Green Car Journal logo

2016 Chevrolet VoltThe Los Angeles Auto Show is the setting for Green Car Journal’s highly-anticipated Green Car of the Year® award each year, as it has been since its first appearance in car-centric Southern California 11 years ago. This year, following a video intro by celebrity juror Jay Leno and with all five award finalist vehicles flanking the stage, Green Car Journal revealed this year’s winner – the all-new 2016 Chevrolet Volt.

Chevrolet’s Volt was a milestone vehi­cle when it debuted in the 2011 model year and then drove away with 2011 Green Car of the Year® honors. In its new generation, it’s clear that Chevrolet listened to its customers – and in par­ticular Volt owners – and implemented improvements across the board to make the 2016 Volt faster, more stylish, and more capable than ever.

2016 Chevrolet VoltAmong its important functionality achievements is the expansion from four- to five-passen­ger seating and a zero-emission battery driving range of up to 53 miles. It’s also packed with advanced electronics including Apple CarPlay, 4G LTE Wi-Fi connectivity through OnStar, and desired driver assist systems. The Volt offers an entry point of $33,170 with federal and state incentives available.

Called by GM an extended range electric vehicle – technically a series hybrid configuration – the Volt’s gasoline engine powers a generator that both charges the battery and provides electric energy to the motors once the car’s batteries are depleted. Total driving range is 420 miles, 40 miles farther than the previous generation. The new Volt is rated at a combined city/highway 102 MPGe while driving on battery power and a combined 42 mpg in the extended range mode while the engine-generator is operating.

2016-chevrolet-volt-cutawayThe Volt uses two electric motors but they are now closer in size and share the load more evenly than the Volt’s previous large-and-small motor combination. A new 1.5-liter, four-cylinder DOHC direct-injection engine is used to generate electricity. The lighter aluminum-block engine produces 101 horsepower versus the 84 horsepower of its iron-block predecessor. Even though the new engine has a higher 12.5:1 compression ratio, it runs on less expensive regular fuel rather than the premium fuel required in the original Volt.

The number of lithium-ion cells in the Volt’s T-shaped battery pack has decreased from 288 to 192. However, improved chemistry means battery capacity increases from 17.1 to 18.4 kilowatt-hours even as pack weight drops by 31 pounds. In all, the 2016 Volt is about 200 pounds lighter than the earlier generation.

2016-chevrolet-volt-battery-displayAs noted by this year’s finalists, there is no single path to achieving important environmental achievement. Along with the Volt, three other nominees feature electrification but in somewhat differ­ent forms. The Audi A3 e-tron champi­ons plug-in hybrid power, as does the Hyundai Sonata with its plug-in hybrid, hybrid, and conventionally-powered vari­ants. The Toyota Prius continues its effi­ciency leadership as an all-new genera­tion hybrid hatchback. Honda’s new gen­eration Civic illustrates that impressive efficiency can be achieved with advanced internal combustion power.

Green Car Journal’s Green Car of the Year® is selected by a jury comprised of environmental and efficiency lead­ers including Jean-Michel Cousteau, president of Ocean Futures Society; Matt Petersen, board member of Global Green USA; Mindy Lubber, President of CERES; Kateri Callahan, President of the Alliance to Save Energy; and Dr. Alan Lloyd, chairman emeritus of the International Council on Clean Transportation. Rounding out the jury is comedian and car aficionado Jay Leno plus Green Car Journal editors.

2016-gcoy-trophy-presentationThe all-new Volt has clearly earned its distinction as 2016 Green Car of the Year®. Chevrolet has taken an efficient and award-winning sedan and made it better in virtually every way…a shining example of the environmental leadership the Green Car of the Year® award seeks to honor.

There’s something almost magical about plugging your car into an outlet at night and waking up to a full ‘tank’ in the morning. There’s no need for a stop at the gas station, ever. Plus, there’s no nagging guilt that the miles metered out by the odometer are counting off one’s contribution toward any societal and environmental ills attendant with fossil fuel use.

This is a feeling experienced during the year Green Car Journal editors drove GM’s remarkable EV1 electric car in the late 1990s. Daily drives in the EV1 were a joy. The car was sleek, high-tech, distinctive, and with the electric motor’s torque coming on from zero rpm, decidedly fast. That’s a potent combination.

This image has an empty alt attribute; its file name is EV1-Rolling-Chassis-Illustration-1024x576.jpgThe EV1 is long gone, not because people or companies ‘killed’ it as the so-called documentary Who Killed the Electric Car suggested, but rather because extraordinarily high costs and a challenging business case were its demise. GM lost many tens of thousands of dollars on every EV1 it built, as did other automakers complying with California’s Zero Emissions Vehicle (ZEV) mandate in the 1990s.

Even today, Fiat Chrysler CEO Sergio Marchionne says his company loses $14,000 for every Fiat 500e electric car sold. Combine that with today’s need for an additional $7,500 federal tax credit and up to $6,000 in subsidies from some states to encourage EV purchases, and it’s easy to see why the electric car remains such a challenge.

This image has an empty alt attribute; its file name is Fiat-500-Underhood-1024x576.jpg

This isn’t to say that electric cars are the wrong idea. On the contrary, they are perceived as important to our driving future, so much so that government, automakers, and their suppliers see electrification as key to meeting mandated 2025 fleet-wide fuel economy requirements and CO2 reduction goals. The problem is that there’s no singular, defined roadmap for getting there because costs, market penetration, and all-important political support are future unknowns.

The advantages of battery electric vehicles are well known – extremely low per-mile operating costs on electricity, less maintenance, at-home fueling, and of course no petroleum use. Add in the many societal incentives available such as solo driving in carpool lanes, preferential parking, and free public charging, and the case for electrics gets even more compelling. If a homeowner’s solar array is offsetting the electricity used to energize a car’s batteries for daily drives, then all the better. This is the ideal scenario for a battery electric car. Of course, things are never this simple, otherwise we would all be driving electric.

This image has an empty alt attribute; its file name is EV-Charging-1024x576.jpgThere remain some very real challenges. Government regulation, not market forces, has largely been driving the development of the modern electric car. This is a good thing or bad, depending upon one’s perspective. The goal is admirable and to some, crucial – to enable driving with zero localized emissions, eliminate CO2 emissions, reduce oil dependence, and drive on an energy source created from diverse resources that can be sustainable. Where’s the downside in that?

Still, new car buyers have not stepped up to buy battery electric cars in expected, or perhaps hoped-for, numbers, especially the million electric vehicles that Washington had set out as its goal by 2015. This is surprising to many since electric vehicle choices have expanded in recent years. However, there are reasons for this.

