Green Car Journal logo
Srini Rajagopalan, managing director at JD Power.
Srini Rajagopalan, managing director and practice leader at JD Power.

It’s clear the rise of electric vehicles (EVs) has redefined the auto industry from a product point of view. But it has also forced automakers to innovate in how they connect with shoppers. The divergence in approaches between legacy automakers and startups like Tesla reveals a key insight: selling EVs isn't just about the product; it's about understanding fundamentally different customer bases.

In their early days, EVs were perceived simply as vehicles with a novel propulsion system –an evolution from hybrid technology to fully electric zero-emission powertrains. However, battery-electric pioneers like Tesla treated the EV as a new kind of vehicle to be sold in a new kind of way. By shedding legacy design constraints and conventional distribution schemes, the car was reimagined as a software-defined product. Tesla's over-the-air (OTA) updates, which enable real-time improvements and new feature rollouts, exemplify this approach.

The idea of OTA updates shifted the paradigm from static vehicles to dynamic platforms, much like smartphones. For early adopters, the concept of a car as a constantly evolving tech product resonated deeply. These customers are drawn to the novelty, the innovation, and the sense of participating in a beta-testing community. For better or worse, the Tesla model embraced the spirit of technological experimentation.

Startups like Tesla have excelled at capturing the early adopter market, but moving into the mainstream presents significant hurdles. One of the primary challenges is service accessibility. The direct-to-consumer model has some advantages but lacks the extensive service infrastructure that legacy automakers have built over decades. Traditional automakers, through their dealership networks, provide customers with nearby service centers, which startups struggle to match.

Another challenge is quality. Early Tesla models faced criticism for build quality issues, such as panel gaps and inconsistent paintwork. While early adopters might overlook such flaws in exchange for innovative features, mainstream buyers demand high standards of craftsmanship.

EVs: Adapting to a New Market

A buyer checking out EVs at a Tesla showroom.

Legacy automakers face a different set of challenges as they enter the EV space. For these manufacturers, EVs represent not just a new propulsion option but a shift in how they must engage with customers. Unlike startups, legacy automakers are accustomed to serving a loyal customer base that values simplicity and convenience.

These companies must find ways to educate mainstream buyers about EV technology. Many consumers are unfamiliar with the requirements of EV ownership. Setting up a home charger is beyond the ken of many consumers and battery maintenance doesn’t compute. Dealerships, which have traditionally been transactional in nature, need to evolve into hubs for education and support. Legacy automakers also need to prioritize hassle-free ownership experiences. While startups emphasize cutting-edge features like OTA updates, traditional manufacturers must ensure that every aspect of EV ownership – charging, service, and reliability – is as seamless as possible.

A Tale of Two Customer Bases

Using a martphone to aid in charging EVs.

The EV market now sits at a crossroads, appealing to two very different customer groups. On one side are the early adopters and tech enthusiasts who value cutting-edge technology. These folks, often drawn to startups like Tesla or Rivian, are excited by the innovation that EVs offer. They appreciate the concept of a vehicle as a gadget on wheels, offering frequent updates and technological advancements post-purchase. For this group, glitches or minor inconveniences are often forgiven, as they see themselves as pioneers in the tech ecosystem.

On the other side are the mainstream consumers who represent the bulk of car buyers. These customers prioritize reliability, convenience, and value. For them, a car is a practical tool, not a project. They are accustomed to the seamless service and hassle-free experience provided by legacy automakers. Mainstream buyers expect their vehicles to simply work, with minimal interruptions to their routines.

Some factors that currently limit EV adoption are common to both buyer groups. Purchase price remains a significant factor, since EVs still come at a premium compared to internal combustion engine (ICE) vehicles. Charging infrastructure is another major hurdle. Startups and legacy automakers alike must find ways to make charging faster, easier, and more reliable.

