Neighborhood electric vehicles – NEVs for short – are a category of low-speed vehicle that first gained significant attention during the early years of California’s Zero Emission Vehicle mandate. Approved by the National Highway Transportation Safety Administration (NHTSA) for street use on roads with posted speed limits of 35 mph or less, these low-speed electric vehicles are positioned as meeting the needs of residents in planned communities, in downtowns and urban areas, on college and business campuses, and in other commercial and social settings. While federally approved, states and municipalities may also govern the use of NEVs with their own specific requirements. Interest in NEVs was high during the early ZEV years as several auto manufacturers hoped that lower-cost low-speed electric vehicles would help them meet the requirements of the state’s ZEV mandate at a manageable cost. That strategy didn’t come to pass, though NEVs continue to this day as they serve specific markets. Over two decades ago, Green Car Journal reported on the benefits of NEVs quantified by a pilot program in Southern California, where GEM electric vehicles – a brand then owned by DaimlerChrysler's Global Electric Motorcars and now by Waev Inc. – were used in place of residents’ conventional internal combustion vehicles over a two month period. To share this early insight on NEVs and their potential value in emissions reduction , we present this article just as it appeared in Green Car Journal’s December 2002 issue.
Excerpted from December 2002 Issue: Do neighborhood electric vehicles really save on emissions and energy use? That question has been the focus of an innovative pilot project that recently came to a close in the Southern California city of Chula Vista, near San Diego.
Here, 28 GEMs were placed with families at Heritage Village in Otay Ranch, one of the largest master-planned communities in the country. Otay Ranch incorporates a focus that integrates pedestrian and transit design with alternative modes of transportation. Neighborhood electric vehicles are a part of this focus.
The program was conducted by the nonprofit educational and research organization Green Car Institute, Mobility Lab, the City of Chula Vista, and DaimlerChrysler business unit Global Electric Motorcars. Its aim was to study how residents of master-planned communities travel within their neighborhoods, and whether short trips usually taken in automobiles could be replaced with zero-emission NEVs.
Over the course of 60 days, participants drove their GEMs daily and kept track of how they used these vehicles for work and play. Of particular interest in the data collection was how these vehicles offset the use of other modes of transportation.
And the results? Given a choice of travel modes for short trips, participants chose a NEV over their private cars 89 percent of the time. Study results also showed that NEV travel replaced walking 8 percent of the time and bicycling 3 percent of the time. Not surprisingly, participants in the study reported that while NEV travel was attractive for many purposes, no one was willing to replace their family sedan with one. Rather, the NEV was viewed as an added option when traveling short distances for routine trips.
“We’re very interested in these study results,” says Rick Kasper, president of Global Electric Motorcars, “because they document what we’ve seen during GEM's five years in the marketplace: that the NEV is a legitimate transportation tool, not just a novelty.” Kasper says the study results are important because they quantify the value of the GEM as a viable transportation and land use tool that can help shape the way cities and communities grow, by increasing individual mobility while decreasing traffic congestion and air pollution.
“The GEM vehicle can and does represent a practical travel option,” Kasper adds, “particularly when people take short trips of necessity, such as going to the store, picking up or dropping off kids at school, and going to work.”
The Otay Ranch study shows that of the trips taken in NEVs, some 49 percent were for purposes defined as “business” or “delivery,” meaning trips of necessity. Some 34 percent of the trips taken were classified as “leisure,” while 17 percent were designated “other.” Of the 28 families who participated in the test program, more than half plan to buy and regularly drive their test vehicles, a move that will further raise awareness of the GEM’s fun and functionality among the 7,000 households currently at Otay Ranch.
The Otay Ranch NEV program reinforces the development's goal of providing an environmentally sensitive and sustainable urban design, reducing traffic congestion and vehicle emissions, and showing the NEV’s practical use in a modern planned community. A key aim of the project was also to help the City of Chula Vista and the developers of Otay Ranch plan the community’s transportation infrastructure from the “inside out,” that is, from the user’s perspective, as opposed to the standard perspective coming from professional planners or traffic engineers.
Data generated from the Otay Ranch program, and the demonstration programs that are slated to follow it, will allow better understanding of the potential for neighborhood electric vehicles in American communities. This is especially important now when the market for NEVs is being questioned in some quarters and championed in others. Well-documented data will help answer the question.
GCJ editors note that use of neighborhood electric vehicles, which emit zero localized emissions, could have a dramatic effect on cold-start emissions in areas when large numbers of these vehicles are driven, in situations where low-speed vehicles are a good fit. Programs like this one in Chula Vista show on a small scale what could possibly be accomplished on a large scale, should communities embrace NEVs as an integral part of the transportation mix.
An all-new generation Nissan LEAF is coming, morphing into a crossover electric vehicle that better fits the needs of today’s market. This new move by Nissan signals the rebirth of an iconic EV model that once pushed the boundaries of electrification as California was imposing its Zero Emission Vehicle Mandate on an unprepared auto industry. There was no shortage of EV concepts and prototypes during this time, and of course GM fielded its relatively short-lived, limited-production EV1 electric car. But it was Nissan that caught everyone’s attention with its LEAF prototype and then the unveiling of the production model that Green Car Journal viewed in Japan. Following that, the 2010 model Nissan LEAF emerged as a stylish electric car that embodied Nissan’s view of the future. This article pulled from Green Car Journal’s extensive archives is presented just as it ran 16 years ago to share just what a breakthrough this early EV was for enthusiasts and the auto industry.
Excerpted from Fall 2009 issue: The Nissan LEAF electric car coming to showrooms in 2010 promises a new chapter in battery electric driving that got a good start in the 1990s, but was dramatically sidetracked by serious political squabbling and economic realities. What we have here is an electric car being brought to market driven by business case rather than regulatory fiat, and the difference in approach means everything.
Here’s a major automaker not only ready to bring a new from-the-ground-up electric car to U.S. highways, but also apparently quite eager to do so. It has created a stylish and sporty car to wrap around intelligent electronics, a smart battery design, and an overall driving experience that will be appreciated by wide-ranging new car buyers … not just electric car enthusiasts. But we’re getting ahead of ourselves. First, there’s a story to tell.
Nissan has always been somewhat of a wild card amid its Japanese competitors in the U.S. market, primarily Honda and Toyota. Toyota is a juggernaut with the leading eco-vehicle on the market – the Prius – plus lots of Toyota and Lexus hybrid models and sheer numbers in its favor. Being large has its advantages. Honda is innovative and agile, with an environmental focus that runs deep and a willingness to embrace imperatives like fuel economy, alternative fuels, and low emissions long before they’re in vogue.
And Nissan? Well, the automaker has never been considered a front-runner in the environmental arena. It has but a single gasoline-electric hybrid in the U.S. and this model, the Altima Hybrid, was late in coming … an interesting turn of events since Nissan has been developing hybrid technology for quite some time. Simply, Nissan’s leadership didn’t see the business case for hybrids early on, although this was remedied when it became apparent that a hybrid model was pretty much a necessity.
As a result, it has been easy to appreciate Nissan for its many exceptional models and the overall quality of its products. But is has been just as easy for some to discount Nissan as a serious contender in the ‘green car’ field. That assessment would be a mistake.
Nissan’s Altima Hybrid deserves more attention than it gets. It’s true to the brand: stylish, sporty, and offers snappy performance. Car enthusiasts who drive competitive mid-level hybrids and don’t feel a connection should drive an Altima Hybrid before moving on. It can be surprising.
Over the years, Nissan has tested M85 methanol flexible-fuel vehicles (FFVs) on American highways, introduced several E85 ethanol FFVs to its product lineup, and showcased many electric and hydrogen concepts and demonstrators. While many automakers get well-deserved kudos for offering models powered by near-zero emission gasoline engines, it was Nissan that first introduced this groundbreaking technology in its 2000 model Sentra CA sedan. Nissan was also the only major automaker to feature forward-looking lithium-ion battery technology in its Altra EV minivan that was test marketed in the 1990s. All other automakers’ electric cars of the era used nickel-metal-hydride or advanced lead-acid batteries.
This willingness to step out and get ahead of the curve brings us to an interesting new phase in Nissan’s ‘green’ evolution – its coming LEAF battery electric car. At a time when the number of gasoline-electric hybrid models is growing and plug-in hybrids are of increasing focus, Nissan is aiming to be the electric car leader by introducing an all-new model that’s not only technologically advanced, but affordable for the masses as well. That’s something that nobody has been able to pull off.
One of the secrets of this affordability is Nissan’s potential strategy to decouple battery cost from the price of the vehicle. While this isn’t yet a sure thing and various scenarios are being examined, the fundamental plan being explored is that the most cost prohibitive part of an electric car -- expensive lithium-ion batteries – is removed from the equation. You buy the car but separately lease the batteries at a monthly cost that’s presumably less than you would pay for gas. So, you get an advanced electric car that operates at pennies per mile, uses no fossil fuels, or produces any emissions that contribute to air pollution and, presumably, climate change. And it doesn’t cost you any more to own and operate than a comparable gasoline model.
Green Car Journal traveled to Yokohama, Japan to drive a Nissan Versa (known as the Tilda there) outfitted with the LEAF’s advanced electric powertrain, and we sure didn’t come away disappointed. To place this in context, Green Car Journal editors have driven all the electric vehicle models that were test marketed by the major automakers in the 1990s, spent a year behind the wheel of GM’s EV1, and also drove many developmental electric vehicles on test tracks over the past two decades. It takes a lot to impress us. And we are, we must admit, impressed.
Our time behind the wheel of this electrified Nissan test mule left a strong impression that Nissan really has something here. The drive was sporty and largely indistinguishable from driving a conventional gasoline model. That’s a good thing, since any time you can drive an advanced vehicle running on unconventional power and it seems normal, well … mission accomplished. Acceleration was brisk because, after all, its 107 hp (80kW) electric motor delivers 100 percent of its 206 lb-ft torque from zero mph. Steering feel, handling, and braking were spot on. Nothing seems to have been sacrificed on the road to a zero emission future.
There are some givens when driving any electric car, and time piloting this Nissan example presented no exception. There’s the unmistakable lack of all noise associated with internal combustion, with the absence of these familiar cues replaced with the sound of tires contacting the pavement and wind rushing past the windshield. It gets your attention at first, but take it from a long-time electric car driver – it fades away after a short time and becomes the new ‘normal.’
Besides the seamless way in which this electric Nissan performed during our test drive, what’s most impressive about Nissan’s new electric car program is its innovative use of multiple stacks of laminated compact battery modules integrated beneath the floor. These lithium-ion batteries can be readily configured in ways that accommodate the needs of different vehicle platforms. Yes, we’re thinking future models beyond Nissan’s purpose-built LEAF electric hatch. In the LEAF, Nissan says these batteries provide a real-world 100 mile driving range. More modules could conceivably provide that same kind of range in a larger sedan or crossover.
Also impressive is Nissan’s innovative use of sophisticated electronics that integrates with popular electronic devices. The LEAF’s advanced IT system connects to a 24 hour global data center that provides information, entertainment, and driver support. A monitor displays available charging stations and a ‘reachable area’ based on remaining power. Cellphones can be used to set charging times, communicate with the vehicle to determine when charging is done, and even remotely set the air conditioner to pre-cool the interior before getting in to drive.