This image has an empty alt attribute; its file name is Toyota-Tesla-RAV4-EV-Side-1-1024x576.jpg

Electric cars are often quite expensive in comparison to their gasoline-powered counterparts, although government and manufacturer subsidies can bring these costs down. Importantly, EVs offer less functionality than conventional cars because of limited driving range that averages about 70 to 100 miles before requiring a charge. While this zero-emission range can fit the commuting needs of many two-vehicle households and bring substantial fuel savings, there’s a catch. Factoring future fuel savings into a vehicle purchase decision is simply not intuitive to new car buyers today.

Many drivers who would potentially step up to electric vehicle ownership can’t do so because most electric models are sold only in California or a select number of ‘green’ states where required zero emission vehicle credits are earned. These states also tend to have at least a modest charging infrastructure in place. Manufacturers selling exclusively in these limited markets typically commit to only small build numbers, making these EVs fairly insignificant in influencing electric vehicle market penetration.

This image has an empty alt attribute; its file name is BMW-i3-Action-1024x576.jpg

Battery electric vehicles available today include the BMW i3, BMW i8, Chevrolet Spark EV, Fiat 500e, Ford Focus Electric, Honda Fit EV, Kia Soul EV, Mercedes-Benz B-Class Electric Drive, Mitsubishi i-MiEV, Nissan LEAF, Smart ForTwo Electric Drive, Tesla Model S, Toyota RAV4 EV, and VW e-Golf. While most aim at limited sales, some like BMW, Nissan, and Tesla market their EVs nationwide. The Honda Fit EV and Toyota RAV4 EV are being phased out. Fleet-focused EVs are also being offered by a small number of independent companies. Other battery electrics are coming.

BMW’s i3 offers buyers an optional two-cylinder gasoline range extender that generates on-board electricity to double this electric car’s battery electric driving range. A growing number of electrified models like the current generation Prius Plug-In and Chevy Volt can also run exclusively on battery power for a more limited number of miles (10-15 for the Prius and up to 40 miles in the Volt), and then drive farther with the aid of a combustion engine or engine-generator. Both will offer greater all-electric driving range when they emerge as all-new 2016 models. Many extended range electric vehicles and plug-in hybrids like these are coming soon from a surprising number of auto manufacturers.

This image has an empty alt attribute; its file name is Coda-EV-1024x576.jpgIt has been an especially tough road for independent or would-be automakers intent on introducing electric vehicles to the market. Well-funded efforts like Coda Automotive failed, as have many lesser ones over the years. Often enough, inventors of electric cars have been innovative and visionary, only to discover that becoming an auto manufacturer is hugely expensive and more challenging than imagined. In many cases their timeline from concept and investment to production and sales becomes so long that before their first cars are produced, mainstream automakers have introduced models far beyond what they were offering, and at lesser cost with an established sales and service network to support them.

A high profile exception is Tesla Motors, the well-funded Silicon Valley automaker that successfully built and sold its $112,000 electric Tesla Roadster, continued its success with the acclaimed $70,000-$100,000+ Model S electric sedan, and will soon deliver its first Tesla Model X electric crossovers. While Tesla has said it would offer the Model X at a price similar to that of the Model S, initial deliveries of the limited Model X Signature Series will cost a reported $132,000-$144,000. It has not yet been announced when lower cost 'standard' Model X examples will begin deliveries to Tesla's sizable customer pre-order list.

This image has an empty alt attribute; its file name is Tesla-Model-S-on-Road-1-1024x576.jpgTesla’s challenge is not to prove it can produce compelling battery electric cars, provide remarkable all-electric driving range, or build a wildly enthusiastic – some would say fanatical – customer base. It has done all this. Its challenge is to continue this momentum by developing a full model lineup that includes a promised affordable model for the masses, its Model 3, at a targeted $35,000 price tag. It will be interesting to see if the Model 3 ultimately comes to market at that price point.

This is no easy thing. Battery costs remain very high and, in fact, Tesla previously shared that the Tesla Roadster’s battery pack cost in the vicinity of $30,000. While you can bury the cost of an expensive battery pack in a high-end electric car that costs $70,000 to over $100,000, you can’t do that today in a $35,000 model, at least not one that isn’t manufacturer subsidized and provides the 200+ mile range expected of a Tesla.

This image has an empty alt attribute; its file name is Tesla-Model-X-Falcon-Wing-Doors-1024x576.jpgThe company’s answer is a $5 billion ‘Gigafactory’ being built in Nevada that it claims will produce more lithium-ion batteries by 2020 than were produced worldwide in 2013. The company’s publicized goal is to trim battery costs by at least 30 percent to make its $35,000 electric car a reality and support its growing electric car manufacturing. Tesla has said it’s essential that the Gigafactory is in production as the Model 3 begins manufacturing. The billion dollar question is…can they really achieve the ambitious battery and production cost targets to do this over the next few years, or will this path lead to the delays that Tesla previously experienced with the Tesla Roadster, Model S, and Model X?

Tesla is well-underway with its goal of building out a national infrastructure of SuperCharger fast-charge stations along major transportation corridors to enable extended all-electric driving. These allow Tesla vehicles the ability to gain a 50 percent charge in about 20 minutes, although they are not compatible with other EVs. For all others, Bosch is undertaking a limited deployment of its sub-$10,000 DC fast charger that provides an 80 percent charge in 30 minutes. A joint effort by ChargePoint, BMW, and VW also aims to create express charging corridors with fast-charge capability on major routes along both coasts in the U.S.

This image has an empty alt attribute; its file name is Chargepoint-Charger-1-1024x576.jpgThe past 25 years have not secured a future for the battery electric car, but things are looking up. The next 10 years are crucial as cost, infrastructure, and consumer acceptance challenges are tackled and hopefully overcome to make affordable, unsubsidized electric cars a mass-market reality. It is a considerable challenge. Clearly, a lot of people are counting on it.

elf-sideNow here’s something you don’t see every day: A pretty cool rendition of how to blend eco transport, human hybrid power, solar charging, and cool factor into an eye-catching mode of sustainable transportation.

Durham, North Carolina-based Organic Transit offers the ELF, an egg-shaped production vehicle designed for urban mobility with scant environmental impact. The three-wheeled vehicle uses a 740 watt UpDrive DC motor, NuVinci CVT transmission, and a 30 amp-hour lithium-ion battery to provide electric drive when electrical assist is needed or you tire of pedaling. Top pedal/electric speed is 30 mph.

elf-handlebarsThe manufacturer says charging the battery takes 2 1/2 hours via a standard household outlet or 7 hours with power generated by the vehicle’s 100 watt solar roof panel. Since it’s legally a bicycle, the three-wheeled ELF can be driven on bike paths and even parked on sidewalks.