Adoption Strategies for the Future

Automakers must adopt new strategies and address consumer concerns to accelerate EV adoption. Encouraging households to make their second vehicle an EV is one such approach. For many consumers, this offers a low-risk entry point into EV ownership while retaining an ICE vehicle for long trips or emergencies. By positioning EVs as complementary rather than replacement vehicles, automakers can attract hesitant buyers.

In addition, automakers need to invest in the EV ecosystem. This means improving charging infrastructure, expanding service networks, and ensuring that software and hardware support systems are reliable and easy to use. Battery innovation will also play a key role in the future of EVs. Advances in battery technology, such as solid-state batteries, promise greater range and faster charging, addressing two of the most significant concerns among potential buyers.

Finally, automakers must focus on reducing costs to eliminate the price premium associated with EVs. As production scales and battery costs decline, EVs will become more competitive with ICE vehicles, making them accessible to a broader audience.

The Road Ahead for EVs

EVs displayed in an electric vehcle showroom.

The transition to electric vehicles is a monumental shift, akin to the adoption of automobiles themselves more than a century ago. Success will depend on the ability of automakers to not only produce innovative vehicles but also to understand and cater to the evolving needs of their varied customers.

Startups must learn to address the practical concerns of mainstream shoppers, while legacy manufacturers must embrace innovation and adopt a customer-first mindset. By addressing infrastructure challenges, prioritizing quality, and offering competitive pricing, the industry can bridge the gap between early adopters and the mass market.

The journey to widespread EV adoption will be challenging, more so with potential cuts to the Inflation Reduction Act based customer subsidies. However, with thoughtful strategies and collaboration, automakers can mitigate the challenges involved in the transition to a cleaner, more sustainable future.

Srini Rajagopalan is managing director and practice leader of automotive advisory & analytics at J.D. Power.

Rivian electric delivery van.

Rivian delivered the first of its R1T trucks to customers late last year, becoming the first auto manufacturer to market with an electric pickup truck. Importantly, it also made initial deliveries of EDV 700 electric delivery van to Amazon.

The Amazon EDV 700 step-in van, which measures in at a 277 inch length and rides on a 187 inch wheelbase, provides a 700 cubic-foot cargo area and an estimated 200 mile driving range. It‘s powered by an electric motor energized by a lithium-ion nickel-cobalt-aluminum battery pack. The automaker plans to offer both single and dual motor, all-wheel drive versions of its commercial van product in the future.

Coming next is the smaller EDV 500,  entering the market later this year with a 500 cubic-foot cargo carrying ability. The EDV 500 has a length of 248 inches and a 157 inch wheelbase,. Following this will be the largest of Rivian’s three electrified vans, the EDV 900 that offers a length of 321 inches over a 205 inch wheelbase. This heavyweight hauler will feature an 840 cubic-foot cargo bay and a GVWR of 14,000 pounds.

Built on 'Skateboard' Platform

Rivian’s electric vehicles are built on an innovative electric ‘skateboard’ platform that integrates the vehicle’s motors, battery, cooling system, braking, and suspension. This strategy allows straightforward adaptation for varying models, wheelbases, and applications, including the company’s electric R1T pickup, R1S SUV, the EDV series it builds for Amazon, and other future Rivian models. This ‘skateboard’ approach is an advanced strategy being used for next-generation electric vehicles by a number of automakers.

Rivian electric delivery van skateboard platform.

The company has received substantial investment from numerous sources including Ford, and Amazon, along with major funding rounds that total some $10.5 billion. Adding to this is the Rivian IPO late last year that raised close to an additional $12 billion. Thus, Rivian is well-positioned to compete alongside legacy automakers and truck manufacturers as these companies begin to offer their own electric commercial vehicles to the market. The company reportedly has over 70,000 preorders for its R1T and R1S products, and importantly it is under agreement to deliver a total of 100,000 EDVs to Amazon by 2025, with the first 10,000 to be delivered by the end of this year.