Nissan’s coming electric LEAF, with its pleasing design that blends sharp and curvaceous lines and a suite of far-reaching advanced technologies, represents a brilliant addition to the Nissan product line. It reflects an intuitive knowledge of what consumers want and a willingness to lead … really lead. And it also shows that Nissan has its finger on the pulse of the market.
Sure, it’s a risk to go so boldly into the electric realm, designing an innovative and cutting-edge compact car based solely on electric drive. Considering the competitive nature of the automotive field and the pace at which Nissan is shepherding this electric model to market, it’s a logical gamble that could pay off in a very big way. The electric LEAF may well be the vehicle that moves Nissan beyond the considerable environmental shadow cast by competitors Toyota and Honda, presenting the kind of leapfrog opportunity that comes rarely and offers a finite window. No doubt, Nissan's leadership is hoping this is so and appears poised to make that leap.
The midsize Honda Prologue EV gets a new and more powerful and efficient front motor and upgraded power inverters for 2025 to boost range and horsepower in both front- and all-wheel drive versions. Despite the power and range boosts there’s only a slight price increase – $55 – due to a hike in Honda’s mandatory delivery and destination fee. There are no design or feature updates for the new model year.
Honda engineers had hoped to be able to boast of a 300-mile range estimate when the Prologue debuted as a 2024 model, but they weren’t in complete control because the EV was co-developed with General Motors and uses a GM platform and battery shared with the Chevrolet Blazer EV. The official EPA range estimate for the single-motor, front-drive version missed the desired mark by a scant 4 miles.
For the 2025 model, though, new power inverters and front motors enabled a bump to 308 miles for the front-drive Prologue, an increase of 12 miles. Range for dual motor all-wheel drive versions rises to 294 miles, up 13, for the EX and Touring trims, and to 283 miles, up 10, for the Elite.
The hardware boosts power output for front-drive models to 220 hp and 243 lb-ft of torque, up from 212 ponies and 236 lb-ft. For all-wheel drive models, output increases to 300 hp and 335 lb-ft, up 12 and 25, respectively.
Because the basic vehicle doesn’t change, the Prologue retains a CCS charging port for 2025, meaning that on road trips its default fast charging is at non-Tesla stations. It will require an adapter to hook up to a Tesla Supercharger once Tesla adds Honda EVs to its list of approved Supercharger users this spring.
On non-Tesla DC fast charges, the Prologue can take on juice up to a maximum of 150 kW per hour. Its 85 kWh battery needs about 35 minutes to recharge from 80 percent depleted to 80 percent full. For 240-volt Level 2 home charging, the Prologue has an 11.5 kW (maximum) on-board charger, good for overnight replenishment of a fully depleted battery.
For as long as the federal clean vehicles tax credit remains available, all versions of the 2025 Prologue qualify for the full $7,500 credit and this can be applied at the dealership as an immediate discount if a buyer meets federal eligibility requirements. Those who lease will see the credit applied as a buy-down, resulting in reduced monthly payments.
Before any federal, state, or local incentives, pricing for the 2025 Prologue starts with the base front-drive EX at $48,850 including Honda’s $1,450 destination fee (up from $1,395 for 2024). All-wheel drive adds $3,000 for a pre-incentive price of $51,850.
Standard equipment for the EX includes 19-inch aluminum alloys, power-adjustable driver’s seat, heated front seats, dual-zone climate control, wireless phone charger, wireless Apple CarPlay and Android Auto compatibility, and a Google built-in operating system. All Prologue EV trims also get the Honda Sensing suite of advanced safety and driver assistance technologies, including Honda’s first applications of automated rear cross traffic emergency braking, rear pedestrian alert, and blind zone steering assist. Other features include front collision and road departure mitigation, lane departure warning and lane keeping assist, and adaptive cruise control. Like all Prologue trim levels, the base model comes in Mercury Silver Metallic with other exterior color choices available at a $455 upcharge.
Including delivery fee, the mid-level Touring trim jumps to $53,150 with front-drive and $56,150 with dual motor all-wheel drive. It adds to the base standard features package with a 12-speaker Bose premium sound system, leather upholstery, a driver seat memory system, auto dimming rear view mirror, panoramic sunroof, hands-free powered tailgate, and front and rear parking assist. At the top of the Prologue lineup, the Elite is available only with all-wheel drive and starts at $59,350 including destination. It adds to the Touring’s standard equipment with a number of upscale features including 21-inch wheels, ventilated front seats, a heated steering wheel, a Sport driving mode, and a color head-up display.
Honda is carrying over its charging bonus for 2025. Prologue buyers get 60 kWh of free public charging at Electrify America stations. Plus, buyers can opt for an additional valuable charging incentive.
Those choices include an additional $750 public charging credit, or alternatively, an 11.5-kilowatt Level 2 home charging station, a $500 installation credit, and a $100 public charging credit through Honda Home Electrification (HHE). The third option is a 7.6 kW portable Level 2 charging kit, a $250 installation credit (in case a new circuit is needed for the portable unit), and a $300 public charging credit, also via HHE.
This was originally published on thegreencarguy.com. Author John O'Dell is a distinguished career journalist and has a been an automotive writer, editor, and analyst specializing in alternative vehicles and fuels for over two decades.
Nissan was first out of the gate with a mass-market EV, the 2011 LEAF, but it took a dozen years for the automaker to pop out a second all-electric model. By the time the Nissan Ariya was introduced in 2023 it already trailed some of the competition in range and handling performance. That doesn’t change for 2025. The Nissan Ariya remains a fantastic improvement and step up from the Leaf, but except for its interior, it doesn’t stand out in the sea of compact electric crossovers and SUVs that EV shoppers can now choose from.
As a longtime Nissan EV driver – having leased a 2011 LEAF when they first came out and then later purchasing a 2018 LEAF – we waited anxiously for the carmaker to bring out the Ariya. We were impressed with its looks and features after viewing the new EV just prior to its on-sale date in the U.S.
It took a while after that to get into one, but we finally did and spent a week with the top-of-the-line, dual-motor, all-wheel drive Ariya Platinum. We found it to be a well-balanced EV with a quiet and comfortable ride, refined exterior design, outstanding interior, a long list of standard features, and top-notch driver assist and safety tech. But it proved to be only middle-of-the-road when it came to driving characteristics.
The Ariya doesn’t qualify for the buyer’s federal tax credit that can lop $7,500 off the price of competitive EVs from Chevrolet, Cadillac, Honda, Kia, and Tesla that do qualify. But Nissan often offers buyers cash rebates to make up some, or even all, of the difference. And those who lease can get the credit because of an IRS ruling exempting leased EVs from the credit’s “made in North America” requirement.
While the base Ariya trim has a barely adequate range of just 216 miles (205 miles with all-wheel drive), higher trims use a much larger battery and offer lots more range – up to 289 miles with front-drive and 272 with electronic all-wheel drive. However, there are other small electric crossovers, such as the Chevrolet Equinox EV and Kia EV6, that offer more power or more range – sometimes more of both – for less cost. At the top of the trim tree, Cadillac’s new all-wheel drive Optiq electric SUV outdoes the Ariya Platinum+ AWD in range and is its equal in interior quality and fittings.
Still, if winning slaloms and topping the 300-mile mark on range or the 3-second mark for 0-60 mph acceleration aren’t at the top of your list of musts, the 2025 Nissan Ariya is certainly worth a look.
Boding well for Ariya is that the nearly identical 2023 model has been named a top choice for used EV buyers by Recurrent, a company that tracks EV battery health, sales, and pricing. It earned this distinction because of its advanced driver assistance and safety technologies, retained value, and strong performance in cold climates. Because the Ariya hasn’t changed mechanically – or much in any way – from 2023 (except lower starting prices for each trim), Recurrent’s real-world report on two-year-old models is good news for shoppers considering the 2025 Ariya.
The Ariya uses an EV-exclusive platform from Nissan that enables a longer wheelbase and more interior space. By packaging the batteries under the floor, the platform gets rid of transmission tunnels and permits interiors with flat floors. Removing the internal combustion engine allows designers to shorten hoods and rethink front fascia, which no longer need open grilles to gulp air for the engine.
While we tested a 2024 Ariya, the 2025 models are identical. The only new features are that wireless phone charging is now standard in all trims and 2025 models built since the start of the year have the Tesla Supercharger-compatible NACS charging port as standard equipment. Models made before that date have the CCS port that requires a $235 accessory adapter to make use of Tesla chargers.
Nissan also dropped the Venture and Empower trims for 2025, winnowing the Ariya ‘family’ to a choice of four trims that include two battery sizes and two powertrain choices.
Nissin starts the Ariya lineup with a small battery-version, the Engage, followed by the Engage+, Evolve+, and Platinum. The first two can be had with front drive or, for a $4,000 upcharge, dual motor electric all-wheel drive that boosts power and range. The last two are dual motor AWD only that Nissan calls it e-4ORCE, because…why not?
The Ariya in base Engage trim starts at $41,160 including the $1,390 destination charge. It comes with front-wheel drive and a 66 kWh battery (63 kWh usable), 19-inch alloys with all-season rubber, and LED headlamps. Inside, there’s a head-up display, heated steering wheel and front seats, an eight-way power adjustable driver seat with memory, six-speaker stereo system, wireless Apple Car Play and wired Android Auto connectivity, wireless phone charger, and in-dash navigation. The all-wheel drive Engage variant starts at $45,160 and adds a beefier dual motor, electronic all-wheel drive system, and a sliding center console.
Evolve+ trim is priced at $45,760 for front-wheel drive. It has a 91 kWh battery (87 kWh usable) for more range and power, and adds to the base model’s standard features with items such as a panoramic moonroof, rain-sensing windshield wipers, 360-degree camera and monitor, eight-way power-adjustable front passenger seat, and a stow-away table in the sliding front console, The all-wheel drive version of the Evolve+ starts at $49,760 and adds the dual-motor e-4ORCE AWD system and a powered rear liftgate.
Engage+ e-4ORCE starts at $46,760 and adds the 91 kWh battery and larger front disc brakes to the base Engage AWD package. Stepping up to Platinum+ e-4ORCE, the top trim in the Ariya lineup, brings a near-luxury class price of $55,760. It has all the features of the Evolve+ AWD and adds a 9-speaker Bose audio system, Nappa leather upholstery, power tilt and telescoping steering column, position memory for exterior side mirrors, a hand-free power rear liftgate, and LED fog lamps. A version with 20-inch wheels is priced the same.
The base Engage with front drive gets a single 160 kW motor on the front axle and is rated at 214 horsepower and 221 lb-ft torque. EPA estimated range is 216 miles. The AWD Engage e-4ORCE gets motors on each axle with a combined output rating of 335 hp, 413 lb-ft torque, and an EPA range estimate of 205 miles.
Range and power for the big-battery variants differ depending on trim level and drive type. The front-drive Evolve+ gets a single 178 kW motor rated at 238 hp and 221 lb-ft torque. EPA estimates range for the front-drive Evolve+ at 289 miles. The all-wheel drive Engage+ e-4ORCE is rated at 335 hp and 413 lb-ft torque. Evolve+ and Platinum+ e-4ORCE versions get dual-motor systems featuring 389 horsepower and 442 lb-ft torque. EPA range estimates are 272 miles for the Engage+ and Evolve+ with AWD. The Platinum+ has more features and is heaver, so its range drops to 267 miles, or 257 miles with 20-inch wheels and tires.
