Green Car Journal logo
Volvo S60 ReCharge T8 rear view on road.

The Volvo S60 model introduced in 2000 was positioned to compete with the popular BMW 3 Series and Mercedes-Benz C-Class of the time. Since then, it has been a popular staple for the Swedish automaker. Now well into its third generation, the S60 has evolved as part of Volvo’s promise to electrify its entire fleet and now is available exclusively in electrified form as a plug-in hybrid. Green Car Journal editors had the opportunity to spend time behind the wheel of this Volvo PHEV and came away impressed by its style and satisfied with its overall performance.

Volvo has borrowed from its subsidiary company Polestar for power. The S60 is equipped with a 312 horsepower 2.0-liter, turbocharged inline-four cylinder engine augmented with a 143 horsepower electric motor located at the rear. Energy for the motor is supplied by an 18.8 kWh battery. The combination ekes an impressive 455 horsepower and 523 lb-ft torque overall. Power is handled by an eight-speed Aisin automatic transmission and distributed via an all-wheel-drive system.

Volvo S60 ReCharge Electric Range

The S60 offers a combined EPA-rated range of 530 miles. If drivers choose to use the S60’s Pure driving mode using only the battery, they should expect an EPA range of about 41 miles. When using Pure mode, the S60 Recharge is rear-wheel-drive. The 14.9 kWh battery can be charged to full capacity in about five hours using a 220-volt charger.

The exterior of the Volvo S60 Recharge can be summed up in one word: refined. When looking over the front of the vehicle one notices Volvo’s familiar Thor’s Hammer LED-accented headlights, with the large Volvo badge front and center. Its hood slopes down toward the fenders at either end to lend a slightly muscular appearance. At its flanks, the S60’s roofline rakes gently to its rear haunches and ends abruptly at the rear end, again giving it an air of muscularity. A high trunk line is accented by a small rear diffuser and familiar Volvo taillights at the back.

Interior cabin of Volvo S60 ReCharge sedan.

A Refined Volvo S60

Stepping into the S60’s interior presents another example of a refined experience. A sleek and functional design here finds Volvo’s nine-inch infotainment screen taking center stage. Large HVAC vents frame the screen with a brushed aluminum trim piece accenting the bottom of the dashboard. Adequate storage is present in the center console and doors pockets. Rear seat passengers get a good amount of legroom for two adults in the outboard positions but less so in the middle position. Two B-pillar-mounted HVAC vents provide heated or cooled air to passengers on both sides. Trunk space is adequate for a mid-size sedan, though depth and a spare tire is sacrificed to store more batteries beneath the floor. 

Volvo employs a new Android OS for its infotainment system that integrates an array of features into its tech arsenal. Google Maps is incorporated, with the S60 utilizing GPS information to adjust efficiency parameters according to driving conditions encountered in city or highway driving. A 12.3-inch digital gauge cluster ahead of the driver is also capable of displaying Google Maps information. A handy heads-up display lends the ability to easily read current speed and other information without taking eyes off the road.

Volvo S60 ReCharge plug-in hybrid on a road.

Volvo S60 ReCharge Tech

A proud hallmark of Volvo is safety, and the S60 Recharge is no exception. The car received a five out of five star crash test safety rating, along with receiving Volvo’s award winning safety tech. The S60 Recharge is equipped with 360-degree cameras, Blind Sport Warning, Cross-Traffic Alert, among other notable tech features. Four trim levels are offered including the base Core, mid-range Plus, and Ultimate trims, all available in an aptly named Black Edition that adds black accented wheels, grille, and badges.

The Volvo S60 Recharge T8 is a welcome blend of refinement and power offering an entry price of $51,950. It bears consideration as a great all-around car for anyone desiring the ability to get home quickly and in comfort while also stepping up to the environmental benefits of plug-in electric power.

Green Car Time Machine - archive articles from Green Car Journal.

Plug-in hybrids are expected to play an increasingly important role in the mission to decarbonize transportation. While many think that interest in PHEVs is a recent phenomenon, that’s not the case since the concept has been intermittently explored throughout automotive history. Real momentum gathered soon after mass-market gas-electric hybrids hit our shores over two decades ago, with some envisioning a huge benefit in evolving hybrids to enable driving exclusively on battery power. Here, we share an article focused on this vision from the Green Car Journal archives, just as it ran 18 years ago.

Excerpted from Fall 2005 Issue: It’s hard to imagine a more gripping state of affairs at the start of the 21st century. A cloud of smog hangs over our cities while the threat of global warming looms ever larger. Oil prices are rising to record highs and while there’s no imminent danger of running out of petroleum, no one knows how long supplies will last. For a final dramatic touch, most of that oil sits beneath the powder-keg that is the Middle East.

A hydrogen hero is on the way, but many worry that we don’t have time to wait, unsure of what happens if oil supplies drop off and we’re caught without a safety net. A growing chorus is clamoring for a near-term solution, something that can be implemented now to significantly reduce oil consumption. The stage has been set for plug-in hybrids.

How Plug-In Hybrids Work

The plug-in hybrid is an evolution of the ‘conventional’ hybrid vehicle. Plug-in hybrids function the same way, assisting the engine with battery power or electric energy captured during deceleration, but take the idea a step further. Increased battery capacity allows plug-ins to rely more on electricity and less on gasoline, extending electric-only driving range and delivering even better fuel economy. The extra electric power is drawn from the electrical grid by plugging into power outlets while a vehicle isn’t being driven.

The virtue of the plug-in hybrid comes to light with some statistics. A majority of Americans live within 20 miles of their jobs and most trips are less than 20 miles long. With an electric-only range of up to 60 miles, daily drives to work in a plug-in hybrid might not require any gasoline at all as long as the battery is recharged each night. For longer trips, the vehicle reverts back to conventional hybrid operation. If plug-in hybrids are ever designed and built from the ground up, rather than being converted from existing models like we’re seeing today, an even smaller engine could improve fuel economy at every stage.

Prius Hybrid a Good PHEV Platform

Though the Toyota Prius is not a plug-in hybrid, it serves as a good platform for a conversion. The California Cars Initiative, a non-profit organization, first built one to show it could be done. The conversion turned out to be so promising that some companies are looking to make a for-profit business out of it.

Engineering firms EnergyCS and Clean-Tech have joined forces to form EDrive Systems, which is developing a conversion kit for the second-generation Toyota Prius. The kit removes the stock Panasonic nickel-metal-hydride (NiMH) battery and replaces it with a Saphion lithium-ion battery from Valence. The new battery adds 170 pounds to the Prius, but also makes about 9 kWh instead of the original's 1.3 kWh. That means there's much more electrical power available to drive the car.

Some careful software tweaks are made to handle the extra power of the hardware. The EDrive system takes advantage of a built-in ‘EV mode’ that forces the Prius to run purely on electric power until speeds reach 33 mph. This ensures that no precious fuel is sapped until the computer deems it absolutely necessary. According to EDrive, in a stock Prius, the batteries would only provide about one mile in this mode; the company’s converted plug-in Prius extends that range to as much as 35 miles.

Drive System for Plug-In Hybrids

To further hold off engine intervention, the computer is told the battery is full until the actual state of charge dips below 20 percent. This bit of misinformation forces Toyota’s Hybrid Synergy Drive to inject as much electric power as possible into the drive system. After the battery is about 80 percent depleted, the EDrive Prius carries on like a normal hybrid and maintains the charge of the battery as needed. Once the EDrive Prius is parked, it’s plugged into an external 110-volt charger that can replenish a fully depleted battery in about seven to nine hours.

Experimental battery pack for plug-in hybrids.

An additional dash-mounted readout precisely meters fuel consumption and displays how far the throttle pedal can be depressed before prompting the engine to start up. It’s a useful tool because driving style matters. Aggressive driving and 75 mph cruising will yield 70-80 mpg, say the EDrive folks, while relatively mellow driving earns well over 100 mpg. Low speed city driving and cruising at 55 mph can reportedly push fuel economy closer to 200 mpg. And when the battery is depleted after 50-60 miles of driving, fuel economy reverts back to the roughly 45-50 mpg of the stock Prius.

EDrive Systems hopes to sell its conversion kit for $10,000 to $12,000 in early 2006. At this cost, EDrive’s market is limited to those with the bucks to support making such a statement, but it’s a start.

Others Working on Plug-In Hybrids

The Prius is not the only vehicle lending itself to plug-in conversion. DaimlerChrysler is working with the Electric Power Research Institute (EPRI) to build 40 plug-in hybrid versions of its Sprinter commercial van for use in demonstration fleets. Electric boost comes from a 70 kW motor positioned between the transmission and clutch, which is fed by a 14 kWh NiMH battery stowed beneath the cargo floor.

Drivers of the plug-in Sprinter hybrid can push a button to put the vehicle in electric-only mode, which is good for a range of about 19 miles. When not selected, the hybrid’s electronic controller alternates power between the vehicle’s diesel engine and electric motor to optimize fuel economy, or combines the two when power demands are high. This plug-in variant is designed for recharging on Europe’s 230 volt network, a task that takes about six hours for a fully depleted battery.

Valence battery for plug-in hybrids.

The stock Sprinter, with its small, 4- cylinder diesel engine, is already quite the efficient hauler with fuel economy as high as 30 mpg. Converted to a plug-in hybrid, DaimlerChrysler says fuel economy improves anywhere from 10 to 50 percent, depending on use. That means up to 45 mpg from a commercial delivery vehicle – simply unheard of in its class. So far, DaimlerChrysler is the only automobile manufacturer producing its own plug-in hybrids.