Electric Delivery Van Focus

Given this, a significant amount of the company’s focus will presumably need to be directed at its Amazon delivery contract even as it scales up production of its initial product, the electric R1T pickup that was recently delivered to initial customers, and its soon-to-come R1S electric SUV. That’s a lot to handle for any start-up auto manufacturer, and juggling production priorities has potential to present challenges. In fact, Rivian announced the delay of its longest-range R1T and R1S models with the Max battery pack until 2023, no doubt as it finds its production sweet spot.

Even with its milestone order and production commitment with Amazon – a company that reportedly now owns 20 percent of this new auto manufacturer – Rivian has launched a fleet page for taking general orders for its Rivian Commercial Van (RCV) variant. The list of potential applications for its electric commercial van models goes well beyond the focused electric last mile delivery purpose of Amazon’s vans, ranging from field service and transport to construction and utility use. These configurable commercial models are designed to fit diverse needs with payload capacities ranging from 1,960 to 5,300 pounds. Rivian says deliveries of the RCV will begin in 2023.

Rivian is making strategic moves to increase production with a 623,000 square foot expansion of its manufacturing facility in Normal, Illinois – a former Mitsubishi assembly plant – to a total of 4 million square feet. The company is also moving forward with plans for a second production and technology facility near Atlanta, Georgia, with a potential build capacity of 400,000 vehicles per year. Representing a $5 billion investment, Rivian is hoping to begin construction of its Georgia facility this summer and start vehicle production there in 2024.

Inside of electric delivery van.

Like most everybody, I see an endless array of delivery vehicles passing by every day and at all hours. While the presence of delivery vans is not a new phenomenon, it’s one that now occurs with increasing regularity because of a preference for buying online and the need to deliver ordered goods to our homes and businesses. These expanded deliveries – largely made with what’s categorized as ‘last mile delivery’ trucks and vans – come at a time when there’s also great concern about carbon emissions, fossil fuels use, and climate change. Thus, the challenge and the growing need for electric delivery vans.

The answer is emerging in real time, taking the form of electric last mile delivery vans of all types from standard vans like the electric Ford E-Transit and ELMS Urban Delivery Van , to somewhat larger electric vans like the BrightDrop EV600 and Rivian Electric Delivery Van. Each represents the leading edge of what is surely an emerging and strategically important class of electric vehicle, and they will be joined by many others in the short years ahead.

Arrival electric delivery van.

Major Players Involved

One high profile examples comes from Amazon, which is expanding its zero-emission operations through a new deal with Stellantis that will find thousands of RAM ProMaster electric vans entering its delivery fleet in 2023. This adds to the online giant’s options as Rivian ramps up to deliver the first 10,000 of the 100,000 Amazon electric delivery van order with the company this year. Other multinational delivery giants aim to decrease their carbon footprint. For instance, UPS has an agreement with Arrival, a European company with a U.S. headquarters and microfactory in North Carolina, for an initial 10,000 electric van order.

An electric Chevrolet van is coming to complement GM’s electric BrightDrop electric van offerings and Mercedes-Benz will be bringing its electric Sprinter, now available in Europe, to our shores. Other major automakers – from Nissan and Toyota to Fiat and Volkswagen – are either selling electric commercial vans in offshore markets or are preparing to do so, though plans for bringing these electric vans to the U.S. are as yet unknown.

Electric Delivery Upfitters

Some companies seek early entry into important market segments long before automakers begin offering their own specialized products. Lightning eMotors is a prime example of this. The Colorado-based company, a certified Ford Quality eVehicle Modifier,  has been electrifying a variety of new medium-duty fleet models for years. including the Ford Transit full-size van. Among this company’s many fleet customers for its electric Transit delivery van is the international delivery service DHL Express. While Ford began offering its own E-Transit electric van starting with the 2022 model year, the automaker makes these available in cargo versions only. Lightning eMotors offers fleet customers both cargo and passenger versions of its electric Transit Van in a variety of configurations.

There’s more electric activity unfolding in the commercial market. Electrified light- and medium-duty vans are but one part of the solution, with many of the companies in this space, or about to enter it, also offering or planning to introduce medium-duty electric trucks to augment local and regional zero-emission package deliveries.