Both of the base Engage variants (without the “+”) use liquid-cooled, 66 kWh battery packs that can recharge from 80 percent depleted to 80 percent full in 35 minutes on a DC fast-charger rated at 135 kW, and in 65 minutes at 50 kW. For home charging on 240-volt Level 2 equipment, the Ariya has a 7.2 kW on-board charger that needs 10.5 hours to fully replenish an empty 66 kWh battery. All other 2025 Nissan Ariya trims and variants get a liquid-cooled 91 kWh battery. Charging at DC fast charge systems is a bit slower versus the base Engage because the battery has almost 50 percent more capacity. Per Nissan, it takes 40 minutes at 135 kW and 90 minutes at 50 kW. Home charging takes 14 hours with the larger battery if starting from a fully discharged state.
We found the Ariya range estimates to be fairly accurate. On a 232 mile trip in the Platinum+ e-4ORCE with 20-inch wheels, we lost just 11 percent – 28 miles – of the EPA-estimated 257 miles of range. The trip included 183 miles of freeway driving and 49 miles of city and country roads. Overall energy consumption worked out to 36.4 kWh per 100 miles, or 2.75 miles per kWh.
The Ariya’s interior is one of the best at the non-luxury level, with a modern minimalist look, quality fittings, and, in upper trims, interesting ambient lighting that pops from laser-cut screening in the foot wells and along the upper door panels. The center console has backlit touch controls for drive and regenerative modes. There’s a metal trim bar that runs the width of the lower dash with matching trim on the console. The bar is lighted and, in models with the advanced ProPilot 2.0 driver assistance system, changes colors to communicate various driving modes. There are dual glove boxes but no center console storage on lower trims, while upper trims get a center console storage compartment and a roomy locking storage drawer that slides out of the lower dash panel.
Seat upholstery is leatherette (vinyl) on all but the Platinum trim, which gets Nappa leather. Seats are supportive and nicely padded front and back, with adequate adjustments for the driver and front passenger seats. The Ariya is near the top of its price class in headroom and front legroom. Even in back, where it trails competitors by an inch or more, the flat floor opens up room others don’t have and gives passengers room to sprawl a bit. All trims get power-adjustable driver’s seats while the two top trims also get power-adjustable front passenger seats.
A pair of 12.3-inch, horizontally-oriented screens pop up from a padded dash that is otherwise nearly barren of visible knobs and switches. A volume knob for the stereo sits at the bottom center of the infotainment screen. A row of backlit, touch-sensitive switches for the climate control system is hidden under a woodgrain trim strip along the dash bottom.
Most functions are controlled via the center-mounted infotainment touchscreen or by touch controls on the flat-bottomed steering wheel. The other 12.3-inch screen, mounted behind the wheel, serves as a digital instrument panel and delivers information the driver needs to know. The center console stops short of the dash and there’s no center stack. Nissan did a good job of sound attenuation and while some wind noise does get through, the cabin is very quiet even at high speeds.
Ariya offers 27.9 cubic-feet of storage space behind the rear seats. Flip the 60/40 split rear seats down and that grows to almost 60 cubic feet. The ‘crossover coupe’ shape (think BMW X6) helps the Ariya’s looks but eats into cargo space just a bit, although it remains very competitive in the segment with slightly more cargo space than the Kia EV6, Honda Prologue, Chevrolet Equinox EV, and Cadillac Optiq.
The two top Ariya trims are rated to tow up to 1,500 pounds. That capability fits the needs of those needing to tow items such as a small utility trailer, a jet ski, or a small sailboat.
We tested the Platinum+ e-4ORCE and found it to be comfortable, quiet, and pleasant to drive. It exhibited sprightly acceleration, though without the stomach-dropping kick many EVs offer when the accelerator is jammed to the floor. Nissan claims a 5.0-second time for a 0 to 60 mph sprint in the 389 hp Ariya variants, and that’s about what we experienced. Drop down to the entry-level Engage, though, and acceleration gets a bit sluggish for an EV at 7.5-seconds for that same 0-60 run.
The 2025 Nissan Ariya boasts a low center of gravity and in AWD versions a 50:50 weight balance, but it still isn’t a sports car (the Platinum trim weighs in at 5,057 pounds). Ariya doesn’t like to be pushed hard into corners and offers little in the way of steering feedback. Overall, it’s best suited to highway cruising and leisurely sight-seeing drives in the mountains and on winding country roads. There is a high-performance NISMO edition with a re-tuned chassis and 429 horsepower available in Japan and Europe, so the car’s handling and power delivery can be improved. That variant costs about $5,000 more than the top-spec Platinum+e-4ORCE in Japan and there are no plans at present to bring it to the U.S.
Nissan’s ProPilot suite of driver assistance and advanced safety systems is standard on all Ariya trim levels. ProPilot includes full-range adaptive cruise control, lane departure warning with lane keeping assist, forward and rear automatic emergency braking, blind spot monitoring, and rear cross traffic alert. It’s linked with the on-board navigation system to more accurately predict highway conditions ahead and has speed adjust to automatically slow on curves and offramps. Nissan provides its updated ProPilot 2.0 system as standard equipment on the Platinum+ trim and as an option for the Evolve + AWD. It includes all the base ProPilot systems and adds automated highway driving capability and automated parking assist. The Evolve+ and Platinum+ trims also get a 360-degree camera-based monitor system.
The Ariya has been awarded a 5-star overall safety rating by the National Highway Traffic Safety Administration (NHTSA) and has been named a Top Safety Pick by the nonprofit Insurance Institute for Highway Safety (IIHS).
This was originally published on thegreencarguy.com. Author John O'Dell is a distinguished career journalist and has a been an automotive writer, editor, and analyst specializing in alternative vehicles and fuels for over two decades.
Hydrogen has long held promise in delivering environmentally conscious power for transportation, homes, and life in general, but it’s been a long road. There are reasons. Holding hydrogen back has been its high cost, a near-complete lack of pipelines and fueling infrastructure, and the environmental impact of sourcing this amazingly clean fuel. At the same time, driving continuing interest is the very real benefit of moving on from hydrocarbons and transitioning to this energy source not only for hydrogen vehicles, but also for use as civilization’s primary fuel source. Let’s dive deeper to examine hydrogen’s story.
Why hydrogen? That’s easy. Hydrogen is the simplest and most abundant element on the planet, and in fact, in the universe. Hydrogen, with oxygen, makes up water (H2O) and is also found in nearly all organic compounds. Hydrogen is so highly combustible it has served as a primary rocket fuel, including in the U.S. Space Shuttle program. Hydrogen is also being explored by NASA for hydrogen hybrid fuel cell/gas turbine engines for commercial aviation and other missions.
More importantly to us here on Earth, hydrogen burns in air without carbon emissions and its only byproducts are water vapor and oxides of nitrogen (NOx), the latter because air contains nitrogen. When used to create electricity through an electrochemical fuel cell, there is no combustion and thus no unwanted emissions at all, just heat and water vapor. This is the high-profile environmental calling card of hydrogen fuel cell vehicles. It’s also a growth market, with Research and Markets projecting the hydrogen fuel cell vehicle market growing from $8.21 billion this year to $20.49 billion in 2030. Overall, all this would appear to make hydrogen an ideal fuel for our time.
Ah, but things are not so simple. Pure geologic ‘white’ hydrogen does exist in its natural gaseous state but has been considered rare, found deep in the earth and deemed economically and logistically unrealistic as a resource. So, while we may be surrounded by hydrogen, the fact that it’s typically bonded with other elements means it must be separated to yield the ideal fuel we seek.
Today most hydrogen is created by steam reforming natural gas, a thermo- chemical process that extracts hydrogen from methane. The resulting product is known as ‘grey’ hydrogen because of the carbon created and a less-than-ideal over- all environmental impact. When steam reforming is combined with carbon capture and storage it’s known as ‘blue’ hydrogen, with the process considered low carbon or carbon neutral since the carbon created is sequestered from the atmosphere.
A more environmentally compatible way of creating hydrogen is by electrolyzing water. This electrochemical process strips water’s two hydrogen atoms from its oxygen atom to produce hydrogen gas. Electrolysis requires significant electrical energy so where this energy is sourced is paramount. If the electrolytic process uses electricity from renewable sources like solar, wind, or hydroelectric power, this is known as ‘green’ hydrogen. That color designator changes to ‘pink’ hydrogen if the electricity comes from nuclear energy. Color palette aside, today’s challenge is to devise the most efficient, low cost, low carbon, and environmentally positive ways to source clean hydrogen to help drive us to a zero carbon future.
Not so long ago, hydrogen generated serious interest among most of the auto industry’s major players as it competed with the commercialization of other alter- native fuels, most notably alcohol fuels, natural gas, propane autogas, and electricity. We’ve all seen battery EVs surge ahead with many breakthroughs, product commitments, and not inconsequentially, enormous government funding. But that doesn’t mean hydrogen is down and out.
There have been many hydrogen vehicles developed and fielded in relatively small numbers over the past three decades. While some early models like Honda’s FCX were available in limited numbers to consumers, most others were exclusive to fleets, destined for field trials, or introduced as driveable prototypes or concepts. Among these zero-emission fuel cell vehicles were the Ford Focus FCV, GM HydroGen3 and Sequel FCEV, Hyundai Tucson FCEV, Mercedes-Benz F-Cell, Nissan Xterra FCV, Toyota FCHV, and VW Touran HyMotion. Taking another approach, models like the Mazda RX8-RE and BMW Hydrogen 7 sedan burned hydrogen in their internal combustion engines, nearly emissions-free with the exception of minimal NOx.
Efforts to commercialize hydrogen vehicles continue, though in ways different than what was seen in the recent past. There are fewer automakers making hydrogen a priority these days, though the ones that are involved count for a lot. Toyota, Honda, and Hyundai – and to a lesser extent GM and BMW – are seriously in the game on the light-duty side. Among the most notable hydrogen models are today’s Toyota Mirai and Hyundai Nexo hydrogen fuel cell vehicles, and in our recent past the Honda Clarity Fuel Cell sedan that was with us for a few short years until 2022.
Truck makers like Freightliner, Hyundai Motor, Volvo Trucks, and Nikola are also involved on the commercial end of the spectrum. Because of government regulations and the realities of the
market, it may be that hydrogen big rigs powered by fuel cells are destined to lead the way. As hydrogen power gains momentum in the commercial space, larger commercial trucks transporting weighty loads will likely be fueled with liquid hydrogen, rather than the gaseous hydrogen used by light-duty consumer and commercial vehicles. The reason is simple: hydrogen stored as a liquid in a cryogenic state (-253 degrees C) offers much greater energy density than gaseous hydrogen, which means more fuel can be carried on board for greater driving range.
A coordinated strategy involving hydrogen vehicles and fueling opportunities has always been required since one can’t exist without the other. Government has taken a lead role in providing grants and financial incentives for hydrogen fueling over the years and energy companies have stepped up to the plate, to a limited degree. We’ve seen automakers work hand-in-hand with energy giants like Shell and Chevron as limited rollouts of hydrogen vehicles have taken place exclusively in areas where hydrogen stations are available. There have also been coordinated efforts in developing hydrogen fueling along major highway corridors to support hydrogen commercial vehicles.
