt starter-generator mounts to the engine to assist in delivering smoother drive cycle transitions and start-stop capability. Notably, at times we found the Tonale delivering slightly more than its rated 33 mile battery electric range.
The Tonale sports a host of family friendly features that allow this stylish Alfa to hold lots of things, as SUVs are required to do. Along with the ability to transport your stuff, the Tonale’s standard content is also quite high. Among its many systems are Adaptive Cruise Control, Intelligent Speed Assist, Blind Spot and Rear Cross Path Alert, Lane Departure and Lane Keep Assist, and Forward Collision Warning with Automatic Emergency Braking for pedestrians. Yep, they are all there. Level 2 autonomy with Traffic Jam Assist is also available, as is an optional 360-degree camera system.
Three versions of the Tonale are available, starting with the Sprint edition, then the Ti, and finally the high end Veloce version that we drove. All three feature an excellent Uconnect 5 system with information displayed through a 10.25- inch center-mounted touch screen and a 12.3-inch drivers’ dashboard screen. Each screen can be customized by the driver to display the data most desired. In addition, an on board Alexa system allows connecting to the vehicle via voice commands – no inputs necessary.
The Tonale is one of the best looking subcompact SUVs on the market with its exceptional style and signature Alfa Romeo grille set into the surrounding bodywork. Its sculpted side profile flows past cool alloy wheels and is pure Italian. An elegant interior continues to delight, with a blend of brushed aluminum and suede-like seat upholstery. The stamp of Alfa approval adorns each seat back – very cool.
Alfa Romeo’s Tonale is covered by a four year/50,000 mile limited warranty with a full powertrain warranty for the same length of time. Pricing for the base Tonale Sprint is $43,845 with the Ti coming in at $46,500 and the Veloce $51,040. The Tonale Veloce we drove, with its extras and destination charge, featured an as-tested price of $57,290.
The Volvo S60 model introduced in 2000 was positioned to compete with the popular BMW 3 Series and Mercedes-Benz C-Class of the time. Since then, it has been a popular staple for the Swedish automaker. Now well into its third generation, the S60 has evolved as part of Volvo’s promise to electrify its entire fleet and now is available exclusively in electrified form as a plug-in hybrid. Green Car Journal editors had the opportunity to spend time behind the wheel of this Volvo PHEV and came away impressed by its style and satisfied with its overall performance.
Volvo has borrowed from its subsidiary company Polestar for power. The S60 is equipped with a 312 horsepower 2.0-liter, turbocharged inline-four cylinder engine augmented with a 143 horsepower electric motor located at the rear. Energy for the motor is supplied by an 18.8 kWh battery. The combination ekes an impressive 455 horsepower and 523 lb-ft torque overall. Power is handled by an eight-speed Aisin automatic transmission and distributed via an all-wheel-drive system.
The S60 offers a combined EPA-rated range of 530 miles. If drivers choose to use the S60’s Pure driving mode using only the battery, they should expect an EPA range of about 41 miles. When using Pure mode, the S60 Recharge is rear-wheel-drive. The 14.9 kWh battery can be charged to full capacity in about five hours using a 220-volt charger.
The exterior of the Volvo S60 Recharge can be summed up in one word: refined. When looking over the front of the vehicle one notices Volvo’s familiar Thor’s Hammer LED-accented headlights, with the large Volvo badge front and center. Its hood slopes down toward the fenders at either end to lend a slightly muscular appearance. At its flanks, the S60’s roofline rakes gently to its rear haunches and ends abruptly at the rear end, again giving it an air of muscularity. A high trunk line is accented by a small rear diffuser and familiar Volvo taillights at the back.
Stepping into the S60’s interior presents another example of a refined experience. A sleek and functional design here finds Volvo’s nine-inch infotainment screen taking center stage. Large HVAC vents frame the screen with a brushed aluminum trim piece accenting the bottom of the dashboard. Adequate storage is present in the center console and doors pockets. Rear seat passengers get a good amount of legroom for two adults in the outboard positions but less so in the middle position. Two B-pillar-mounted HVAC vents provide heated or cooled air to passengers on both sides. Trunk space is adequate for a mid-size sedan, though depth and a spare tire is sacrificed to store more batteries beneath the floor.
Volvo employs a new Android OS for its infotainment system that integrates an array of features into its tech arsenal. Google Maps is incorporated, with the S60 utilizing GPS information to adjust efficiency parameters according to driving conditions encountered in city or highway driving. A 12.3-inch digital gauge cluster ahead of the driver is also capable of displaying Google Maps information. A handy heads-up display lends the ability to easily read current speed and other information without taking eyes off the road.
A proud hallmark of Volvo is safety, and the S60 Recharge is no exception. The car received a five out of five star crash test safety rating, along with receiving Volvo’s award winning safety tech. The S60 Recharge is equipped with 360-degree cameras, Blind Sport Warning, Cross-Traffic Alert, among other notable tech features. Four trim levels are offered including the base Core, mid-range Plus, and Ultimate trims, all available in an aptly named Black Edition that adds black accented wheels, grille, and badges.
The Volvo S60 Recharge T8 is a welcome blend of refinement and power offering an entry price of $51,950. It bears consideration as a great all-around car for anyone desiring the ability to get home quickly and in comfort while also stepping up to the environmental benefits of plug-in electric power.
Plug-in hybrids are expected to play an increasingly important role in the mission to decarbonize transportation. While many think that interest in PHEVs is a recent phenomenon, that’s not the case since the concept has been intermittently explored throughout automotive history. Real momentum gathered soon after mass-market gas-electric hybrids hit our shores over two decades ago, with some envisioning a huge benefit in evolving hybrids to enable driving exclusively on battery power. Here, we share an article focused on this vision from the Green Car Journal archives, just as it ran 18 years ago.
Excerpted from Fall 2005 Issue: It’s hard to imagine a more gripping state of affairs at the start of the 21st century. A cloud of smog hangs over our cities while the threat of global warming looms ever larger. Oil prices are rising to record highs and while there’s no imminent danger of running out of petroleum, no one knows how long supplies will last. For a final dramatic touch, most of that oil sits beneath the powder-keg that is the Middle East.
A hydrogen hero is on the way, but many worry that we don’t have time to wait, unsure of what happens if oil supplies drop off and we’re caught without a safety net. A growing chorus is clamoring for a near-term solution, something that can be implemented now to significantly reduce oil consumption. The stage has been set for plug-in hybrids.