The lightweight, 160 pound ELF uses a color impregnated composite bodyshell and Lexan polycarbonate windscreen atop a 6061T aircraft grade aluminum frame with stainless steel hardware. It features 26 inch wheels, triple disc brakes, and dynamic dampening. LED headlights, taillights, brake lights, and turn signals are provided. Inside is a single ergonomic sliding seat said to accommodate riders up to 6 foot, nine inches tall, plus a locking cargo compartment. The base model is priced at $5,495. Two-seat variants are available plus a black-and-white tactical version for police and security use.

organic-transit-1

Honda FCV ConceptMany believe hydrogen to have the greatest potential of all alternative fuels, not only for vehicles but as a primary energy source for all aspects of life. Used in fuel cells to electrochemically create electricity for powering a vehicle’s electric motors, hydrogen produces no emissions other than water vapor and heat. There are no CO2 or other greenhouse gases.

While hydrogen is largely extracted from methane today, there are bigger things on the horizon. Hydrogen is a virtually unlimited resource when electrolyzing water using solar- or wind-generated electricity, a process that splits H2O (water) into hydrogen (H) and oxygen (O) molecules. Water covers much of the Earth’s surface and is the most abundant compound on the planet.

hydrogen-mazda-miataThis has been on the mind of auto manufacturers for years. In fact, editors have experienced many test drives of prototypes and concepts running on hydrogen power for years, like our time behind the wheel of a Mazda MX-5 Miata concept more than two decades ago, along with others from BMW, Ford, GM, Honda, Hyundai, Mercedes-Benz and more.

Along with their own independent hydrogen vehicle development programs, some automakers like GM and Honda are working cooperatively to develop next-generation fuel cell systems and hydrogen storage. Others are working with hydrogen fuel suppliers and state governments to develop an expanded hydrogen fueling network.

Chevy EquinoxIn recent years, Honda has been leasing its FCX Clarity fuel cell sedan to limited numbers of consumers in California and Hyundai has recently followed suit with its Tucson Fuel Cell crossover vehicle, also available to limited numbers of consumers in California where hydrogen refueling is more readily available. Both Honda and Toyota have announced plans to introduce next-generation production fuel cell vehicles for consumers shortly.

As with any game-changing technology, hydrogen vehicles come with their challenges. Hydrogen vehicles are presently quite costly to produce, although their cost to consumers who lease them will surely be subsidized by manufacturers until this field matures. The production of ‘green’ hydrogen through electrolysis and other means is also presently limited and costly, plus the nation’s hydrogen refueling infrastructure is extremely sparse, although growing.

shell-hydrogenThe hydrogen vehicle field continues to evolve. A recent study by Sandia National focused on 70 gas stations in California – the state with the largest number of existing hydrogen stations – to determine if any could add hydrogen fueling based on requirements of the 2011 NFPA 2 hydrogen technologies code. The conclusion is that 14 of the 70 stations explored could readily accept hydrogen fuel, with an additional 17 potentially able to integrate hydrogen with property expansions. In this light, expanding the network of hydrogen stations may be more straightforward than previously thought.

Even amid these challenges, with major commitments from automakers like Honda, Toyota, GM, and others in Europe and Asia, hydrogen vehicles are a very real and exciting possibility for the road ahead.

toyota-mirai-fuel-cell

PrintFor a decade, Green Car Journal has been recognizing vehicles that significantly raise the bar in environmental performance. With automakers stepping up to offer ever-more efficient and ‘greener’ vehicles in all classes, the magazine’s awards program has naturally expanded to include a greater number of awards for recognizing deserving vehicles.

This prompted the recent suite of Green Car Awards presented during Policy Day at the Washington Auto Show in the nation’s capital – the 2015 Green SUV of the Year™, 2015 Green Car Technology Award™, and 2015 Luxury Green Car of the Year™.

bmw-i8-award-winner

BMW’s gull-wing i8 earned the distinction as the 2015 Luxury Green Car of the Year, outshining competitors Audi A8 L TDI, Cadillac ELR, Porsche Panamera S E-Hybrid, and Tesla Model S. Aimed at aspirational buyers who value superb styling and exceptional performance combined with the efficiency of plug-in hybrid drive, the i8 is unique among its peers with an advanced carbon fiber passenger body shell. It also features a lightweight aluminum drive module with a gasoline engine, lithium-ion batteries, and electric motor. The i8 can drive on battery power for 22 miles and up to 310 miles on hybrid power.

The Jeep Grand Cherokee EcoDiesel rose to the top as the magazine’s 2015 Green SUV of the Year, besting finalists Honda CR-V, Hyundai Tucson Fuel Cell, Lexus NX 300h, and Mazda CX-5. Offering excellent fuel efficiency for an SUV of its size, the Grand Cherokee EcoDiesel’s 3.0-liter EcoDiesel V-6 offers up to 30 highway mpg and is approved for B20 biodiesel use. An Eco Mode optimizes the 8-speed transmission’s shift schedule, cuts fuel feed while coasting, and directs the air suspension system to lower the vehicle at speed for aerodynamic efficiency.

jeep-grand-cherokee-ecodiesel-winnerThe Ford F-150 was honored with the 2015 Green Car Technology Award for its milestone use of an all-aluminum body. Competing for the award were advanced powertrains in the BMW i3, BMW i8, Chevrolet Impala Bi-Fuel, Ford F-150, Honda Fit, Kia Soul EV, Tesla Model S, VW e-Golf, and Volvo Drive-E models. The F-150’s aluminum body enables the all-new 2015 pickup model to shed up to 700 pounds for greater efficiency and performance.

While the Green Car Technology Award has a history at the Washington Auto Show, the first-time Green SUV of the Year and Luxury Green Car of the Year awards could not have existed just a short time ago. Simply, SUVs and luxury vehicles were seldom considered ‘green,’ and for good reason. An SUV/crossover’s mission was to provide family transport and recreational capabilities, while aspirational/luxury vehicles were expected to deliver the finest driving experience combined with high-end appointments and exceptional design. Both categories held few environmental champions and ‘green’ was hardly an afterthought.

ford-f-150-award-winner

The evolving nature of ‘green’ cars has brought about a fundamental shift in which environmental performance is now important in SUVs and luxury vehicles. Even so, not all models in these classes are created equal. The challenge has been finding the right balance – the ‘sweet spot’ – that finds SUVs and luxury vehicles delivering the efficiency and environmental qualities desired without sacrificing the conventional touchstones – quality, safety, luxury, value, performance and functionality – that consumers demand. This year’s winners of the 2015 Green Car Awards clearly achieve this balance.