Hydrogen vehicles hold a distinct advantage over EVs since they can be refueled in about the same amount of time as a gas vehicle. However, they face a significantly greater challenge in finding a place to fill up. After Shell recently closed down seven public access H2 stations in California, this left just over 50 public hydrogen stations in the entire country, all of these in the Golden State with the exception of a single station in Hawaii. Shell continues to operate commercial hydrogen stations in California.
Innovations continue apace even amid these challenges. Though Honda’s Clarity FCV is behind us, this automaker is continuing on its hydrogen journey with a new plug-in hydrogen CR-V e-FCEV built in Ohio. The CR-V e-FCEV is being leased for $459 per month with a $15,000 hydrogen fuel credit. There’s other evidence of a growing emphasis on hydrogen power, like the hydrogen fuel cell joint venture between Honda and GM that aims to manufacture fuel cells at scale in Michigan to drastically lower their cost. Toyota is also assembling fuel cell modules at its Kentucky manufacturing plant for heavy-duty truck customers. Plus, major automotive suppliers are accelerating their activities with hydrogen vehicle systems and components.
Hydrogen’s potential is illustrated in interesting ways at Toyota’s port facility in Long Beach, California, where a FuelCell Energy Tri-gen system uses renewable biogas to create up to 1200 kg per day of hydrogen, 2.3 megawatts of renewable electricity, and 1400 gallons of water to support the automaker’s port operations. Hydrogen created here supplies a nearby heavy-duty fueling station for zero emission drayage operations and fuels Mirai FCEVs arriving at the port.
One of the most important pushes for hydrogen in recent times comes from $8 billion in funding from the Bipartisan Infrastructure Law supporting the creation of regional clean hydrogen hubs. The focus at seven designated hubs includes hydrogen production and distribution, with hydrogen created by electrolysis and other means combined with carbon capture. The aim is to produce three million metric tons of clean hydrogen annually. Establishing hubs strategically located across the country will serve to create an interconnected hydrogen ecosystem that will expand nationally in an effort to support a growing hydrogen economy.
As always, technologies evolve and new innovations come to light. Such is the case with hydrogen, as a new frontier is being explored that could exploit potentially vast reserves of ‘white’ hydrogen recently discovered on multiple continents, including North America. Trapped in geologic fields like oil and natural gas, this source of naturally occurring hydrogen can be extracted in similar ways and has the potential to provide massive amounts of low carbon hydrogen in the future.
Using the most abundant element in the universe to power our vehicles and lives is a compelling proposition, especially considering its ability to do so through fuel cells that produce only water vapor as a byproduct. That’s why so many scientists, engineers, companies, and governments are hard at work addressing hydrogen’s commercial challenges. Whatever direction hydrogen power takes in the years ahead in response to changing administrations and shifting clean energy strategies, trust that it will remain of interest as a potential answer to low- or no-carbon mobility. It promises to be an interesting journey
When GM officially ended its EV1 electric car program in 2003 and recalled all its leased-only models, there was a feeling that it had given up on EVs. That wasn’t the case. There were rumors early on that another electric vehicle program was in the works and more evidence of this emerged just a few short years later. This article, which shares early details on the concept that would lead to the production Chevrolet Volt, is presented from our archives just as it appeared in Green Car Journal’s Winter 2006 issue. While there’s more to the Volt’s story since this electric vehicle was also discontinued in 2019 – much to the chagrin of a great many Volt owners who universally loved this vehicle and its innovative electric drivetrain – that story will have to wait for another time.
Excerpted from the Winter 2006 Issue: General Motors is back in the electric car business. First, the company announces a plug-in hybrid version of the Saturn Vue at the L.A. Auto Show. Now, GM has turned up the juice by unveiling the Chevrolet Volt, an “EV range-extender” concept car that makes petroleum an even smaller part of the equation. In fact, with its 40 mile pure electric range – which GM says covers more than half of all Americans’ daily commute to work and back – the Volt may eliminate the need for gasoline altogether for some drivers.
Central to the Volt concept is the new E-flex System, which GM says represents a rethinking of automotive propulsion that places primary focus on electric drive. Plugging in to a 110-volt outlet for about six hours will fully charge the car’s lithium-ion batteries. When the batteries run out after 40 miles of electric-only driving, a 1.0-liter,three-cylinder turbocharged engine runs at constant speed, turning a generator that replenishes the batteries. That engine could be replaced in future iterations of the concept with powerplants that run on pure ethanol (E100) or biodiesel, or even with a fuel cell running on hydrogen...thus the “flex” in the E-flex System.
In the Volt, the gas-powered engine gets about 50 mpg while it’s working to sustain the batteries. Some quick math reveals that overall fuel economy would be a staggering 150 mpg for a 60-mile drive. Run the engine on E85 ethanol, as the Volt is capable of doing, and even more gasoline use is displaced. Importantly, the Volt is able to do all this without compromising utility, which is a significant problem that plagued the truly wonderful but now infamously defunct GM EV1. The Volt will easily seat four passengers and their luggage, accelerate to 60 mph from a standstill in under 8.5 seconds, and cruise for 640 miles without refueling.
The Volt is about the size of the compact Cobalt and based on a similar vehicle architecture, yet with a much more athletic stance. The styling is sharp, edgy, and distinctively Chevrolet. One interesting feature is a transparent roof and beltline courtesy of glazed polycarbonate material from GE Plastics. The plug-in recharging ports are tastefully integrated into the front quarter fenders on either side of the vehicle.
Unfortunately, the Volt is being held back by the same culprit that actually killed the electric car the first time around: battery technology. GM admits that it is still waiting on a technological breakthrough to produce a large, production-ready lithium-ion battery pack.
GM thinks that could happen by 2010 or 2012, though we’ve been through times of optimistic predictions like this before when battery breakthroughs just didn’t come. Still, we’re crossing our fingers on the battery issue and it’s nice to see the General all charged up again.
Pickup truck manufacturers seem to be in a constant state of one-upmanship, with each new vehicle claiming to have ‘best in class’ capability, whether it’s power output, towing capacity, or some other work-related feature. So it isn’t all that surprising to hear Stellantis call its upcoming RAM 1500 Ramcharger ‘class-shattering.’ But if this new EV pickup hits the range figures RAM claims, that will be no brag.
The 1500 Ramcharger is one of two electrified pickups RAM is set to offer, with the Ramcharger coming first in 2025 and the RAM 1500 REV following next year. While the REV is a conventional battery-electric vehicle, the Ramcharger goes in a different direction, with a relatively modest 92 kWh battery pack augmented by a 130-kW generator and an onboard 3.6-liter Pentastar V-6 gasoline engine.
There is no path for the engine to directly drive the wheels. Instead, the generator converts the engine’s mechanical power to electrical power. That electricity can then either charge the battery or be routed to the truck’s front and rear electric drive modules (EDMs), which can tap both the generator and the battery pack for maximum power. Stellantis rates that output at 663 horsepower and more than 615 lb-ft torque, power that will enable the Ramcharger to hit 60 mph in 4.4 seconds.
Now, here comes the class-shattering part: The target range for the Ramcharger’s battery/generator combo is up to 690 miles, far outlasting the Chevrolet’s Silverado EV’s 492 miles of range and the Ford F-150 Lightning’s 320 miles.
With those performance targets, the Ramcharger will also lead the EV pickup class in towing and payload capacities, critical metrics for any pickup buyer regardless of powertrain. Tow capacity will max out at 14,000 pounds, while payload capacity will reach up to 2,625 pounds. Those ratings handily beat the Silverado EV (10,000/1,300 pounds) and the Lightning (10,000/2,235 pounds). They’re also higher than the 2025 RAM 1500 powered by the new, gasoline-fed 3.0-liter Hurricane I-6 (11,580/2,300).
The Ramcharger is built on Stellantis’ new STLA Frame, a body-on-frame architecture that positions the liquid-cooled battery pack beneath the floor at the center of the truck. Power delivery is split between a 250-kW front EDM (with an automatic wheel disconnect for free-wheeling under certain conditions) and a 238-kW rear EDM that can be fitted with an optional electronic locking differential. Pre-configured software offers the driver a choice of five driving modes to suit conditions – auto, sport, tow, snow, and off-road. Ramcharger rides on a fully independent suspension that includes a standard four-corner air suspension system with five height modes ranging from entry-exit to a choice of two off-road settings for extra clearance.
Though Stellantis has said the Ramcharger has “zero need for a public charger,” that functionality was not ignored. The pickup’s charge port accommodates Level 1 and 2 AC charging and DC fast charging. Up to five miles of range per minute can be added with 400-volt DC fast charging at up to 175 kW. The electrical system was also engineered with vehicle-to-vehicle and vehicle-to-home bi-directional charging capability. On-board electrical power can be tapped via an electrical panel in the bed that can provide up to 7.2 kW of mobile power and through 115-volt outlets in RamBox storage bins in the bedsides.
The Ramcharger’s exterior was designed with styling cues that echo conventionally powered RAM pickups, but with enough EV-only touches to set it apart from the rest of the fleet. Likewise, the interior is laden with high-tech hardware, including a 12.3-inch digital instrument cluster and a configurable, full-color head-up display in front of the driver. The passenger position gets its own 10.25-inch screen with controls for navigation and an HDMI plug to connect devices. The center of the dashboard is home to either a 12- or 14.5-inch touchscreen loaded with the automaker’s new Uconnect 5 infotainment system.
Ordering the range-topping Tungsten trim level adds a Klipsch Reference Premiere audio system, its 1,228-watt output and 23 speakers making the system, as Stellantis points out, best in class. Among the safety features built into the Ramcharger is an autonomous drive assist system that includes Level 2-plus Hands Free Highway Assist. Autonomous parallel and perpendicular parking is also available.
The decision to revive the legacy Ramcharger SUV nameplate long-ago discontinued by Dodge and bring it back as an electric RAM pickup is a strategic move by Stellantis. With its electric motors driven by both battery and engine-generator electric power, the 2025 Ramcharger may well be a pickup enthusiast’s dream, providing a more environmentally positive EV driving experience while delivering the kind of full functionality and range expected by truck buyers everywhere.
More people around the world recognize Arnold Schwarzenegger as the ‘Terminator’ rather than California’s 38th governor, a high-profile role he filled from 2003 to 2011. A prolific actor and world-class bodybuilder who achieved the titles ‘Mr. Universe’ and ‘Mr. Olympia’ many times over, Schwarzenegger was nominated for the President’s Council on Physical Fitness and Sports by President George H. W. Bush in 1990. Clearly, public service agreed with him. When the Republican ‘Governator’ successfully ran for office in a recall election against then-Governor Gray Davis in 2003, his chances for turning around a state in financial turmoil were widely debated. What occurred during his tenure was strong leadership and a surprising knack for championing both business and the environment. This interview 18 years ago by Green Car Journal editor Ron Cogan shares former Governor Schwarzenegger’s strong views on hydrogen, electric vehicles, alternative fuels, and the need to mitigate air pollution and carbon emissions.
This article shares a 2006 interview of Governor Schwarzenegger by editor/publisher Ron Cogan and is presented as it originally ran in Green Car Journal’s Spring 2006 issue.
Ron Cogan: Air pollution has represented one of California’s epic challenges. How would you say the state’s air quality is doing today?