California Cars Initiative

One of the most notable forces behind the rising profile of the plug-in is Felix Kramer and his Palo Alto-based California Cars Initiative. The group is mobilizing support from fleets, government agencies, and private buyers in an attempt to break the vicious cycle that plagues many new technologies: Motorists won’t buy plug-ins on a large scale unless the price is right, and the price won’t come down until automakers are convinced there will be buyers.

Not content to wait around for the manufacturers, Kramer is looking at other ways to put plug-in hybrids on the road. The plan is to utilize venture capital, set up a Qualified Vehicle Modifier company that could work with automakers in a fully certified capacity, and convert existing hybrid models without voiding original vehicle warranties. In Kramer’s mind, conversion possibilities include Ford’s Escape Hybrid and models using Toyota’s Hybrid Synergy Drive such as the Prius, Highlander Hybrid, Lexus RX400h, and other upcoming models.

The potential of the plug-in hybrid in reducing emissions and oil dependency has put environmentalists and conservative think-tanks in an unusual position: They’re on the same side. Set America Free, the Center for Security Policy, and others have joined electric vehicle die-hards in calling for mass production of plug-in hybrids. Support from former Secretary of State George Shultz and former CIA director James Woolsey lends considerable credibility to the cause.

ED Drive Systems will produce plug-in hybrids.

Plug-In Hybrids and Government

Despite this clamoring, the U.S. government has yet to respond in a big way. An amendment to the massive energy bill recently approved by President Bush allocates a relatively tiny $40 million for hybrid vehicle development, some of which could go toward plug-in hybrids...but there’s no guarantee.

This leaves local government to take charge. The City of Austin, Texas, with help from its municipal utility Austin Energy, has become the first city to develop an incentive plan for plug-in hybrids. ‘Plug-In Austin’ is looking to raise $50-$100 million to provide rebates on plug-in hybrid purchases for public and private use, as well as for running an educational campaign to generate consumer interest. Austin is one of 10 cities that will begin testing DaimlerChrysler’s Sprinter plug-in hybrid next year.

The ‘Plug-In Austin’ campaign is designed to expand to other communities around the country. Representatives from Austin Energy are approaching the nation’s 50 largest cities in an effort to encourage them to replicate Austin’s program. Already, Seattle City Light in Washington state has shown interest in offering customers incentives to buy plug-in hybrid vehicles in the Puget Sound region. Across the country and across the political spectrum, the plug-in hybrid is winning fans.

Professor Andy Frank at the University of California, Davis is an ardent proponent of plug-in hybrids and, having built plug-in prototypes since 1972, is also one of the most experienced. Rather than an intermediary step to hydrogen, Professor Frank believes the plug-in hybrid could be an end in itself. A plug-in hybrid with a 60 mile electric range, like the ones Frank and his students build, reportedly uses only 10 percent gasoline and 90 percent electricity on an annual basis. “That 10 percent of gasoline could be replaced by biofuels,” says Frank, taking an interesting direction that could find gasoline use eliminated altogether.

$7,000 Additional Cost for PHEVs

The possibilities don’t end there. “We have the capability, for the first time, of integrating the electric grid with transportation,” explains Frank. The electrical grid right now has enough excess capacity to support half the nation’s vehicle fleet if they were converted to plug-in hybrids, says Frank. The energy is domestically produced, the infrastructure already exists, and, though much of our electricity today comes from coal-burning powerplants, renewable and non-polluting sources such as wind and solar power could play a larger role. “People don’t think of plug-ins as alternative fuel cars, but they are,” says Frank. “You could be running your car on solar or wind power.”

At less than a dollar per gallon during off-peak hours, when most plug-ins would be recharged, plug-in hybrid drivers would be paying a lot less in fuel costs. As for the extra up-front cost, Frank points to a UC Davis study that shows how automakers could build plug-in hybrids by adding only $7,000 to the price of a $20,000 car. So why isn’t this already happening? Some in the auto industry maintain that battery technology isn’t ready yet, a claim that Frank and others dismiss. More significantly, Frank asserts there’s a general reluctance to invest, with struggling giants in the industry unwilling to take risks unless convinced there’s a good chance that a sizeable return will result.

“What I’m trying to demonstrate is that if a bunch of students can do it, the car companies should be able to do even better.” Andy Frank, the California Cars Initiative, the City of Austin, and many others feel it’s up to them to take the lead in getting the word out and generating demand. With the success they’ve met, and the wide-ranging benefits that plug-ins put within reach, there’s every reason to believe that at least some in the auto industry are paying very close attention.

John Bozzella, president and CEO, Alliance for Automotive Innovation.
John Bozzella, Alliance for Automotive Innovation.

Requiring 60+ percent of U.S. vehicles sales to be pure battery electric vehicles (BEVs) by 2030 leapfrogged the administration’s own 2021 executive order that called for 50 percent electric vehicles – including plug-in hybrid and fuel cell EVs – by 2030. More on that below.

That 2021 executive order was a stretch goal (then and now), but the auto industry backed a 40-50 percent EV sales target – presuming the requisite public policies would also be in place. 

When the companies that will build the millions of EVs required by these regulations say the pace and balance of EPA’s rules are out of whack – in fact, we told the agency those rules are “neither reasonable nor achievable in the timeframe provided" and opens the door to China – regulators and policymakers  should believe them.

It’s not too late to course correct. Here are five ways for EPA to fix the proposed rule while supporting increased automotive electrification and carbon reduction.

1.  Don’t write off plug-in hybrids and fuel cell EVs.

The current EPA rule calls for 37 percent of new light-duty cars and trucks to be BEVs by 2027 (and the aforementioned 60+ percent by 2030). Keep in mind, BEV sales were just under 6 percent in 2022.

But EPA’s proposal goes further and completely writes off plug-in hybrid electric vehicles (PHEVs). A 67 percent BEV-only approach by 2032 will unquestionably reduce consumer choice and push automakers to non-compliance with such unachievable requirements. The administration’s 50 percent executive order from 2021 included BEVs and PHEVs and fuel cell electric vehicles. Why take PHEV technology off the field?

2. Don't siphon finite resource from EVs to gas-powered vehicles.

EPA’s proposal also sets new rules for criteria pollutants from gas-powered vehicles that are already near zero emissions. A backpack leaf blower produces more ozone-forming pollution in one hour than driving an SUV for 6,000 miles. 

But automakers support criteria pollution reductions, most recently in California where we developed a path to reduce particulate matter by 67 percent between 2025 and 2028. EPA should get behind those criteria pollution standards.

That said, EPA’s rule requires automakers to eke out some incremental improvements by installing expensive new technology on all internal combustion engines – a powertrain the administration wants to discourage (and California has already banned for new vehicles sales by 2035).

The point: automakers are investing massive amounts of capital in electrification, but every dollar invested (required to be invested, that is) in internal combustion technology is a dollar not spent on zero carbon technology. And vice versa.

3. Sync up EPA’s rules with yet-to-be-released Corporate Average Fuel Economy (CAFE) standards.

A vehicle tailpipe is regulated by three federal agencies and four sets of regulations. One vehicle overseen by competing, overlapping (sometimes conflicting) rules that aren’t coordinated. It’s expensive and complex and frankly why the country and automakers need a single national standard to reduce carbon in transportation through a streamlined regulatory structure.

At the very least, if an automaker complies with EPA’s greenhouse gas emissions rules, they shouldn’t be at risk of violating the Transportation Department’s coming CAFE rules and subject to significant civil penalties (that create no environmental benefit but do levy additional costs on consumers, workers, and manufacturers).

4. While you’re at it… sync up the rules and eliminate conflict with state standards too.

Let me revise that. A vehicle tailpipe is regulated by three federal agencies and the California Air Resources Board (CARB) using seven sets of regulations. EPA should get with CARB to ensure both programs are on the same wavelength and not creating unnecessary compliance burdens (that deliver no corresponding emissions reduction benefits).

5. Keep score (and keep track) of conditions outside the vehicle.

I’m a broken record about policies and conditions outside the vehicle, necessary for a successful EV transition: residential and public charging, critical mineral availability and grid capacity. EPA should develop a roadmap and methodically track this data so the country – and all sectors of the economy responsible for the transformation – can collectively assess progress.

EPA should release a public report taking stock of the overall EV market, the mineral and processing supply chain, and state of refueling and charging infrastructure. For example: How is the transition going? Is it meeting EPA’s milestones? If not, what’s the fix?

When I raise these points with policymakers, I hear: “Well, things have changed since 2021” and the 50 percent executive order. The implication: EPA’s higher EV targets make sense because EV sales continue to grow. We’re on the right path… they say.

I don’t see it that way, and most experts who’ve been building autos or studying the industry for any length of time don’t either. EPA’s proposal is an outlier when compared to the EV adoption models of S&P, Bloomberg, and other analysts. See this chart:

National Blueprint for National Decarbonization.

EPA is asking for a huge BEV ramp up in the next few years. On a graph, their model looks like a hockey stick. The pitch of that curve is most aggressive in the next few years when market conditions (consumer acceptance, supply chains, infrastructure) are most speculative.

The administration’s 50 percent goal in 2021 was aspirational, but it was also based on clearly defined climate goals – from the United Nations and the incoming Biden administration (reflected in its 2023 National Blueprint for Transportation Decarbonization). It was built on a foundation of credible assumptions. And data.