Presenting these important awards at the Washington Auto Show is compelling considering its reputation as the ‘Policy Show,’ a result of the show’s proximity to Capitol Hill and the influence that Washington DC has in driving a more efficient generation of vehicles to market. The 2015 Washington Auto Show has also expanded in recent years, receiving accreditation from the Organisation Internationale des Constructeurs d'Automobiles (OICA) as one of the five top tier auto shows in America. This year’s Washington Auto Show featured more than 700 vehicles from over 42 domestic and import auto manufacturers, plus a Green Car Awards exhibit showcasing 15 finalist vehicles within the show’s Advanced Technology Superhighway exhibit area.

WANADA_AutoShow_Logo_NoTag

DC Fast ChargeExpanding the driving range capabilities of electric cars through fast charging is of growing interest. Tesla has keyed in on this with its high-profile Supercharger network of fast chargers along major transportation corridors. While this is great for Tesla owners, it’s not a comfort to drivers of other EVs since the SuperCharger network is not compatible with their cars.

Enter ChargePoint, VW, and BMW, which have joined together to offer similar capabilities for other electric vehicle models. The three are developing express electric vehicle charging corridors with fast charging stations that allow EV drivers to recapture up to an 80 percent charge in just 20 minutes. Fast charging sites will be strategically spaced no more than 50 miles apart to make longer trips possible for EVs that incorporate a DC fast charging capability.

Initial efforts will focus on heavily-traveled routes on the East and West Coasts, providing 100 DC fast chargers at existing ChargePoint sites. The aim is to expand fast charging capabilities to other sites within the ChargePoint network, which already offers more than 20,000 charging spots in North America. EV drivers can access the network with a ChargePoint or ChargeNow card or with the ChargePoint mobile app.

2015-green-car-of-the-year-logoOver the 10 year history of Green Car Journal’s Green Car of the Year award program, there has never been a battery electric car that has been compelling enough to be recognized as the best-of-the-best in an ever-expanding field of ‘green’ cars. That has changed with the groundbreaking BMW i3, Green Car Journal’s 2015 Green Car of the Year®.

The BMW i3 came out on top of a field of finalists that included the Audi A3 TDI, Chevrolet Impala Bi-Fuel, Honda Fit, and VW Golf. The array of technologies and fuels represented included high efficiency gasoline, electric drive, clean diesel, and natural gas.

bmw-13-action-rightBMW’s i3 stands out as one of the most innovative vehicles ever to be introduced by any major automaker. It breaks the mold – literally – with a strong and lightweight body using materials and technology at home on the race track, and now used for the first time to construct a mainstream production car. It is a milestone, forward-thinking approach.

Meeting both near-term and far-reaching goals is no easy thing. The challenge is to design and build cars that offer meaningful environmental achievement while delivering the traditional touchstones desired by new car buyers, among them comfort, safety, convenience, connectivity, performance, and value. Also important in the world of advanced vehicles like battery electric cars is a significant commitment to the manufacturing and sale of these vehicles that goes beyond a few thousand units sold in select geographical areas. BMW’s commitment with the i3 is focused not only nationally in the U.S., but globally as well.

bmw-i3-cutawayOffering a lightweight carbon fiber reinforced plastic (CFRP) body on an aluminum space frame, BMW’s innovative i3 brings environment-conscious drivers all-electric drive with an optional internal combustion range extender. The most unique aspect of the i3 is the car’s body structure, which incorporates the first-ever use of carbon fiber reinforced plastic (CFRP) to form the body and passenger cabin of a mass-production vehicle. CFRP is as strong as steel and 50 percent lighter. It is also 30 percent lighter than aluminum.

This BMW’s drive module includes an electric drivetrain, 5-link rear suspension, and an aluminum structure. Its lithium-ion battery pack is mounted mid-ship beneath the floor. Strategic placement of the 450 pound battery pack and drive components provides a very balanced 50-50 weight distribution to enhance handling and performance.

bmw-i3-dashAcceleration is crisp, with a 0-60 elapsed time of 7.2 seconds provided by an electric motor producing 170 horsepower and 184 lb-ft torque. With a curb weight of just 2,700 pounds, the i3 has is sprightly even at highway speeds. Strong regenerative braking characteristics often allow the i3 to be driven with just the accelerator pedal in city driving. When a driver lets off the accelerator, regen slows the car quickly and allows it to come to a complete stop without touching the brake pedal.

Charging at home with an available 220 volt charger delivers a full charge in about three hours. Where available, public DC fast charging can bring an i3 to 80 percent state-of-charge in 20 minutes and a full charge in 30 minutes. The i3 BEV features an 81 mile EPA estimated range on batteries. The i3 REx, equipped with an internal combustion range extender that creates on-board electricity as needed to help keep batteries charged, features a 72 mile battery driving range and 150 miles total with the range extender.

bmw-i3-chargingEfficiency is a given. EPA rates the i3’s city fuel economy at 137 MPGe (miles per gallon equivalent) and 111 MPGe on the highway, with a combined 124 MPGe. For the REx-equipped model, EPA rates mileage at 117 MPGe combined.

The 2015 Green Car of the Year® is selected by a majority vote of an award jury comprised of Green Car Journal staff and invited jurors, including TV personality and car aficionado Jay Leno plus leaders of the nation’s most high-profile environmental and efficiency organizations. These jurors include Jean-Michel Cousteau, president of Ocean Futures Society; Matt Petersen, board member of Global Green USA; Mindy Lubber, President of CERES; Kateri Callahan, President of the Alliance to Save Energy; and Dr. Alan Lloyd, President emeritus of the International Council on Clean Transportation.

bmw-i3-side-doorsThe diversity of new car models at showrooms today reflects an evolving and sophisticated market in which a growing number of new car buyers have decided that environmental performance must meet their needs and expectations, on their terms. As it happens, 2015 Green Car of the Year jurors have clearly decided that this year, the electric BMW i3 does it best.

 

It is an exciting time to be involved with the auto industry, or to be in the market for a new car. The auto industry has responded splendidly to the challenge of new emission, fuel economy, and safety standards. The public is offered a greater than ever selection of vehicles with different powertrains, lightweight materials, hybrids, and electric drive vehicles across many platforms. We see increasing numbers of clean diesel vehicles and natural gas is making a resurgence, especially in the heavy-duty sector.

alan-lloydThe positive response by the auto industry to the ever-tightening pollutant emission and fuel economy standards includes tactics such as the use of aluminum in the Ford F-150 and the increased use of carbon fiber by BMW, among many innovations introduced across many models and drivetrains. These evolutionary changes are a major tribute to the automobile engineers who are wringing out the most they can in efficiency and reduced emissions from gasoline and diesel engines. I view this evolutionary change as necessary, but not sufficient to meet our greenhouse gas goals by 2050.