Expanding Electric Delivery Fleets

What’s important to note is the near-ideal fit all of these electric commercial vehicles present for delivery services, or for that matter as service vehicles for companies with large fleets like cable companies, utilities, and food delivery services, or tradesmen ranging from carpenters and plumbers to painters and electricians. For the most part, all of these vehicles are tasked with operating within a defined region or along specific routes, thus enabling seamless zero-emission operation throughout the workday.

Electric delivery vehicles represent a positive environmental statement for companies integrating them in their operations. Importantly, they are crucial to decreasing carbon emissions on a truly significant scale. Clearly, their time has come.

The immensely popular pickup field is being electrified. Coming electric pickups from legacy automakers like Ford and GM are hugely important since pickups are among their most profitable models. And Tesla? Well, in its typical disruptive fashion, Tesla is introducing a wildly different take on pickups with the company’s signature performance and range characteristics built in. Even luxury electric vehicle maker Karma plans to join the party with an extended range electric pickup.

Names like Atlis, Bollinger, Lordstown, Nicola, and Rivian are new to the scene. These startups are in varying stages of development, some with a solid foundation of billions in investment, manufacturing facilities, and actual product in the works, and others a bit more aspirational. Will they succeed? Time will tell. Plus, we’ll have to see how some wishful launch schedules align with reality.

ATLIS MOTOR VEHICLES plans to offer its heavy-duty electric XT as a regular bed pickup, plus in flat-bed, service body, and dually configurations. Atlis says the truck will carry a 1,000 to 5,000 pound payload, tow 6,000 to 17,000 pounds with a conventional hitch, or 20,000 to 35,000 pounds with a fifth wheel or gooseneck hitch. The company claims a driving range of 300 to 500 miles. These capabilities depend on the battery capacity selected, which starts at 125 kWh. Rather than the lithium-ion batteries powering most EVs today, Atlis is using nickel-manganese-cobalt batteries. It says these batteries are fast-charge capable and can be charged in as little as 15 minutes.

ANALYSIS: The performance claimed by Atlis is quite ambitious, especially since it’s using a less mature battery chemistry and plans to offer a pickup starting at $45,000. This start-up has a concept model developed and is actively seeking investment.

BOLLINGER is looking at a late 2020 launch for its B2 electric pickup and B1 electric SUV. The B2 pickup will have a GVWR (gross vehicle weight rating) over 10,000 pounds, making it a Class 3 truck with a 5,000 pound payload capacity. It’s expected to offer a 7,500 tow capability and drive an estimated 200 miles with power from a 120 kWh battery pack. Portal axles mean excellent ground clearance for off-road duty. The Bollinger B2’s Class 3 rating and stark styling – flat glass, external door hinges, and aluminum body panels devoid of compound curves that can be formed by simple equipment – makes it clear the company is not aiming at buyers who want to make a fashion statement. Plus, prototypes shown to date have an austere interior without an infotainment system, surprising for a vehicle projected to have a $125,000 price tag. The cargo area’s unique pass-through into the cab makes the truck capable of handling a telephone pole.

ANALYSIS: With its substantial price, rudimentary styling, and austere interior, Bollinger’s B2 pickup appears aimed at commercial applications rather than mainstream pickup buyers. It looks like Bollinger recognizes this niche market role since the company is planning to make only 1500 vehicles in its first year.

FORD plans to offer as many as 16 pure electric vehicles by 2022 including an electric Ford F-Series pickup, which could appear later in 2021. Ford hasn’t released much information about the electric F-150, but it is expected that range, payload, and towing capability will be competitive with other electric pickups, and perhaps a bit better. That means a range of 250 to over 400 miles, at least a ton of payload, and the ability to tow 7,500 to 14,000 pounds. These numbers are based on battery kWh capacity and selected motors. Like options for conventional F-150s these will be items to be checked off by buyers.