The 60+ percent BEVs by 2030 plan, on the other hand, is a house of cards (… a house of cars?). It rolls up rosy forecasts (like EV batteries will eventually cost automakers nothing) and other hopeful assumptions.

The next couple years are make or break. The auto industry is making huge progress on electrification and continued improvements to internal combustion engine technology. Don’t toss it away now. Let’s come out of this process with a balanced, achievable and durable rule that maintains customer choice and doesn’t blunt America’s EV momentum.

John Bozzella is president and CEO of Alliance for Automotive Innovation. This editorial originally ran at https://www.autosinnovate.org/posts/blog/epas-rules-are-out-of-whack-five-ways-to-fix-them.

Ron Cogan, Publisher of Green Car Journal

If we view the automobile’s history of environmental improvement in modern times  – say, from the 1990s to present day – there is an important perspective to be gained. It has never been just about electric vehicles. That’s simply where we’ve ended up at present due to an intriguing alignment of influences and agendas, from technology advances and environmental imperatives to gas prices and political will.

Over the years, auto manufacturers and their suppliers, technology companies, energy interests, and innovators of all stripes have been hard at work striving to define mobility’s future. Fuels in their crosshairs have included ethanol, methanol, hydrogen, natural gas, propane autogas, biofuels, synthetic fuels, and of course electricity. Lest we forget, cleaner-burning gasoline and diesel have been part of the evolution as well.

We Are Betting It All On Battery Electric Vehicles

As a nation, we have always approached this challenge with an open mind and a determination to explore what’s possible, and what makes sense. Rather than declaring a winner, for decades the approach has been to keep our options open as we define the best road ahead for environmental progress. Now, by government fiat and funding, battery electric cars have essentially been declared the winner.

This is troubling. As a die-hard auto enthusiast and auto writer my entire adult life – and a member/supporter of the Sierra Club for decades –  I have developed some strong and well-grounded perspectives on cars, their environmental impact,  and the future of mobility. My advocacy for electric cars is genuine and well-documented over the 30 years I have been publishing Green Car Journal, and before that through my writing as feature editor at Motor Trend. Honestly, it’s hard not to be a fan of EVs after a year of test driving GM’s EV1 and then spending many tens of thousands of miles behind the wheel of other battery electric cars over the years. Yet, I now sit back and wonder at the ways things seem to be unfolding.

Afeela concept is new addition to electric vehicles.

News Focus is Skewed Toward EVs

As expected, electric vehicles took a high profile at the increasingly important CES show in Las Vegas and this attention will certainly continue at upcoming auto shows. News of innovations, strategic alliances, and all-new electric models proliferate today, showing how dynamic this field has become and underscoring the nonstop media attention that EVs enjoy. But progress does not mean electric vehicles should be our singular focus.

There are significant risks with an all-in electric car strategy. Not the least of these is that by deemphasizing the importance of petroleum and the potential use of other alternative fuels in the near-term – crucial components in fueling the national fleet as we appear to be heading toward an electrified future – we risk the stability of our economy and our national security.

Gas station sign with high prices.

Gas Prices Influence EV Sales

Yes, sales of electric vehicles have surged in the midst of extraordinarily high gas prices and heightened concern about climate change. However, history shows us that gas prices spike, drop, and then remain at levels that find drivers once again becoming complacent. This predictable script should provide incentive to make smart moves like diversifying our energy sources as we build the necessary infrastructure for an increasingly electrified world, rather than bet it all on EVs. So many of the elements for the EV’s success remain unclear or continue to pose significant challenges.

If interest in electric vehicles is decoupled from high gas prices and surging because of the urgent need to mitigate carbon emissions, then we will see electric vehicle sales continue to rise, perhaps dramatically. But if increased interest and sales is largely tied to the high cost of gas, then a lot of regulators, environmental interests, and EV-leaning consumers  – plus of course automakers that have gone all-in with electrics – are set for a serious reckoning.

Plug-in hybrid electric vehicle plugged in to charger.

All Forms of Electrification Important

All this isn’t to diminish the importance of electric vehicles. Rather, it’s a call to be mindful of the challenges ahead and look at the bigger picture. We should encourage electric vehicles – whether powered exclusively by batteries, a combination of internal combustion and battery power, or perhaps hydrogen –  in every reasonable way possible. In particular, hybrids and plug-in hybrids must play an increasingly larger role in the years ahead. We have come a long way over the past 30 years, and we have a long road ahead in the effort to decarbonize transportation and mitigate its impact on climate change. We need to keep at it, aggressively, and we need to prepare.

Let’s just not make assumptions that all will go according to plan. California’s decision to ban the sale of gasoline cars by 2035, in particular, will certainly find unexpected obstacles on the way to that aspirational milestone. It happened before with California’s Zero Emission Vehicle mandate more than two decades ago, which failed to realize its goal of 10 percent electric vehicle sales by 2001. Beyond California, similar hurdles will exist in other ‘green’ states like Oregon, Washington, and Vermont that have now adopted California’s 2035 gasoline vehicle sales ban, along with other ‘green’ states that will surely follow California’s lead.

Man assembling battery for electric vehicles.

Many Challenges for Electric Vehicles

There’s a lot going right for electric vehicles today. But there’s also a wide array of continuing challenges that face EV proliferation.  These range from persistently expensive batteries, high vehicle prices, and sold out EV production runs to shortages of essential materials, a nascent nationwide charging infrastructure, and a national grid woefully unprepared to reliably charge tens of millions of electric cars. Then there’s the question of whether consumer EV purchases will continue to accelerate or weaken in tandem with lower gas prices.

It’s one thing to devise ambitious goals and quite another to make them law, especially when so many assumptions are in play. Given all this, is a wholesale shift to electric cars and a ban on the sale of gasoline vehicles even possible just a dozen years from now? As a long-time automotive analyst and  EV enthusiast, I have serious doubts.

Toyota Crown sedan with rear hatch open.

Rather than following the industry’s massive trend toward models powered exclusively by batteries, Toyota is confident there’s a better way forward. Its strategy is to optimize the use and environmental impact of batteries by offering a diversity of electrified vehicles consumers will actually buy and drive in great numbers, thus leveraging the potential for carbon reduction. This clearly plays to the automaker’s strength: hybrids and plug-in hybrids. There’s the all-electric Toyota bZ4X, of course, and other battery electric Toyota models to come. Just don’t expect that’s all the world’s largest automaker will be offering in the short term.

Enter the 2023 Toyota Crown sedan, this automaker’s newest hybrid. Toyota’s all-new Crown is somewhat of a milestone since so many automakers are killing off their sedans in favor of uber-popular crossover SUVs. In many cases, those crossovers are less SUV than mildly oversized hatchback, but that’s the auto industry for you. The Crown is a sophisticated looking sedan that doesn’t pretend to be something it is not, though it does offer a few twists.

Rebirth of a Model

The Crown has an interesting history, first debuting in 1955 as Toyota’s first mass production passenger vehicle before making its way to the States three years later, distinguished as the first Japanese model here on our shores. It had a 17 year run before it was retired from Toyota’s U.S. showrooms.

Now it’s back in all new form as a full-size, four-door sedan available in XLE, Limited, and Platinum grades. While it is a sedan measuring in just a bit larger than Toyota’s popular Camry, the Crown also integrates a slightly taller roofline, thus the ‘twist.’ This taller roof flows rearward into an elegant sportback design, accented by thin blade-style rear taillights. The front features blade running lights, sharp headlights, and a distinctively imposing grille design that’s come to signify Toyota and Lexus products these days. Its sides are handsomely sculpted and accented by large alloy wheels and wheel well cladding.

Hybrids Power the Toyota Crown

Beneath the hood resides one of two available hybrids, no surprise since this a Toyota and hybrids are its game. The more efficient of the two-motor hybrid models is powered by a fourth-generation, 2.5-liter Toyota Hybrid System (THS) that Toyota says should net an estimated 38 combined mpg. It connects to an electronically controlled continuously variable transmission.

Those looking for higher performance may opt for the Platinum grade, which comes standard with a  2.4-liter turbocharged HYBRID MAX powerplant, the first application of this more powerful Toyota hybrid system in a sedan. Delivering power to the road through a direct shift six-speed automatic transmission, the HYBRID MAX boasts 340 horsepower for spirited performance and offers a Toyota-estimated 28 combined mpg. All grades come with electronic on-demand all-wheel drive. A plug-in hybrid variant is said to be coming but details are not yet available.

Sedan With a Premium Feel

The Crown’s cabin is designed to deliver a premium feel, featuring nicely bolstered front seats with 8-way power adjustment, intelligent controls, and wireless Qi charging with an array of readily accessible ports to accommodate today’s electronic devices. A Multi Information Display ahead of the driver provides the usual instrumentation along with selectable functions, including hybrid information that coaches eco-driving for netting maximum efficiency. In addition, a 12.3-inch center Toyota Audio Multimedia display features Apple CarPlay and Android Auto integration and is audio and touch capable.

Upholstery is either Softex and black woven fabric or leather, depending on grade. A panoramic moonroof standard on Platinum and Limited grades lends an additional feel of openness to the cabin. LED ambient lighting adds to the interior’s ambiance and upscale feel. Significant effort has been devoted to creating a relaxed and quiet cabin environment through extensive placement of sound-deadening materials throughout plus the use of acoustic glass.