New car ownership is currently down in Europe and is leveling off in the U.S. For global automotive manufacturers, however, this trend is offset by the dramatic growth in places like China and India. The potential for dramatic growth in the developing world is clearly evident: In the U.S., there are about 500 cars per thousand people, compared to about 60 and 20 in China and India, respectively.

How can these trends be reconciled with the environmental and health concerns due to climate change and adverse air quality in the developing world? The evidence for climate change accumulates by the day. Hazardous air quality in many major cities in China has drawn global attention, providing a visual reminder of how far the developed world has come and how much environmental protection needs to be accelerated in the developing world. Damaging air pollution is increasingly seen as a regional and even worldwide challenge. Dramatic economic growth in many developing countries is generating pollution that knows no boundaries. Air pollution from China, for example, fumigates Korea and Japan and is even transported across the Pacific to impact air quality in California and other Western states.

It will take a revolutionary change to provide personal mobility without unacceptable energy and environmental consequences. As a recent National Academy of Sciences (NAS) document states, it is likely that a major shift to electric drive vehicles would be required in the next 20 to 30 years. Electric drive vehicles, coupled with renewable energy, can achieve essentially zero carbon and conventional pollutant emissions. The NAS report also predicted that the costs of both battery and fuel-cell electric vehicles would be less than advanced conventional vehicles in the 2035-2040 timeframe.

This transition will not occur overnight and we will be driving advanced conventional vehicles for many years to come. In a study for the International Council on Clean Transportation, Dr. David Greene calculated that the transition could take 10 to 15 years, requiring sustained investment in infrastructure and incentives in order to achieve sustained penetration. While this investment is not inexpensive, it is projected that the benefits of this investment will be 10 times greater than the costs.

So where do we stand today on electric vehicles? We are seeing an unprecedented number of hybrid, plug-in hybrid, and battery electric vehicles across many drivetrains and models. There were about 96,000 plug-in electric vehicles sold or leased in the U.S. last year and more than 10 new PEV models are expected this year. While the sales fall short of some optimistic projections, it is an encouraging start after many years of more hope than delivery. The FC EV is expected to see significant growth after the initial limited introduction of fuel cells in the 2015-2017 timeframe by five major automobile companies.

It will take many years of sustained increasing penetration into new car sales to make this revolution a success. It is indeed a marathon and not a sprint. The challenge is how to ensure sustained sales of electric drive vehicles in the face of the many attributes of advanced technology conventional vehicles.  Electric drive vehicle drivetrains have an affinity with the increasing amount of electronics on board the vehicle, which might ultimately yield very interesting, capable, and competitive vehicles.

I have little doubt that if we are serious about our energy, environmental, and greenhouse gas goals the revolution in technology will occur. All the major automobile companies seem to recognize this in their technology roadmap, which includes advanced conventional vehicles, plug-in hybrid vehicles, battery and fuel cell electric vehicles.

In conclusion, the next 20 years promise to be equally as challenging and exciting as the last 20 years. I have little doubt that the automobile engineers are up to the task ahead, but whether we have the political fortitude to stay the course to achieve the necessary air pollution and GHG reductions is far less certain.

Dr. Alan Lloyd is President Emeritus of the nonprofit International Council on Clean Transportation (ICCT). He formerly served as Secretary of CalEPA and Chairman of the California Air Resources Board.

the-icct-logo

 

toyota-fcvToyota has unveiled its hydrogen fuel cell vehicle that will be available for sale to California customers in summer 2015. The Toyota FCV four-door sedan is forward-looking with its blending of traditional sleek styling and aggressive futuristic exterior touches.

This is quite a departure from the Hyundai Tucson Fuel Cell now on sale in California that packages hydrogen fuel cell power within a conventional-looking Tucson SUV. Honda took a more middle-of-the-road approach with its FCX Clarity fuel cell sedan that it began leasing to limited numbers of California customers in 2008, offering an advanced body design that, while not necessarily wildly futuristic, did preview many of the styling cues that would show up in Honda’s model lineup in future years.

toyota-fcv-rearLike its fuel cell competitors, the Toyota FCV is driven by electric motors powered by electricity electrochemically generated by a hydrogen fuel cell. Since there is no combustion, no CO2 is produced and the car emits only water vapor. The Toyota FCV is expected to travel 300 miles on a tank of hydrogen, providing the advantages of an electric car without the limitations of short driving range. Refueling is said to take less than five minutes.

While hydrogen fueling opportunities are admittedly sparse these days, Toyota is working toward a solution in California through its partnership with FirstElement Fuels. The aim is to support the long-term operation and maintenance of 19 new hydrogen refueling stations in that state, accessible by all model fuel cell vehicles. The availability of hydrogen fueling will determine where automakers initially offer their first fuel cell vehicles, thus the interest in California.

 

protean-hub-motor-breakawayThe electric hub motor has been around for a long time. Ferdinand Porsche’s first automobile in 1898 was the Lohner-Porsche with two electric motors in the front wheel hubs. Initially, electricity was supplied from batteries and later by batteries and a gasoline engine-driven generator, in what is considered the first hybrid electric vehicle. While there has been on-and-off interest in hub drive systems, there are currently two programs underway that could lead to production vehicles within a couple of years.

One of the big challenges has been the substantial unsprung weight that can degrade ride quality and handling. This can be overcome by lighter weight motors and other components that are now available. For example, Ford has shown its Fiesta eWheelDrive prototype developed with Schaeffler Technologies in Germany. The two Schaeffler eWheelDrives are housed within the 16-inch rear wheel rims. Each highly-integrated wheel hub drive contains an electric motor, power electronics, controller, brake system, and liquid cooling system.

fiesta-ewheel-drive

Each motor supplies a peak 54 horsepower or 44 horsepower continuous output to a rear wheel. The motor produces 516 lb-ft of torque. The highly-integrated wheel hub drive has a total weight of 117 pounds, only 17.6 pounds more than a conventional wheel including its wheel bearing and brake components.

The Fiesta eWheelDrive installation is just a technology demonstrator. Ford and Schaeffler feel the ideal application is in city cars for use in crowded urban areas with limited parking. Everything, with the exception of batteries, needed to propel and brake the car is located in the wheel. Thus, the space now needed for the engine and transmission or electric motor in an EV can be used for passengers and luggage. Indeed, it could mean a four-person car that takes up no more parking space than a current two-person car. The eWheel- Drive steering system could even allow moving sideways into parking spaces.

brabus-electric

Despite its somewhat higher wheel-sprung masses, extensive testing has shown the Fiesta eWheelDrive exhibiting driving behavior equal to a conventional Fiesta in terms of comfort and safety. The two wheel hub drive motors also allow torque vectoring for enhanced maneuverability in tight spaces. Ford, Schaeffler, and other partners plan on producing two more drivable vehicles by 2015.

