We’ve always liked concept cars, those capture-the-imagination harbingers of the future that tantalize the senses and get us to thinking what driving might look like in the years ahead. No, not the trivial ones that explore nonsensical designs that will, and should, never come to pass. We’re talking hand built concepts that push us to consider their attendant innovations and eye-candy design, and of course their possible production intent. Mazda’s Iconic SP is one such concept.
Presented in a vivid Viola Red to accentuate the car's shape and bodylines, the Iconic SP's bold design, execution, and vision get the blood pumping as one imagines life behind the wheel of this sleek and sinewy sports car. Now, according to reports, this concept may well be heading toward reality. Color us intrigued.
Unveiled at the Japan Mobility Show last year, the Iconic SP clearly illustrates that Mazda still knows how to tantalize the senses with iconic sports car design. Most notably, it did this in the past with its RX-7 and its continuing favorite, the ever-popular Miata. Both of these models created a sensation with buyers from the start. While the RX-7 is now a part of automotive history (with the RX-8 never catching on in the same way), the Miata remains as a cornerstone sports car for the masses that’s popular on the street and on the track for amateur racing.
With the Iconic SP, Mazda leans far forward with this lightweight sports car’s low-slung stance, sensuously flowing lines, and exotic scissor doors. While the concept clearly suggested the potential for a future model at its unveiling, we would imagine its more complex scissor doors could fall by the wayside in a production model as a nod to cost, manufacturability, and mainstreaming this sports car for a larger audience. It’s not that intriguing door designs like this can’t be done. It has been in many instances throughout the automotive timeline with variations on models the likes of the BMW i8, Tesla Model X, Lamborghini Countach, and many others. It’s just that it isn’t likely in the scheme of things.
Worth noting is that Mazda aims the Iconic SP in a green direction with the concept’s scalable two-rotor Wankel engine said to exclusively generate electricity to augment battery power for the car’s electric motors. Heading in this direction seems a natural since series hybrids, or extended range electric vehicles, are increasingly seen by automakers as an attractive option to battery electric vehicles at this point in time.
That said, this isn’t a sure thing. Rumors are flying about from seemingly credible sources that point to different, and perhaps multiple, propulsion strategies. Those include parallel hybrid and all-electric notions of how the car should be motivated. That powertrain vagary makes sense this early in the game since a production Iconic SP – should one actually come to pass – will certainly address the needs and whims of the market closer to a launch date.
Interestingly, Mazda has teased the potential for running the car’s front midship rotary engine on a zero-carbon fuel like hydrogen, something this automaker has experimented with for some time, including with the RX-8 RE developmental vehicle that Green Car Journal editors drove in earlier years. Clearly, offering a variant of this sports car on zero-carbon hydrogen would make the equation all the more compelling.
There’s no doubt that plug-in hybrids loom large on the minds of drivers today. One might assume this is a recent phenomenon given the constant media attention today. But really, this has been an ongoing area of interest for quite some time. In fact, some 17 years ago, Green Car Journal technical editor Bill Siuru penned a feature offering an overview of this interest. This article from our archives is worth sharing today since it not only indicates the reasons why plugging in is such a positive thing, but considering the interest at the time, it also illustrates the surprisingly long time it has taken to reach where we are today. Other revelations are included here, like the potential for vehicle batteries to be used for V2G (vehicle-to-grid) and V2H (vehicle-to-home) energy, and of course Volvo’s growing commitment to its electrified future. Here, we present this article from Green Car Journal’s fall 2007 issue.
Excerpted from Fall 2007 Issue: The tremendous interest in plug-in hybrid vehicles (PHEVs) is driven by many things, from a desire for greater fuel efficiency to decreasing emissions, achieving long-term reductions in fuel cost, and promoting energy diversity so we’re much less dependent on imported oil. Each of these is important to our future. Together, they make a compelling case for the PHEV that bears further exploration.
Plug-in hybrids could provide most of the environmental and fossil fuel-savings benefits long promised by battery electric vehicles (BEVs), but not yet delivered. Also called grid-connected hybrids, PHEVs overcome the biggest challenge of BEVs – insufficient range. With all-electric range of up to 60 miles, under most driving scenarios a PHEV can be a true zero-emission vehicle (ZEV), just like a BEV. In reality, however, plug-in hybrids offer much more since gasoline-electric hybrid power is ready to take over from all-electric drive once battery energy is depleted.
Initially, aftermarket suppliers like EnergyCS in California and Hymotion in Canada developed PHEV retrofit kits for popular hybrids like the Toyota Prius, Ford Escape Hybrid, and Mercury Mariner Hybrid. These have been quite expensive and aimed exclusively at fleets because of cost. Major automakers have now joined in. General Motors’ much-publicized Chevy Volt will be a PHEV with an all-electric range of 40 miles. According to GM, 75 percent of all commuters drive 40 miles or less to and from work. A plug-in Saturn Vue hybrid, in the works and possibly available in advance of the Volt, could double the fuel economy of any current SUV and provide some 10 miles of electric-only propulsion. Toyota, Nissan, Ford, and several other manufacturers have PHEVs in the works, as well.
