Green Car Journal logo
Green Car Time Machine.

It was an exciting time for electric cars in the early 1990s. GM’s Impact concept was unveiled at the 1990 LA Auto Show, with the Tokyo Motor Show exhibiting many electric concepts as well. Among them was Tokyo R&D’s IZA electric car. Green Car Journal editors attending the Tokyo show found the IZA a fascinating counterpoint to the Impact at the time. If you’re interested in the beginnings of the modern electric vehicle field as we know it today, then there’s no better place to start than diving into Green Car Journal’s early issues with us. Here, we present the following article from the Green Car Journal archives, as it was originally published in March 1992.

Excerpted from March 1992 Issue: Sleek and slippery like GM’s Impact prototype, the IZA easily garners attention from anyone in its vicinity. It did this consistently at the Tokyo Motor Show. GCJ editors there found it to be among the most formidable EV research efforts showcased by Japanese interests.

Iza electric car powertrain.

The IZA is principally sponsored by Tokyo Electric Power Company (TEPCO) as an “experimental study vehicle.” The company began with a clean slate in 1988, commissioning Tokyo R&D, Ltd. to design the body and Meidensha Corp. to handle motor and inverter development. Technical guidance was provided by the EV Research Organization and Professor Yoichi Kaya of the University of Tokyo.

Iza Electric Car Specs

Some interesting comparisons can be drawn with GM’s Impact prototype. Both aerodynamic EVs achieve an impressive 0.19 coefficient of drag, each relying heavily on wind tunnel design and high-tech construction techniques. The Impact uses a fiberglass-reinforced monocoque arrangement, while the IZA integrates a carbon fiber reinforced plastic body over an aluminum chassis. Height and width dimensions are nearly identical. Certain specifications vary widely since the Impact is a two-seater and the IZA a 2+2. The IZA’s body and wheelbase are longer (an additional 29 and 13 inches), and curb weight heftier by 1268 pounds.

This image has an empty alt attribute; its file name is Iza-Spec-Chart-Wide-1024x576.jpg

One of the most interesting features found on the IZA is its brand of motivation. Meidensha Corp. integrated a direct-drive system with each wheel connected to a DC brushless motor. Japan Storage Battery Company installed 24 nickel-cadmium (NiCad) batteries to create a 288-volt, 28.8 kWh powerpack for the four-wheel drive powertrain. This battery system weighs in at a substantial 1170 pounds, one-third of the car’s overall weight. Bridgestone Ecology 205/50R17 low-rolling resistance radials were mounted to modulate road friction and unspring weight.

Endurance testing on Meidensha’s chassis dynamometer in October 1991 indicated a 343-mile range at a steady speed of 25 mph, and a 169-mile range at 62 mph. Indicated top speed is 110 mph, the same as that of the Impact.

This image has an empty alt attribute; its file name is Iza-Illustration-1-1024x576.jpg

Functionality and Features

The car incorporates a variety of comfort and convenience features including power steering, power windows, and power-assisted brakes. An inverter-controlled heat pump air conditioning system is also used. Its interior is simple but stylish, with a smoothly contoured dashboard placing all controls easily within reach. Minimal instrumentation is housed within a very small rounded cluster directly in front of the driver.

TEPCO sources advise GCJ that additional IZA models are not planned at this time. In the meantime, the company is conduction further tests and working to secure a license plate for highway operation.

Range Rover’ stylish Evoque enters its second generation with a complete redesign that features the automaker’s Premium Transverse Architecture and little in common with the outgoing version. Conventionally-powered and mild hybrid (MHEV) versions will be sold in the U.S., with the hybrid coming at a base cost of $46,600. A plug-in hybrid variant is planned for offshore markets but it’s not yet clear if it will make it to the States.

The model’s extended, 105.6-inch wheelbase is identical to that of the Jaguar E-Pace, bringing with it more interior space and extra rear knee room.  Evoque also gets a version of the E-Pace 's Integral Link rear suspension. The new Evoque platform uses more high-strength steel as well aluminum to save weight. The Evoque also contains about 70 pounds of recycled material.

A 48-volt, lithium-ion battery pack mounted beneath the floor in the MHEV variant connects to a belt-driven motor-generator mounted at the side of the SUV’s turbocharged, 2.0-liter Ingenium engine. The engine turns off while coasting with the system recovering and storing energy normally lost during deceleration. The engine will also shut off while braking at speeds below 11 mph to increase efficiency, restarting as soon as it is needed. This reduces fuel consumption by about 6 percent.

The battery stores up to 200 watt-hours of electrical energy that can be used to generate up to 103 lb-ft torque to assist during acceleration. The MHEV system delivers a combined 296 horsepower and 295 lb-ft torque. This compares to 246 horsepower and 269 lb-ft for the conventional Evoque. A sprint from 0 to 60 mph is quicker in the hybrid at 6.3 seconds, down from 7.0 seconds.

Gear transitions are handled by a 9-speed automatic transmission with paddles in the AWD  Evoque. Driveline Disconnect allows running in front-wheel drive to reduce transmission losses when four-wheel drive is not needed, with this system automatically detecting surfaces and adjusting settings accordingly. Terrain Response offers six drive modes – General, Eco, Sand, Grass-Gravel-Snow, Mud-Ruts, and Auto – with the latter automatically selecting the most appropriate mode for road conditions and adjusting suspension and electronic systems as needed. Evoque  also includes hill-descent control and all-terrain progress control capabilities that enable the vehicle to handle throttle and braking automatically when driving tricky off-road trails, allowing the driver to focus on steering and watching for obstacles.

The Evoque is the first vehicle that can be equipped with Land Rover’s ClearSight ground camera system. Cameras in the radiator grille and side mirrors project images in the infotainment display that allow viewing what‘s in front, under, and to the sides of the front wheels. Through the optional ClearSight rear view mirror, a driver also gets a crystal-clear, unobstructed wide-angle view to the rear for backing up and parking. Cameras are covered with a hydrophobic coating that repels water and mud, a handy feature since the Evoque can wade through water up to 23.6 inches deep.

Plug-in hybrid power combines a 197-horsepower, 1.5-liter three-cylinder Ingenium engine driving the front wheels with a 107-horsepower electric motor powering the rear. There is no mechanical connection between the front and rear axles. The Evoque PHEV is capable of operating as a front-wheel drive vehicle, rear-wheel drive electric vehicle, or as an AWD hybrid with both power sources combined.

Part of Honda’s Clarity triple-play – along with the hydrogen-powered Clarity Fuel Cell and more mainstream Clarity Plug-In Hybrid – the Clarity Electric is a model that clearly cuts its own path.

It does not aim to be part of the ‘200 mile club,’ the latest generation of uber-electrics that claim a battery electric driving range greater than 200 miles between charges. It also does not cultivate efficiencies through a compact form designed to eke the most from every electron. Nor is it exceptionally lightweight, another common nod to the need for making the most of the battery power carried on board. In fact, there is little about the Clarity Electric that makes us think of other all-electric vehicles…save for the fact that it runs exclusively on zero-emission battery power, of course. This mid-size, five-passenger battery electric vehicle aims to be in a league of its own.