The plug-in hybrid is an evolution of the ‘conventional’ hybrid vehicle. Plug-in hybrids function the same way, assisting the engine with battery power or electric energy captured during deceleration, but take the idea a step further. Increased battery capacity allows plug-ins to rely more on electricity and less on gasoline, extending electric-only driving range and delivering even better fuel economy. The extra electric power is drawn from the electrical grid by plugging into power outlets while a vehicle isn’t being driven.
The virtue of the plug-in hybrid comes to light with some statistics. A majority of Americans live within 20 miles of their jobs and most trips are less than 20 miles long. With an electric-only range of up to 60 miles, daily drives to work in a plug-in hybrid might not require any gasoline at all as long as the battery is recharged each night. For longer trips, the vehicle reverts back to conventional hybrid operation. If plug-in hybrids are ever designed and built from the ground up, rather than being converted from existing models like we’re seeing today, an even smaller engine could improve fuel economy at every stage.
Though the Toyota Prius is not a plug-in hybrid, it serves as a good platform for a conversion. The California Cars Initiative, a non-profit organization, first built one to show it could be done. The conversion turned out to be so promising that some companies are looking to make a for-profit business out of it.
Engineering firms EnergyCS and Clean-Tech have joined forces to form EDrive Systems, which is developing a conversion kit for the second-generation Toyota Prius. The kit removes the stock Panasonic nickel-metal-hydride (NiMH) battery and replaces it with a Saphion lithium-ion battery from Valence. The new battery adds 170 pounds to the Prius, but also makes about 9 kWh instead of the original's 1.3 kWh. That means there's much more electrical power available to drive the car.
Some careful software tweaks are made to handle the extra power of the hardware. The EDrive system takes advantage of a built-in ‘EV mode’ that forces the Prius to run purely on electric power until speeds reach 33 mph. This ensures that no precious fuel is sapped until the computer deems it absolutely necessary. According to EDrive, in a stock Prius, the batteries would only provide about one mile in this mode; the company’s converted plug-in Prius extends that range to as much as 35 miles.
To further hold off engine intervention, the computer is told the battery is full until the actual state of charge dips below 20 percent. This bit of misinformation forces Toyota’s Hybrid Synergy Drive to inject as much electric power as possible into the drive system. After the battery is about 80 percent depleted, the EDrive Prius carries on like a normal hybrid and maintains the charge of the battery as needed. Once the EDrive Prius is parked, it’s plugged into an external 110-volt charger that can replenish a fully depleted battery in about seven to nine hours.
An additional dash-mounted readout precisely meters fuel consumption and displays how far the throttle pedal can be depressed before prompting the engine to start up. It’s a useful tool because driving style matters. Aggressive driving and 75 mph cruising will yield 70-80 mpg, say the EDrive folks, while relatively mellow driving earns well over 100 mpg. Low speed city driving and cruising at 55 mph can reportedly push fuel economy closer to 200 mpg. And when the battery is depleted after 50-60 miles of driving, fuel economy reverts back to the roughly 45-50 mpg of the stock Prius.
EDrive Systems hopes to sell its conversion kit for $10,000 to $12,000 in early 2006. At this cost, EDrive’s market is limited to those with the bucks to support making such a statement, but it’s a start.
The Prius is not the only vehicle lending itself to plug-in conversion. DaimlerChrysler is working with the Electric Power Research Institute (EPRI) to build 40 plug-in hybrid versions of its Sprinter commercial van for use in demonstration fleets. Electric boost comes from a 70 kW motor positioned between the transmission and clutch, which is fed by a 14 kWh NiMH battery stowed beneath the cargo floor.
Drivers of the plug-in Sprinter hybrid can push a button to put the vehicle in electric-only mode, which is good for a range of about 19 miles. When not selected, the hybrid’s electronic controller alternates power between the vehicle’s diesel engine and electric motor to optimize fuel economy, or combines the two when power demands are high. This plug-in variant is designed for recharging on Europe’s 230 volt network, a task that takes about six hours for a fully depleted battery.
The stock Sprinter, with its small, 4- cylinder diesel engine, is already quite the efficient hauler with fuel economy as high as 30 mpg. Converted to a plug-in hybrid, DaimlerChrysler says fuel economy improves anywhere from 10 to 50 percent, depending on use. That means up to 45 mpg from a commercial delivery vehicle – simply unheard of in its class. So far, DaimlerChrysler is the only automobile manufacturer producing its own plug-in hybrids.
One of the most notable forces behind the rising profile of the plug-in is Felix Kramer and his Palo Alto-based California Cars Initiative. The group is mobilizing support from fleets, government agencies, and private buyers in an attempt to break the vicious cycle that plagues many new technologies: Motorists won’t buy plug-ins on a large scale unless the price is right, and the price won’t come down until automakers are convinced there will be buyers.
Not content to wait around for the manufacturers, Kramer is looking at other ways to put plug-in hybrids on the road. The plan is to utilize venture capital, set up a Qualified Vehicle Modifier company that could work with automakers in a fully certified capacity, and convert existing hybrid models without voiding original vehicle warranties. In Kramer’s mind, conversion possibilities include Ford’s Escape Hybrid and models using Toyota’s Hybrid Synergy Drive such as the Prius, Highlander Hybrid, Lexus RX400h, and other upcoming models.
The potential of the plug-in hybrid in reducing emissions and oil dependency has put environmentalists and conservative think-tanks in an unusual position: They’re on the same side. Set America Free, the Center for Security Policy, and others have joined electric vehicle die-hards in calling for mass production of plug-in hybrids. Support from former Secretary of State George Shultz and former CIA director James Woolsey lends considerable credibility to the cause.
Despite this clamoring, the U.S. government has yet to respond in a big way. An amendment to the massive energy bill recently approved by President Bush allocates a relatively tiny $40 million for hybrid vehicle development, some of which could go toward plug-in hybrids...but there’s no guarantee.
This leaves local government to take charge. The City of Austin, Texas, with help from its municipal utility Austin Energy, has become the first city to develop an incentive plan for plug-in hybrids. ‘Plug-In Austin’ is looking to raise $50-$100 million to provide rebates on plug-in hybrid purchases for public and private use, as well as for running an educational campaign to generate consumer interest. Austin is one of 10 cities that will begin testing DaimlerChrysler’s Sprinter plug-in hybrid next year.
The ‘Plug-In Austin’ campaign is designed to expand to other communities around the country. Representatives from Austin Energy are approaching the nation’s 50 largest cities in an effort to encourage them to replicate Austin’s program. Already, Seattle City Light in Washington state has shown interest in offering customers incentives to buy plug-in hybrid vehicles in the Puget Sound region. Across the country and across the political spectrum, the plug-in hybrid is winning fans.