Toyota Crown Safety

Toyota Safety Sense 3.0 is standard across all grades to enhance safety on the road. This includes such desired features as pre-collision with pedestrian detection, dynamic radar cruise control, lane departure alert with steering assist, blind spot monitor, and rear cross traffic alert. Other assist features such as automatic high beams, road sign assist, rear seat passenger reminder, and hill start assist control are also standard fare for all versions of the Crown. Those stepping up to the Platinum trim level also get Toyota’s advanced park system that identifies available parking spots and allows automated parallel and reverse/forward perpendicular parking.

Toyota’s Crown is a timely addition to this automaker’s lineup, giving fans of the brand a new, more exciting sedan option just as the more conservative Avalon sedan is heading off into the sunset. Pricing has not yet been announced but we figure the Crown will start somewhere in the neighborhood of the low $40,000s. We also expect this new model to be a hit for Toyota, serving the automaker well  as it hones its hybrid and plug-in hybrid strategy while continuing to evolve its future electrified product line.

2023 Toyota Crown headlight detail.
Jeep Grand Cherokee front end.

Jeep is on a roll. This enduring brand, symbolically aligned with the American persona due to its rich history here, is certainly getting it right. Long popular with those seeking on- and off-road capabilities and the rugged image that comes with that, there’s a Jeep model to fit diverse desires and needs. The Jeep Grand Cherokee, introduced in its fifth generation in 2021, is at the luxe side of the spectrum.

Beyond the Jeep Grand Cherokee’s obvious benefits for families – roominess, high functionality, desirable features, and style – this full-size SUV offers something that’s increasingly important to a great many new car buyers today: electrification. This comes in the form of the Grand Cherokee 4xe model, a plug-in hybrid offering efficient hybrid operation as well as the ability to plug in, the latter capability enabling 25 miles of zero-emission, on- and off-road driving on battery power at the flick of a switch.

Plug-in charging port in Jeep Grand Cherokee 4xe.

Best-Selling PHEV

We’ve noted Jeep’s interest in electrification for some time as part of Chrysler/Dodge/Jeep electric concept vehicle explorations, most notably back in 2008. Jeep started its modern electrification push with the ever-popular Wrangler, introducing the Wrangler 4xe plug-in hybrid variant in the 2021 model year. By 2022, this model laid claim to being the best-selling plug-in hybrid in North America. That’s saying a lot given the wide array of PHEVs now available to consumers.

The electrified Grand Cherokee 4xe is the expected, and welcome, follow up. Sporting an appealing and sophisticated design, the Grand Cherokee 4xe features distinctive Jeep styling cues, low-silhouette headlights and taillights, a handy roof rack, and angular, metal-trimmed through-the-bumper exhaust. Blue front tow hooks are exclusive to the 4xe model, as is a chargeport found at the driver’s side front fender.

Rancho-Guadalupe Dunes Preserve sign.

Jeep Grand Cherokee on the Road

We recently had the opportunity to take a road trip in Jeep’s electrified Grand Cherokee 4xe, which included a fascinating visit to the Guadalupe-Nipomo Dunes National Wildlife Refuge on California’s Central Coast. Our time behind the wheel illustrated why this is such a popular model. The ride is comfortable and performance solid, with all the acceleration you need delivered by a turbocharged 2.0-liter four cylinder engine and a pair of electric motors. Together, this package delivers an abundant 375 hp and 470 lb-ft torque that’s delivered to the road via a TorqueFlite eight-speed automatic transmission. Energy is provided by a temperature controlled 17 kWh lithium-ion battery pack packaged beneath the vehicle’s floor and protected by skid plates.

Driving modes are selectable on a panel at the lower left of the steering column – Hybrid, Electric, and e-Save. The first enables driving in gas-electric hybrid mode using both the combustion engine and electric motors. Electric mode uses motor-battery propulsion exclusively for zero-emission driving. The e-Save function allows running without any use of battery power, allowing a driver to save maximum energy for all-electric driving in desired areas, such as on trails. The Jeep’s Selec-Terrain system features controls on the center console that allow optimizing driving characteristics with selections for Sport, Rock, Snow, Mud/Sand, and Auto. Hill Descent Control and 4WD Low are also selectable on the center console. Shifting to Park, Reverse, Neutral, and Drive is handled with a rotary dial.

Driving mode selections in Jeep Grand Cherokee 4xe.

Trail Rated Jeep PHEV

We drove mostly in hybrid drive during our trip, though we did spend time driving exclusively in electric mode when we had the ability to charge up during our journey. Both deliver all the acceleration you really need. Overall efficiency while driving in conventional mode is pegged at a combined city/highway 23 mpg by EPA. Driving exclusively on battery power nets a 56 MPGe (miles per gallon equivalent) combined rating, all the while running emissions-free.

Though we didn’t do serious off-roading during our journey or tow any toys along with us, this vehicle’s capabilities in these areas are considerable. The Trail Rated Grand Cherokee 4xe features Jeep’s Quadra Trac II 4x4 system with two-speed transfer case, up to 10.9 inches of ground clearance, and is capable of towing up to 6,000 pounds. This electrified Jeep can also ford up to 24 inches of water without issue since all high-voltages electronics are sealed and waterproof.

Jeep Grand Cherokee 4xe on road.

Jeep Grand Cherokee 4xe Interior

During our drive, we really came to appreciate this Jeep’s accommodating interior and thoughtful appointments. The automaker’s latest Uconnect 5 infotainment system is integrated, along with wireless Apple CarPlay and Android Auto. Driver information, system controls, and entertainment functions are displayed on three digital display screens. The far-right screen, which can be turned on and off with a dash-mounted switch, offers the right-seat passenger digital entertainment, co-pilot and navigation assistance, and camera viewing. Found at the front of the center console are USB and USB-C ports, a port for 12-volt DC accessories, and an HTML port.

Seats are upholstered in handsome gray leather with contrast stitching, a luxury-oriented theme carried throughout the interior with leather-trimmed door panels, center console, dashboard, and steering wheel. Sophisticated gray wood accents on the dash and door panels a stylish touch. Front seats are nicely bolstered for support and comfort.

Accommodating Third Row Seats

Seating in in the rear of this full-size SUV is quite accommodating, affording plenty of legroom and headroom. Rear seating features a center fold-down armrest with drink holders, plus 60/40 split seatback functionality to enhance rear cargo-carrying capacity. Rear side windows offer lift up sunshades, a nice touch. Back seat passengers are provided controls at the rear of the center console for their own seat heaters, a display with controls for heating and air conditioning, and registers for directing airflow as needed. Below that is a 115 volt, 150 watt AC plug for a computer or other devices that use standard household current. Also found here are USB and mini USB ports for mobile devices.

Of course, advanced driver assist systems are part of the package. The Grand Cherokee 4xe includes standard adaptive cruise control with stop and go, lane departure warning with active lane keep assist, full-speed collision warning with active braking, intersection collision assist, and much more. Beyond the daily convenience afforded by a rear back-up camera, rear park assist sensors, and a 360-degree surround view camera system, there’s also parallel and perpendicular park assist to make any kind of parking situation easier.

Display screen in Jeep Grand Cherokee 4xe.

Electric Drive is Handy

High levels of comfort, expansive connectivity, and confident driving are delivered in good measure by the Grand Cherokee 4xe. The fact that this is also a plug-in hybrid with 25 all-electric miles at the ready for our usual daily drives is a resounding plus.

We have many years of experience living with different plug-in hybrid models, and have found that our trips to gas stations are infrequent and our around-town driving handled almost exclusively on battery power. That is, until another road trip beckons and we head off with confidence knowing will be driving largely on hybrid power, with no charging stops needed unless they are convenient and fit into our schedule. This was our experience with the Jeep Grand Cherokee 4xe and we just wish it were staying longer in our care.

Jeep Grand Cherokee 4xe second row seating.

2022 Hyundai Tucson plug-in hybrid on highway.

The Hyundai Tucson has long been a popular choice for those desiring the functionality of a crossover SUV at a reasonable price. Making the case even stronger now is an expanded list of Tucson offerings highlighted by plug-in hybrid and enthusiast-oriented N Line models that have joined the line’s gas-powered and electric hybrid variants.

Conventionally-powered Tucsons are equipped with a 2.5-liter engine delivering 180 hp and 195 lb-ft torque, delivering 26 city/33 highway mpg. PHEV and hybrid Tucson models share a 1.6-liter, turbocharged and direct-injected inline four-cylinder gas engine. These are equipped with Hyundai’s Continuously Variable Valve Duration technology that optimizes valve opening duration to improve power, efficiency, and emissions. The hybrid gets a 59 horsepower electric motor and 1.5 kWh lithium-ion battery that brings 226 total system horsepower and up to 38 city/38 highway mpg.

2022 Hyundai Tucson PHEV charging.

PHEV Has Bigger Battery, More Power

With the addition of the plug-in hybrid’s 90 hp electric motor and a larger 13.8 kWh lithium-ion battery, total system horsepower increases to 261 hp and 258 lb-ft torque. EPA rates the Tucson PHEV’s electric-only range at 33 miles and fuel economy at 80 MPGe, with a 35 mpg combined city/highway mpg rating running on gasoline. Hyundai says the model’s onboard 7.2 kW charger will allow charging the battery in less than two hours when connected to a 220-volt Level 2 charger.

The remainder of the Tucson PHEV’s drivetrain consists of a six-speed automatic transmission with steering wheel-mounted paddle shifters and a standard HTRAC AWD system with selectable drive modes. All Tucson models, including the PHEV, have a maximum tow rating of 2,000 pounds. The PHEV’s curb weight is a few hundred pounds higher than the conventional and hybrid models, so its payload capacity is commensurately less, rated at 1,012 pounds for SEL models and 1,166 pounds for Limited versions.