First of all, let’s discuss driving range, which is EPA rated at 89 miles between charges while delivering a combined 114 MPGe (miles-per-gallon equivalent). Yes, that’s more limiting than that of the 200+ mile club, but there’s a reason. Honda designed the Clarity Electric with the needs of commuters in mind…those who want their daily drive to be in a highly-efficient, zero-emission electric car with a sophisticated look and premium feel. And they designed it so it was significantly more affordable than premium competitors offering higher-end electric models with features similar to those of the Clarity. Currently, the Clarity Electric is offered at a $199 monthly lease in California and Oregon where this battery-powered model is available.

Honda figures that an approach focused on commuters is a sweet spot for the Clarity Electric. Its range fits the needs of most commutes and its price is certainly justifiable for a commuter car, and a luxurious one at that, with fuel costs substantially less than conventionally-powered models. Plus, most households have two cars at their disposal, sometimes more. Having a Clarity Electric as a primary commuter car with a conventional gasoline or hybrid vehicle also in a household’s stable covers all bases.

Honda gave a lot of thought to the cabin design with welcome touches throughout. We especially like the ‘floating’ design of the center console with its array of integrated controls and flat storage tray beneath, with 12-volt and USB outlets. The dash features a handsome suede-like material and an 8-inch touchscreen display elegantly integrated into the dash. Deep cupholders feature flip-up stays for holding smaller drinks. Side door pockets are large enough to accommodate water bottles. The trunk offers plenty of room and is illuminated when the trunk lid is remotely or manually unlatched. At night this allows you to immediately note what’s inside through the trunk lid’s clear back panel before opening…something we’ve really come to appreciate over time.

Driving the Clarity Electric is a satisfying experience, with this sedan both well-mannered and responsive. Power is delivered by a 161 horsepower electric motor energized by a 25.5 kWh lithium-ion battery that can be charged in about three hours with a 240 volt charger, or in as little as 30 minutes with a public DC fast-charge system to an 80 percent state-of-charge. While its primary job may well be to handle everyday driving needs and negotiate traffic, it also delivers plenty of fun on twisty canyon roads with flat cornering and confident steering. It’s quick, like almost all electrics are because of instant torque delivered at launch, providing very satisfying acceleration.

Also appreciated is the Clarity’s handy Apple CarPlay integration and its Honda Sensing suite of driver-assist technologies. Among these are important features like adaptive cruise control with low-speed follow, forward collision warning, collision mitigation braking, lane departure warning, and road departure mitigation.

The Clarity Electric has served us well on our daily drives over the course of Green Car Journal’s ongoing long-term test. Its use supports what Honda envisioned for this efficient electric car. It has been ideal for around-town duty, area trips within its range, and daily commutes. Its thoughtful and sophisticated – dare we say futuristic – design and very satisfying drive experience are appreciated every day we’re behind the wheel.

Henrik Fisker, former head of design at such places as Aston Martin, BMW, and Ford, is best known in the ‘green’ car space for the gorgeous Fisker Karma electric grand touring sedan he designed and briefly sold under his own brand in 2012. He’s back in the game at Fisker Inc. with his previously-shown eMotion electric supercar prototype, and now an electric SUV the company says it intends to sell first.

The as-yet unnamed electric SUV is a strategic move since SUVs represent the most important and fastest-growing segment in the automotive market. Powering the Fisker SUV will be front and rear electric motors offering all-wheel drive functionality. An ‘enhanced’ 80 kWh lithium-ion battery pack aims to offer a range approaching 300 miles. The SUV will feature a large heads-up display, a premium interior, and the latest emerging connected technologies…all at a targeted starting price under $40,000.

The eMotion is planned to use Fisker’s flexible solid state batteries under development for even greater range. Fisker claims this next-generation battery technology will offer 2.5 times the energy of today’s lithium-ion batteries.

Fisker has appointed Don Jackson – formerly president of manufacturing at Volkswagen of America and vice-president of manufacturing at Toyota – as the company’s senior advisor of manufacturing. The company says a driveable prototype of the electric SUV will be coming later this year with a production model out the last half of 2021.

Hyundai, part of a very exclusive club offering hydrogen fuel cell vehicles in the U.S., has followed its initial Tucson FCEV with the all-new Nexo. It’s available only in California where hydrogen fueling opportunities, while limited, exist in greater numbers compared to other states.

The Nexo represents a step forward for FCEVs in that Hyundai is selling the 5-passenger hatchback and not just leasing it, as is typically the case with hydrogen vehicles. It also uses a purpose-built platform rather than being based on an existing model like the Tucson FCEV.

As a hydrogen fuel cell vehicle, the Nexo’s fuel cell takes in hydrogen and oxygen to create electricity for powering an electric motor, with zero emissions. The heart of the Nexo is its 95-kW proton-exchange membrane fuel cell stack and 1.6-kWh lithium-ion battery pack. These supply electricity to a 161-horsepower, 291 lb-ft AC induction motor located beneath the hood. Power is transferred to the road through a single-speed, direct-drive gearbox. Hydrogen is stored in three 10,000 psi tanks with a total capacity of 156 liters, delivering an EPA estimated driving range up to 380 miles.

Hyundai reduced the size and weight of the fuel cell compared to that used in the earlier Tucson FCEV. The new fuel cell uses only 56 grams of expensive platinum rather than the Tucson’s 78 grams. Hyundai also improved cold-weather performance so the fuel cell starts in temperatures as low as -22 degrees F. Like the Tucson and other fuel cell vehicles, refueling with hydrogen can be done in as little as five minutes.


Audi e-tron
Audi's new 2019 e-tron electric SUV joins Jaguar and Porsche in giving Tesla some serious competition. The automaker’s first-ever all-electric vehicle looks much like the rest of the Audi lineup, foregoing the temptation to go too futuristic or quirky in an effort to stand out as an electric. Its iconic Audi grille reinforces the sense of normalcy even as it handles the distinctly-electric job of directing cooling air to pass under the battery pack. Some electrification cues are provided, though, as the e-tron features slats running across the rear bumper that highlight the lack of tailpipes. Lights in the front are also designed to look like the bars of a charge status indicator. A dark colored section along the sides show battery pack location.

Efficient aerodynamics and other efficiency-enhancing touches were important in designing the e-tron, which features a drag coefficient of just 0.30. Features include cooling ducts for the e-tron’s front brakes and its adaptive, speed-dependent air suspension. Standard ultra-low rolling resistance 20-inch wheels are aerodynamically optimized. Full underbody cladding incorporates an aluminum plate to help protect the battery and also lower drag.

Audi e-tronThe e-tron's electric quattro all-wheel drive uses two asynchronous motors, each driving one set of wheels. Single-stage transmissions transfer torque to the axles via differentials. At moderate cruising speeds, the e-tron is powered mainly by the rear motor. The battery pack's location between the axles plus the low positioning of other drive components results in low center of gravity. Weight distribution is approximately 50:50. A driver can select from seven different driving modes, from comfortable to sporty, that alter suspension stiffness, steering responsiveness, and how aggressively the SUV accelerates.

Two electric motors accelerate the e-tron from 0-60 mph in 5.5 seconds with a top speed of 124 mph. It can tow up to 4000 pounds when equipped with the optional tow package. While EPA has yet to provide driving range numbers, testing in Europe resulted in 248 miles from the 95 kWh battery pack. EPA's testing here tends to yield somewhat lower range numbers.