Gov. Schwarzenegger: “California has made great strides to improve air quality in the past 20 years. There are far fewer Stage One smog alerts, for example, than there were just five or 10 years ago. But so much more remains to be done. That’s why in my Action Plan for California’s Environment, I pledged to reduce air pollution by 50 percent by the end of this decade, and we’ve worked hard to achieve that goal. In my first year in office, we put $140 million a year of permanent funding into the Carl Moyer program and more money into the Breathe Easier campaign, two programs that take the most polluting cars, trucks, and buses off the road and put clean, alternative fuel vehicles in their place. We’ve also put state government on an ‘energy diet’ with my Green Buildings Initiative because electricity generation is another source of air pollution. And in my Strategic Growth Plan, I made air quality a component of our state infrastructure – right up there with roads, mass transit, water projects, and schools.”
RC: Your most high-profile vision for California’s transportation future involves hydrogen. Why this fuel?
Schwarzenegger: “Hydrogen is fantastic because the only emission from the tailpipe is water. It is also a fuel that we can produce in California, instead of relying on oil from foreign countries. In fact, we can make hydrogen from solar power and water; we can make it from biomass that comes from our farms; we can make it from waste materials. It’s the best hope we have to make California and the United States energy independent and end our oil addiction.”
RC: Have you gained the support you were expecting for this hydrogen effort from auto and energy companies?
Schwarzenegger: “Absolutely. They are my partners in the Hydrogen Highway Network and we couldn’t do it without the car companies, the energy companies, the environmental groups, our amazing California universities, and my team at CalEPA. As I always say, we get much more done when we all work together.”
RC: What about political support?
Schwarzenegger: “That’s been fantastic too. The members of the Legislature are my partners and the Hydrogen Highway is a great example of how we can get great things done for the people of California when we work together. And may I add, that we have all enjoyed driving the hydrogen cars that are being demonstrated throughout the state right now.”
RC: How much do you expect a hydrogen fueling infrastructure to cost the state?
Schwarzenegger: “Thanks to the 200 partners who helped us draft the blueprint for the Hydrogen Highway Network, the state is actually investing a very small amount compared to the terrific investments being made by energy companies, automakers, local air districts, the federal government, and many other partners.”
RC: What financial impact would you expect hydrogen vehicles, and the supporting industries surrounding a growing hydrogen vehicle fleet, to have on the state?
Schwarzenegger: “California is already the center of the hydrogen technology revolution. Just like Silicon Valley is to computers, we will see more and more hydrogen businesses starting up or expanding in our state and that’s great for our economy.”
RC: Other states are also striving for hydrogen leadership. How can California stay ahead and attract hydrogen-related business?
Schwarzenegger: “By continuing our partnerships and implementing the vision of the Hydrogen Highway. That’s what was missing from the efforts in every state. No one wanted to build fueling stations without vehicles; and no one wanted to mass produce hydrogen vehicles without a network of fueling stations. We’ve solved that problem and that’s why everyone is coming to California to start the hydrogen economy.”
RC: We’ve heard before that California’s Zero Emission Vehicle mandate had a direct influence on development of Partial Zero Emission Vehicles and on hybrids. Do you see a value in mandates like this?
Schwarzenegger: “Each advance stands on the shoulders of what came before. Hydrogen vehicles will benefit from battery electric car technology and so many other innovations that started right here in California.”
RC: How important are extremely low emission hybrids to our transportation mix?
Schwarzenegger: “Very important. When I visited Japan, Prime Minister Koizumi and I talked about how he was ‘greening’ the government fleet there, both to clean up air pollution and to get more out of limited fuel supplies. We’re doing the same thing here, which is why I launched the ‘Flex Your Power at the Pump’ campaign to educate drivers about how to save as much as 15% of their fuel, which saves money and spares the air.”
RC: What about other alternative fuels like ethanol and natural gas?
Schwarzenegger: “These fuels are important too, because we must end our addiction to oil and while hydrogen vehicles are not yet affordable for everyone, right now you can go out and buy flex fuel vehicles or vehicles that run on natural gas and biofuels.”
RC: You’ve called for substantial reductions in greenhouse gas emissions. What kind of changes will be required for motor vehicles to contribute their share to these reductions?
Schwarzenegger: “We know that vehicles contribute as much as 50 percent of the greenhouse gases, so they will have to make big reductions. That’s why I’ve said all along that I support California’s landmark greenhouse gas reduction law (AB 1493 Pavley) and will defend it in court from the challenges that we know are coming.”
RC: How do you stand on cleaning up school buses?
Schwarzenegger: “My budget each year has provided money to scrap the dirtiest, oldest buses and replace them with cleaner vehicles. I’ve seen the studies that show how bad the air quality is inside those old buses and we must protect our children.”
RC: How important is it to focus on non-road vehicles and other sources to address air pollution?
Schwarzenegger: “Of course, that’s important too. That’s why I appointed Bob Sawyer as Chair of the California Air Resources Board, because he’s the leading scientist on these matters and I know that with our other Board members and the great staff at CARB, we will win the battle against air pollution, no matter what the source.”
RC: California uses an enormous amount of gasoline and diesel fuel. How can the state decrease its vulnerability to price spikes and possible motor fuel shortages?
Schwarzenegger: “We need to expand the use of biodiesel in California and get more of our trucks and buses running on natural gas and other cleaner fuels. Of course, if we reduce our demand for gasoline that also allows refineries to produce more diesel, which reduces the potential for shortages. But the key thing is to move away from petroleum and towards hydrogen and other clean fuels.”
RC: If there was one thing you could do to improve air quality or energy diversity during your time as Governor, what would it be?
Schwarzenegger: “I’d say the key thing is to make sure every Californian understands that each of us is responsible to solve these problems of air pollution and oil addiction. Each of us can walk more or ride a bike, take a bus, drive a fuel-efficient car, promote energy efficiency in the workplace, and take other measures to improve air quality and reduce our dependence on oil. And of course, as soon as hydrogen cars are in the showrooms – within the next few years – I hope everyone will buy them and start driving on California’s Hydrogen Highway!”
There’s a continued disconnect between what the broader automotive industry sees from growing, albeit slowly, EV sales and how U.S. dealers view this class of vehicles. At CDK, we wanted to uncover if anecdotes about a lack of enthusiasm on the retail level were real and to test our own hypothesis that it could be largely driven by where the dealers were located.
Why is geography so important? One word, or place: California.
More EVs are sold in California than anywhere else in the country. Nearly one-third of all battery electric vehicles (BEVS) in the first half of 2024 were sold in the Golden State. And the state of Washington is a major player too. That means dealers in those states likely view the technology much differently than clearly those in more rural areas but also populous areas in states from Michigan and Ohio to Tennessee and South Carolina.
In CDK’s Dealers Face the EV Transition white paper, the map is broken down not just regionally but at a subregional level. That allowed us to look at what’s happening on the ground for dealers, their sales teams, and what store leadership sees as the impact on their bottom line.
It was plain to see that Pacific shoppers were the most interested in EVs at 55 percent while the mid-Atlantic states of Pennsylvania, New York, and New Jersey saw far, far less interest at just 10 percent. That might seem counter to popular thinking, but dealers sell cars in every town, and from the suburbs on out, cars are a way of life that’s hard to change. The least interest came from West South Central – Arkansas, Oklahoma, Louisiana, and Texas at 3 percent. Yes, even though a lot of EV sales happen in Texas, dealers across the state and surrounding states aren’t feeling electric love from customers.
These results came before recent retreats from automakers on their EV plans. Dealer networks are the frontlines when it comes to sales and service, and leadership wasn’t rosy on how EVs would impact their bottom line.
Nearly three-quarters (73 percent) of dealers think EVs will have some negative impact on their bottom line with 53 percent saying they’ll have a negative impact on both their front and back end gross. Only 7 percent see EVs as having a positive financial impact.
Despite this pessimism, nearly three out of five dealers (59 percent) have already started transitioning their stores to sell and service EVs. Only 11 percent remain steadfast against EVs in the near future, saying they don’t plan any changes to adjust for selling and servicing EVs. But as we noted in our white paper: “Most of these EV-resistant dealers are generally smaller operators, with 75 percent saying they own one to two rooftops, and 89 percent are located in rural areas.”
With all these fluctuating conditions, the key stat of the white paper may actually not be as negative as it seems at first glance. When asked if they were optimistic or pessimistic about the EV transition, most (65 percent) fell into the pessimism camp with 19 percent being optimistic and the rest (16 percent) being neutral. The fact that the pessimism number comes below the number of dealers forecasting lower profits is a tiny sliver of a silver lining.
The thing to remember is that we’re indeed in a transitional period, shifting an entire national fleet of cars from something familiar (and often nostalgic) to an electric future that hasn’t made its case in every corner of the country. The nation’s car dealers are pragmatists and offer an unvarnished view of what they see in showrooms every day.
David Thomas is Director of Content Marketing at CDK Global, a leading provider of cloud-based software to dealerships and original equipment manufacturers across automotive and related industries.
VW’s iconic Beetle and Transporter were signature vehicles on the roads of America because, for a time some six or seven decades back, they were virtually everywhere. They were also underpowered and pretty utilitarian, though that didn’t stop them from getting the love from adoring fans. That same love is soon to befall the all-new VW ID. Buzz.
The Transporter of old – known by many here as the VW Microbus, or just the VW Bus – never achieved the sheer volume of its cousin the Beetle (aka Bug). Still, it has an enduring place in the hearts of Americans who see the occasional restored VW Bus on the road or at the beach, harkening back to a simpler time when affordable and adorable vehicles were available to everyone.
When VW debuted its ID. Buzz electric microbus concept in the States seven years back, an instant cult following emerged. People wanted this, and they wanted it bad. We could see why after experiencing an up-close-and-personal tour of the production model last year in Southern California. We have to say…we liked what we saw.
Comparable in size to VW’s Atlas Cross Sport, the ID. Buzz is visually stunning and showcases modern stylings with futuristic elements, but doesn't lose that vintage essence shared by the VW Buses of old. One such homage to its ancestry is the model’s vibrant color palette that optionally contrasts with white splashes on both the interior and exterior. Keeping things modern is standard IQ.Drive with adaptive cruise control, a digital dash with a 12.9 inch infotainment center, plus USB and wireless charging options for all your electronic devices.
Inside is an inviting cabin with three rows of seats that can accommodate up to seven. Front seats feature standard heating, cooling, and massage features, while the second row comes with heated seats. Both rear rows are fully foldable, with the rearmost row entirely removable to create additional space for adventures. The ID. Buzz features a pair of power sliding side doors, sliding windows in the cabin, an optional sunroof that can be darkened, and a spacious rear hatch. Three interior color ‘worlds’ are available including mid-century modern-vibed Copper, moody dark themed Moonlight, and coastal-themed Dune.
Two power choices are available for the ID. Buzz, with a rear-mounted electric motor offering 282 horsepower or dual motors producing 330 horsepower. A 91 kWh lithium-ion battery energizes both versions. The rear-drive ID. Buzz features an EPA estimated 234 mile driving range with the all-wheel drive two-motor variant delivering a 231 mile range. It’s worth noting that the ID. Buzz comes with the ability to tow via a manually-retractable tow hitch that’s cleverly hidden behind the rear bumper when not in use.
Three versions of the ID. Buzz will be offered at launch including the entry-level Pro S at $59,995; the Pro S Plus at $63,495 to $67,995; and the 1st Edition at $65,495 to $69,995. The higher figure for the latter pair comes with dual motor all-wheel drive. Fans of this iconic electric microbus/van will find the ID. Buzz hitting North American highways later this year.