ANALYSIS: Pickup buyers are a very loyal bunch, and if the electric F-150 doesn’t stray too far from the best-selling F-150 it should readily succeed with Ford pickup fans who want to go ‘green.’

GM will naturally have an electric pickup if its traditional competitor Ford has one, and in all likelihood, it will offer several. GMC will get a version that will be marketed as a Hummer, and a Chevrolet Silverado variant will surely emerge since this brand has such a huge pickup following. Both would be built on a similar platform with capabilities comparable to that of Tesla, Rivian, and Ford electric pickups. Again, buyers will be able to select battery/motor options. GM expects a 2021 launch for its electric GMC Hummer pickup. Rumor has it that a Chevrolet Silverado variant will be a more traditional pickup built on a smaller version of the platform, with the GMC Hummer pickup aimed at the off-road, adventure vehicle buyer.

ANALYSIS: Chevrolet and GMC, like Ford, have the advantage of decades of owner loyalty. An electric Chevy Silverado pickup will certainly find a strong following, while the Hummer will likely be a niche vehicle.

KARMA AUTOMOTIVE says it is developing an electric pickup that extends its battery range with electricity from an internal combustion engine-generator, similar to its existing electrified products. The electric pickup will be based on a newly developed all-wheel drive platform and cost less than the company’s $135,000 Revero GT, an extended range electric luxury sedan. A concept pickup is promised later in 2020. The new electric pickup will be built at the company’s existing manufacturing facility in Southern California.

ANALYSIS: A start-up that launched in 2015, Karma has shown it is committed to the electric vehicle market with several high-end models under its belt and others in the works. It has worked with Italy’s renowned car design and coachbuilder Pininfarina on a concept electric grand touring car with production potential, so we have yet to see if its coming electric pickup will be an entirely in-house project or involve others.

LORDSTOWN MOTORS says it plans a 2021 introduction for its Endurance electric pickup with a four-wheel-drive hub motor system. Limited information is available except that it will climb a 30 percent grade fully loaded, carry a 2200 pound payload, and tow 6000 pounds. Range is estimated at a minimum 250 miles. The company is now taking deposits for its 2021 Endurance pickup at a base price of $52,500. Its primary emphasis is on fleets, though private parties can also make a reservation.

ANALYSIS: Lordstown Motors has received a $40 million loan from General Motors and took over GM’s huge Lordstown Assembly Plant. GM is building a large battery factory nearby in partnership with LG Chem. Part of this effort might include taking up an option to lease space in the Lordstown Assembly Plant. In addition to its own manufacturing, Lordstown Motors hopes to provide overflow manufacturing capacity for Workhorse Group’s last-mile electric delivery vans.

NIKOLA MOTOR COMPANY has shown its Nikola Badger pickup that would presumably come in two models, one battery-electric and the other running on a combination of battery electric and hydrogen fuel cell power. Battery electric propulsion is said to feature a 160 kWh battery and a 300 mile range. Adding fuel cell power to the battery electric powertrain would incorporate a 120 kW fuel cell and a total 600 mile range, when hydrogen is available. The Badger is engineered to deliver 906 peak and 455 continuous horsepower, with a massive 980 lb-ft torque. An 8,000 pound tow capability is claimed. In addition, the pickup will feature a 15 kW power outlet for tools, lights, and compressors. Nikola says it will partner with an established OEM to build the Badger and initially announced a late 2020 launch plan, while identifying a $60,000 to $90,000 price range.

ANALYSIS: Nikola is leveraging the technology and expertise developed for its Nikola One and Nikola Two electric and fuel cell semi tractor-trailer trucks. Given the capabilities of the Badger pickup and the likely high price tag of a combined battery electric and hydrogen fuel cell powertrain, we would expect its target market to be primarily commercial operations. Nikola plans to build hydrogen filling stations along well-traveled truck routes to facilitate fuel cell use, a move that further underscores a focus on the commercial market.