2019-audi-etron-cabin-1Audi put heavy emphasis on recuperating as much energy as possible. Depending on driving conditions, terrain, and driving style, regenerative braking can provide as much as 30 percent of the e-tron’s range. The driver can select how aggressively the car uses this system, allowing for "one pedal" driving where taking the foot off the throttle will bring the car to a full stop using only regenerative braking.

The e-tron is available with a full range of standard or optional driver assistance packages including adaptive cruise assist, intersection assist, rear cross traffic assist, lane change and vehicle exit warning, and park steering assist. It comes in three trim levels - Premium Plus, Prestige, and First Edition. A panoramic glass sunroof is standard.

Audi e-tron

Tesla’s Model 3 was promised from the beginning to be an advanced electric sedan at an affordable $35,000 entry price. That, as anyone who has followed Tesla with any kind of regularity, has been an elusive goal as only higher-end and much more expensive versions of the Model 3 have been offered. And now…the $35,000 Model 3 is finally a reality.

Model 3 is a stylish and high-tech sedan offering a signature Tesla look and lots of advanced technology. Tesla’s third all-electric vehicle, the Model 3 follows in the footsteps of the well-regarded Model S sedan and Model X crossover SUV. Like these vehicles, the Model 3 is fast and fun to drive. Importantly, it does what Teslas are known to do – offer all-electric driving from about 220 miles up to 310  miles before requiring a recharge, which does a lot to ease range anxiety.

Just as Tesla’s approach to being an automaker is different, so too are its cars. Compared to the Model X, which the company packed in as many ‘firsts’ as possible  – a crossover with gullwing-like ‘falcon’ doors and the industry’s largest windshield – the Model 3 is more aligned with the needs of mass production. In fact, Tesla describes the Model 3 as ‘smaller and simpler’ than its predecessors to make it more affordable than the Model S.

The $35,000 entry price tag is important since the Model 3 has been widely-promoted as a $35,000 ‘everyman’s electric vehicle’ affordable to the masses, even as the cheapest model available was initially $49,000, then $46,000, and ultimately $43,000 before Tesla finally made the leap to its recently-announced $35,000, slightly decontented base model. At that price it’s doubtful that Tesla will make money, and in fact it wasn’t long ago when Tesla CEO Elon Musk said the company would lose money on the Model 3 at that price point. An array of industry experts agree with that assessment. But that’s another story.

If not an exercise in simplicity, then perhaps the Model 3  is a statement that ‘less-is-more,’ even as it delivers desired levels of performance, range, technology, and safety. For example, rather than more costly aluminum construction like the Model S and Model X, the Model 3 uses both aluminum and less-costly steel. Its interior is also a model of simplicity devoid of instrumentation and external controls, knobs, or switches, with everything – including the speedometer – incorporated into its 15-inch center-mounted touchscreen display.

Buyers have a choice of battery packs and motors that deliver varying levels of performance and range. The lowest motor output currently available is estimated to offer 220 horsepower and rear-wheel drive, with a range of 220 miles. The dual motor model features 450 horsepower with all-wheel drive and a range of 310 miles.

Like all Tesla models, the Model 3 includes the hardware needed in the future for full self-driving, although this capability is dependent upon extensive software validation and local regulatory approval. Model 3 offers forward radar, eight cameras, and 12 ultrasonic sensors that enable an array of safety and driver-assist functions including automatic emergency braking, collision avoidance, and side collision warning. Over-the-air software updates are part of the package and Tesla’s AutoPilot semi-autonomous driving system is an available option.

Tesla now offers two levels of Connectivity: Standard that is free and Premium that comes at a modest annual cost. Standard  Connectivity offers basic maps and navigation, music and media over Bluetooth, and software updates over Wi-Fi. Both receive maps and navigation functionality, traffic-based routing, trip planner, and Supercharger stall availability. All cars with Standard Connectivity will simply need to connect to a Wi-Fi network to receive software updates. Premium Connectivity adds satellite-view maps with live traffic visualization, in-car streaming music and media, and over-the-air software updates via Wi-Fi and cellular.

In an interesting twist to the $35,000 Model 3 saga, Tesla shuttered some of its stores and galleries in an effort to save money in tandem with the lower-cost Model 3 availability, with the intention of potentially closing all of them and exclusively selling online. The company then changed its mind and kept most of its Tesla stores and galleries open. Again, another story…so stay tuned.

Porsche Taycan electric car.

Along with models like the 2019 Jaguar I-PACE, Audi e-tron, and upcoming Porsche Taycan, we're seeing a new generation of high-tech battery-powered vehicles that bring an exciting new direction to legacy automakers. These models also have something important in common: They aim to disrupt Tesla, the industry’s de-facto electric car leader.

Disruption is a word thrown about with abandon these days as veritable institutions of business and commerce fall from grace, or at least profitability, at the hands of an ever-changing and disruptive world. Think Sears, Borders, and Kodak. The list of major companies disrupted – either gone, a shadow of their former self, or on the ropes – continues to grow. While the auto industry has largely escaped this same fate, change is definitely in the wind. And its bogeyman in recent years has clearly been Tesla.

Tesla Model X on highway.

Disruption Long Before Tesla

We’ve seen the auto industry disrupted before, not by innovators but rather by geo-politics, circumstance, and a lack of long-term vision. The Arab Oil Embargo of 1973 and the 1979 Oil Crisis that brought serious gas shortages were a result of political disruption. It was a time when stations ran out of gas, lines of cars snaked for blocks as drivers tried desperately to keep their tanks full and their car-dependent lives on track, and consumers looked for more fuel-efficient vehicles to ease their pain. The problem, however, was there were few fuel-efficient models being produced since there had been no particular demand for them. The auto industry had to adapt, but with typically long product cycles it would take years to adequately fill this need.

Segue to 2003 and the launch of Tesla Motors, an occurrence that seemed interesting but hardly a threat to legacy automakers. Its high-tech Tesla Roadster introduced in 2008 – based on engineless ‘gliders’ produced by Lotus – proved that electric cars could be sporty, fun, and go the distance in ways that all other electrics before it could not, to the tune of 250 miles of battery electric driving on a single charge. Then came the Tesla designed-and-built Model S, Model X, and the new-to-the-scene Model 3. Clearly, the battle for leadership in electric cars was underway.

Jaguar I-PACE rolling chassis.

A History of Innovation

The auto industry’s penchant for innovation has always characterized its giants. Over its long history, this is an industry that brought us the three-point safety belt, airbags, anti-lock braking, cruise control, direct fuel injection, electronic ignition, and near-zero emission gasoline engines. And let us not forget Kettering’s invention of the electric starter that first saw use in 1912 Cadillacs, an innovation that tipped the scales – and history – in favor of internal combustion over electric cars of the era and helped lead to the combustion engine’s dominance to this day.