Professor Andy Frank at the University of California, Davis is an ardent proponent of plug-in hybrids and, having built plug-in prototypes since 1972, is also one of the most experienced. Rather than an intermediary step to hydrogen, Professor Frank believes the plug-in hybrid could be an end in itself. A plug-in hybrid with a 60 mile electric range, like the ones Frank and his students build, reportedly uses only 10 percent gasoline and 90 percent electricity on an annual basis. “That 10 percent of gasoline could be replaced by biofuels,” says Frank, taking an interesting direction that could find gasoline use eliminated altogether.
The possibilities don’t end there. “We have the capability, for the first time, of integrating the electric grid with transportation,” explains Frank. The electrical grid right now has enough excess capacity to support half the nation’s vehicle fleet if they were converted to plug-in hybrids, says Frank. The energy is domestically produced, the infrastructure already exists, and, though much of our electricity today comes from coal-burning powerplants, renewable and non-polluting sources such as wind and solar power could play a larger role. “People don’t think of plug-ins as alternative fuel cars, but they are,” says Frank. “You could be running your car on solar or wind power.”
At less than a dollar per gallon during off-peak hours, when most plug-ins would be recharged, plug-in hybrid drivers would be paying a lot less in fuel costs. As for the extra up-front cost, Frank points to a UC Davis study that shows how automakers could build plug-in hybrids by adding only $7,000 to the price of a $20,000 car. So why isn’t this already happening? Some in the auto industry maintain that battery technology isn’t ready yet, a claim that Frank and others dismiss. More significantly, Frank asserts there’s a general reluctance to invest, with struggling giants in the industry unwilling to take risks unless convinced there’s a good chance that a sizeable return will result.
“What I’m trying to demonstrate is that if a bunch of students can do it, the car companies should be able to do even better.” Andy Frank, the California Cars Initiative, the City of Austin, and many others feel it’s up to them to take the lead in getting the word out and generating demand. With the success they’ve met, and the wide-ranging benefits that plug-ins put within reach, there’s every reason to believe that at least some in the auto industry are paying very close attention.
Requiring 60+ percent of U.S. vehicles sales to be pure battery electric vehicles (BEVs) by 2030 leapfrogged the administration’s own 2021 executive order that called for 50 percent electric vehicles – including plug-in hybrid and fuel cell EVs – by 2030. More on that below.
That 2021 executive order was a stretch goal (then and now), but the auto industry backed a 40-50 percent EV sales target – presuming the requisite public policies would also be in place.
When the companies that will build the millions of EVs required by these regulations say the pace and balance of EPA’s rules are out of whack – in fact, we told the agency those rules are “neither reasonable nor achievable in the timeframe provided" and opens the door to China – regulators and policymakers should believe them.
It’s not too late to course correct. Here are five ways for EPA to fix the proposed rule while supporting increased automotive electrification and carbon reduction.
1. Don’t write off plug-in hybrids and fuel cell EVs.
The current EPA rule calls for 37 percent of new light-duty cars and trucks to be BEVs by 2027 (and the aforementioned 60+ percent by 2030). Keep in mind, BEV sales were just under 6 percent in 2022.
But EPA’s proposal goes further and completely writes off plug-in hybrid electric vehicles (PHEVs). A 67 percent BEV-only approach by 2032 will unquestionably reduce consumer choice and push automakers to non-compliance with such unachievable requirements. The administration’s 50 percent executive order from 2021 included BEVs and PHEVs and fuel cell electric vehicles. Why take PHEV technology off the field?
2. Don't siphon finite resource from EVs to gas-powered vehicles.
EPA’s proposal also sets new rules for criteria pollutants from gas-powered vehicles that are already near zero emissions. A backpack leaf blower produces more ozone-forming pollution in one hour than driving an SUV for 6,000 miles.
But automakers support criteria pollution reductions, most recently in California where we developed a path to reduce particulate matter by 67 percent between 2025 and 2028. EPA should get behind those criteria pollution standards.
That said, EPA’s rule requires automakers to eke out some incremental improvements by installing expensive new technology on all internal combustion engines – a powertrain the administration wants to discourage (and California has already banned for new vehicles sales by 2035).
The point: automakers are investing massive amounts of capital in electrification, but every dollar invested (required to be invested, that is) in internal combustion technology is a dollar not spent on zero carbon technology. And vice versa.
3. Sync up EPA’s rules with yet-to-be-released Corporate Average Fuel Economy (CAFE) standards.
A vehicle tailpipe is regulated by three federal agencies and four sets of regulations. One vehicle overseen by competing, overlapping (sometimes conflicting) rules that aren’t coordinated. It’s expensive and complex and frankly why the country and automakers need a single national standard to reduce carbon in transportation through a streamlined regulatory structure.
At the very least, if an automaker complies with EPA’s greenhouse gas emissions rules, they shouldn’t be at risk of violating the Transportation Department’s coming CAFE rules and subject to significant civil penalties (that create no environmental benefit but do levy additional costs on consumers, workers, and manufacturers).
4. While you’re at it… sync up the rules and eliminate conflict with state standards too.
Let me revise that. A vehicle tailpipe is regulated by three federal agencies and the California Air Resources Board (CARB) using seven sets of regulations. EPA should get with CARB to ensure both programs are on the same wavelength and not creating unnecessary compliance burdens (that deliver no corresponding emissions reduction benefits).
5. Keep score (and keep track) of conditions outside the vehicle.
I’m a broken record about policies and conditions outside the vehicle, necessary for a successful EV transition: residential and public charging, critical mineral availability and grid capacity. EPA should develop a roadmap and methodically track this data so the country – and all sectors of the economy responsible for the transformation – can collectively assess progress.
EPA should release a public report taking stock of the overall EV market, the mineral and processing supply chain, and state of refueling and charging infrastructure. For example: How is the transition going? Is it meeting EPA’s milestones? If not, what’s the fix?
When I raise these points with policymakers, I hear: “Well, things have changed since 2021” and the 50 percent executive order. The implication: EPA’s higher EV targets make sense because EV sales continue to grow. We’re on the right path… they say.
I don’t see it that way, and most experts who’ve been building autos or studying the industry for any length of time don’t either. EPA’s proposal is an outlier when compared to the EV adoption models of S&P, Bloomberg, and other analysts. See this chart:
EPA is asking for a huge BEV ramp up in the next few years. On a graph, their model looks like a hockey stick. The pitch of that curve is most aggressive in the next few years when market conditions (consumer acceptance, supply chains, infrastructure) are most speculative.