RIVIAN plans to launch its R1T pickup in 2021. It will be available with 105, 135, and 180 kWh battery packs and corresponding ranges estimated at 230, 300, and 400 miles, starting at an estimated price of $69,000. All versions will have an 11,000 pound tow rating. The pickup features a ‘gear tunnel’ stowage space behind the rear seats and the ability to make a 360-degree turn in its own length, like a tank. In addition to the truck, Rivian will offer an R1S SUV using the same skateboard platform as the R1T truck.

ANALYSIS: While Rivian is a startup, it has billions in backing from the likes of Ford, Amazon, and T. Rowe Price. Amazon has placed an order with Rivian for 100,000 electric delivery vans, which will be built at Rivian’s manufacturing facility in Normal, Illinois, a former Mitsubishi assembly plant acquired by Rivian in 2017.

TESLA’S Cybertruck is by far the most high-profile pickup introduction and the one most talked about today. Coming from the well-established electric car leader, the Cybertruck is a combination of edgy and disruptive styling one might expect on the set of a dystopic sci-fi thriller infused with some pretty impressive innovations. Among these are a motorized metal tonneau cover that completely retracts below the truck’s rear window and a built-in ramp for loading gear and recreational toys. Tesla claims its stainless steel Cybertruck will deliver a range of 250 to 500 miles, offer a 3500 pound payload, and will be capable of towing between 7500 to 14,000 pounds. The range of capabilities varies on battery capacity – 75 to 200 kWh – and motor configurations, including Tri Motor AWD, Dual Motor AWD, or Single Motor RWD. Prices are said to range from $39,990 to $69,900, though Tesla’s track record of rolling out high-spec editions first means the lower-end model won’t be seeing daylight any time soon.

ANALYSIS: Tesla, which arguably can be credited with making electric vehicles a serious option to combustion engine models, could be the first startup to achieve long term success. The company sold 367,500 cars in 2019 and has four current models in its stable with plans for more, which means it has transcended the traditional definition of a niche automaker. Like previous Tesla products, expect the Cybertruck to exhibit many changes before deliveries presumably start in late 2021.

A shift to electric pickups is tantalizing to many, but it’s no easy thing. It’s true that electric pickups require less maintenance than their gasoline or diesel counterparts. Still, there are times when EV-specific service will be required beyond the usual tire, brake, and fluid maintenance that can be performed by mainstream service providers. Electric pickup manufacturers must provide for this service. That’s not a significant issue for legacy automakers like Ford and GM that have a widespread dealer sales and service network, even in sparsely populated states. Service personnel at dealerships can be trained in EV-specific work. Fledgling and start-up electric pickup companies will certainly be at a disadvantage here.

Are there other electric pickups in the works beyond the brands mentioned here? That’s certainly likely considering the interest already developing and the intensively competitive nature of the auto industry, though details on additional players are unknown. With the advent of electric pickups on the near horizon, that may change sooner than you would expect.

There are challenges ahead even as electric pickups are poised to enter a potentially enthusiastic market. Those challenges could mean a more gradual market trajectory than that of electric sedans and SUVs, which have already taken quite some time to gather momentum. For example, cars and SUVs used for commuting or running errands are typically driven less than 40 miles daily, with occasional trips of several hundred miles with passengers. That’s a reasonable and flexible duty cycle for electric passenger vehicles. It’s different for trucks.

With the exception of work trucks in urban areas, pickups in many rural areas travel hundreds of miles every day without refueling. That’s not an issue for conventionally powered pickups with their considerable driving range. It could be for coming electric pickups since their battery range is about half that of most full-size gas pickups. When conventional pickups do need to refuel, it takes but a few minutes to fill up with gasoline compared with the hours required for electrics. Realistically, it's difficult to see electric pickups meeting the duty cycles of work trucks like these until fast charging becomes widespread, especially in rural areas.