While Tesla may have established its role as the industry’s electric car innovator, that’s not to say that legacy automakers haven’t made tremendous progress. GM’s short-lived EV1 electric car of the 1990s proved that exciting and fun electric cars were possible, but not necessarily affordable to make at the time. The technologies developed by GM through the EV1 program live on to this day with evolutionary electric-drive technology found in its acclaimed Chevrolet Bolt EV and other electrified models. Advanced battery electric production vehicles have also been a focus at Audi, BMW, Ford, Honda, Hyundai, Jaguar, Kia, Mercedes-Benz, Nissan, Smart, and VW, with others like Porsche set to enter the market with long-range battery EVs.

Jaguar I-PACE racing Tesla Model X.

The Age of Electrification

So here’s the lesson of the day: If a business model no longer works, as was the case with General Motors and Chrysler during the financial meltdown in the late 1990s, you restructure. A brand no longer resonates with consumers? You drop it, like GM did with Oldsmobile. And if a class of vehicles is falling out of favor in lieu of more desired ones, you move on, as Ford is doing by phasing out almost all of its passenger cars in coming years in favor of more desired crossover/SUVs and pickups.

A paradigm shift is also occurring as automakers grapple with changing consumer preferences, regulatory requirements, and the projected demand for future vehicles and technologies. Enter the age of electrification. Over the past decade, Tesla has set the bar for innovative battery electric propulsion, advancements in near-autonomous driving technology, over-the-air vehicle software updates, and more. It has achieved a real or perceived leadership position in these areas and that’s a threat to legacy automakers. Now automakers are responding in a serious way and Tesla itself is under siege.

Chevrolet Bolt EV near building.

Chevy Bolt EV First

GM fired the first volley with its 2017 Bolt EV, beating Tesla’s long-touted Model 3 to market with an affordable long-range EV capable of traveling 238 miles on battery power. While Tesla is now delivering its well-received Model 3 in increasing numbers after a series of production challenges, the race with GM to produce an ‘affordable’ mainstream EV with 200-plus mile range was not much of a race to affordability at all. GM won that one handily, holding the line with a $37,500 price (after destination charges), while Tesla’s $35,000 Model 3 has yet to materialize. As Tesla did with its earlier model launches, the automaker is delivering uplevel, high-content, and higher-performance versions first, in the case of the Model 3 from a recently-lowered base price of $42,900 to $60,900, depending on configuration. The Bolt EV’s MSRP has moved in the other direction, dropping slightly to $36,620 for the 2019 model.

Nissan’s all-new, next-generation LEAF that debuted in 2018 improved its range to 150 miles, with a recently-announced LEAF PLUS model joining the lineup with a bigger battery and a range of 226 miles. Hyundai’s 2019 Kona Electric and Kia’s 2019 Niro Electric offer a battery range of about 250 miles, although these offer availability only in California and perhaps a few other ‘green’ states.

Nissan LEAF electric car.

Exciting New EV Entries

Jaguar’s 2019 I-PACE, a fast and sporty crossover with a 234 mile battery electric range, is now available and priced to compete with Tesla’s Model S and X. We'll soon be seeing Audi e-tron and Porsche Taycan long-range electrics on U.S. highways, with others like Aston Martin and Maserati developing high-end electric models as well.

It will be interesting to see how this all plays out over the coming months and years. To be sure, legacy automakers will not cede their leadership positions and market share without a terrific fight… and that fight is intensifying. Tesla doesn’t fear risk and has shown it will go in new directions that others will not, unless they must.

Audi e-tron electric car.

Tesla Does Things Differently

But Tesla doesn’t operate like legacy automakers that have been around for a long time, some more than a century. Those companies have mastered mass production, fielded extensive model lineups, developed widespread and convenient service networks, and have a history of successful worldwide distribution. Tesla is still learning this game, although it is making headway with its intense and successful efforts to deliver increasing numbers of its Model 3 to customers.

Importantly, legacy automakers are immensely profitable, while Tesla has had but a few profitable quarters since its launch and its losses have been in the billions. Tesla’s well-documented difficulties in ramping up mass production of the company’s 'entry-level' Model 3 – and its initial deliveries of only up-level Model 3 examples at significantly higher cost than its widely-publicized $35,000 base price – have added to its challenges.

Tesla Model 3 electric car.

That said, it would be a mistake to count Tesla out for the long haul based on its current and historic challenges including missed financial and vehicle delivery targets, serious Model 3 production challenges, and a number of high-profile Tesla crashes while driving on its much-touted Autopilot. Regardless of all this, in 2018 Tesla’s Model 3 was the best-selling luxury model in the U.S.

Legacy automakers will have Tesla directly in their sights and Tesla will continue to innovate. A veritable race-to-the-finish!

 

2019-green-suv-of-the-year-presentationThe Mitsubishi Outlander PHEV, Green Car Journal’s 2019 Green SUV of the Year™, has been sold quite successfully in other parts of the world since 2013 but has just finally made it to our shores. During its absence here in the U.S. the Outlander PHEV has not inconsequentially become the best-selling plug-in hybrid SUV in the world. There are reasons for this, including this spacious plug-in SUV’s ability to accommodate five with plenty of room for gear, its quiet cabin finished in premium leather, and its array of desired features prominent on today’s buyer wish lists.

This model’s most high-profile feature, of course, is its plug-in powertrain. The Outlander plug-in hybrid features a 2.0-liter gas engine and generator along with a pair of high-performance electric motors, one up front and one at the rear. The combustion engine provides 117 horsepower with the front and rear electric motors each contributing an additional 80 horsepower, for a total system rating of 197 horsepower at the ready. Power is delivered to the road through a continuously variable transmission. Adding to the model’s already-functional nature is Mitsubishi’s Super All-Wheel Control system and a 1500 pound tow rating.

2018 Mitsubishi Outlander PHEVAll-electric driving is a big plus delivered by plug-in hybrids, and the Outlander PHEV is no exception. It can drive 22 miles on battery power alone and has an overall driving range of 310 miles. Its battery can be charged in about 10 hours by plugging into a standard 120-volt household plug, in four hours with a home or public 240-volt Level 2 charger, and up to 80 percent battery capacity in just 25 minutes at a public DC Fast Charger.

The Outlander’s parallel-series hybrid drivetrain operates in three distinct ways that are automatically chosen by the vehicle’s control system to optimize efficiency and performance. In Series Hybrid mode the electric motors power the vehicle. When lithium-ion battery power is low or quick acceleration is required, the two electric motors are powered by both the gasoline-powered engine-generator and the battery pack, with the generator also charging the battery. Parallel Hybrid mode uses the gas engine to drive the front wheels with the two electric motors kicking in when additional power is needed. The engine also charges the battery pack in Parallel Hybrid mode under certain driving conditions.

2018 Mitsubishi Outlander PHEVOf particular interest to ‘green’ drivers is the Outlander’s EV Drive mode, which powers the Outlander exclusively via battery electric power. This mode is also driver-selectable with an EV Mode button. There are six levels of regenerative braking—B1 to B5 plus a coast-for-blocks B0 mode— selected by a pair of paddles behind the steering wheel.

There’s plenty of desirable tech that comes with the Outlander beyond its advanced drivetrain. Safety technologies include blind spot warning, rear cross traffic alert, forward collision mitigation, lane departure warning, and automatic high beams. A multi-view camera system provides a birds-eye view of the vehicle’s surroundings. Adaptive cruise control uses radar to maintain a selected distance from the car ahead. And lower-tech yet decidedly handy are a pair of available 120-volt outlets in the cargo and rear seat areas.