Today’s developments surrounding EVs are not a surprise. They were predictable, an awakening of sorts, to the realities of personal mobility needs and the true desires of a driving public amid a significant and sustained push toward electrification.
Unsold inventories of battery EVs at dealer lots, significant price cuts to move metal, and a rethinking of strategies are just part of today’s electric vehicle universe. We are seeing this new reality across the automotive spectrum as companies previously committed to being “all-in” for EVs – from Ford and GM to Volkswagen and Volvo – reassess the way forward.
Yes, interest in battery electric vehicles has grown substantially in recent years. EV sales have captured a larger slice of the new car market than might have been imagined in just the recent past and that percentage has been growing faster than before. This should rightfully be celebrated by EV enthusiasts. An impressive expansion of the zero-emission EV market should also be celebrated because of the considerable impact this has on decreasing carbon emissions, though it’s becoming increasingly clear that the hoped-for wholesale move toward battery EVs will not resolve our carbon challenges.
After more than three decades of documenting the commercialization of electric vehicles, I feel compelled to point out that EVs still represent a fraction of the overall automotive market and there remains great interest in more familiar options. Battery electric vehicles simply do not meet everyone's needs at this time. Barring significant breakthroughs in technology, cost, and convenience – the latter bolstered by an expansive and reliable national charging network and a resilient electrical grid to support it – there’s a possibility they may not meet all motorists’ needs for some years in the future. To our collective detriment, that has not stopped the powers-that-be from forcing an EV-first agenda.
The assumption that government can severely restrict consumer vehicle choices without alienating huge numbers of car buyers, creating financial havoc and uncertainties within the auto industry, and bringing an array of unintended consequences in coming years is simply an act of hubris. I've witnessed other examples of this over the years. Ultimately, the outcomes have not favored those in power who overstep and assume they know more about the needs and desires of car buyers than buyers themselves.
There are many reasons for this, but fundamentally let’s remember that a motor vehicle – beyond serving as a social conveyance for projecting image, status, values, or nuances of all sorts – is a crucial tool to get folks safely and reliably to work, school, the market, or wherever they need to be, regardless of distance or driving conditions. And lest we forget, a new car typically represents the second largest consumer purchase after a home. That makes buying a car an important financial decision beyond just being a very personal choice.
The battery EV’s rather eye-opening depreciation, identified by car search engine and research firm iSeeCars as averaging 49.1 percent over the first five years, isn’t very comforting from the standpoint of a financial strategy. It’s worth noting that iSeeCars doesn't see this same kind of depreciation across the board for electrification, identifying hybrids as having a nearly 12 percentage point advantage over EVs in value retention over a five year period, slightly better than the depreciation rate for all types of cars.
How much has changed for electric cars over the years? A lot…and too little. To share some perspective, I’d like to offer up a Green Car Journal editorial I wrote in 2012, Curb Your (EV) Enthusiasm. It seems prescient today. In it, a dozen years ago, I pointed out that:
– After decades of battery development, the expectation that battery breakthroughs would come to make EVs cost competitive with internal combustion vehicles had not materialized.
– Battery electric cars still required significant federal subsidies to encourage sales because of their high battery cost and retail price.
– In a normal world, a compact electric SUV should not cost $50,000, a four-door electric sedan $40,000, or a small electric hatchback over $30,000.
– A small number of electric vehicles might be available under $30,000, but comparable internal combustion models would typically be priced many thousands of dollars less while offering greater functionality.
– Government agencies viewed EVs as a panacea for decreasing CO2 emissions, improving air pollution, and enhancing energy security.
- States embraced electric vehicles in their State Implementation Plans as a strategy for showing how they would meet air quality standards mandated by the Clean Air Act.
– Automakers recognized electric propulsion as a strategy for meeting increasingly higher fleet fuel economy targets.
– Electric utilities viewed EVs as a pathway to selling electricity as a motor fuel.
The conclusion about the way forward a dozen years ago? Battery electric vehicles are one part of the solution along with advanced combustion vehicles, hybrids, plug-in hybrids, and extended-range electric vehicles that create on-board electricity to provide full functionality.
It appears there’s a growing consensus today that we’ve come full circle to this way of thinking. As electric vehicle sales cool, multiple automakers have shared they are backing off from previously-announced timelines for EV model introductions, new EV assembly lines, and greenfield battery plants. There’s also a new emphasis on producing an expanding lineup of hybrid and plug-in hybrid models that consumers increasingly desire, even on the part of major automakers that have previously announced plans to exclusively build battery electric vehicles and have shown little interest in hybrid power.
All this underscores that as much as we’re enamored with modern battery electric vehicles and their ability to address carbon emissions, they are not the singular answer to future mobility. They are a choice among other vehicles and technologies that also speak to individual needs, desires, and environmental sensibilities. And that’s the way it should be.
There’s an all-new Dodge Charger Daytona hitting the streets of America. This storied name channels echoes of of the past with the mind’s eye visualizing the rare, wildly-winged 1969 Dodge Charger Daytona of the muscle car era, a model that raced in NASCAR and was available only in small numbers to well-monied car enthusiasts. While the 2024 Charger Daytona is a bit more civilized than its namesake of 55 years ago, it is equally dramatic in its own way.
Back in the day, muscle cars were a dominating force on dragstrips and, more importantly, on the highways of America. These go-fast models delivered the whole package for car enthusiasts – exciting looks with stripes, scoops, and a stance with attitude, their mere presence tantalizing the senses with a low engine rumble at idle, a throaty roar at speed, and if you were the one behind the wheel, an adrenaline rush like no other.
They also sucked gas on an epic scale with their four-barrel, six-pack, and sometimes dual-quad carburetors. High horsepower small- and big-block engines were high-compression to eke the most power from the air-fuel mixture fed to combustion chambers, which meant more expensive high-octane premium fuel. Muscle cars, and really most cars of the era, had tailpipe emissions that were nothing to brag about. Still, these were iconic hot rods that defined an era.
While the performance-infused Daytona designation has been used sporadically by Dodge since, this is different. Stellantis has read the tea leaves well and the all-new Dodge Charger is not only fast and formidable, but also headlined by two fully electric variants, the Daytona R/T and Daytona Scat Pack. This move ensures the Charger’s claim as the world’s quickest muscle car, and the most powerful.
That doesn’t mean the automaker has abandoned the high horsepower gas engines that have powered this model over the years. Car enthusiasts who wish that familiar experience can opt for the Charger SIXPACK 3.0-liter twin turbo Hurricane engine in either Standard Output or High Output versions.
Specs for the electric Charger Daytona models surpass those of the gas versions, with the electric Daytona R/T besting the SIXPACK S.O. with 496 horsepower vs. the gas version’s 420. The Daytona Scat Pack does even better by delivering an electrified 670 horsepower vs. the gas high output engine’s 550, a bump of 120 ponies overall. The Daytona R/T is expected to deliver 317 miles of driving range with the more powerful Scat Pack a shorter, but still substantial, 260 miles.
Acceleration is impressive, with the Daytona Scat Pack expected to close a 0-60 mph sprint in just 3.3 seconds while earning a quarter-mile elapsed time of 11.5 seconds. Performance is enhanced in Daytona models with a PowerShot feature that provides an additional 40 horsepower boost for up to 15 seconds when needed. Stopping power is bolstered with 16-inch Brembo vented rotors and distinctive red six-piston calipers up front and eight-piston calipers at the rear. All Charger models are four-wheel drive. Driver-selectable Auto, Eco, Sport, and Wet/Snow drive modes allow tailoring the driving experience, with the Scat Pack adding Track and Drag modes for good measure.
Serene silence is not the hallmark of the new Daytona as it is in other electrics. Rather, Daytona R/T and Scat Pack sound the part of earth-pounding muscle cars with their all-new Fratzonic Chambered Exhaust that replicates a Dodge Hellcat exhaust profile, with sound intensity tied to performance. Drivers can alternatively select a ‘stealth’ sound mode if that’s more to their liking…but what’s the fun in that?
All this power and performance would be academic if not packaged in an athletic form, and the new Dodge Charger does pull that off with a pure uninhibited muscle car presence. Its lines are sharp, evolved, and definitively true to the breed, featuring an appealing profile and a powerful widebody stance. This muscle car’s appealing ‘hidden hatch’ design is accentuated by a black painted flowing roofline that can be made more dramatic with an optionally available full-length glass roof. We particularly like that the front end is not closed off in a snout like so many electric cars, but rather features stylishly understated openings above and below the bumper fascia.
Inside is a driver-centric cabin featuring an instrument cluster with either a 10.25- or optional 16-inch screen, along with a center 12.3-inch touch screen angled toward the driver. A forward-looking flat top/flat bottom steering wheel design features an array of controls for popular functions and also includes paddle shifters for rapidly adjusting regenerative braking settings on the fly. The center console features a pistol-grip shifter and start button. Standard seating is cloth and vinyl with either black or red Nappa leather available as an upgrade. Rear seats can be folded flat for additional cargo capacity. As expected, a full suite of advanced safety and driver assist systems are standard or available.
Two-door coupe versions of the 2024 Charger Daytona R/T and Scat Pack feature an MSRP of $59,595 and $73,190, respectively, and begin production this summer. Four-door variants of the electric models will start production in the first half of 2025 with two- and four-door gas Charger SIXPACK models coming later that year. Pricing for these will be disclosed closer to their release.
Green Car Journal editor/publisher Ron Cogan was editor of Hot Rod’s Musclecar Classics in the mid-1980s.
We’ve driven plenty of Mustangs over the years and have owned several, including a 1966 Mustang back in the day and a pristine 2005 Grand Am Cup-themed Mustang GT that resides in the garage now. The latter combustion pony car shares garage space with a charging electric car most of the time, representing a scenario that’s likely to become a fixture of life for many multi-car households in our unfolding mobility future – an EV for most daily driving and a combustion car or hybrid available for good measure.
Playing to this, electrification strategies have varied among the world’s major automakers, from a bit of dabbling with EVs to going all-in with battery electric models. Time will tell which strategy works out best in an era where electrification’s benefits and challenges are often still weighed intently before buyers make their move to go electric, though buyers in growing numbers are doing so these days.
Ford is solidly positioned in the ‘all-in’ category. Along with its electric F-150 Lightning pickup and E-Transit commercial van, perhaps its most high-profile move has been its evolutionary – or perhaps revolutionary – Mustang Mach-E that debuted in late 2020, the electrified stable mate of the legendary gas-powered Mustang.
The Mach-E successfully trades on the Mustang nameplate and carries on distinct Mustang design cues like a long hood and tri-bar taillights, though it is decidedly different with a unique sweeping roofline and coupe/liftback design. While some Mustang afficionados might take issue with the nameplate being applied to a crossover model, it’s really a moot point. The fun factor is there and it’s a Mustang in spirit if not in silhouette.
As expected, the Mach-E continues to evolve with an expanding number of model choices and battery options, including the new dual motor Mach-E GT that we recently drove in the Pacific Northwest. What really got our attention, though, was Ford’s Mustang Mach-E Rally we piloted around the track at the Dirtfish Rally School in Snoqualmie, Washington, just outside of Seattle.
The Rally gets all the content and performance attributes of the GT with additional benefits and features added for its mission. This adventurous model is a departure from the norm for Mach-E, literally, with that departure focused on off-pavement action far from stoplights, traffic, and the hustle of daily life. Our experience test driving for 4 Wheel & Off-Road magazine many years ago means we have a deep appreciation for that kind of opportunity.