The administration’s 50 percent goal in 2021 was aspirational, but it was also based on clearly defined climate goals – from the United Nations and the incoming Biden administration (reflected in its 2023 National Blueprint for Transportation Decarbonization). It was built on a foundation of credible assumptions. And data.
The 60+ percent BEVs by 2030 plan, on the other hand, is a house of cards (… a house of cars?). It rolls up rosy forecasts (like EV batteries will eventually cost automakers nothing) and other hopeful assumptions.
The next couple years are make or break. The auto industry is making huge progress on electrification and continued improvements to internal combustion engine technology. Don’t toss it away now. Let’s come out of this process with a balanced, achievable and durable rule that maintains customer choice and doesn’t blunt America’s EV momentum.
John Bozzella is president and CEO of Alliance for Automotive Innovation. This editorial originally ran at https://www.autosinnovate.org/posts/blog/epas-rules-are-out-of-whack-five-ways-to-fix-them.
If we view the automobile’s history of environmental improvement in modern times – say, from the 1990s to present day – there is an important perspective to be gained. It has never been just about electric vehicles. That’s simply where we’ve ended up at present due to an intriguing alignment of influences and agendas, from technology advances and environmental imperatives to gas prices and political will.
Over the years, auto manufacturers and their suppliers, technology companies, energy interests, and innovators of all stripes have been hard at work striving to define mobility’s future. Fuels in their crosshairs have included ethanol, methanol, hydrogen, natural gas, propane autogas, biofuels, synthetic fuels, and of course electricity. Lest we forget, cleaner-burning gasoline and diesel have been part of the evolution as well.
As a nation, we have always approached this challenge with an open mind and a determination to explore what’s possible, and what makes sense. Rather than declaring a winner, for decades the approach has been to keep our options open as we define the best road ahead for environmental progress. Now, by government fiat and funding, battery electric cars have essentially been declared the winner.
This is troubling. As a die-hard auto enthusiast and auto writer my entire adult life – and a member/supporter of the Sierra Club for decades – I have developed some strong and well-grounded perspectives on cars, their environmental impact, and the future of mobility. My advocacy for electric cars is genuine and well-documented over the 30 years I have been publishing Green Car Journal, and before that through my writing as feature editor at Motor Trend. Honestly, it’s hard not to be a fan of EVs after a year of test driving GM’s EV1 and then spending many tens of thousands of miles behind the wheel of other battery electric cars over the years. Yet, I now sit back and wonder at the ways things seem to be unfolding.
As expected, electric vehicles took a high profile at the increasingly important CES show in Las Vegas and this attention will certainly continue at upcoming auto shows. News of innovations, strategic alliances, and all-new electric models proliferate today, showing how dynamic this field has become and underscoring the nonstop media attention that EVs enjoy. But progress does not mean electric vehicles should be our singular focus.
There are significant risks with an all-in electric car strategy. Not the least of these is that by deemphasizing the importance of petroleum and the potential use of other alternative fuels in the near-term – crucial components in fueling the national fleet as we appear to be heading toward an electrified future – we risk the stability of our economy and our national security.
Yes, sales of electric vehicles have surged in the midst of extraordinarily high gas prices and heightened concern about climate change. However, history shows us that gas prices spike, drop, and then remain at levels that find drivers once again becoming complacent. This predictable script should provide incentive to make smart moves like diversifying our energy sources as we build the necessary infrastructure for an increasingly electrified world, rather than bet it all on EVs. So many of the elements for the EV’s success remain unclear or continue to pose significant challenges.
If interest in electric vehicles is decoupled from high gas prices and surging because of the urgent need to mitigate carbon emissions, then we will see electric vehicle sales continue to rise, perhaps dramatically. But if increased interest and sales is largely tied to the high cost of gas, then a lot of regulators, environmental interests, and EV-leaning consumers – plus of course automakers that have gone all-in with electrics – are set for a serious reckoning.
All this isn’t to diminish the importance of electric vehicles. Rather, it’s a call to be mindful of the challenges ahead and look at the bigger picture. We should encourage electric vehicles – whether powered exclusively by batteries, a combination of internal combustion and battery power, or perhaps hydrogen – in every reasonable way possible. In particular, hybrids and plug-in hybrids must play an increasingly larger role in the years ahead. We have come a long way over the past 30 years, and we have a long road ahead in the effort to decarbonize transportation and mitigate its impact on climate change. We need to keep at it, aggressively, and we need to prepare.
Let’s just not make assumptions that all will go according to plan. California’s decision to ban the sale of gasoline cars by 2035, in particular, will certainly find unexpected obstacles on the way to that aspirational milestone. It happened before with California’s Zero Emission Vehicle mandate more than two decades ago, which failed to realize its goal of 10 percent electric vehicle sales by 2001. Beyond California, similar hurdles will exist in other ‘green’ states like Oregon, Washington, and Vermont that have now adopted California’s 2035 gasoline vehicle sales ban, along with other ‘green’ states that will surely follow California’s lead.
There’s a lot going right for electric vehicles today. But there’s also a wide array of continuing challenges that face EV proliferation. These range from persistently expensive batteries, high vehicle prices, and sold out EV production runs to shortages of essential materials, a nascent nationwide charging infrastructure, and a national grid woefully unprepared to reliably charge tens of millions of electric cars. Then there’s the question of whether consumer EV purchases will continue to accelerate or weaken in tandem with lower gas prices.
It’s one thing to devise ambitious goals and quite another to make them law, especially when so many assumptions are in play. Given all this, is a wholesale shift to electric cars and a ban on the sale of gasoline vehicles even possible just a dozen years from now? As a long-time automotive analyst and EV enthusiast, I have serious doubts.
Rather than following the industry’s massive trend toward models powered exclusively by batteries, Toyota is confident there’s a better way forward. Its strategy is to optimize the use and environmental impact of batteries by offering a diversity of electrified vehicles consumers will actually buy and drive in great numbers, thus leveraging the potential for carbon reduction. This clearly plays to the automaker’s strength: hybrids and plug-in hybrids. There’s the all-electric Toyota bZ4X, of course, and other battery electric Toyota models to come. Just don’t expect that’s all the world’s largest automaker will be offering in the short term.
Enter the 2023 Toyota Crown sedan, this automaker’s newest hybrid. Toyota’s all-new Crown is somewhat of a milestone since so many automakers are killing off their sedans in favor of uber-popular crossover SUVs. In many cases, those crossovers are less SUV than mildly oversized hatchback, but that’s the auto industry for you. The Crown is a sophisticated looking sedan that doesn’t pretend to be something it is not, though it does offer a few twists.