2018 Mitsubishi Outlander PHEV

Green Car Journal will be embarking on a long-term test of the Outlander PHEV shortly and will present what we learn about driving this notable plug-in model during daily driving and on longer trips as well, so stay tuned.


Jaguar Land Rover plans to offer an optional electrified powertrain for every one of its models by 2020. The Range Rover P400e, along with the Range Rover Sport P400e, represent the brand's first plug-in electric hybrids. Most significant about the Range Rover P400e is that it’s the first hybrid 4WD vehicle from any automaker that can drive off-road solely on battery power in almost complete silence, and without any emissions. To accomplish this the P400e uses a 144 horsepower electric motor and dual clutches inside the automatic transmission, and an eight-speed ZF transmission with steering wheel paddles for manual control.

The gasoline engine in the P400e is Land Rover’s 2.0-liter turbocharged four-cylinder that makes 296 horsepower and 295 lb-ft torque. Combined engine and electric output is 398 horsepower. Supplying power to the electric motor is a 13.1 kWh lithium-ion battery located beneath the rear floor, necessitating the floor to be raised about 1 1/2  inches. The P400e can run on electric power for about 31 miles at speeds up to 85 mph. Range is reduced substantially in electric off-road mode.

range-rover-p400e-rear-1The Range Rover received a mild makeover for 2019 with a longer hood, slimmer LED headlights, wider lower intakes, and black grille accents. Side accents and graphics were also revised, taillights are new, and a restyled rear bumper now integrates boxy exhaust exits. Only a small P400e badge on the tailgate indicates that electrification is at work beneath the skin. Its charge port is hidden behind a flap at the left of the grille.  Illuminated strips on either side of the charge port allow a quick check of the battery's charge status.

Air suspension can raise ground clearance up to three inches and the PHEVs can ford 35.4 inches of water like other Range Rovers. With Low Traction Launch software, it can handle slippery surfaces like wet grass, loose gravel, and snow.  On ideal surfaces, Land Rover is claiming a 0-60-mph time of 6.4 seconds with a top speed of 137 mph, impressive for vehicles weighing over 2 1/2 tons.

Range Rover’s Touch Pro Duo infotainment system has two 10.0-inch HD displays stacked on top of one another in the center console. The top one is primarily for navigation functions, while the lower screen controls infotainment, car settings, climate control, and other features. An Interactive Driver Display indicates driving efficiency. In Control gives information about charging locations on the route traveled. In parallel hybrid mode, both engine and motor work together for optimum fuel economy and  minimum impact on the environment.

When a destination is entered into the navigation system, the P400e's electronic neural network factors in traffic conditions, gradients on the route, and whether driving is in rural or urban environments to deliver the most efficient combination of power modes. Save mode ensures the battery will have enough charge to allow the P400e to operate in pure EV mode in urban areas.

hyundai-kona-electric-drivinng-1Hyundai’s 2019 Kona joins a growing list of long-range EVs aiming to entice new car buyers to go electric. The Kona Electric subcompact crossover looks like its conventionally-powered counterpart save for its closed front grille, silver side sills, unique 17-inch alloy wheels, and appropriate badging. It is available in three trim levels – SEL, Limited, and Ultimate.  Like the gasoline Kona, the Kona Electric is available with a two-tone roof if the sunroof is not ordered.

Power is provided by a 201-horsepower electric motor driving the front wheels, energized by a 64-kWh lithium-ion polymer battery that enables an estimated 250-mile range. It can be recharged from a depleted state in about 54 minutes via a fast 100 kW Combined Charging System (CCS), or in 75 minutes with the more common 50 kW CCS. Charging with a 240-volt Level 2 charger takes about 10 hours. An EPA estimated 117 MPGe is expected. The Kona Electric accelerates from 0-60 mph in 7.6 seconds and has an electronically limited top speed of 104 mph.

hyundai-kona-electric-cabinA 7-inch TFT screen instrument cluster shows the speedometer, battery charge level, energy flow, and driving mode. There’s also a 7-inch infotainment touchscreen system that offers HD and satellite radio as well as BlueLink data connectivity. The system is also compatible with Apple CarPlay and Android Auto. Navigation with an 8-inch screen is optional. BlueLink app-based remote charge management and charge scheduling is fitted. Other available features include a flip-up head-up display and wireless inductive charging for personal electronics.

hyundai-kona-electric-displayPush button shift-by-wire controls are located on the center console. Adjustable regenerative braking is controlled by steering wheel paddles. Electrically-assisted power steering has been tweaked to accommodate the enhanced low-speed performance of an electric vehicle.

A host of driver assist features are provided depending on the trim level. All trim levels get Forward Collision-Avoidance Assist, Blind-Spot Collision Warning, Lane Keeping Assist, Rear Cross-traffic Collision Avoidance Assist, Rear View Monitor, and  Smart Cruise Control. The Ultimate trim level adds Parking Distance Warning for reverse, Smart Cruise Control with Stop and Go, and a head-up display.

The Kona Electric will initially be sold only in California. It will eventually be available in states that have adopted the California ZEV mandate.

hyundai-kona-electric-charging

Our drive of the new generation 2018 Nissan LEAF quickly reinforced this is a whole-new animal, a new generation of the venerable electric car intended to capture the imagination and, not coincidentally, market share in the increasingly competitive electric vehicle field.

We have history with the LEAF. Green Car Journal first experienced the original LEAF’s capabilities in a technology demonstrator designed to share what Nissan had in mind for its groundbreaking, soon-to-come production electric vehicle. At Nissan’s behest, we tested the automaker’s LEAF-destined electric drivetrain in its EV-12 test mule back in 2009 at Nissan’s global headquarters in Yokohama, Japan. We later witnessed the LEAF’s unveiling, clearly showing Nissan’s willingness to push the envelope for electric cars with an edgy design.

This image has an empty alt attribute; its file name is 2018-Nissan-LEAF-Test-Mule-1024x576.jpgWe were impressed. So much so, in fact, that Green Car Journal honored the LEAF with the magazine’s 2010 Green Car Vision Award™ in Washington DC, ahead of its introduction to the market. Nissan’s insight into what electric vehicle buyers desired has indeed proved visionary over the years. Testament to this is the LEAF’s standing as the world’s leading affordable, mass production EV since its launch.

The all-new generation Nissan LEAF aims to expand on this success with new styling and a 50-percent increase in driving range. It also features a full suite of Nissan Intelligent Mobility technologies. This all-electric model is more attractive with excellent aerodynamics that result in a low 0.28 drag coefficient. Improved aerodynamics not only means a quieter ride but also contributes to greater range. That’s an important consideration in electric cars with near-silent drivetrains that don’t mask outside noise.

This image has an empty alt attribute; its file name is 2018-Nissan-LEAF-Rear-1-1024x576.jpgThe new Leaf features a 150-mile driving range between charges compared to the previous generation’s 100 miles. This is an important milestone that serves to overcome potential ‘range anxiety.’ Why 150 miles rather than shooting for the 200+ mile range like the Chevy Bolt EV and Tesla Model 3? It’s all about balancing price with functionality. Simply, Nissan aimed at providing an affordable price point under $30,000 for the LEAF. That meant delivering the range it figured would fit the driving needs of most drivers while keeping battery costs within reason. It’s a sound strategy.