2022 Hyundai Tucson PHEV front end detail.

A Better-Driving Hyundai Tucson

A higher level of driving dynamics is delivered to match the Tucson’s sporty new exterior design. The AWD PHEV and hybrid models are built with Hyundai’s e-handling technology that, under certain road conditions and driving inputs, applies an incremental amount of electric motor torque to the wheels. This enables the e-handling system to affect vehicle weight transfer – and therefore the tire’s contact patch – to improve cornering.

Tucson models are equipped with a number of safety technologies as part of Hyundai’s SmartSense Safety Feature suite. Standard safety features on both the SEL and Limited models of the Tucson PHEV include Forward Collision-Avoidance Assist, Blind-Spot Collision-Avoidance Assist, Lane-Keeping Assist, Driver-Attention Warning, and Rear Cross-Traffic Collision-Avoidance Assist. Limited models add such features as blind-view and surround-view monitors and Remote Smart Parking Assist.

2022 Hyundai Tucson PHEV interior.

Hyundai Tucson Tech

The Tucson PHEV’s interior amenities vary depending on model. Both SEL and Limited are equipped with Apple CarPlay and Android Auto capabilities and have USB charging points for front and rear passengers. Stepping up to the Limited adds a 10.25-inch digital instrument cluster and 10.25-inch color touchscreen (SEL has an 8-inch screen), a Bose premium sound system, and wireless device charging.

Prices start at $25,800 for the standard 2.5-liter powered Tucson with the hybrid coming in at $29,750 and the plug-in hybrid $35,400.

Rear view of a Ford hydrogen hybrid SUV.

Plug-in electric vehicles. Hydrogen fuel cell cars. Hybrids. Plug-in hybrids. All have come to the fore over the years, and we’ve noted their unique impact on the automotive landscape. While these technologies share similarities in that they all employ different ways of managing electricity to power electric motors, it’s been pretty easy to draw lines between them. But what if those lines were blurred in the interest of creating a new and possibly better answer, like maybe…a plug-in hydrogen hybrid?

Actually, that question was on the minds of creative souls at Ford some 15 years ago. Back then, the automaker explored new paths with its Ford Edge HySeries, a drivable demonstration vehicle unveiled at the Washington, D.C. Auto Show.

Display showing operation of a hydrogen hybrid vehicle.

This Hydrogen SUV Plugs In

The HySeries combined power from the grid by plugging into an electrical outlet, just like an electric car or plug-in hybrid. It used a hydrogen-powered fuel cell to provide electricity, just like other fuel cell vehicles. And it managed its two power supplies via on-board battery storage, just like hybrid and plug-in hybrid cars do today.

Central to the HySeries Drive, both figuratively and physically, was a 336-volt lithium-ion battery pack that powered the electric motors at all times. Electricity from the grid and the fuel cell didn’t get to the wheels without first going through this battery pack. In this single-path flow of power, the power unit – the fuel cell – and the batteries were designed to act in series.

Illustration of a hydrogen hybrid drivetrain.

Series Versus Parallel Hybrid

With the notable exception of a few models like the Chevrolet Volt, in most hybrids the batteries and engine operate in parallel. That is, the engine can still directly send power to the wheels with the battery stepping in to provide boost or take over as necessary. These hybrids do periodically act like a series configuration by using the engine to charge the batteries back up, for instance. The difference is that the HySeries Drive runs exclusively in series mode…thus, the name.

What’s the advantage? In a word, simplicity, according to Ford at the HySeries’ auto show debut. Operating in series streamlined the process by eliminating the extra hardware – and complex management software – of two propulsion systems in favor of a single power flow. By the same token, this made the HySeries Drive remarkably versatile.

Hydrogen fueling inlet in a vehicle.

In the Ford Edge prototype presented here, the fuel cell acted as a range extender, providing electrical power when the batteries ran low on their grid-sourced charge. But that range extender could just as well have been an engine powered by gasoline or some other alternative fuel. The thinking was that any new fuel or propulsion technology could be swapped in as it became available, with the underlying architecture of the HySeries Drive the same in any case.

The Ford Edge with HySeries Drive was designed to demonstrate the logic of this approach. According to Ford, the size, weight, cost, and complexity of this particular drivetrain was reduced by more than 50 percent compared to conventional fuel cell systems at the time. By relying more on the battery pack and the grid-sourced electricity, the demands on the fuel cell system were reduced as well. This meant the Ballard-supplied fuel cell would last longer and less hydrogen would need to be stored on-board.

Ford Edge hydrogen hybrid SUV.

Hydrogen Hybrid Operation

Out on the road, the Edge was designed to drive 25 miles on battery power alone. When the battery pack was depleted to 40 percent charge, the fuel cell turned on and began generating electricity to replenish the batteries. The 4.5 kg of hydrogen stored in a 5,000 psi tank was enough to extend the range another 200 miles, for a total of 225 miles. Ford pointed out that range was highly dependent on driving conditions. In fact, it was also said that careful driving could potentially squeeze more than 400 miles from the fuel supply. Given that on-board hydrogen is now typically stored in 10,000 psi cylinders rather than the earlier 5,000 psi variants of the HySeries’ time, that driving range had the potential to be significantly greater.

Actual fuel economy would depend on the length of a trip. For those driving less than 50 miles a day, the Edge with HySeries Drive would be expected to return a miles-per-gallon equivalent of 80 mpg. Longer drives tapping further into the hydrogen supply would bring combined city/highway equivalent fuel economy down to 41 mpg, still respectable for a crossover SUV. Of course, while the fuel economy rating may have had a gasoline equivalent, the emissions did not. That is, there weren’t any emissions at all…at least not from the vehicle itself.

Ford Edge HySeries hydrogen hybrid.

As innovative as Ford’s HySeries Drive was, it was not totally unique. Also in 2007, Chevrolet showcased its Volta concept using GM’s E-Flex System, which later evolved into the Chevrolet Volt powertrain. Both Ford and GM approaches relied on a large lithium-ion battery pack operating in series with a separate power source that charged batteries when they ran low. Notably, both systems offered plug-in capability. While the HySeries incorporated advanced hydrogen fuel cell power, the Chevy Volta did not, though GM did share this was a future possibility. Rather, the Volta, like the production Chevrolet Volt to come, used a 1.0-liter gasoline engine as its range-extender,

Birth of the Plug-In Hybrid

What we saw in the Ford Edge with HySeries, the Chevrolet Volta, and other concepts to follow was the underlying development of a drivetrain showcasing a new propulsion category carving its place into the mainstream – the plug-in hybrid vehicle. At the same time, both GM and Ford seemed eager to link their conception of the plug-in hybrid to the trek toward hydrogen-based transportation, which at the time was the official long-term goal of these two major automakers and others. In this sense, the plug-in hybrid would conceptually follow the conventional hybrid as another intermediary step on the path to hydrogen power.

Rear view of the Ford HySeries hydrogen hybrid vehicle.

Of course, to expect such a simple, linear progression – gasoline, hybrid, plug-in hybrid, hydrogen – is, and was, naïve. But that’s the core challenge with predicting the future of any industry, or of life in general, for that matter. Emergent and divergent technologies, parallel paths, and new alternatives are guaranteed along the automobile’s evolutionary path. In particular, we have seen that in recent years with the breakout of all-electric vehicles into the automotive mainstream, in numbers that were not envisioned by most at the time the HySeries was revealed.

With the HySeries-equipped Edge, Ford presented a surprisingly realistic look at how HySeries Drive – or something like it – could one day take to the road. It sat on the cutting edge of a broad trend away from petroleum-burning internal combustion and toward electrically-powered transportation, a trend that is accelerating today.

Advanced electronics in the Lexus  NX.

Lexus says it has 20 new or updated models coming over the next four and a half years and all will be electrified. While we know that Lexus has a new all-electric crossover coming next year and the brand aims to offer only battery electric vehicles in North America, Europe, and China by 2035, this isn’t an instant shift. In fact, the majority of its electrified models in the short years ahead will no doubt be hybrids and plug-in hybrids.

Considering this, it’s no wonder that Lexus put great effort into its all-new, 2022 NX crossover, since this model’s hybrid variant is expected to represent some 23 percent of Lexus sales over that four-and-a-half year window. The new generation Lexus NX crossover is attractive and right-sized, representing an important update to this subcompact crossover that delivers a freshened exterior with a slightly more aggressive appearance. It’s also slightly longer, wider, and taller than the previous generation. Among the notable design elements are a more refined spindle grille, new headlights, and full-width taillamps.

Four Models Offered

Four distinct powertrains are offered in the NX line. Conventionally-powered models use either a 2.5-liter or 2.4-liter turbocharged four-cylinder engine, the former delivering 203 horsepower and the latter 275 horsepower. Powering the NX 350h is a fourth-generation hybrid drive with a 189 horsepower, 2.5-liter four-cylinder engine and two-motor transaxle at the front, providing a combined 239 horsepower. An additional electric drive motor at the rear engages as needed to enhance traction.

The NX 350h hybrid is the most likely sales leader in the new NX lineup since it’s actually priced $500 below the gas version of this trim level. This pricing strategy encourages more drivers to enjoy a hybrid’s lower carbon emissions and superior fuel efficiency without the typical price penalty faced with most hybrid models. In this case, Lexus NX hybrid gas mileage is a combined 39 mpg compared to the gas model’s 25 mpg, a significant jump. That efficiency, plus an estimated 565 mile overall driving range, makes the NX 350h a desirable vehicle for commuting and everyday life.

