Green Car Journal logo

2015-green-car-of-the-year-logoOver the 10 year history of Green Car Journal’s Green Car of the Year award program, there has never been a battery electric car that has been compelling enough to be recognized as the best-of-the-best in an ever-expanding field of ‘green’ cars. That has changed with the groundbreaking BMW i3, Green Car Journal’s 2015 Green Car of the Year®.

The BMW i3 came out on top of a field of finalists that included the Audi A3 TDI, Chevrolet Impala Bi-Fuel, Honda Fit, and VW Golf. The array of technologies and fuels represented included high efficiency gasoline, electric drive, clean diesel, and natural gas.

bmw-13-action-rightBMW’s i3 stands out as one of the most innovative vehicles ever to be introduced by any major automaker. It breaks the mold – literally – with a strong and lightweight body using materials and technology at home on the race track, and now used for the first time to construct a mainstream production car. It is a milestone, forward-thinking approach.

Meeting both near-term and far-reaching goals is no easy thing. The challenge is to design and build cars that offer meaningful environmental achievement while delivering the traditional touchstones desired by new car buyers, among them comfort, safety, convenience, connectivity, performance, and value. Also important in the world of advanced vehicles like battery electric cars is a significant commitment to the manufacturing and sale of these vehicles that goes beyond a few thousand units sold in select geographical areas. BMW’s commitment with the i3 is focused not only nationally in the U.S., but globally as well.

bmw-i3-cutawayOffering a lightweight carbon fiber reinforced plastic (CFRP) body on an aluminum space frame, BMW’s innovative i3 brings environment-conscious drivers all-electric drive with an optional internal combustion range extender. The most unique aspect of the i3 is the car’s body structure, which incorporates the first-ever use of carbon fiber reinforced plastic (CFRP) to form the body and passenger cabin of a mass-production vehicle. CFRP is as strong as steel and 50 percent lighter. It is also 30 percent lighter than aluminum.

This BMW’s drive module includes an electric drivetrain, 5-link rear suspension, and an aluminum structure. Its lithium-ion battery pack is mounted mid-ship beneath the floor. Strategic placement of the 450 pound battery pack and drive components provides a very balanced 50-50 weight distribution to enhance handling and performance.

bmw-i3-dashAcceleration is crisp, with a 0-60 elapsed time of 7.2 seconds provided by an electric motor producing 170 horsepower and 184 lb-ft torque. With a curb weight of just 2,700 pounds, the i3 has is sprightly even at highway speeds. Strong regenerative braking characteristics often allow the i3 to be driven with just the accelerator pedal in city driving. When a driver lets off the accelerator, regen slows the car quickly and allows it to come to a complete stop without touching the brake pedal.

Charging at home with an available 220 volt charger delivers a full charge in about three hours. Where available, public DC fast charging can bring an i3 to 80 percent state-of-charge in 20 minutes and a full charge in 30 minutes. The i3 BEV features an 81 mile EPA estimated range on batteries. The i3 REx, equipped with an internal combustion range extender that creates on-board electricity as needed to help keep batteries charged, features a 72 mile battery driving range and 150 miles total with the range extender.

bmw-i3-chargingEfficiency is a given. EPA rates the i3’s city fuel economy at 137 MPGe (miles per gallon equivalent) and 111 MPGe on the highway, with a combined 124 MPGe. For the REx-equipped model, EPA rates mileage at 117 MPGe combined.

The 2015 Green Car of the Year® is selected by a majority vote of an award jury comprised of Green Car Journal staff and invited jurors, including TV personality and car aficionado Jay Leno plus leaders of the nation’s most high-profile environmental and efficiency organizations. These jurors include Jean-Michel Cousteau, president of Ocean Futures Society; Matt Petersen, board member of Global Green USA; Mindy Lubber, President of CERES; Kateri Callahan, President of the Alliance to Save Energy; and Dr. Alan Lloyd, President emeritus of the International Council on Clean Transportation.

bmw-i3-side-doorsThe diversity of new car models at showrooms today reflects an evolving and sophisticated market in which a growing number of new car buyers have decided that environmental performance must meet their needs and expectations, on their terms. As it happens, 2015 Green Car of the Year jurors have clearly decided that this year, the electric BMW i3 does it best.

 

VW has unveiled its Golf GTD at the Geneva Motor Show, a sporty and fuel-sipping model offering a welcome 56 combined city/highway mpg. It does this with a new 184 hp four-cylinder TDI engine, a turbocharged and direct-injected powerplant that meets the challenging EU-6 emissions standard. The 56 mpg figure is achieved with Golf GTDs equipped with a six-speed manual transmission. Combined fuel economy is 50 mpg with VW’s optional six-speed DSG dual-clutch automatic transmission.

The first Golf GTD variant debuted some 30 years ago as a sporty compact that aimed to offer GTI-style features with notable fuel efficiency. This latest iteration, based on the seventh-generation Golf, is the most powerful GTD ever.

This is no slouch. Along with the 184 hp comes 280 lb-ft torque at a low 1750 rpm, supplying sufficient power to press you back in the seat. The Golf GTD is meant to be an efficient long-distance tourer and performer, which it backs up with a fun-to-drive nature and a top speed of 143 mph.

VW’s Golf GTD sits on lowered sport suspension and features side skirts, rear diffuser, and rear spoiler. It has distinctive features like smoked LED taillights with LED license-plate lights, 17-inch GTD wheels wrapped with 225/45 tires, and dual chrome tailpipes. The cabin offers GTD features including  tartan-patterned sport seats, sport steering wheel, and stainless-steel pedals and foot rest.

VW is adding a natural gas version of its 2013 Golf to its offerings in Europe. The bi-fuel EcoFuel Golf has two CNG cylinders mounted beneath the floor providing a range of about 260 miles. A 13 gallon gasoline tank delivers an additional driving range of 540 miles, for a noteworthy total range of 800 miles between fill-ups.

The natural gas Golf, electric Blue e-Motion Golf variant, and their conventional counterparts are based on the automaker’s MQB architecture that standardizes component parameters among many models. The strategy allows the use of common components across brands, vehicle classes, and even diverse models produced for European, American, Chinese, and growing Indian markets.

MQB, an acronym for the German phrase Modularer Querbaukasten that roughly translates to ‘Modular Transverse Matrix,’ will first be used by the Golf and the successor to the Audi A3. Audi, SKODA, and SEAT A- and B-segment cars will ultimately use the common MQB design strategy. Future VWs using MQB include Polo, Beetle, Scirocco, Jetta, Tiguan, Touran, Sharan, Passat, and CC models.

The key ingredient of the MQB concept is a uniform mounting position for all engines, initially starting with the new EA211 and EA288 modular engine families. This allows a variety of transverse, front-engine, front-wheel drive models to be designed using the same set of components. In addition to standardizing conventional internal combustion engines, the MQB can be used with current alternative drive concepts including hybrid and battery electric vehicles.

Outputs of EA211 four-cylinder engines range from 54 to 148 horsepower. Among them is the world’s first four-cylinder engine with cylinder deactivation. The natural gas EcoFuel variant uses a 1.4 liter engine that makes 109 horsepower. There is also the EA288 MBD (modular diesel engine system) rated at 88.5 to 188 horsepower.

VW's engine and gearbox variants in the MQB system will be reduced by about 90 percent. In the future, both high-volume and niche models of different brands could theoretically be produced on the same assembly line, even if they have different wheelbases and track width. An additional benefit is enabling the use of luxury class technologies in lower cost, high-volume models. As just one example, VW plans 20 such innovations in the areas of safety and infotainment. These, until now, were reserved for more upscale models.