A more powerful 40 kWh lithium-ion battery pack features improvements and revised chemistry that bring a 67 percent increase in energy density. Nissan designers have located the low-slung battery pack and other heavy components to the middle of the chassis to enhance the car’s center of gravity and handling. Fun fact: Using vehicle-to-home systems, the LEAF’s battery can store a home’s surplus solar energy while parked during the daytime and use it to help power a home in the evening.

This image has an empty alt attribute; its file name is Nissan-LEAF-Underhood-1-1024x576.jpgLEAF’s electric powertrain features a 147-horsepower electric motor that’s well-suited to the model. It provides 38 percent more horsepower than the previous version with 26 greater torque for improved acceleration. Acceleration is crisp with more than enough power at the ready for all the driving situations we encountered on twisty roads and Interstates. Intelligent Ride Control delivers more precise motor torque control during cornering. This also reduces vibration while improving ride quality and steering control. Electric power steering software has been tweaked for improved steering feel. The LEAF’s steering torsion bar is also stiffer for better feedback and more linear response to steering inputs.

Nissan’s e-Pedal slows down the car via regenerative and friction braking when a driver’s foot lifts off the accelerator. This delivers electricity to the battery while essentially providing braking force without using the car’s brake pedal. It even brings the car to a complete stop. We found that driving with e-Pedal kept our LEAF tester in place while stopped on a steep hill without requiring a foot on the brake pedal. Notably, e-Pedal allows drivers to go without using the brake pedal 90 percent of the time.

2018 Nissan LEAF interior.LEAF’s ProPILOT cruise control conveniently maintains a constant distance to the vehicle ahead.  If that vehicle stops, ProPILOT automatically applies brakes to also bring the LEAF to a full stop. It remains stopped even with your foot off the brake. Driving resumes when ProPILOT is activated with the touch of a switch or light pressure on the accelerator. The system also helps keep the LEAF centered in its lane at speeds between 19 and 62 mph. Other LEAF driver-assist technologies include Intelligent Lane Intervention, Lane Departure Warning, Intelligent Emergency Braking, Blind Spot Warning, Rear Cross Traffic Alert, and Intelligent Around View Monitor with moving object detection.

The new LEAF’s interior has a more luxurious and high-end look. Its dashboard is dominated by a seven-inch display for infotainment and the navigation system, if so equipped, plus Nissan's Safety Shield state-of-charge and power gauge. Another seven-inch screen faces the driver in place of conventional dials. Apple CarPlay and Android Auto are included on LEAFs with the higher-spec infotainment/navigation system.

This image has an empty alt attribute; its file name is 2018-Nissan-LEAF-Charging-1024x576.jpgToday’s electric car market is different than that of the past. There are more choices in a growing number of vehicle classes and this makes it tougher for automakers to compete. Nissan aims to not only compete in the electric car field but dominate globally as it has in recent years.

The LEAF’s status as a true world car is underscored by widespread availability like the previous-generation LEAF. It’s also reinforced by Nissan’s global manufacturing capabilities with assembly plants in Japan, England, and in Smyrna, Tennessee. Offering the all-new LEAF at a base price of $29,990 here in the U.S. is a strategy that should bode well for Nissan in today’s increasingly competitive electric vehicle market.

 

Mission E Cross TurismoPorsche says it plans to invest more than $7 billion (six billion euro) in electrified vehicles over the next four years. As part of this, the automaker will be devoting some $600 million toward the development of is coming Mission E electric sports car and other electrified variants. About $1.25 billion will be dedicated to hybrid and electric powertrains for existing Porsche models

“We are doubling our expenditure on electromobility from around three billion euro to more than six billion euro”, said Oliver Blume, Chairman of the Executive Board of Porsche AG. “Alongside development of our models with combustion engines, we are setting an important course for the future with this decision.”

Porsche’s stunning battery electric Mission E sports car will boast an output of 600 horsepower and deliver quick 0-60 mph sprints in less than 3.5 seconds. Driving range is claimed to be over 300 miles between charges. It will be fast-charge capable.

In addition to its investment in electrification, Porsche will invest some $250 million on manufacturing sites and facilities plus an additional $850 million on smart mobility, charging infrastructure, and new technologies.

bmw-i3-front-2Green Car Journal editors previously experienced 10,000 miles of driving in BMW’s i3, with those miles behind the wheel of a 2015 i3 REx several years ago. We were convinced then, as we are now, that BMW’s i3 is an indispensable, right-sized urban car that’s not only super-efficient to drive around crowded city environs but loads of fun as well.

Chalk that up to its easy maneuverability, great handling, and lightweight construction using a carbon fiber reinforced plastic (CFRP) body over an aluminum and CFRP passenger cell. Plus, of course, there’s the instant torque and surprisingly quick launch provided by the i3’s 170 horsepower electric motor. The i3 became our go-to vehicle for everyday drives.

bmw-i3-rearNow, two years later, we’re 7,500 miles into a long-term test of a 2017 BMW i3 REx and experiencing even more satisfying results. While driving range in the earlier i3 was limited to 81 miles on the model’s 22 kWh lithium-ion battery pack, or 72 miles on batteries with an overall range of 150 miles using electricity from its REx gasoline engine-generator, those numbers substantially increased in the 2017 model year i3 we’ve been driving.

We knew from the start that BMW hit upon something extraordinary with its range-extended REx i3 variant. Simply, BMW recognized that range is a big issue with drivers considering an electric vehicle, and while the i3’s electric range is suitable for a great many drivers, the confidence of extending range with a small engine-generator is real. With the REx variant, most driving can be done exclusively on battery power for convenient, efficient, and zero-emission transport. Occasional trips beyond the i3’s battery range are possible with electricity produced by the REx system.

bmw-i3-displaysWhile a 22 kWh battery pack still powers the 2017 base model, BMW reengineered the 2017 i3 with an optionally available 94 kWh battery pack for greater battery electric range, plus an available REx variant with a slightly larger 2.4 gallon gas tank. The result is notable. The 2017 i3 with the larger battery offers an EPA estimated 114 miles on battery power. Opting for the 2017 i3 REx variant delivers an EPA estimated 97 miles of battery range (somewhat less than the electric-only model due to the REx system’s additional weight), and 180 miles of overall driving with the range extender.

We did find that the shorter 72 mile battery range of our 2015 i3 REx found us using the range extender somewhat regularly. With the longer 97 mile range we’ve only been into the range extender a few times, other than those times the range extender was required to automatically run for service since we hadn't been using it. Yes, it’s only a difference of 15 additional battery electric miles, but with our everyday routes and driving habits those additional miles have made a difference.

bmw-i3-interior-1The i3 is a kick to drive and we tend to smile a lot as our off-the-line acceleration regularly surprises others between traffic lights. The twin displays offer easy-to-reference information and controls are intuitive. For such a small car, the i3 provides a surprising amount of headroom and overall passenger comfort. The trunk is small but adequate for our everyday needs. Charging with our wall-mounted 240-volt charger is a breeze. It's also economical since we set the i3 to charge at off-peak times and enjoy a discounted electric vehicle rate from our local electric utility.