At $14,600 more than the 350h hybrid is the uplevel 450h+ plug-in hybrid. This model also adds a rear motor for more power and all-wheel drive, plus a larger 18.1 kWh lithium-ion battery pack. Along with its hybrid efficiency of 36 combined mpg and a total driving range of 550 miles, the 450h provides drivers an estimated 37 miles of all-electric driving at an EPA estimated 84 MPGe. While this is a crossover, drivers will be able to run with, and in some cases outrun, some sporty vehicles because the 450h+ goes 0-60 mph in six seconds flat. Its hybrid-only counterpart, the 350h, accelerates from 0-60 mph in a still very respectable 7.2 seconds. The 450h+ is distinguished by a muscular-looking power bulge on the hood that accommodates the 450h+ powerplant.

Excellent Driving Characteristics

During development, particular attention has focused on the inherent challenges that crossovers and SUVs face compared to lower profile cars that sit lower to the pavement. Recognizing these issues, like handling qualities in high winds and increased rollover potential compared to sedans, Lexus made this issue an engineering focal point for the new generation NX. This close attention found engineers addressing how suspension affects ride quality, handling, quietness, and overall driver confidence, and this attention has paid off with very confident handling characteristics in the NX.

The 2022 NX is nimble and very capable on twisty roads. Both hybrids in the lineup, the 350h and in particular the 450h+, instill confidence while carving sharp turns at speed without tire scrubbing or excessive lean and body roll. Ride quality is exceptional with no harshness over bumps or rough roads, and the cabin remains a quiet space along the way. Further enhancing its roadworthiness and all-weather capabilities is all-wheel drive, which comes standard on 350, 350h, and 450h+ models and is available on the base 250. Adaptive variable suspension is included on NX F Sport models to satisfy drivers seeking sports car handling relative to the NX’s size.

Inside, the model’s digital rear-view mirror is unique and another of the many very functional safety systems in this newly-designed NX 2022 line up. The cabin is well-appointed and comfortable, with four interior color offerings that can be selected in either leather or NuLuxe, a high-quality and eco-friendly synthetic leather alternative. Carrying capacity is increased by 14 percent in the new model’s cargo area for additional functionality. A standard Lexus Premium Audio system with 296 watts of power playing through 10 speakers has the sound quality to satisfy most owners. For audiophiles there is a premium 1800 watt Mark Levinson sound system with 12 channels powering through 17-speakers, something we think will outperform most drivers’ home audio system.

Advanced On-Board Electronics

Lexus NX is well-connected and equipped with the latest in infotainment and driver assist systems. It offers a standard 9.8-inch touchscreen featuring a new and intuitive user interface. A 14-inch touchscreen is optional. Standard on all NX models is Lexus Safety System+ 3.0, the automaker’s latest suite of driver assist features. Among its many features are dynamic radar cruise control with curve speed management, oncoming pedestrian detection and braking, left turn oncoming vehicle detection and braking, risk avoidance emergency steer assist, road sign assist, and lane departure alert with steering assist. Remote park and over-the-air software updates are two of the auto industry’s latest high-tech features that have found their way to the NX.

The 2022 Lexus NX price range features a spread of $17,700 between the base NX and the NX plug-in hybrid, so there’s some serious decision making to be made depending on budget, needs, and level of desire for electrification. Conventionally-powered NX models start at $39,025 for the front-drive 250, $42,625 for the 350, and $47,725 for the 350 F Sport. Electrification begins with the 350h hybrid at $42,125 and moves upward to the plug-in 450h+ at of $56,725. Clearly, there’s something for everyone in the NX lineup.

The Santa Fe’s new plug-in hybrid powerplant comes a year after the all-new generation 2021 model saw its first hybrid option. Hybrid power was just one of many important upgrades for this five-passenger, mid-size sport utility vehicle last year. Along with its bold new look, Santa Fe gained upgraded electronics, additional driver-assist systems, and two new efficient 2.5-liter/2.5-liter turbo engines plus the efficient 1.6-liter hybrid.

Augmenting the standard hybrid’s 1.6-liter, direct-injected four-cylinder turbo engine and 90 horsepower electric motor is this year’s PHEV’s plug-in capability and larger battery pack. Power is transferred to the wheels through a smooth-shifting six speed automatic transmission. Electrical power is stored in a 12.4 kWh lithium-ion battery pack, which should provide enough juice to propel the Santa Fe up to 30 miles in pure electric mode.

Available in SEL Convenience and Limited trim levels, Santa Fe is a right-sized package measuring in at 188 inches in overall length and 74 inches tall, riding on a 108.8 inch wheelbase. The Santa Fe PHEV is sure-footed for all-weather duty courtesy of Hyundai’s HTRAC all-wheel-drive system complemented by four drive modes.

Its interior features large digital touchscreens including a 12.3-inch digital instrument cluster display, an 8-inch audio display, and a widescreen 10.25-inch navigation display. Wireless device charging, smart phone integration, and BlueLink are provided. Leather upholstery and ventilated front seats are standard equipment. The Santa Fe features multiple cameras positioned around the vehicle to give the driver a better view of surrounding conditions and obstacles. The front camera also serves to provide forward collision avoidance and active cruise control functionality.

For added convenience, Santa Fe PHEV has a self-parking function and cross-traffic backup alert. Hyundai calls this safety suite Reverse Parking Collision Avoidance Assist, or PCA for short. It will warn the driver if a collision risk is detected while backing up under challenging conditions, such as reversing out of a driveway into cross traffic.

Model-specific styling helps the PHEV variant stand out with a bold and aggressive grille treatment, 19 inch alloy wheels, and a panoramic sunroof. Initially, Santa Fe PHEV will be available in eleven states including California, Colorado, Connecticut, Maine, Massachusetts, Maryland, New Jersey, New York, Oregon, Rhode Island, and Vermont. Expect a MSRP of $40,535  for the SEL model and $46,545 in Limited trim.

Dr. Gill Pratt, Chief Scientist, Toyota Motor Corp.

As Chief Scientist for Toyota Motor Corporation, one of my most important responsibilities is to think about how to address climate change using science, data, and facts. When it comes to electrification, my role is to maximize environmental benefits with the limited number of battery cells the world can produce.

Toyota’s way of thinking about this question is strongly influenced by the Toyota Production System (TPS). It forms the basis for how we conserve resources and eliminate waste to maximize the quality, durability, reliability, and value of our products. Based on TPS, we believe that maximum net environmental benefit can be achieved by considering the most limited resource – in this case the battery cell.

Every battery cell is an investment of environmental and financial resources. Carbon is emitted for every battery cell produced. Once built, every battery cell has the potential to produce more benefit than what was invested, or what we call a positive Carbon Return on Investment (CROI). But that CROI is not guaranteed. The result depends on how the battery cell is put to use. The physics of climate change (which accumulates carbon in the atmosphere for decades) and limited battery cell production suggests that we minimize total carbon emissions from all of the world’s vehicles by maximizing the CROI of every manufactured battery cell.

Let’s consider the average U.S. commute of 32 miles roundtrip each day. In this case, a 300 mile range battery will yield a very low CROI. The reason is that the vehicle carries excessive battery capacity and excessive weight that is rarely needed or used. The bulk of the energy stored in the battery cell (and the battery cell’s weight) will be carried around most of the time for no purpose, consuming extra energy for its transport, and wasting the opportunity to use that energy for more benefit to the environment. In TPS terms, we consider this to be a waste of transport and inventory. Put another way, that same battery capacity could be spread over a handful of plug-in hybrid vehicles (PHEVs), each of which would utilize most, if not all, of the battery capacity while rarely using its internal combustion engine (ICE). In this case, the overall CROI is higher for the same number of battery cells.

As another example: If a battery cell in a battery electric vehicle (BEV) is recharged by a high-carbon intensity powerplant, the CROI of that cell will be small compared to one recharged by a renewable energy powerplant. So in this case, consider a situation of two cars – one ICE-type and one BEV, and two geographic locations – one with renewable power and the other with high-carbon intensity power. More net CROI will be derived by operating the BEV in the area with renewable power and the ICE in the geography with non-renewable power than the other way around.

Finally, if a battery cell ends up in a long-range BEV whose price puts it beyond the budget of a consumer, or in a street parked vehicle that must use high-rate chargers that lower the battery cell’s life, the CROI will again be smaller than what is possible, versus placing the battery cell into, for example, a PHEV.

BEVs are an important part of the future of electrification. But we can achieve greater carbon reductions by meeting customer needs and circumstances with a diversity of solutions. Wasted CROI harms the environment because there is a limited supply of battery cells, and the cost of production to the planet and to the producer is not zero. Given this fact, how and where battery cells are actually used and charged are critically important.

In summary, given limited battery cell production and significant environmental and financial costs, the way to maximize CROI is to target battery cells into diverse vehicle types – hybrid vehicles, plug-in hybrid vehicles, battery electric vehicles, and fuel cell vehicles that match customer needs and circumstances, and maximize the CROI for every battery cell. This strategy is similar to running a factory efficiently in the Toyota Production System, where efficiency is maximized by eliminating waste at each stage of production and maximizing the benefit derived from every resource and cost. And it forms the basis for Toyota’s belief in this result.