The Crown has an interesting history, first debuting in 1955 as Toyota’s first mass production passenger vehicle before making its way to the States three years later, distinguished as the first Japanese model here on our shores. It had a 17 year run before it was retired from Toyota’s U.S. showrooms.
Now it’s back in all new form as a full-size, four-door sedan available in XLE, Limited, and Platinum grades. While it is a sedan measuring in just a bit larger than Toyota’s popular Camry, the Crown also integrates a slightly taller roofline, thus the ‘twist.’ This taller roof flows rearward into an elegant sportback design, accented by thin blade-style rear taillights. The front features blade running lights, sharp headlights, and a distinctively imposing grille design that’s come to signify Toyota and Lexus products these days. Its sides are handsomely sculpted and accented by large alloy wheels and wheel well cladding.
Beneath the hood resides one of two available hybrids, no surprise since this a Toyota and hybrids are its game. The more efficient of the two-motor hybrid models is powered by a fourth-generation, 2.5-liter Toyota Hybrid System (THS) that Toyota says should net an estimated 38 combined mpg. It connects to an electronically controlled continuously variable transmission.
Those looking for higher performance may opt for the Platinum grade, which comes standard with a 2.4-liter turbocharged HYBRID MAX powerplant, the first application of this more powerful Toyota hybrid system in a sedan. Delivering power to the road through a direct shift six-speed automatic transmission, the HYBRID MAX boasts 340 horsepower for spirited performance and offers a Toyota-estimated 28 combined mpg. All grades come with electronic on-demand all-wheel drive. A plug-in hybrid variant is said to be coming but details are not yet available.
The Crown’s cabin is designed to deliver a premium feel, featuring nicely bolstered front seats with 8-way power adjustment, intelligent controls, and wireless Qi charging with an array of readily accessible ports to accommodate today’s electronic devices. A Multi Information Display ahead of the driver provides the usual instrumentation along with selectable functions, including hybrid information that coaches eco-driving for netting maximum efficiency. In addition, a 12.3-inch center Toyota Audio Multimedia display features Apple CarPlay and Android Auto integration and is audio and touch capable.
Upholstery is either Softex and black woven fabric or leather, depending on grade. A panoramic moonroof standard on Platinum and Limited grades lends an additional feel of openness to the cabin. LED ambient lighting adds to the interior’s ambiance and upscale feel. Significant effort has been devoted to creating a relaxed and quiet cabin environment through extensive placement of sound-deadening materials throughout plus the use of acoustic glass.
Toyota Safety Sense 3.0 is standard across all grades to enhance safety on the road. This includes such desired features as pre-collision with pedestrian detection, dynamic radar cruise control, lane departure alert with steering assist, blind spot monitor, and rear cross traffic alert. Other assist features such as automatic high beams, road sign assist, rear seat passenger reminder, and hill start assist control are also standard fare for all versions of the Crown. Those stepping up to the Platinum trim level also get Toyota’s advanced park system that identifies available parking spots and allows automated parallel and reverse/forward perpendicular parking.
Toyota’s Crown is a timely addition to this automaker’s lineup, giving fans of the brand a new, more exciting sedan option just as the more conservative Avalon sedan is heading off into the sunset. Pricing has not yet been announced but we figure the Crown will start somewhere in the neighborhood of the low $40,000s. We also expect this new model to be a hit for Toyota, serving the automaker well as it hones its hybrid and plug-in hybrid strategy while continuing to evolve its future electrified product line.
Jeep is on a roll. This enduring brand, symbolically aligned with the American persona due to its rich history here, is certainly getting it right. Long popular with those seeking on- and off-road capabilities and the rugged image that comes with that, there’s a Jeep model to fit diverse desires and needs. The Jeep Grand Cherokee, introduced in its fifth generation in 2021, is at the luxe side of the spectrum.
Beyond the Jeep Grand Cherokee’s obvious benefits for families – roominess, high functionality, desirable features, and style – this full-size SUV offers something that’s increasingly important to a great many new car buyers today: electrification. This comes in the form of the Grand Cherokee 4xe model, a plug-in hybrid offering efficient hybrid operation as well as the ability to plug in, the latter capability enabling 25 miles of zero-emission, on- and off-road driving on battery power at the flick of a switch.
We’ve noted Jeep’s interest in electrification for some time as part of Chrysler/Dodge/Jeep electric concept vehicle explorations, most notably back in 2008. Jeep started its modern electrification push with the ever-popular Wrangler, introducing the Wrangler 4xe plug-in hybrid variant in the 2021 model year. By 2022, this model laid claim to being the best-selling plug-in hybrid in North America. That’s saying a lot given the wide array of PHEVs now available to consumers.
The electrified Grand Cherokee 4xe is the expected, and welcome, follow up. Sporting an appealing and sophisticated design, the Grand Cherokee 4xe features distinctive Jeep styling cues, low-silhouette headlights and taillights, a handy roof rack, and angular, metal-trimmed through-the-bumper exhaust. Blue front tow hooks are exclusive to the 4xe model, as is a chargeport found at the driver’s side front fender.
We recently had the opportunity to take a road trip in Jeep’s electrified Grand Cherokee 4xe, which included a fascinating visit to the Guadalupe-Nipomo Dunes National Wildlife Refuge on California’s Central Coast. Our time behind the wheel illustrated why this is such a popular model. The ride is comfortable and performance solid, with all the acceleration you need delivered by a turbocharged 2.0-liter four cylinder engine and a pair of electric motors. Together, this package delivers an abundant 375 hp and 470 lb-ft torque that’s delivered to the road via a TorqueFlite eight-speed automatic transmission. Energy is provided by a temperature controlled 17 kWh lithium-ion battery pack packaged beneath the vehicle’s floor and protected by skid plates.
Driving modes are selectable on a panel at the lower left of the steering column – Hybrid, Electric, and e-Save. The first enables driving in gas-electric hybrid mode using both the combustion engine and electric motors. Electric mode uses motor-battery propulsion exclusively for zero-emission driving. The e-Save function allows running without any use of battery power, allowing a driver to save maximum energy for all-electric driving in desired areas, such as on trails. The Jeep’s Selec-Terrain system features controls on the center console that allow optimizing driving characteristics with selections for Sport, Rock, Snow, Mud/Sand, and Auto. Hill Descent Control and 4WD Low are also selectable on the center console. Shifting to Park, Reverse, Neutral, and Drive is handled with a rotary dial.