Green Car Journal editors continue to find our 2017 BMW i3 tester a favored go-to vehicle for daily drives because it’s fun and easy to drive in addition to being clean and economical. We expect that will continue to be the case in the months ahead because it's a combination that’s just hard to beat.

bmw-i3-charging

ron-cogan-capitol-hillCharging your electric vehicle used to be an easy thing, at least in many areas where electrification has long been promoted. Public chargers were installed in high-profile areas like shopping centers, parking garages, and at the workplace. For the longest time, it wasn’t unusual to see these chargers go unused for long periods of time. Green Car Journal editors experienced this first-hand for many years during our daily travels with plug-in test cars.

Often enough, ours was the only electric vehicle plugged in at a bank of four chargers at a local commercial center in our city. It was the same story in the parking garage downtown. But that’s changed, signifying both the positives and the challenges of a plug-in vehicle market that’s gathering momentum, and numbers. These days those chargers are often occupied when we pull up. Like most places, there simply don’t seem to be enough chargers to go around.

Many have heard about incidents at Tesla Supercharger sites, places where you can top off 80 percent of your battery charge in 30 minutes and then be on your way. The problem is, not everyone plugs in and then moves on. Superchargers, and chargers in general, are often located in areas where businesses are nearby so the experience is convenient and there’s something to do while charging. Tesla, in fact, has hinted that it’s taking this further and exploring Supercharger sites with food and amenities for those charging up their cars.

To be sure, not everyone stops for a 30 minute cup of coffee while charging. Shopping experiences in nearby stores can take much longer than that, and if all chargers are being used with others waiting to top off before continuing their journey, long waits are a problem. At times that leaves EV drivers frustrated with those who leave their car plugged in long after their needed charge is complete. The result? An interesting phenomenon in recent years called ‘charge rage.’

charging-at-two-chargersThis isn’t unique to Superchargers or to public charging sites. Workplaces can have similar experiences as employees in increasing numbers step up to battery electric and plug-in hybrids. They’re encouraged to do so not only to drive ‘greener,’ but also to benefit from shorter commutes in states that allow solo EV drivers in high occupancy vehicle (carpool) lanes. That privilege alone has spurred many commuters to go electric. Time isn’t just money. It’s also…time. Spending a half-hour less each way during the daily commute is worth more than money in many respects. And once the commute is done, it’s time to charge.

Most companies offering chargers have limited numbers and often site these in favorable parking areas close to the workplace, further encouraging employees to go electric. It’s good for a company’s image and it’s the right thing to do. That said, expecting employees to free up a charger after a few hours and move their car farther out in an expansive parking lot is asking a lot, human nature being what it is.

charging-bankConsider, too, charging sites at public parking garages adjacent to convention centers and other venues. Those who plug in while attending a conference of expo aren’t likely to return after an hour or two to unplug and move to another less convenient parking spot. With a limited number of charging spots available, other EV drivers counting on a range-extending charge aren’t likely to be pleased if all charging spots are taken.

Yes, there’s change afoot. Charging companies, automakers, utilities, and both state and local governments are striving to install an exponentially larger number of public chargers to alleviate the problem and keep pace with the growing number of plug-in vehicles on the road. But it hasn’t been fast enough…certainly not at a pace that’s keeping up with the larger number of electric vehicles on the road today.

charging

Drivers have long been promised perks like free public charging, access to carpool lanes with a single occupant in an electric vehicle, and favorable parking with charging available, all to encourage them to go step up to a battery electric or plug-in hybrid vehicle. While not disappearing, these perks are getting harder to realize. And that’s not a good thing for the electric vehicles and the industry as a whole.

mini-cooper-countryman-all4-drivingThe 2018 MINI Countryman is the biggest MINI ever, featuring 30 percent more cargo space than the previous Countryman, more front and rear legroom, and greater headroom and rear seat shoulder room for five occupants. Adding to the model’s appeal is the MINI Cooper S E Countryman ALL4, a new plug-in hybrid variant that starts at $36,800.

The all-wheel drive Countryman ALL4 eDrive adds an 87-horsepower, 122 lb-ft torque electric motor to the MINI TwinPower engine for greater performance and efficiency. The turbocharged, direct injection 1.5-liter three-cylinder engine is rated at 134 horsepower. Altogether, combined system output adds up to an available 221 horsepower and 284 lb-ft torque.

mini-cooper-countryman-all4-engineWith its ‘through-the-road’ all-wheel drive architecture, the Countryman SE ALL4 uses its gasoline engine to power the front wheels via a modified 6-speed Steptronic automatic transmission. The synchronous electric motor housed beneath the luggage compartment floor delivers power to the rear axle via a two-stage, single-speed transmission.

This powertrain setup is linked to the vehicle’s Dynamic Stability Control (DSC) system that analyzes both the road situation and the driver’s wishes. When it detects excessive slip, both the gasoline engine and electric motor are engaged. The ALL4 all-wheel-drive system features a power take-off integrated into the front axle differential, a propeller shaft leading to the rear axle, and a hang-on clutch that ensures precisely measured transmission of drive torque to the rear wheels.

mini-cooper-countryman-all4-rearA 7.6 kWh lithium-ion battery is located beneath the slightly raised rear seat, as is a 9.5-gallon fuel tank. The PHEV has an EPA estimated all-electric range of 12 miles on batteries, with a total range of 270 miles on gasoline-electric power. Charging at 240-volts takes 3 hours and 15 minutes.

An intelligent energy management system ensures that engine and motor use is optimized for both driving fun and efficiency. The driver can also use the MINI’s eDrive toggle switch to choose between three operating modes. In AUTO eDRIVE, the PHEV operates in electric-only mode at speeds up to 55 mph. At higher speeds and under intensive loads, the engine automatically starts. In MAX eDRIVE power is delivered by the electric motor alone at up to 78 mph, with the engine started at higher speeds or upon kickdown. SAVE BATTERY mode can be selected to conserve battery capacity or raise its charge state to at least 90 percent while driving.

mini-cooper-countryman-all4-displayA Technology Package includes a new 8.8-inch touchscreen navigation system, a new-generation user interface and operating system, and Qi wireless device charging capability. The MINI’s standard rear-view camera and rear Park Distance Control can be extended to include front parking sensors and a Parking Assistant feature for easy parallel parking.

Those interested in driver assist systems are not forgotten. A MINI Driving Assistant option includes collision warning with a city braking function, pedestrian warning with initial brake function, and road sign detection. Camera-based adaptive cruise control enables cruise control function that senses the vehicle ahead and adjusts speed accordingly, making longer distance drives that much more pleasurable.

BMW 530eBMW’s 530e, the fourth plug-in hybrid in this automaker’s growing iPerformance lineup in the U.S., combines a TwinPower Turbo engine with an electric motor to achieve desired performance and efficiency. The 180 horsepower, turbocharged 2.0-liter engine and 111 horsepower electric motor feature a total output of 248 horsepower and 310 lb-ft torque. This model marks the first time a BMW iPerformance model is available with either sDrive rear-wheel-drive or xDrive all-wheel-drive.