Here’s the thing about plug-in hybrid electric vehicles (PHEVs): You get the benefits of a battery electric vehicle for driving a certain number of zero-emission miles, with the versatility of a gas-electric hybrid without range limitations. There’s no secret to it, and it’s that simple. But PHEV ownership does take some thought, and some effort.

The thought part is straightforward. If you’re in the market for a PHEV and your intent is to drive electric as much as possible, then part of the decision making is choosing a new plug-in hybrid model offering a battery electric range that fits your driving patterns. Some plug-in hybrids offer battery electric range as low as 14 to 19 miles, with a great many featuring electric range in the low to high 20s. Some raise that number up to 42 or 48 miles of battery electric driving, like the Toyota Prius Prime and Honda Clarity PHEV, before requiring a charge or the addition of  combustion power. Many families find the electric range of Chrysler’s Pacifica Hybrid to be entirely workable at 32 miles, with its total 520 miles of driving range reassuring for any driving need.

The effort in owning a PHEV is that you need to install a 240-volt home wall charger and commit to using it to gain maximum benefit. Really, that’s no different than an all-electric vehicle, with the exception that an electric vehicle must be charged to function, while a PHEV will continue operating with the aid of combustion power once batteries are depleted. Both can be charged with a 120-volt convenience charger plugged into a standard household outlet, but that’s rarely a good option since the charging time at 120 volts is so long, while charging at 240 volts is comparatively short. The goal in achieving maximum benefit, of course, is to keep a PHEV charged in any event so you’re operating on battery power whenever possible.

What range do you really need? If your daily driving or commute is about 20 miles – as is the case for so many – then choose a PHEV with a battery electric range offering that capability, or more. Drivers with longer average daily drives should choose a PHEV with greater all-electric range. If you charge every night and wake up with a fully-charged battery ready for your day’s regular activities, you’ll likely find trips to the gas station unnecessary until longer drives are needed. In those cases, there’s nothing to think about because the transition from battery to combustion power happens seamlessly behind the scenes, with no driver action required. Yes, you’ll want to keep gas in the tank for those eventualities, but if your daily use fits within your rated electric range then fill-ups will be infrequent.

From my perspective, the ability to drive electric most of the time with the ability to motor on for hundreds of additional miles without thought is a win-win. I’ve been doing this for years with a variety of PHEV test cars, and more than a year-and-a-half now over 30,000 miles in a Mitsubishi Outlander PHEV. As much as possible, my driving is electric with zero localized emissions, as long as I’m consistent about plugging in at night and my charger isn’t required for another test car. I’m driven to do that not only because driving with zero emissions is the right thing to do, but also because electricity offers a cheaper cost-per-mile driving experience. If you’re on a utility’s electric vehicle rate plan and charge at off-peak hours, there’s even more money to be saved. And let’s not forget the blissful and effortless convenience of charging at home, right?

Any claim that PHEVs won’t deliver their desired environmental benefit is based on assumptions that drivers won’t plug in. That isn’t likely, given that PHEV drivers have paid, sometimes significantly, for the privilege of having a plug-in capability. The notion may have its roots in an unrelated alternative fuel story years ago, when we witnessed the phenomena of motorists driving flexible-fuel E85 ethanol/gasoline vehicles without ever fueling up with E85 alternative fuel. That occurred because of a loophole that allowed automakers to gain significant fuel economy credits by offering flexible-fuel vehicles without any consideration whether drivers would ever fuel up with E85 ethanol. Those vehicles were sold at no premium by the millions, with most drivers unaware their vehicle had an alternative fuel capability or whether E85 fueling stations were nearby.

But this is different. While you have the option to use public charging stations, and that’s a nice benefit enjoyed by many EV and PHEV owners, if you do this right there will be a plug in your garage that requires no effort at all to keep your PHEV charged up. Consider, too, that if a buyer spends the extra money for the plug-in hybrid variant of a popular model, there’s clearly an incentive to plug in most of the time to make the most of one’s PHEV investment.

PHEVs will be with us a long while because they are a sensible solution for many who wish to drive electric, and when used as intended they represent a logical pathway for the all-electric future many envision. There’s no doubt that the increasing number of plug-in hybrids coming now, and in the years ahead, will aim at greater electric driving range than the models that came before them. More choices and greater range will provide an even more compelling reason to step up to a plug-in hybrid for the daily drive.

The Chrysler Pacifica Hybrid minivan.

Clearly, Chrysler’s original minivans had a great run, and for good reason. All were based on the same platform featuring a low floor and an overall design that allowed the ability to park in a typical garage. Plus, they drove like cars and not trucks due to their passenger car-like construction. Offering different flavors of the minivan under the Dodge, Plymouth, and Chrysler brands – with varying levels of sophistication – was a smart move as well. But alas, change is inevitable even within notable success stories. Enter the Pacifica Hybrid.

The company’s sixth-generation minivan broke new ground in 2017 as the Chrysler Pacifica replaced the Town & Country. Featuring an exciting new design on an all-new platform, among its many innovations was the inclusion of the Pacifica Hybrid variant, the first and only plug-in hybrid minivan in the U.S. market to this day.

Chrysler Pacifica Hybrid minivan driving.

Pacifica Hybrid Gets a Refresh

Four years later, the Pacifica Hybrid now features a redesign with deeper sculpting and sport-utility influences. It’s available in Touring, Touring L, Limited, and Pinnacle iterations, all powered by a 3.6-liter Atkinson V-6 engine mated with electric motors and a nine-speed electrically variable transmission.

This transmission incorporates two electric motors that drive the front wheels via a clutch, rather than using just one motor for propulsion and the other for regenerative braking. The one-way clutch is located on the input side of the transmission and the output shaft of the motor. This one-way clutch enables power from both ‘A’ and ‘B’ motors to act in parallel, delivering the full torque of both motors to the wheels. The system provides a combined 260 horsepower. All Pacifica Hybrid models feature front-wheel drive, with all-wheel drive available on the Touring L model.

Interior of Chrysler Pacifica hybrid minivan.

Energizing the electric drive system is a 16 kWh lithium-ion battery pack comprised of six 16-cell modules. The pack is located under the second row of seats. The benefit of this battery placement is that it doesn’t infringe on interior space, so cargo-carrying capacity is not sacrificed. The battery pack provides 32 miles of battery electric range and charging to full capacity can be done in two hours using a 240-volt charger. Total hybrid driving range is 520 miles.

Features Enhancing Family Safety

A suite of driver assistance systems is available either as standard or optional equipment, depending on trim level. Among these are a 360° Surround View Camera, Rear View Camera, Full-Speed Forward Collision Warning with Active Braking, Pedestrian Automatic Emergency Braking, Blind Spot Monitor, Adaptive Cruise Control, Parallel/Perpendicular Park Assist, and Lane Departure Warning with Lane Keep Assist. 

Rear passenger monitoring in the Chrysler Pacifica Hybrid.

Pacifica Hybrid’s Uconnect 4 system comes with a standard 7-inch or optional 8.4-inch touchscreen, standard Apple CarPlay and Android Auto, and available 4G Wi-Fi. Uconnect 4 with the 8.4-inch touchscreen displays vehicle performance, power flow, driving history, and adjusts charging schedules for less expensive off-peak hours.

The conventionally-powered Pacifica minivan offers a base price of $35,045, while the Pacifica Hybrid starts at $39,995 for the Touring L model and travels upward to $50,845 for the Pinnacle edition.

Power diagram for the Chrysler Pacifica Hybrid.

The efficient plug-in hybrid variant of BMW’s third-generation X3 premium compact crossover, the X3 xDrive30e shares drivetrain components, technology, and driving characteristics with the automaker’s 330e plug-in sports sedan. Manufactured in Spartanburg  North Carolina on BMW’s refreshed cluster architecture (CLAR) platform, the X3 x30e PHEV blends the efficiency of a hybrid powertrain, super low emissions, and instantaneous low to midrange torque for a spirited drive experience.

Motivation comes from BMW’s 2.0-liter direct injected, turbocharged 4-cylinder engine paired with a 107 horsepower electric motor. The result is 288 total combined horsepower and 310 lb-ft torque that provides a zero to 60 mpg sprint in 5.9 seconds. Fuel efficiency is EPA rated at 60 MPGe while driving on battery power, with a combined city/highway rating of 24 mpg on gasoline. It features an overall driving range of 340 miles on 13.2 gallons of gas plus 18 miles on battery power.

A frame-cradled, air-cooled 12.0 kWh lithium-ion battery supplies energy to the motor. Charging is via an on-board 3.7 kWh charger. Charge time is 3.5 to 6 hours depending on source. Gear shifting is delegated to the time-tested ZF 8-speed Sport Automatic transmission featuring sport and manual shift modes, steering wheel-mounted paddle shifters, and launch control. All-weather traction is enabled by BMW’s xDrive all-wheel drive.

The 5-passenger compact SUV features a driver-centric cockpit layout with premium materials like Sensatec upholstery, dark oak wood trim inlays, and quality hard and soft touch surfaces. Front seats feature 10-way power adjustment, with the rear offering 40/20/40 split and fold-down functionality with adjustable seat backs for passenger comfort. A 12.3-inch digital instrument cluster and 10.25-inch center information display provide information and controls, along with Apple CarPlay and Android Auto compatibility.