We drove mostly in hybrid drive during our trip, though we did spend time driving exclusively in electric mode when we had the ability to charge up during our journey. Both deliver all the acceleration you really need. Overall efficiency while driving in conventional mode is pegged at a combined city/highway 23 mpg by EPA. Driving exclusively on battery power nets a 56 MPGe (miles per gallon equivalent) combined rating, all the while running emissions-free.
Though we didn’t do serious off-roading during our journey or tow any toys along with us, this vehicle’s capabilities in these areas are considerable. The Trail Rated Grand Cherokee 4xe features Jeep’s Quadra Trac II 4x4 system with two-speed transfer case, up to 10.9 inches of ground clearance, and is capable of towing up to 6,000 pounds. This electrified Jeep can also ford up to 24 inches of water without issue since all high-voltages electronics are sealed and waterproof.
During our drive, we really came to appreciate this Jeep’s accommodating interior and thoughtful appointments. The automaker’s latest Uconnect 5 infotainment system is integrated, along with wireless Apple CarPlay and Android Auto. Driver information, system controls, and entertainment functions are displayed on three digital display screens. The far-right screen, which can be turned on and off with a dash-mounted switch, offers the right-seat passenger digital entertainment, co-pilot and navigation assistance, and camera viewing. Found at the front of the center console are USB and USB-C ports, a port for 12-volt DC accessories, and an HTML port.
Seats are upholstered in handsome gray leather with contrast stitching, a luxury-oriented theme carried throughout the interior with leather-trimmed door panels, center console, dashboard, and steering wheel. Sophisticated gray wood accents on the dash and door panels a stylish touch. Front seats are nicely bolstered for support and comfort.
Seating in in the rear of this full-size SUV is quite accommodating, affording plenty of legroom and headroom. Rear seating features a center fold-down armrest with drink holders, plus 60/40 split seatback functionality to enhance rear cargo-carrying capacity. Rear side windows offer lift up sunshades, a nice touch. Back seat passengers are provided controls at the rear of the center console for their own seat heaters, a display with controls for heating and air conditioning, and registers for directing airflow as needed. Below that is a 115 volt, 150 watt AC plug for a computer or other devices that use standard household current. Also found here are USB and mini USB ports for mobile devices.
Of course, advanced driver assist systems are part of the package. The Grand Cherokee 4xe includes standard adaptive cruise control with stop and go, lane departure warning with active lane keep assist, full-speed collision warning with active braking, intersection collision assist, and much more. Beyond the daily convenience afforded by a rear back-up camera, rear park assist sensors, and a 360-degree surround view camera system, there’s also parallel and perpendicular park assist to make any kind of parking situation easier.
High levels of comfort, expansive connectivity, and confident driving are delivered in good measure by the Grand Cherokee 4xe. The fact that this is also a plug-in hybrid with 25 all-electric miles at the ready for our usual daily drives is a resounding plus.
We have many years of experience living with different plug-in hybrid models, and have found that our trips to gas stations are infrequent and our around-town driving handled almost exclusively on battery power. That is, until another road trip beckons and we head off with confidence knowing will be driving largely on hybrid power, with no charging stops needed unless they are convenient and fit into our schedule. This was our experience with the Jeep Grand Cherokee 4xe and we just wish it were staying longer in our care.
The Hyundai Tucson has long been a popular choice for those desiring the functionality of a crossover SUV at a reasonable price. Making the case even stronger now is an expanded list of Tucson offerings highlighted by plug-in hybrid and enthusiast-oriented N Line models that have joined the line’s gas-powered and electric hybrid variants.
Conventionally-powered Tucsons are equipped with a 2.5-liter engine delivering 180 hp and 195 lb-ft torque, delivering 26 city/33 highway mpg. PHEV and hybrid Tucson models share a 1.6-liter, turbocharged and direct-injected inline four-cylinder gas engine. These are equipped with Hyundai’s Continuously Variable Valve Duration technology that optimizes valve opening duration to improve power, efficiency, and emissions. The hybrid gets a 59 horsepower electric motor and 1.5 kWh lithium-ion battery that brings 226 total system horsepower and up to 38 city/38 highway mpg.
With the addition of the plug-in hybrid’s 90 hp electric motor and a larger 13.8 kWh lithium-ion battery, total system horsepower increases to 261 hp and 258 lb-ft torque. EPA rates the Tucson PHEV’s electric-only range at 33 miles and fuel economy at 80 MPGe, with a 35 mpg combined city/highway mpg rating running on gasoline. Hyundai says the model’s onboard 7.2 kW charger will allow charging the battery in less than two hours when connected to a 220-volt Level 2 charger.
The remainder of the Tucson PHEV’s drivetrain consists of a six-speed automatic transmission with steering wheel-mounted paddle shifters and a standard HTRAC AWD system with selectable drive modes. All Tucson models, including the PHEV, have a maximum tow rating of 2,000 pounds. The PHEV’s curb weight is a few hundred pounds higher than the conventional and hybrid models, so its payload capacity is commensurately less, rated at 1,012 pounds for SEL models and 1,166 pounds for Limited versions.
A higher level of driving dynamics is delivered to match the Tucson’s sporty new exterior design. The AWD PHEV and hybrid models are built with Hyundai’s e-handling technology that, under certain road conditions and driving inputs, applies an incremental amount of electric motor torque to the wheels. This enables the e-handling system to affect vehicle weight transfer – and therefore the tire’s contact patch – to improve cornering.
Tucson models are equipped with a number of safety technologies as part of Hyundai’s SmartSense Safety Feature suite. Standard safety features on both the SEL and Limited models of the Tucson PHEV include Forward Collision-Avoidance Assist, Blind-Spot Collision-Avoidance Assist, Lane-Keeping Assist, Driver-Attention Warning, and Rear Cross-Traffic Collision-Avoidance Assist. Limited models add such features as blind-view and surround-view monitors and Remote Smart Parking Assist.
The Tucson PHEV’s interior amenities vary depending on model. Both SEL and Limited are equipped with Apple CarPlay and Android Auto capabilities and have USB charging points for front and rear passengers. Stepping up to the Limited adds a 10.25-inch digital instrument cluster and 10.25-inch color touchscreen (SEL has an 8-inch screen), a Bose premium sound system, and wireless device charging.
Prices start at $25,800 for the standard 2.5-liter powered Tucson with the hybrid coming in at $29,750 and the plug-in hybrid $35,400.