The electric motor and combustion engine deliver power to the wheels via an 8-speed Steptronic transmission that’s optionally controlled by paddle shifters. With the electric motor in front of the transmission, all gear ratios are also available in the all-electric mode. This eliminates the need for a torque converter and helps offset the weight penalty of adding electric drive. T

bmw-530e-xrayEnergy is supplied to the motor via a lithium-ion battery pack with a total capacity of 9.2 kilowatt-hours. This provides an all-electric range of 16 miles with a total gasoline-electric range of 370 miles. The battery pack features refrigerant cooling and is located beneath the comfortable and well-appointed cabin’s rear seat.

Drivers can select Auto eDrive, Max eDrive, and Battery Control modes to tailor the driving experience.  In the default Auto eDrive mode, the engine and electric motor work optimally under all driving situations and allow all-electric driving at up to 56 mph.  In Max eDrive, the 530e can run on electricity alone up to 87 mph. Battery Control mode lets the driver set charge level manually and makes it possible to conserve or even increase battery capacity while on the highway, so urban driving in the miles ahead can be entirely on electric power.

bmw-530e-chargingThe 530e iPerformance is well-equipped with driver assistance systems, featuring Blind Spot Detection, Traffic Jam Assistant, Lane Departure Warning, and Active Lane Keeping Assistant with Side Collision Avoidance. Along with maintaining any selected speed, Dynamic Cruise Control supports energy-saving coasting by decoupling the engine from the powertrain when the driver lifts off the accelerator at higher speeds. Active Cruise Control with Stop & Go uses radar to adjust a pre-selected speed to traffic conditions. It can brake to a standstill in stop-and-go traffic and automatically sense vehicles ahead so speed can be adjusted earlier and smoother.

Further enhancing driving safety is the 530e’s Evasion Aid capability that provides evasive steering action if a quick lane change is required at speeds up to 100 mph.  Dynamic Stability Control handles the faster steering and counter-steering needed during evasive maneuvers to reduce vehicle instability. Evasion Aid also uses information from the car’s sensor systems to check how much unobstructed space is available around the vehicle.

BMW 530eIt’s notable that the 530e is offered at the same $52,650 base price as the gasoline-powered 530i, which bucks traditional pricing practices in which buyers typically pay a substantial premium for a more efficient plug-in hybrid variant. It’s a laudable move on BMW’s part that may well entice more new car buyers to step up to the ‘greener’ model.

The Cadillac CT6 Plug-In Hybrid goes on sale in North America inThe CT6 Plug-In is Cadillac's answer to the growing market for premium plug-in hybrid vehicles that deliver greater efficiency and environmental performance, while also offering the high levels of luxury, comfort, and advanced on-board electronics expected by premium car buyers. All this brought recognition in Washington DC this year as the CT6 Plug-In was honored as Green Car Journal’s 2018 Connected Car of the Year™ for these attributes and its suite of sophisticated electronics

This is not Cadillac’s first go at a plug-in hybrid electric vehicle. Its initial effort was the ELR produced from 2013-2016, a beautifully-designed plug-in luxury coupe that did not find a ready market at the time and is no longer in the Cadillac line. This new $75,000 CT6 Plug-In, based the acclaimed Cadillac CT6 luxury sedan, is a significantly stronger effort that offers plenty to the luxury car buyer including sophisticated style, a refined and accommodating cabin, and very satisfying performance.

The Cadillac CT6 Plug-In Hybrid goes on sale in North America inPower is provided by a turbocharged 2.0-liter four-cylinder engine rated at 265 horsepower with 295 lb-ft torque. It works with twin 100 horsepower electric motors integrated into a newly developed electric variable transmission that delivers power to the rear wheels. This combination provides a total system output of 335 horsepower and 432 lb-ft torque in what Cadillac call a blended hybrid configuration.

An 18.4 kilowatt-hour lithium-ion battery pack located between the rear seat and trunk provides the CT6 Plug-In a battery electric range of 31 miles at speeds up to 78 mph. This pack can be charged overnight from a standard 120-volt outlet or in about 4.5 hours with a 240-volt charger. Only an incidental amount of charging come from the gasoline engine/generator. Regenerative braking also delivers electricity to the batteries.

The Cadillac CT6 Plug-In Hybrid goes on sale in North America inAlong with electric-only mode, a driver has a choice of three other operating modes – Normal, Sport, and Hold. In Normal mode, the system switches between electric-only, hybrid, and gasoline engine-only operation to optimize performance and fuel economy. In Sport mode, this plug-in hybrid delivers more aggressive throttle response for quicker acceleration, plus sportier steering. Hold mode conserves battery capacity for urban driving at a later time and uses the gasoline engine for highway driving or higher speed conditions.

The CT6 Plug-In’s 31 mile all electric-range is likely to fit the daily driving needs of many drivers, which means zero-emission motoring every day. Beyond that, this plug-in hybrid’s combined driving range of about 440 miles with a full charge and 15.6-gallon tank fits all possible driving needs, meaning no range anxiety and no compromises. EPA estimates the car’s fuel efficiency while driving on battery power at an equivalent 62 mpg (MPGe), with overall efficiency on hybrid power rated at 23 city and 29 highway mpg, which is quite respectable for a luxury vehicle weighing in at over two tons.

2016 Cadillac CT6, Los Angeles, CARegen on Demand allows the use of steering wheel-mounted paddles to select a desired level of brake regeneration and regen-induced brake drag, from light to very aggressive. Using more aggressive regen delivers significant levels of drag and stopping power when lifting off the accelerator, allowing conventional brakes to be reserved for those instances when maximum braking is desired or required. Exclusively using the throttle and paddles delivers in more refined and fun driving experience.

The CT6 Plug-In's connectivity and on-board electronics capabilities are impressive. Among these systems is the automaker’s CUE Information and Media Control System with Navigation and Apple CarPlay/Android Auto capability, OnStar 4G LTE with a built-in Wi-Fi hotspot, wireless cellphone charging, and Bluetooth with voice recognition. A rear camera mirror camera and automatic parking enhance convenience. Driver awareness systems includes Forward Collision Alert that monitors traffic ahead and alerts if a collision is imminent. A Following Distance indicator in the Driver Information Center displays following time relative to the vehicle ahead. Surround Vision provides a birds-eye view of the vehicle’s surroundings.

2016 Cadillac CT6, Los Angeles, CAOf course, the CT6 Plug-In is well-equipped with driver assist systems. Lane Keep Assist gently steers the car if it’s determined a driver is unintentionally leaving a lane when directional signals are not used. Side Blind Zone Alert displays a warning in the outside rearview mirrors when a vehicle is detected in a blind spot, or if a car is rapidly approaching that spot. Also included is Adaptive Cruise Control, which automatically accelerates and brakes to maintain a driver-selected following distance to the vehicle ahead. Forward and Reverse Automatic Braking senses front or rear collisions and applies brakes as needed. Night vision and a reconfigurable head-up display are also welcome additions.

Cadillac’s CT6 Plug-In is an exceptionally well-crafted luxury vehicle that delivers all the features expected in its class, with the addition of leading-edge electronics that enhance convenience and safety. It delivers a premium driving experience with responsive handling and welcome performance, all the while providing increased efficiency and the option of zero-emission driving that’s increasingly desired in today’s new-generation vehicles. It’s a job very well done.

2016 Cadillac CT6, Los Angeles, CA