Protean Electric, based in Britain, has been developing hub drive motors for years and plans volume production of its Protean Drive system in China this year. It showed its in-wheel electric drive system on a BRABUS hybrid vehicle at Auto Shanghai 2013. The BRABUS Hybrid, based on the Mercedes-Benz E-Class, is powered by an internal combustion engine driving a generator and two Protean electric drive motors, one in each of the rear wheels. Protean had also demonstrated Protean Drive in a Vauxhall Vivaro cargo van, Guangzhou Trumpchi sedan, Ford F150 pick-up, and a BRABUS full electric vehicle also based on the Mercedes-Benz E-Class.

protean-f-150

The Protean PD18, designed to fit inside an 18 x 18 inch wheel rim, provides 735 lb-ft torque and 100 horsepower. This is a 25 percent increase in peak torque compared with the previous generation design. Thus, it is powerful enough to be the only source of traction drive in electric vehicles. The unit only weighs 68 pounds per motor.

Each Protean Drive has a built-in inverter, control electronics, and software. The design can be used in small- to full-size vehicles including application in current vehicle platforms, retrofits to existing vehicles, or in all new vehicles. Protean says it recoups up to 85 percent of the available kinetic energy during regenerative braking. Compared to other electric vehicle drive systems, in-wheel motors apply regenerative braking directly at each wheel independently, similar to standard friction brakes.

Honda FCEV ConceptHonda has been an industry leader in developing and deploying fuel cell vehicles for nearly two decades. The Honda FCX was the world’s first production fuel cell vehicle when it was introduced to the U.S. and Japan in December 2002. This was followed by the second generation

FCX Clarity in 2008, the first dedicated production fuel cell vehicle. Honda plans to offer its next-generation fuel cell vehicle in the U.S. and Japan in 2015, followed by Europe.

Honda FCEV Concept

The sleekly-styled Honda FCEV Concept sports an ultra-aerodynamic body unlike anything on the road today. While Honda says its extreme styling may not make it into production, the concept does express a potential styling direction for fuel-cell vehicles in the coming years.

Inside, the Honda FCEV Concept provides ample seating for five thanks to new powertrain packaging efficiencies, which include the world’s first application of a fuel cell powertrain integrated completely within the engine compartment. The fuel-cell stack has an output of over 100 kilowatts with a power density of 3 kilowatts per liter, a 60 percent improvement from previous iterations. The stack size was reduced by a third compared to the FCX Clarity. This new fuel cell technology has the potential to be used in multiple vehicle types in the future.

Honda FCEV Concept

The next generation Honda FCEV is anticipated to deliver a driving range of more than 300 miles, about 60 miles more than the FXC Clarity. Fueling can be handled in about three minutes.

Since the nation’s hydrogen refueling infrastructure remains sparse and is still a major challenge for fuel cell vehicles, Honda has joined with the public-private partnership H2USA to coordinate research and identify cost-effective solutions for delivering affordable, clean hydrogen fuel in the U.S. Honda also entered into a long-term collaborative agreement with General Motors earlier this year to co-develop next-generation fuel-cell systems and hydrogen storage technologies, aiming for the 2020 time frame.

Getting around Hawaii is a study in diversity. Hang around the islands and you’ll see folks moving about on trolleys and buses, in cabs, rental cars, scooters, and of course on foot. We prefer staying planted at the Hilton Hawaiian Village with its array of interesting sites, nightlife, and of course its desirable stretch of Waikiki Beach. Walks to downtown Waikiki are a must to experience the vibrant activities there.

After arrival at Honolulu International Airport and a requisite lei greeting, there are plenty of choices available for getting to Waikiki and elsewhere on the island. Popular options include cabs and town cars or shared rides aboard courtesy vehicles from some hotels, on-demand SpeediShuttle, and the island-wide TheBus service.

This image has an empty alt attribute; its file name is Waikiki-Beach-View-of-Diamond-Head-1024x576.jpg

What about rental cars? Not really on our radar unless a day trip to the North Shore is on the agenda. Typical of others, we’ve rented cars when visiting in the past, but the car was parked more than it was used. Still, what about those interesting places in the guidebook that call to you…those farther than a pleasant walk but not really distant enough to warrant the cost and hassle of a conventional rental car?

That line of thought spelled opportunity for Justin MacNaughton and Warren Doi, founders of GreenCar Hawaii, a by-the-hour ‘green’ car share service on Kauai and Oahu. Choices vary by location but include the Nissan LEAF, Chevy Volt, hybrids, and efficient gasoline models. Our plans on this trip included visiting Honolulu’s Chinatown and hiking the Makapu’u Lighthouse Trail, with a trailhead some 15 miles from our Hilton Hawaiian Village base.

This image has an empty alt attribute; its file name is Justin-Macnaughton-of-Greencar-Hawaii-1024x576.jpgSince GreenCar Hawaii had a rental outlet at the nearby Doubletree Alana Hotel, we walked over to the Doubletree to pick up a Nissan LEAF there. We figured...if we're going to travel with a light eco footprint, why not go zero emission with a popular electric car?

The process of renting a vehicle from GreenCar Hawaii is simple and can be done online, by phone, or through a kiosk at the hotel. If the reservation was made ahead of time, a credit card is swiped at the kiosk as a reservation identifier, details for the car-share rental are shown, and a reservation check-in is printed out. Present this to the hotel’s valet parking and the car is brought up by an attendant, no different than if you were a guest at the hotel with a car in valet parking.

This image has an empty alt attribute; its file name is Greencar-Hawaii-Rental-Car-1024x576.jpgWe knew the drill with electric cars and made sure our travels wouldn’t take us farther than the LEAF’s available range. All told, our plotted routes would consume about 60 miles so we were good to go. Those wishing to go farther than the range of the rental LEAFs can opt to charge up at numerous 240 volt Level II chargers on the island or at a handful of available fast chargers.

Picking up our LEAF from the valet, we headed out on city streets and then H1 East and HI-72 East toward the Makapu’u Point State Wayside, where visitors park their cars before heading out on the hike. The half-hour, 15 mile drive was pleasant and uneventful, the LEAF performing as expected with plenty of power and a comfortable ride.