Standard equipment includes ‘smart key’ recognition and personal settings memory, a futuristic yet comprehensive electric drive monitor, remaining electric-only range minder, and navigation-controlled chassis efficiency monitoring. The latest in driver assist and active safety technology is offered. Rounding out this very comprehensive package are voice-activated commands, integrated navigation, optional 360-degree surround camera, premium audio, and automatic three-zone climate control. A two-way power glass moonroof is optional.

All this comes at a base price of $49,600, about $6,600 more than the conventionally-powered X3 xDrive 30i.

The Q5 is offered in three models, two of which combine electrification with Audi’s 2.0-liter TFSI four-cylinder turbocharged engine. The Q5 55 TFSI e plug-in hybrid positions an electric motor between the engine and seven-speed S tronic dual-clutch automatic transmission to produce a total of 362 horsepower and 369 lb-ft torque, and earn an EPA rating of 50 MPGe. Those output numbers rival the 3.0-liter, 349-horsepower TFSI V-6 in the range-topping SQ5. The Q5 45 is powered by a new, mild-hybrid variant of the TFSI engine that produces 261 horsepower and 273 lb-ft torque.

Audi is marketing the Q5 TFSI e as part of a ‘Plug-in Trifecta’ for 2021, with its A7 and A8 sedans also available with TFSI PHEV powertrains. These additions move Audi closer to its goal to electrify 30 percent of its U.S. model lineup by 2025.

The Q5 TFSI e can be operated in all-electric, hybrid, and battery-hold modes. A 14.1 kWh battery pack, located under the rear cargo area, enables the Q5 to travel up to 19 miles on electric power alone, according to EPA estimates. Audi says the battery can fully charge in 2.4 hours when plugged into a 240-volt charger. The maker also engineered the battery to act as a source of heat for the Q5’s cabin via a heat pump integrated into the pack.

A standard feature aboard the PHEV Audis is Predictive Efficiency Assist, which is designed to increase the energy regenerated under braking when the vehicle is rolling downhill or approaching a slower-moving vehicle. When the Q5 is equipped with optional satellite navigation, additional input is factored into the energy regeneration, including road curves, speed limits, a the road’s vertical profile. The system prompts the driver, via feedback from the accelerator pedal and a signal in the head-up display, to let up on the accelerator to take advantage of as much kinetic energy as possible.

External cues that set off the TFSI e from other Q5 models are subtle. The plug-in hybrid is equipped with S Line exterior trim, including a honeycomb version of the automaker’s Singleframe’ grille and more aggressive front and rear diffusers. It rolls on standard 19.5-inch double-spoke-star wheels or optional 20-inch, 10-spoke wheels. An optional Sport Plus package combines the 20-inch wheels with adaptive air suspension.

The Audi Q5 TFSI e plug-in hybrid comes at a base price of $52,900, just over $9,000 more than the conventionally-powered Q5.

It’s no secret why the RAV4 is such a global hit. Beyond its obvious style, this is a model that carries a lot of gear, gets excellent fuel economy, and exhibits the traditional high standards for fit and finish found with Toyota products. What’s not to like? Toyota's latest variation, the RAV4 Prime, brings a plug-in hybrid variant to the model that adds to its appeal with 42 miles of all-electric driving range and 600 miles of total range.

RAV4 Prime is powered by the automaker’s 177 horsepower, four-cylinder DOHC engine and a pair of electric motors, one at the front and another at the rear, for on-demand four-wheel drive. Total combined power is a stunning 302 horsepower, which Toyota points out makes it the second-fastest car in its lineup behind the marque’s Supra sports car.

Available in two models, SE and XSE, RAV4 Prime combines lessons learned with Toyota’s other hybrid success stories like the groundbreaking Prius. While many competitors have focused on moving toward all electric power, Toyota has opted to focus on refining hybrid technology to motivate its electrified models. The RAV4 Prime presents an excellent example: Simply, it’s a popular and appealing plug-in crossover SUV offering on- and off-road capability with exceptional drivability, handling, and performance.

There’s a wealth of technology at work beneath the skin in the RAV4 Prime that makes it not only powerful, but exceptionally functional and efficient. Its 18.1 kWh battery is positioned beneath the floor, so it doesn’t impact interior and cargo space. Beyond its truly usable all-electric driving range, the RAV4 also delivers a 94 MPGe rating while operating on battery power. Recharging the battery is handled via a 240-volt home or public charger in about 4 ½ hours, or in about 12 hours when plugging into a conventional 120-volt AC outlet. When faster 6.6 kW charging is available, the RAV4 Prime can charge up in about 2 ½ hours.

Inside, driver and passengers enjoy heated and cooled leather seats, Apple CarPlay/Android Auto, JBL audio, and a handy conductive phone charging pad. The RAV4 Prime also comes will all the advanced safety and driver assist systems desired these days including Toyota's Safety Sense 2.0, which includes pre-collision with pedestrian detection, dynamic radar cruise control, lane departure alert with steering assist, lane tracing assist, and road sign assist. Also available is front and rear parking assist with automated braking, and rear cross traffic braking.

On the outside, the Prime edition features special badging and 19-inch alloy wheels, the only indications that call out this new and advanced version of the RAV4. Cost of entry for the RAV4 Prime is $38,100.

Somewhat smaller than Lincoln’s first plug-in SUV, the Aviator Grand Touring, the Corsair is a luxury-oriented, two-row crossover that injects comfort and class into a compact premium crossover segment dominated by European offerings. It's offered in both conventional gas- and plug-in hybrid-powered variants.

When one looks to Corsair, its distinguishing characteristics and luxury appointments mean there’s no mistaking it for anything other than a Lincoln. Its attractive design features creased and organic dynamic bodylines, a Lincoln-esque diamond patterned grille, and oversized alloy wheels. Inside is a premium leather-upholstered, wood-accented, and tech-rich cabin. The compact Lincoln Corsair Grand Touring lives large enough for four to five well-sized adults and a complement of weekend luggage.

At the heart of 2021 Corsair Grand Touring beats a 2.5-liter inline 4-cylinder, Atkinson cycle gas engine and a twin electric motor planetary drive system. A constant variable transmission transfers torque to the front wheels. A third motor producing 110 lb-ft torque is dedicated to driving the rear wheels, bringing the confident traction of all-wheel drive. Combined, this powertrain delivers an estimated 266 horsepower.

EPA fuel efficiency is rated at 33 combined mpg and 78 MPGe when running on battery power. It will drive 28 miles on its lithium-ion batteries with a total range of 430 miles. Conventionally-powered Corsairs net an estimated 22 city and 29 highway mpg, and 25 mpg combined .

A driver-centric cockpit offers infinitely adjustable and heated leather seating surrounded by wood and burnished metal accents. A comprehensive dash and infotainment display, back-up dashcam, pushbutton drive commands, head-up display, parking assist, and smartphone keyless access are standard or available. Top-of-the-line Co-Pilot 360 driver assist, electronic safety, and personal connectivity features are offered. Corsair Grand Touring’s 14.4 kWh battery module is located beneath the model’s body pan, resulting in a lower center of gravity and unobstructed rear deck cargo space.

The Corsair Grand Touring has an MSRP of $50,390, about fourteen grand more than the conventionally-powered base model. It's expected to make its way to Lincoln showrooms sometime this spring.

As part of Jeep’s plan to offer electric drivetrain options for all its nameplates over the next few years, the Wrangler is being offered with a plug-in, gas-electric hybrid powertrain in the 2021 model year. The Wrangler 4xe will be available  in three models – 4xe, Sahara 4xe, and Rubicon 4xe – the latter equipped with a 4:1 transfer case and other hard-core off-roading equipment found on conventionally powered Rubicon models.

The Wrangler 4xe powertrain uses a turbocharged, direct-injected, 2.0-liter inline-four engine, two high-voltage motor-generators, and a 400-volt, 17 kWh lithium-ion battery pack located beneath the second-row seat. One of the motors, mounted to the front of the engine instead of a conventional alternator, handles the Wrangler’s stop/start functions and sends power to the battery pack. A 12-volt battery is still used to power the Jeep’s accessories. The second motor is mounted in front of the eight-speed TorqueFlite automatic transmission in place of a conventional torque converter.

Dual clutches manage power from the engine and electric motor, enabling them to work in tandem or allowing the Wrangler to operate in electric-only mode for up to 25 miles. In total, the powertrain develops 375 horsepower and 470 lb-ft torque, and it delivers up to an estimated 50 MPGe. To retain the Wrangler’s ability to ford 30 inches of water – part of the brand’s ‘Trail Rated’ capability – its electronics are sealed and waterproof.

The Wrangler 4xe offers three E Selec driving modes. ‘Hybrid’ uses the motor’s torque first and then combines torque from the motor and engine when the battery reaches a minimum charge level. ‘Electric’ powers the Jeep via the motor only until the battery is at minimum charge. Then there’s ‘eSave,’ where power comes primarily from the engine, allowing battery charge to saved for later use. All three modes are available when the Wrangler’s transfer case is in either 4Hi or 4Lo.

An Eco Coaching readout via the Jeep’s Uconnect system illustrates power flow through the system and the impact of factors that include regenerative braking, which itself has several modes. With 4WD engaged, all four wheels contribute power to the system under braking, and a Max Regen setting can slow the Jeep faster while it’s coasting and generate more power for the battery pack.

Like all Wranglers, the 4xe models will be equipped with skid plates, tow hooks, and other ‘Trail Rated’ accessories. Electric Blue exterior and interior design cues set the 4xe models apart visually from other Wranglers. Jeep’s Wrangler 4xe will be on sale by the end of the year at an expected base price of about $40,000.