The all-wheel drive Mach-E Rally comes specially prepared for the job, with MagneRide suspension featuring an inch higher riding height than the standard Mach-E, RallyCross-tuned shocks and springs, and powertrain calibration and traction control tuned for the rugged and uneven surfaces of dirt-track and rallycross driving. Aluminum underbody shielding provides protection from the hazards and grime inherent in this kind of off-pavement driving.
Power is abundant with the Mach-E Rally’s 480 horsepower delivered by front and rear motors, with an available RallySport drive mode enhancing linear throttle response. Selecting this mode also sets more aggressive damping for improved handling and enables additional yaw for bigger slides, all important in dirt-track driving. Acceleration is impressive with the Rally’s 700 lb-ft torque enabling a 0-60 mph sprint is just 3.4 seconds. Its 91 kWh lithium-ion battery delivers an estimated 265 mile range.
Form follows function with the Mach-E Rally, as it is also distinguished with special body moldings, an aggressive rear liftback spoiler, rally-style fog lights, black painted roof, and eye catching graphics that add to its appeal. Power is delivered to the road via 19-inch gloss-white wheels equipped with Michelin CrossClimate 2 tires ideal for navigating loose surfaces. All this comes at a cost of $59,995, some $20,000 over the base model and six grand more than the Mach-E GT.
Driving the Mach-E Rally at Dirtfish was exhilarating. This specially equipped model exhibited exceptional capabilities and a seriously fun-to-drive nature at speed, which was expected given its rallycross nature. What’s really impressive is the degree to which the Mach-E Rally accomplishes this without sacrificing comfort or capabilities on the street, where most drivers will likely spend most of their time behind the wheel.
So, let’s just share a fundamental: There’s no circumstance in which either of our personal Mustangs would have ventured off-pavement, at least not willingly and not for an extended drive, unless we happened upon a washed-out road and it was our only way home. But the 2024 Mustang Mach-E Rally? Well, that’s another story…and it’s a really good one.
Now that we’ve been behind the wheel of a Mach-E Rally on Dirtfish Rally School’s dirt, gravel, and wet course, our Mustang horizons have expanded. We can say with confidence that heading off the beaten path in a Mach-E Rally is not only a reasonable option, it’s one likely to be calling out to Rally owners with some regularity. After all, while the road ahead may be straight and true, often enough there will be a new adventure awaiting on dirt roads less traveled just a turn of the wheel away.
VW will launch its 2025 ID.7 electric sport sedan in the U.S. in two trim levels and in both rear- and all-wheel drive formats. Typically, a two-trim strategy provides a more basic entry-level model and a mid- or top-range premium version. But since the VW ID.7 is being marketed as a ‘near luxury’ sedan, its base Pro S trim should come very well-equipped. The Pro S Plus will offer even higher levels of posh, adding 20-inch alloys, adaptive ride damping, front premium massage seats with heating and cooling, and an upscale 700-watt, 14-speaker Harman/Kardon sound system.
Rear-drive versions of the 2025 ID.7 will use a single motor mounted on the rear axle rated at 282 horsepower and 402 lb-ft torque. All-wheel drive versions will have two motors – one on each axle – capable of delivering a maximum of 335 horsepower. Both will use an 82 kWh lithium-ion battery pack. Those are the same powerplants installed on the three upper ID.4 electric crossover trims for the 2024 model year. VW is holding back on revealing range estimates for the ID.7 until closer to launch, but the streamlined sedan should deliver a few miles more than the boxier ID.4, which is rated – for 82 kWh battery versions – at 292 miles for rear-drive models and 263 miles for all-wheel drive versions.
Sedans have been phased out by many automakers in the U.S. market and electric sedans are even rarer, so the ID.7 won’t have a lot of direct competition. Midsize premium electric sedans in the ID.7’s anticipated price range are the Hyundai Ioniq 6, which is likely to be the prime competition, plus the Tesla Model 3, lower trim levels of the BMW i4, and some trim levels of the Ford Mustang Mach-E, a crossover with some sedan-like styling characteristics.
The ID.7 may be the roomiest of the bunch. At 195.3 inches, it is longer than any of the others and just .75 inches shorter than the ID.Buzz van. The ID.7 also has a longer wheelbase – an indicator of cabin legroom – than any likely competitor except the Mach-E, which, at 117.5 inches, beats the VW electric sport sedan’s wheelbase by a scant half an inch. Driving range varies among likely competitors’ rear-wheel-drive models, from 256 miles for the base BMW i4 with a 66 kWh (usable) battery to an extended range of 310 miles for the Ford Mustang Mach-E with an 88 kWh (usable) battery.
The ID.7 is expected to come to market with a sporty, EV-modern interior with a flat dash hosting a centrally mounted, 15-inch infotainment touchscreen that will be control central for most vehicle functions. Backlit sliders beneath the screen will provide cabin temperature and audio volume controls, and there’s a touchpad on the left side of the dash with headlight and defroster controls. A head-up display will show drivers most of the info they need, projected directly onto the lower portion of the windshield, but there’s also a small digital driver info screen behind the flat-bottom steering wheel. The shifter is located on the steering column, leaving the center console clean and open.
To make up for the paucity of physical controls and to make it easier for drivers to use the vehicle’s functions – like selecting drive modes – without taking their eyes off the road to stare into the infotainment screen, VW has developed a voice command system that can be used to do more than change audio channels and make phone calls. Drivers will be able to use to it set those drive modes, set up the navigation system and driver-assist systems such as lane-keeping mode, and even adjust the in-dash vents for the climate system.
While VW hasn’t supplied most vehicle measurements yet, the company did disclose that the ID.7’s primary cargo area behind the fold-down second-row seats measures a spacious 18 .8 cubic feet. Among potential competitors, only the Tesla Model 3 and Mustang Mach-E have more.
ID.7 will use VW’s IQ.Drive advanced driver assist system as standard equipment. It features hands-on-wheel semi-autonomous driving in some circumstances. Also standard across the line will be automated Park Assist Plus for parallel and perpendicular parking. We expect standard safety and driver assist systems for the ID.7 to include full-range adaptive cruise control, front collision mitigation, blind spot monitoring, lane departure warning and lane keeping assist, and more. The ID.7 hasn’t yet been crash-tested by either the National Highway Traffic Safety Administration (NHTSA) or the Insurance Institute for Highway Safety (IIHS). But the ID.4, with which the ID.7 shares a platform, has received top crash safety ratings from both.
Pricing is also to come and won’t be revealed until closer to the ID.7's launch in the third quarter of this year.
This was originally published on thegreencarguy.com. Author John O'Dell is a distinguished career journalist and has a been an automotive writer, editor, and analyst specializing in alternative vehicles and fuels for over two decades.
Buyers of Acura ZDX models and all Honda Prologues built after Feb. 26, 2024, will qualify for the full federal $7,500 federal clean vehicles tax credit. Those who lease will also get the credit in the form of reduced monthly lease payments regardless of the vehicle’s production date. The 2024 Prologue EV will start at under $50,000 while Acura’s ZDX, an electric crossover built on the same platform, will start at just over $65,000.
Honda is offering the Prologue in three trims, two available with single-motor, front-drive or dual-motor, electric all-wheel drive (eAWD) powertrains, and one with dual-motor eAWD as the only powertrain. Acura’s ZDX will come in two trims, one with both rear-wheel drive and eAWD options, the other with eAWD only. The two EVs are the fruit of Honda’s short-lived EV co-development program with GM. They share their underpinnings and batteries with the Chevrolet Blazer and Cadillac Lyriq.
The base rear-drive Acura ZDX A-Spec trim will start at $65,745 including a $1,245 destination charge. The eAWD variant will start at $69,745. The eAWD Type S will start at $74,745 and there’s a sport edition with performance wheels and tires for $1,000 more. Acura said the base A-Spec can deliver up to 313 miles of range- slightly more than its Honda Prologue platform mate. The eAWD version comes close at 304 miles. Both Type S variants are rated at 278 miles.
Honda’s base front-drive 2024 Prologue EX will start at $48,795 including a mandatory $1,395 destination fee. The eAWD version, with two motors and more horsepower, jumps to $51,795. The front-drive Prologue Touring starts at $53,095, jumping to $56,095 with eAWD. Prologue Elite, available only with electric all-wheel drive, starts at $59, 295. EPA range estimates are 296 miles for the front-drive EX and Touring, 281 miles for the eAWD EX and Touring and 273 miles for the Elite.
This was originally published on thegreencarguy.com. Author John O'Dell is a distinguished career journalist and has a been an automotive writer, editor, and analyst specializing in alternative vehicles and fuels for over two decades.
Just over three years ago, when California’s Governor announced an executive order allowing only zero-emissions vehicles (ZEVs) to be sold in the state, most media (and probably the governor, regulators, and supporters of the rule) understood “ZEV” to mean battery electric vehicles (BEVs) only.
Although the final rule included plug-in hybrids and hydrogen vehicles, we theorized a standard hybrid, with an internal combustion engine (ICE) powered by E85 could have emissions similar to BEVs. When total lifecycle greenhouse gas (GHG) emissions were tallied, as well as carbon intensity (CI) scoring correctly reflecting CI reductions being achieved by farmers and ethanol producers, a standard hybrid flex-fuel vehicle (FFV) can be a ZEV long before any EV.
The American Coalition for Ethanol (ACE) began testing our theory 10 months after the California executive order, using a hybrid vehicle the U.S. Department of Energy (DOE) identifies as midsized, to avoid naysayers dismissing the results as coming from a specialty vehicle or tiny clown car that would get good mileage on any fuel. We also wanted a vehicle similar in size to the best-selling BEV on the market, the Tesla Model 3 Long Range. We bought a 2019 Ford Fusion Hybrid in July 2021 for $30k to $50k less than the most popular new EVs of the day, and before converting it to the Hybrid Electric Flex-Fuel Vehicle we call “HEFF.”
We filled it with regular gasoline and drove 3,688 miles to establish a real-world regular gasoline use baseline, rather than having to compare our real-world results with fictional best case showroom sticker miles-per-gallon (mpg) and EPA’s emissions estimates based on that mileage. EPA pegged our car at 42 mpg on regular, with lifecycle GHG of 255 grams per mile (g/m). While that’s much better than the 25 mpg and 429 g/m of the non-hybrid Fusion, our pre-transition Fusion hybrid results were just over 34 mpg and around 310 g/m. We also adjusted the “regular gas” number we use for comparison using generally accepted mileage differentials for cold weather, and have periodically run tanks of regular gasoline to recalibrate for winter temps, vehicle age, and battery capacity changes during the demonstration project.
Those results are used to estimate regular gasoline consumption and also when we record flex-fuel purchases, cost, and odometer reading with each fill. We record current regular gas price along with the baseline mileage to make a cost comparison. Although our goal is to demonstrate the low CI capability of a hybrid FFV and durability of a standard engine using flex-fuel, we track fuel expenditures because we know critics will always ask about mileage and cost.