This image has an empty alt attribute; its file name is Lighthouse-on-Oahu-1024x576.jpgThe guidebook described the hike as ‘easy and breezy’ along a two mile paved trail. While short and do-able, it’s also a bit steep at times and warm as well as breezy. The bonus: It's good exercise and the views are unbeatable. Reaching the summit provides a great view of the Makapu’u lighthouse and two small islands nearby – Manana and Kaohikaipu. We've hiked Diamond head before and recommend this as a nice follow-up after that trek up the famous dormant volcano. Following our hike was a drive to Honolulu’s Chinatown and a quick visit to Hilo Hattie’s for souvenirs to bring back home.

Returning the LEAF to the Doubletree Alana Hotel was simple, with a swipe of a credit card at the kiosk identifying our rental details, processing the $15 per hour charge for our four hour rental, and printing out a receipt. Keys were handed over to valet parking and we were off on a walk to Cheeseburger Waikiki for loco moco and then back to the Hilton Hawaiian Village. Easy breezy, as they say.

This image has an empty alt attribute; its file name is Islands-Offshore-of-Oahu-1024x576.jpg

 

The Mercedes-Benz G-Class, or G-wagen – short for Geländewagen – has been around since 1979. It looks like Mercedes-Benz could be offering this iconic, off-road capable SUV for many more years.

Mercedes-Benz Advanced Design Studio in Carlsbad, California created the Ener-G-Force concept shown at the 2012 L.A. Auto Show, a civilian version of the Mercedes-Benz entry in the 2012 Los Angeles Design Challenge. Mercedes-Benz was one of six entrants that presented their vision of the Highway Patrol Vehicle 2025, this year’s theme.

The futuristic Ener-G-Force is powered by hydrogen fuel cells supplying electricity to four wheel-hub motors that motivate 20-inch wheels. Advanced electronics adapts power output for each individual wheel to provide precisely the right amount of traction required for the respective terrain. A roof-mounted, 360-degree ‘Terra-Scan’ topography scanner provides a handy read on nearby surroundings, with scan results used to adjust the spring and damping rates as well as other suspension parameters for maximum on- and off-road traction.

Recycled water stored in tanks on the Ener-G-Force roof is transferred to an on-board hydro-tech converter, which in turn electrolyzes water into hydrogen for the fuel cells. This renewable energy could provide an estimated zero-emission operating range of about 500 miles.

The vehicle’s strikingly-styled side skirts are designed to house either energy storage units or hot-swappable battery packs. Color changes in the side skirts’ illumination indicate energy pack operating and charge status.

The police version is differentiated with emergency lights integrated into the roof and other law enforcement equipment and markings. Less glass area is also found on the police variant to provide a safer environment cocoon for police officers.

General Motor has debuted its first all-electric car since the sporty EV1 that was sold for a time in the 1990s. The Chevrolet Spark EV is basically a Korean-built, five-door Spark subcompact sedan converted into an electric vehicle. However, the drive unit and motor will be assembled at GM’s White Marsh, Maryland manufacturing facility using parts sourced from U.S. and global suppliers.

The Spark EV is powered by a GM-designed, coaxial drive unit and electric motor. Rated at 130 horsepower and 400 lb-ft torque, this motor can accelerate the four passenger EV to 60 mph in under eight seconds. Electric energy is stored in the 20 kilowatt-hour lithium-ion battery. The 560 pound battery pack consists of 336 prismatic cells. It’s warranted for eight years or 100,000 miles. GM has not provided range estimates for the Spark EV, but it is expected to match or exceed that of competitive EVs like the Nissan LEAF and Ford Focus EV, or about 80 miles under real world conditions.

SAE Combo DC Fast Charging will be optional. This will allow the Spark EV to reach 80 percent of full battery charge in as little as 20 minutes in fast-charge mode. A common on-board charging receptacle accommodates all three charging systems – DC Fast Charge, AC 240V, and AC 120V. Using a dedicated 240V outlet, the Spark EV recharges in less than seven hours.

Owners can control charging according to their expected departure time or when electric rates are lowest. Managing and monitoring the vehicle is also possible remotely via computer at OnStar.com, or with a special Chevrolet Mobile App powered by OnStar Remote Link. Drivers can view critical vehicle functions on one of two reconfigurable, high-resolution, seven-inch color LCD screens. Information includes a confidence gauge showing expected driving range based on driving habits and other conditions.

Many external changes are made from the regular Spark to improve aerodynamic efficiency and reduce range-killing drag. The result is a drag coefficient of 0.325 Cd and 2.5 additional miles of range. Low rolling resistance tires add another five to seven miles.

GM says the Spark EV will go on sale in summer 2014. It will initially be sold in California and Oregon, thus at least for now it is considered a ‘compliance’ EV that is being marketed mainly to meet California’s ZEV mandate. The mandate will require 15 percent of cars sold in this state by 2025 to be zero emission vehicles. It will also be available in Canada, Korea, and other global markets. The Spark EV will list for just under $32,500 and qualify for a $7,500 federal tax credit. Even with this incentive, the electric version is nearly double the base price of Chevy’s gasoline-powered Spark. Californians could get an additional $2,000 to $2,500 rebate to help soften the price differential.

BMW's  Concept Active Tourer, a through-the-road plug-in hybrid, uses a front-mounted engine to drive the front wheels and an electric motor to drive the rear, with no mechanical connection between the two. In most hybrids the output of the engine and motor are combined. The Concept Active Tourer is the first additional application of the eDrive sys­tem used in the i8, which incorporates an electric motor, lithium-ion battery, and intelligent engine control. BMW will use the eDrive designation for all its electric and plug-in hybrid vehicles.

Like BMW’s latest four- and six-cyl­inder engines, the BMW Concept Active Tourer’s 1.5-liter three-cylinder gasoline engine uses BMW TwinPower turbo tech­nology. Even though it has only three-cylinders, BMW claims it is very smooth running even at low speeds and emits the sporty sound expected of a BMW.

The synchronous electric motor can power the car for up to 18 miles exclu­sively on a fully charged battery. It also augments the gasoline engine to provide over 190 horsepower when maximum power is required. BMW expects it will get an impressive 94 mpg, achieved partly through automatic engine start/stop and regenerative braking energy supplied the rear axle during deceleration. A high-volt­age generator connected to the 1.5-engine also charges the battery while driving.

BMW’s Concept Active Tourer has an ECO PRO mode to help reduce fuel con­sumption. When appropriate, it reduces air conditioning and other electrically powered creature comforts to increase fuel efficiency. Linked to the navigation system, ECO PRO mode gives drivers advice on how to reach a destination using minimum fuel. ECO PRO mode also completely shuts off the engine at speeds up to nearly 80 mph, and then decouples the engine from the drivetrain up to 100 mph to make full use of the kinetic energy already generated.