Towing presents additional food for thought. It’s well-known that fuel economy, and thus range, is reduced when conventional vehicles tow trailers, boats, or any load. Range is impacted more dramatically in electric vehicles, a fact that could make electric pickups less desirable for towing a boat or heavy load any significant distance since charging would likely be required every couple hundred miles. Illustrating the challenge is that towing a 5000 pound trailer with a Tesla Model X or Audi e-tron has been shown to result in a range reduction of up to 40 percent. Increasing range by adding batteries in an electric pickup may bring longer range, but it also means reducing payload and towing capacity pound for pound.

Looking at the demographics of pickup owners and comparing this with available charging stations presents a stark reality. The 13 states where pickups represent 25 percent or more of new vehicle sales have about 2600 public charging stations, less than 10 percent of all public charging stations in the country. That’s quite a disconnect. These are typically large states where long distance travel is the rule. This underscores the importance of charging opportunities and the formidable challenges electric pickups may face in areas where charging infrastructure is behind the curve.

Another challenge is maintenance. Even though electric pickups require significantly less maintenance than their gasoline or diesel counterparts, there are times when EV-specific service will be required. While the usual tire, brake, and fluid maintenance can be performed by mainstream service providers, electric pickup manufacturers must provide for other potential servicing involving an electric drivetrain, on-board electronics, and the many other controls and systems unique to an electric vehicle. That’s not a significant issue for legacy automakers like Ford and GM that have a widespread dealer sales and service network, even in sparsely populated states. Service personnel at dealerships can be trained in EV-specific work. Fledgling and start-up electric pickup companies will certainly be at a disadvantage here.

Will electric pickups succeed? Time will tell. Plus, we’ll have to see how some wishful launch schedules align with reality since COVID-19 has caused auto manufacturing delays and shutdowns. Plus, with today’s extraordinarily low gas prices, the value equation for electrics of any kind is skewed, at least for the present time. That doesn’t mean there won’t be demand for electric pickups…just that expectations for timing and market penetration should be tempered.

Start-up electric vehicle manufacturer Rivian is on a roll. The company plans to offer the five-passenger R1T electric pickup in late 2020, built on its innovative electric ‘skateboard’ platform. Now it has 500,000 more reasons supporting its success with a half-billion-dollar investment from Ford. This strategic investment buys Ford the ability to build its own electric models – presumably pickups and SUVs – on the Rivian ‘skateboard’ platform. Rivian received an earlier $700 investment from Amazon and others.

Rivian’s skateboard architecture locates the battery pack in the floor in the middle of the vehicle. The R1T has four motors, two per axle, with each motor individually controlling a wheel to provide precise control. These are not hub motors since each motor is mounted in the body. The skateboard chassis also includes braking, suspension, and cooling systems.

The R1T will be offered with three different battery packs and electric motor configurations.  A 180-kWh battery pack version energizing motors with a total of 700 horsepower and 823 lb-ft torque is expected to deliver a range of over 400 miles. Another powertrain option is a 135-kWh pack model with 754 horsepower and 823 lb-ft torque provided by four motors, featuring a range of about 300 miles.  The base R1T will come with a 105-kWh battery and motors delivering 403 horsepower and 413 lb-ft torque, with a range of more than 250 miles.

A substantial 14 inches of ground clearance plus the ability to wade through three feet of water and climb a 45-percent incline makes for some serious off-roading capability. In addition, the R1T has a payload capacity of 17,600 pounds and can tow 11,000 pounds. It’s smart, too, offering Level 3 autonomous driving capability, a suite of active-safety features, an adjustable air suspension, and automated trailer backup.

The cost of entry for Rivian’s R1T pickup is an expected base price of $69,000 before a federal tax credit and possible state incentives. It will be produced at Rivian’s manufacturing facility at a former 2.6 million square-foot Mitsubishi facility in Normal, Illinois. The company employs more than 1,000 people at development centers in Irvine and San Jose, California, and in Surrey, England. Along with the R1T pickup, Rivian is also developing its R1S SUV based on its skateboard chassis.