Plug-in electric vehicles. Hydrogen fuel cell cars. Hybrids. Plug-in hybrids. All have come to the fore over the years, and we’ve noted their unique impact on the automotive landscape. While these technologies share similarities in that they all employ different ways of managing electricity to power electric motors, it’s been pretty easy to draw lines between them. But what if those lines were blurred in the interest of creating a new and possibly better answer, like maybe…a plug-in hydrogen hybrid?
Actually, that question was on the minds of creative souls at Ford some 15 years ago. Back then, the automaker explored new paths with its Ford Edge HySeries, a drivable demonstration vehicle unveiled at the Washington, D.C. Auto Show.
The HySeries combined power from the grid by plugging into an electrical outlet, just like an electric car or plug-in hybrid. It used a hydrogen-powered fuel cell to provide electricity, just like other fuel cell vehicles. And it managed its two power supplies via on-board battery storage, just like hybrid and plug-in hybrid cars do today.
Central to the HySeries Drive, both figuratively and physically, was a 336-volt lithium-ion battery pack that powered the electric motors at all times. Electricity from the grid and the fuel cell didn’t get to the wheels without first going through this battery pack. In this single-path flow of power, the power unit – the fuel cell – and the batteries were designed to act in series.
With the notable exception of a few models like the Chevrolet Volt, in most hybrids the batteries and engine operate in parallel. That is, the engine can still directly send power to the wheels with the battery stepping in to provide boost or take over as necessary. These hybrids do periodically act like a series configuration by using the engine to charge the batteries back up, for instance. The difference is that the HySeries Drive runs exclusively in series mode…thus, the name.
What’s the advantage? In a word, simplicity, according to Ford at the HySeries’ auto show debut. Operating in series streamlined the process by eliminating the extra hardware – and complex management software – of two propulsion systems in favor of a single power flow. By the same token, this made the HySeries Drive remarkably versatile.
In the Ford Edge prototype presented here, the fuel cell acted as a range extender, providing electrical power when the batteries ran low on their grid-sourced charge. But that range extender could just as well have been an engine powered by gasoline or some other alternative fuel. The thinking was that any new fuel or propulsion technology could be swapped in as it became available, with the underlying architecture of the HySeries Drive the same in any case.
The Ford Edge with HySeries Drive was designed to demonstrate the logic of this approach. According to Ford, the size, weight, cost, and complexity of this particular drivetrain was reduced by more than 50 percent compared to conventional fuel cell systems at the time. By relying more on the battery pack and the grid-sourced electricity, the demands on the fuel cell system were reduced as well. This meant the Ballard-supplied fuel cell would last longer and less hydrogen would need to be stored on-board.
Out on the road, the Edge was designed to drive 25 miles on battery power alone. When the battery pack was depleted to 40 percent charge, the fuel cell turned on and began generating electricity to replenish the batteries. The 4.5 kg of hydrogen stored in a 5,000 psi tank was enough to extend the range another 200 miles, for a total of 225 miles. Ford pointed out that range was highly dependent on driving conditions. In fact, it was also said that careful driving could potentially squeeze more than 400 miles from the fuel supply. Given that on-board hydrogen is now typically stored in 10,000 psi cylinders rather than the earlier 5,000 psi variants of the HySeries’ time, that driving range had the potential to be significantly greater.
Actual fuel economy would depend on the length of a trip. For those driving less than 50 miles a day, the Edge with HySeries Drive would be expected to return a miles-per-gallon equivalent of 80 mpg. Longer drives tapping further into the hydrogen supply would bring combined city/highway equivalent fuel economy down to 41 mpg, still respectable for a crossover SUV. Of course, while the fuel economy rating may have had a gasoline equivalent, the emissions did not. That is, there weren’t any emissions at all…at least not from the vehicle itself.
As innovative as Ford’s HySeries Drive was, it was not totally unique. Also in 2007, Chevrolet showcased its Volta concept using GM’s E-Flex System, which later evolved into the Chevrolet Volt powertrain. Both Ford and GM approaches relied on a large lithium-ion battery pack operating in series with a separate power source that charged batteries when they ran low. Notably, both systems offered plug-in capability. While the HySeries incorporated advanced hydrogen fuel cell power, the Chevy Volta did not, though GM did share this was a future possibility. Rather, the Volta, like the production Chevrolet Volt to come, used a 1.0-liter gasoline engine as its range-extender,
What we saw in the Ford Edge with HySeries, the Chevrolet Volta, and other concepts to follow was the underlying development of a drivetrain showcasing a new propulsion category carving its place into the mainstream – the plug-in hybrid vehicle. At the same time, both GM and Ford seemed eager to link their conception of the plug-in hybrid to the trek toward hydrogen-based transportation, which at the time was the official long-term goal of these two major automakers and others. In this sense, the plug-in hybrid would conceptually follow the conventional hybrid as another intermediary step on the path to hydrogen power.
Of course, to expect such a simple, linear progression – gasoline, hybrid, plug-in hybrid, hydrogen – is, and was, naïve. But that’s the core challenge with predicting the future of any industry, or of life in general, for that matter. Emergent and divergent technologies, parallel paths, and new alternatives are guaranteed along the automobile’s evolutionary path. In particular, we have seen that in recent years with the breakout of all-electric vehicles into the automotive mainstream, in numbers that were not envisioned by most at the time the HySeries was revealed.
With the HySeries-equipped Edge, Ford presented a surprisingly realistic look at how HySeries Drive – or something like it – could one day take to the road. It sat on the cutting edge of a broad trend away from petroleum-burning internal combustion and toward electrically-powered transportation, a trend that is accelerating today.
Lexus says it has 20 new or updated models coming over the next four and a half years and all will be electrified. While we know that Lexus has a new all-electric crossover coming next year and the brand aims to offer only battery electric vehicles in North America, Europe, and China by 2035, this isn’t an instant shift. In fact, the majority of its electrified models in the short years ahead will no doubt be hybrids and plug-in hybrids.
Considering this, it’s no wonder that Lexus put great effort into its all-new, 2022 NX crossover, since this model’s hybrid variant is expected to represent some 23 percent of Lexus sales over that four-and-a-half year window. The new generation Lexus NX crossover is attractive and right-sized, representing an important update to this subcompact crossover that delivers a freshened exterior with a slightly more aggressive appearance. It’s also slightly longer, wider, and taller than the previous generation. Among the notable design elements are a more refined spindle grille, new headlights, and full-width taillamps.
Four distinct powertrains are offered in the NX line. Conventionally-powered models use either a 2.5-liter or 2.4-liter turbocharged four-cylinder engine, the former delivering 203 horsepower and the latter 275 horsepower. Powering the NX 350h is a fourth-generation hybrid drive with a 189 horsepower, 2.5-liter four-cylinder engine and two-motor transaxle at the front, providing a combined 239 horsepower. An additional electric drive motor at the rear engages as needed to enhance traction.