Once we calculate real mileage and CI, we compare the results to the Tesla mentioned above, and depending on where you plug in, EPA estimates the 2019 Tesla 3 Long Range emits 80 to 200 g/m lifecycle GHGs, with a national average of 111, assuming a range of 310 miles per charge. However, unscientific anecdotal Tesla Uber driver estimates told us the actual range is from 225 to 240 miles, and Car and Driver’s more scientific 40,000-mile test confirmed the drivers’ reports, saying the 2019 Tesla 3 Long Range got 80 miles less than the expected 310 miles per charge. Changing Tesla’s range to 230 miles increases its real CO2 number to 110 to 270 g/m in different markets, and boosts the U.S. average to 150 g/m.
Our baseline mpg-establishing journey ended in San Diego in August of 2021, where Pearson Fuels, the nation’s largest E85 distributor, arranged to transform the Fusion to HEFF with an eFlexFuel Plus conversion kit. The app that communicates with the flex-fuel converter provides actual ethanol content of the flex-fuel purchased, since flex-fuel can have 51 to 85 percent ethanol. Since the amount of carbon in gasoline and ethanol is different, we need the breakdown to calculate how many grams of carbon are being burned, and we divide that number by miles traveled to get our CI. We also use the ethanol and gasoline content to calculate BTU content of whatever fuel is in the tank to compare the mileage one should expect given that energy content with actual mileage to judge the effectiveness of the conversion kit.
Recording price, miles and ethanol content of every fuel purchase, and calculating E10 use and cost, after two years and three months and almost 30,000 miles on flex-fuel averaging 72 percent ethanol, produced average lifecycle GHGs of 205 g/m CO2 at 26.2 miles per gallon – not much higher than real Tesla average numbers, and lower than a Tesla 3 in many parts of the country. We calculated regular gas mpg at 32.7, which would’ve emitted 375 g/m CO2. And HEFF (Hybrid Electric Flex-Fuel) chugged 1,135 gallons of E72 versus a calculated 906 gallons regular, but the E72 cost $2,942, compared to $3,183 for gas.
We have been able to calculate some other interesting numbers based on our test results so far. Had we been able to use true E85 – 83 percent ethanol – throughout the test, our emissions number would drop to 181 g/m, and further to 113 g/m if the ethanol was CARB-approved low-CI corn fiber ethanol. Blending low-CI ethanol with renewable naphtha would provide a CI of 71 g/m in our converted Ford Fusion Hybrid – lower than the same size Tesla could achieve plugged in anywhere in the U.S. All the flex-fuel blends just mentioned are real; they have been or are being sold today.
And although the flex-fuel hybrid – even a converted flex-fuel hybrid – is capable of achieving such results, a fact recognized by Toyota and Volkswagen and being put into use in the 2024 model year in Brazil, fuel regulations being adopted in the U.S. simply refuse to acknowledge that reality. Ethanol has been responsible for nearly all the air quality improvements seen in the U.S. in the past 20 years, and its ability to reduce carbon intensity is a proven fact. But people who claim to be interested in reducing carbon pollution are enacting regulations that increase the use of electricity that is still 60 percent fossil fuel generated, over plant-based fuels like ethanol, based on what they hope and believe will be done to make electricity cleaner over the next few decades. They use buzz-phrases like “extending the life of petroleum fuels” and “false climate solution” to avoid dealing with real numbers. Projections of cleaner electricity are assumed to be facts, and scientific facts of cleaner ethanol production are ignored.
The inclusion of plug-in hybrids and hydrogen vehicles in CARB’s final Advanced Clean Cars II rule provides a sliver of hope that regulators will eventually be as concerned about actually reducing CO2 emissions as they are enforcing the electric car solution they prefer and believe in. If environmentalists and regulators are truly interested in reducing carbon emissions, solutions are available today. HEFF is proof. But if you can’t trust HEFF, ask Brazil. Or Toyota. Or Volkswagen.
Ron Lamberty is the chief marketing officer of the American Coalition for Ethanol.
Unveiled earlier this year, the Polestar 4 is the fourth model produced by the Swedish EV maker. The Polestar 4 takes on a unique coupe SUV design and is placed between the Polestar 2 and 3 in terms of size. Polestar has utilized the SEA1 platform for the 4 model that’s built by Geely Holding, a Chinese automotive giant. This luxurious EV boasts a 50-50 weight distribution and in its more powerful version delivers admirable performance with dual motors and a projected zero to 60 time of 3.6 seconds.
Polestar offers two powertrain options. The standard iteration consists of a single-motor, rear-wheel-drive configuration capable of producing 272 horsepower and 253 lb-ft torque. The second option, which is expected to go toe-to-toe with the Porsche Macan EV, is a dual-motor, all-wheel-drive arrangement sporting 544 horsepower and 506 lb-ft torque. This variant is able to disengage the front motor using a clutch system when under light throttle to save battery power.
All Polestar 4 configurations receive a 102 kWh lithium-ion battery. Fast charge times are not yet available; however Polestar has reported a maximum fast charge capability of 200 kW. The Polestar 4 also carries V2L, or vehicle-to-load ability, allowing users to power their gadgets or other electric items on the go.
The exterior design is a rather singular experience with futuristic style and cutting-edge lines. Precept headlights featuring a Thor’s Hammer design tells one right away that this is a Polestar. Split at the middle, the top half of the headlight travels up and shoots along the fender, while the bottom half turns downward toward the functional air scoop situated in front of both wheels. A long and sporty hood swoops up into a windshield that has been brought forward to allow more interior space.
Looking to the side, more evidence of the model’s subtle sportiness is on display. Wheel options for the Polestar 4 are all sharp and angular in design, matching the knife-edged bodyline at the bottom of the doors.
Polestar has included its LightBlade rear light design that spans the width of the rear end, with 90-degree downward angles at both ends. A notable feature for the Polestar 4 is the absence of a rear window. In its place is a pair of High-Definition cameras mounted at the back of the roof. These cameras are connected to a digital rear-view mirror that allows for a full view of the road already traveled.
Polestar has devoted a lot of attention to designing the interior of the 4. Here, one finds tons of unique options and design cues along with a panoramic roof that extends all the way past the heads of rear passengers. This glass can be fitted with an optional electrochromic feature that allows users to turn the glass from transparent to opaque. Several interior options are available, all of which utilize sustainable materials at every opportunity. Seats are upholstered with SoftTech, a 3D-printed material, and carpets and floor mats use PET. Several interior configurations take advantage of vegan materials, with one option using animal welfare-secured Nappa leather. Drivers can also set the mood using the infotainment system, with its settings taking inspiration from the solar system.
The Polestar 4 is packed with tech. A 10.2-inch digital gauge cluster is used along with a 15.4-inch infotainment screen that takes center stage, the latter employing the Snapdragon Cockpit Platform to control functions. Polestar also includes a 14.7-inch head-up display that can turn yellow for better visibility in snowy conditions. Android Automotive OS grants use of select Google apps, with Apple CarPlay and Android Auto standard fare. Polestar is partnered with Volvo so there’s naturally a myriad of safety features. Mobileye SuperVision is present, allowing drivers to take their hands off the wheel in select driving conditions, as long as eyes are focused on the road. A dozen cameras monitor the inside and outside of the vehicle along with ultrasonic sensors that monitor the driver to detect drowsiness or distraction.
This all-new Polestar model looks to be an all-around contender for the EV world. It’s got power, tech, and style on its side. This upscale coupe SUV has a lot going for it including a more manageable estimated price of $60,000, a significant twenty five grand less than the Polestar 3. Production has begun and the first deliveries are slated for China shortly, though buyers in the U.S. will have to wait patiently until later in 2024.
Nissan’s LEAF electric vehicle was groundbreaking when it was introduced in the 2011 model year and has maintained an honored spot in the Nissan lineup, but it’s on its way out. Until the time comes for a replacement, Nissan fans in search of a zero-emission option needn’t worry. There’s another choice in the new Nissan Ariya EV.
The Ariya is built on Renault-Nissan’s CMF-EV platform, also utilized by the European-market exclusive Renault Megane E-Tech Electric. It has the same exterior dimensions as the Nissan Rogue yet the same interior dimensions as the larger Murano, owing the larger space to the absence of a front trunk (“frunk”), along with a clever space-saving design.
Nissan provides two powertrain choices. The standard powertrain setup is a single-motor, front-wheel-drive option producing 238 horsepower and 221 lb-ft torque. If buyers wish to upgrade, Nissan offers a 389 horsepower, 442 lb-ft torque dual-motor configuration that also boasts Nissan’s e-4ORCE all-wheel-drive system. This system is loosely related to the racetrack-dominating Nissan GT-R’s ATTESA E-TS torque split all-wheel-drive configuration.
As for batteries, Nissan offers two of those as well. The entry-level battery is a 63 kWh liquid-cooled lithium-ion battery with an EPA-estimated range of 216 miles. The second, more powerful option is an 87 kWh lithium-ion battery which is also liquid-cooled and offers an EPA-estimated range up to 304 miles. The Ariya is capable of charging from 20 to 80 percent in about 40 minutes using a fast charger via its front fender-mounted charge port.
Exterior and interior design were at the forefront of the Ariya’s conception. Nissan uses many traditional and modern Japanese techniques, combining them into a rather unique finished product. The front end of the Ariya exhibits what Nissan describes as chic and timeless Japanese futurism, or iki, exemplified by its Bullet Train-inspired fascia. Its slim, four-LED V-Motion headlights are underlined by thin LED running lights, darting diagonally into the translucent front grille. Underneath this see-through cover is an example of Kumiko, a traditional Japanese pattern. Large, functional air scoops sit in front of both wheels with a diffuser-inspired gloss-black central air intake situated at the bottom of the front end.
At the sides, the Ariya assumes a more sporty appearance, but still captures some of the minimalistic elegance that Nissan has tried to convey. Cleverly designed wheels take air and push it away from the body while in motion to minimize drag. A sleek, low roofline is painted gloss-black to create a floating look.
At the back, Nissan angled the rear end a bit more than most SUVs to further its sporty appearance. A large roof spoiler comes down almost to the middle of the rear window. A thin LED rear light spanning the entirety of the rear hatch is present, with a design that hints at the Nissan Z. Another air diffuser-inspired design is seen at the bottom of the rear bumper.
Inside the Ariya, Nissan has again employed traditional Japanese design. The door panels all have an embossed paper lantern-inspired pattern around the speaker-surround and armrest. HVAC vents are hidden in the dashboard, powered by haptic-touch buttons built into the dash beneath a convex 12.3-inch infotainment screen. Along with this screen is a connected 12.3-inch digital gauge cluster with easy to locate drive mode selections. Nissan has provided plenty of rear legroom and the Ariya is capable of folding the second-row seats completely flat, providing a maximum 60 cubic feet of cargo room with the second row folded.
Arriya integrates Nissan’s newest driver assistance platform, ProPILOT Assist 2.0. Included in this iteration is a hands-on system that aids drivers with staying in their lane, changing lanes, and exiting highways. ProPILOT Assist 2.0 also allows drivers to take their hands off the wheel, as long as the drivers eyes are squarely on the road ahead. Nissan Safety Shield 360 is also present, offering High Beam Assist, Blind Spot Warning, and Pedestrian Detection, among others.
While coming at a cost some $15,000 higher than Nissan’s longstanding LEAF, the $43,190 Ariya crossover is more spacious, quite stylish, and offers significantly longer driving range that can top 300 miles. Overall, it represents a solid choice for buyers looking to upgrade their everyday driving experience to a zero-emission crossover from one of the industry’s EV pioneers.