The Efficient Dynamics strategy uses information from the navigation system to optimize electric motor and battery ef­ficiency. For example, it calculates in ad­vance the most suitable driving situations and sections of a route for electric-only operation or to charge the battery. This optimized charging strategy can achieve an energy savings up to 10 percent and thus increase electric range.

While small on the outside, the Tourer is very roomy on the inside. It rides on a long 105 inch wheelbase and has an over­all length of 171 inches. A tall roof allows a raised seating position for an excellent all-around view. Batteries are located entirely beneath the floor so there’s no intrusion into passenger or cargo space.

Will the BMW Concept Active Tourer appear in dealer showrooms? BMW has a good track record for putting concept vehicles into production, so here’s hop­ing.

 

Integrating photovoltaic cells on vehicles is nothing new. In fact, solar-powered race cars have been around for more than 25 years, proving that the power of the sun can indeed provide enough energy to propel a car down the road.

Of course, these cars are ultra-lightweight and plastered with solar cells on every conceivable surface, tasked with carrying just a driver at a constant speed.

While not practical for driving as we know it, they are valuable engineering exercises that helped move the bar in developing electric vehicle efficiencies. Just one example is GM’s Sunraycer solar race car, built under the guidance of the renowned master of efficiencies, the late Paul MacCready of AeroVironment, which won the World Solar Challenge in Australia in 1987.

Lessons learned were applied to the GM Impact electric car prototype – precursor to the GM EV1 – that AeroVironment built under contract for GM and was unveiled by the automaker at the 1990 L.A. Auto Show.

Solar panels were notably integrated on the hood and rear deck of Solar Electric Engineering’s Destiny 2000, an electric car upfitted from a gasoline powered Pontiac Fiero we test drove back in 1994. Today, Audi uses a solar panel on its top-of-the-line A8. Toyota offers an optional Solar Roof package for the Prius.

While some might think these can help power an electric car, their relatively low energy output can realistically do little more than trickle-charge batteries or, more appropriately, power low-demand ventilation systems while an electric car is parked to help keep interior temperatures cooler on hot days without draining the battery.

Today there’s a new champion of solar ingenuity on the road. The Fisker Karma plug-in electric hybrid luxury sedan features probably the most sophisticated solar roof ever offered on a production model, using the world’s largest continuous-formed glass solar panel on an automobile. Not only does it keep the Karma’s interior cool on a hot day, but also supplies electricity to the car’s 12 volt system used for starting and accessories, relieving the high voltage lithium-ion battery system from tapping energy needed for driving. This can increase range, though admittedly a small amount.

To create the large solar panel, 80 small monocrystalline cells are individually hand-laid under automotive safety glass to follow the contours of the roof.  The solar panel has four electrically separate zones, each consisting of 20 cells in series. Each of the four zones incorporates MPP (maximum power point) tracking to optimize power output under various solar radiation angles and partial shading conditions. The splayed solar cell array design maximizes solar ray absorption under various lighting conditions, while the graphic accent running between the cells lends a unique and futuristic appearance.

A Karma driver can choose three solar power modes. In the Charging mode, as much solar energy as possible is stored in the battery. When Climate is chosen, solar power is used to ventilate the passenger compartment to reduce the effects of radiant heating. In the default Auto mode, the Karma will use solar power to maximize energy recovery and usage.

On a typical day, the solar panel supplies 0.5 kilowatt-hours of electricity. When used for battery charging, Fisker says over the course of a year that translates to maybe 200 emissions-free miles. That’s free energy, for sure. But how meaningful is that in the scheme of things? Like others before it, the Karma’s solar roof – with its imposing look and obvious green credentials – is a step in the right direction, showcasing innovation and yet another way to embrace renewable energy. It is an environmental friend, with benefits…but it’s hardly a statement that solar powered, highway capable cars are upon us. Still, free energy is, well…free energy…and we like it.

 

The opportunity to drive an array of electric cars back in the 1990s was enlightening on many levels, bringing home the realization that for many these cars were less than purposeful daily drivers. From my perspective, they were fun but also impractical for my longer driving needs. And as for their performance, well…good for electric cars but not so much compared to fun-to-drive, conventionally-powered competitors.

Segue to today and an opportunity to drive Honda’s new Fit EV. This electric car cuts a nice profile with its super-small exterior and provides a good amount of room for four inside. The new electric version is nearly identical in design to the gas powered edition with some slight modifications, including closing up the front air intake since it’s no longer required for engine cooling, plus some other subtle changes that only EV enthusiasts might spot. While early prototypes had huge ‘EV’ stickers on the flanks, our vehicles did not. Thank you for that, Honda.

The standard Fit has decent around-town handling and simple-to-operate controls, making it the perfect wrapper for Honda’s latest electric car content. Power is supplied by a 123 horsepower electric motor generating 188 lb.-ft. torque. The Fit EV is rated by EPA at a mile-per-gallon-equivalency of 118 MPGe.

Inside, the EV instrumentation is pleasantly direct without the standard video game styling that often overwhelms a driver in cars with this level of forward-thinking electronics. Among the controls of note here are those for the Fit EV’s three driving modes and a battery detente in the center mounted shifter that, when selected, increases regenerative braking during coast-down.

Each driving mode is indicated by color-keyed illumination within the instrument panel that changes from green for economy to white for normal and red for sport. The mode selected affects performance and the amount of battery power available for driving range. During our drive the least amount of range was achieved in the performance mode with the most in economy mode, as expected.

The Fit EV is a highly capable vehicle that comfortably transports four adults. Handling is surprisingly good for a car equipped with 20 kWh worth of lithium-ion batteries. It cut neatly through a Honda-staged slalom and braking course, exhibiting an ability to confidently handle transients faster than most drivers will require in the real world. Steering input is predictable and braking excellent. Frankly, it’s surprising how well the Fit EV handles when pushed to discover its limits, allowing induced oversteer when requested and plenty of squealing tires with a stab of the throttle in the sport mode. Transitioning to drives on Pasadena city streets replete with hills and curves was pleasant and uneventful.

Those interested in Honda’s new Fit EV will find this electric available at a monthly lease cost of $369 for 39 months with no money down, starting in select markets in California and Oregon. The Fit EV is not available for purchase, an oddity that harkens back to the electric vehicle test marketing days of the 1990s when lease-only arrangements were status-quo.

With its good looks, snappy EV performance, and three-hour recharge time on a 240-volt system, the Fit EV should be popular with today’s electric car enthusiasts and mesh well with many lifestyles. It’s capable of covering 82 zero-emission miles per charge by EPA estimates – and in real-life driving, certainly more – and does this without compromising on the looks and driving fun that’s important to so many of us. It could be, for many, the perfect fit.