The NX 350h hybrid is the most likely sales leader in the new NX lineup since it’s actually priced $500 below the gas version of this trim level. This pricing strategy encourages more drivers to enjoy a hybrid’s lower carbon emissions and superior fuel efficiency without the typical price penalty faced with most hybrid models. In this case, Lexus NX hybrid gas mileage is a combined 39 mpg compared to the gas model’s 25 mpg, a significant jump. That efficiency, plus an estimated 565 mile overall driving range, makes the NX 350h a desirable vehicle for commuting and everyday life.
At $14,600 more than the 350h hybrid is the uplevel 450h+ plug-in hybrid. This model also adds a rear motor for more power and all-wheel drive, plus a larger 18.1 kWh lithium-ion battery pack. Along with its hybrid efficiency of 36 combined mpg and a total driving range of 550 miles, the 450h provides drivers an estimated 37 miles of all-electric driving at an EPA estimated 84 MPGe. While this is a crossover, drivers will be able to run with, and in some cases outrun, some sporty vehicles because the 450h+ goes 0-60 mph in six seconds flat. Its hybrid-only counterpart, the 350h, accelerates from 0-60 mph in a still very respectable 7.2 seconds. The 450h+ is distinguished by a muscular-looking power bulge on the hood that accommodates the 450h+ powerplant.
During development, particular attention has focused on the inherent challenges that crossovers and SUVs face compared to lower profile cars that sit lower to the pavement. Recognizing these issues, like handling qualities in high winds and increased rollover potential compared to sedans, Lexus made this issue an engineering focal point for the new generation NX. This close attention found engineers addressing how suspension affects ride quality, handling, quietness, and overall driver confidence, and this attention has paid off with very confident handling characteristics in the NX.
The 2022 NX is nimble and very capable on twisty roads. Both hybrids in the lineup, the 350h and in particular the 450h+, instill confidence while carving sharp turns at speed without tire scrubbing or excessive lean and body roll. Ride quality is exceptional with no harshness over bumps or rough roads, and the cabin remains a quiet space along the way. Further enhancing its roadworthiness and all-weather capabilities is all-wheel drive, which comes standard on 350, 350h, and 450h+ models and is available on the base 250. Adaptive variable suspension is included on NX F Sport models to satisfy drivers seeking sports car handling relative to the NX’s size.
Inside, the model’s digital rear-view mirror is unique and another of the many very functional safety systems in this newly-designed NX 2022 line up. The cabin is well-appointed and comfortable, with four interior color offerings that can be selected in either leather or NuLuxe, a high-quality and eco-friendly synthetic leather alternative. Carrying capacity is increased by 14 percent in the new model’s cargo area for additional functionality. A standard Lexus Premium Audio system with 296 watts of power playing through 10 speakers has the sound quality to satisfy most owners. For audiophiles there is a premium 1800 watt Mark Levinson sound system with 12 channels powering through 17-speakers, something we think will outperform most drivers’ home audio system.
Lexus NX is well-connected and equipped with the latest in infotainment and driver assist systems. It offers a standard 9.8-inch touchscreen featuring a new and intuitive user interface. A 14-inch touchscreen is optional. Standard on all NX models is Lexus Safety System+ 3.0, the automaker’s latest suite of driver assist features. Among its many features are dynamic radar cruise control with curve speed management, oncoming pedestrian detection and braking, left turn oncoming vehicle detection and braking, risk avoidance emergency steer assist, road sign assist, and lane departure alert with steering assist. Remote park and over-the-air software updates are two of the auto industry’s latest high-tech features that have found their way to the NX.
The 2022 Lexus NX price range features a spread of $17,700 between the base NX and the NX plug-in hybrid, so there’s some serious decision making to be made depending on budget, needs, and level of desire for electrification. Conventionally-powered NX models start at $39,025 for the front-drive 250, $42,625 for the 350, and $47,725 for the 350 F Sport. Electrification begins with the 350h hybrid at $42,125 and moves upward to the plug-in 450h+ at of $56,725. Clearly, there’s something for everyone in the NX lineup.
The Santa Fe’s new plug-in hybrid powerplant comes a year after the all-new generation 2021 model saw its first hybrid option. Hybrid power was just one of many important upgrades for this five-passenger, mid-size sport utility vehicle last year. Along with its bold new look, Santa Fe gained upgraded electronics, additional driver-assist systems, and two new efficient 2.5-liter/2.5-liter turbo engines plus the efficient 1.6-liter hybrid.
Augmenting the standard hybrid’s 1.6-liter, direct-injected four-cylinder turbo engine and 90 horsepower electric motor is this year’s PHEV’s plug-in capability and larger battery pack. Power is transferred to the wheels through a smooth-shifting six speed automatic transmission. Electrical power is stored in a 12.4 kWh lithium-ion battery pack, which should provide enough juice to propel the Santa Fe up to 30 miles in pure electric mode.
Available in SEL Convenience and Limited trim levels, Santa Fe is a right-sized package measuring in at 188 inches in overall length and 74 inches tall, riding on a 108.8 inch wheelbase. The Santa Fe PHEV is sure-footed for all-weather duty courtesy of Hyundai’s HTRAC all-wheel-drive system complemented by four drive modes.
Its interior features large digital touchscreens including a 12.3-inch digital instrument cluster display, an 8-inch audio display, and a widescreen 10.25-inch navigation display. Wireless device charging, smart phone integration, and BlueLink are provided. Leather upholstery and ventilated front seats are standard equipment. The Santa Fe features multiple cameras positioned around the vehicle to give the driver a better view of surrounding conditions and obstacles. The front camera also serves to provide forward collision avoidance and active cruise control functionality.
For added convenience, Santa Fe PHEV has a self-parking function and cross-traffic backup alert. Hyundai calls this safety suite Reverse Parking Collision Avoidance Assist, or PCA for short. It will warn the driver if a collision risk is detected while backing up under challenging conditions, such as reversing out of a driveway into cross traffic.
Model-specific styling helps the PHEV variant stand out with a bold and aggressive grille treatment, 19 inch alloy wheels, and a panoramic sunroof. Initially, Santa Fe PHEV will be available in eleven states including California, Colorado, Connecticut, Maine, Massachusetts, Maryland, New Jersey, New York, Oregon, Rhode Island, and Vermont. Expect a MSRP of $40,535 for the SEL model and $46,545 in Limited trim.