While most hybrid cars, SUVs, light trucks, and PHEVs unveiled to date are parallel hybrids, several have followed a different approach with a series hybrid configuration. One of the latest is the Volvo ReCharge Concept. The ReCharge series hybrid uses an internal combustion engine solely to drive a generator for producing electricity that powers the vehicle’s electric motors. Essentially, the ReCharge is a battery electric vehicle with an internal combustion engine for range extension. This drive configuration allows the 1.6-liter, four-cylinder Volvo Flexifuel engine to operate in its optimum rpm range for best fuel economy and minimum emissions. An added advantage when not directly connecting an internal combustion engine to the wheels is much more design flexibility.
In this instance, the ReCharge uses four individually controlled electric drive motors for all-wheel drive. Individual wheel motors also allow optimum weight distribution and maximizing both traction and mechanical efficiency. Since a transmission is no longer needed, mechanical gear friction is reduced substantially. The ReCharge can run on battery power alone for just over 60 miles and also operate its engine on biofuels like E85 ethanol, all the while retaining the sporty performance of the Volvo C30 sport coupe on which it is based. For a 93 mile (150 km) drive starting with a full charge via an ordinary electric outlet, it will use less than three-quarters of a gallon of fuel, which equates to almost 125 mpg. A driver would rarely need to fill up the tank if driven less than 60 miles daily.
PHEVs offer us more than just emissions reduction and increased efficiencies. They also have the unique ability to supply large amounts of electrical power for uses other than just propulsion. This feature is being exploited in the plug-in hybrid Trouble Truck Project by a consortium consisting of the Electric Power Research Institute, Eaton, Ford Motor Co., and California’s South Coast Air Quality Management District. Trouble trucks, used by utility repair crews, are typically operated in residential neighborhoods. Since their internal combustion engines are left idling to power buckets, power tools, lights, and accessories, emissions and noise occur at job sites as a matter of course. Providing power through a PHEV’s battery and electrical system means continuous engine operation is no longer needed.
These PHEV trouble trucks use Eaton’s parallel pre-transmission hybrid system with either a Ford 6.8-liter V-10 gasoline engine or 6.0-liter V-8 diesel engine. Along with reducing consumption and emissions while traveling to and from worksites, the PHEV trouble trucks provide engine-off cab air conditioning and standby AC electrical generating capacity, including 5 kW of exportable power for at least six hours to power equipment. PHEV trouble trucks based on Ford’s F-550 truck chassis are used by Southern California Edison, Los Angeles Department of Water and Power, and Pacific Gas & Electric. This project will later expand to 50 Ford F-550-based trucks and E-450-based vans for utility and public fleets. Since the F-550 and E-440 chassis are widely used as shuttle buses, urban delivery trucks, cable service trucks, and even motorhomes, there’s every potential that volume production could reduce per-vehicle cost. In fact, PHEV technology could find a home in high-end motorhomes where, perhaps in conjunction with solar panels, it could replace noisy and polluting generators typically used to power on-board electrical components while parked.
PHEVs can produce so much electricity that excess energy could be supplied to the electrical grid using vehicle-to-grid (V2G) technology. V2G allows two-way sharing of electricity between PHEVs, BEVs, and the electric power grid. With V2G, an electric or plug-in hybrid vehicle not only could be plugged in for battery recharging, but under certain conditions could also send electricity back from the batteries to the grid. For instance, vehicles could store electrical energy generated during off hours for use during peak power demands. This would eliminate the need for utilities to buy expensive overcapacity electricity on the spot market or fire up older, and high-polluting, fossil fuel ‘peaker’ generating plants. To encourage consumers to participate in a V2G program, utilities could pay motorists for the use of their PHEV or BEV, or owners could sell back energy to the utility when demand is highest.
In what’s called V2H – or emergency home backup – a PHEV could be used for emergency power. For instance, the PG&E demonstrator supplies 9 kW hours of electricity and the average home uses about 2.5 kW of electricity an hour, which means that hours worth of backup power is available if needed. Volvo says the ReCharge Concept’s efficient generator, essentially an Auxiliary Power Unit (APU), is powerful enough to supply an entire house with electricity. Thus, with minor modifications it could be used in case of a power failure.
Like the BEV, the practicability and affordability of the PHEV is governed by battery technology and cost. Its greater all-electric range capability requires larger, heavier, and much more expensive battery systems to store additional electric energy. Plug-in hybrid Dodge Sprinter vans have a 14 kW-hour nickel-metal-hydride or lithium-ion battery system that provides 20 miles of electric-only power. In contrast, the Prius uses a 1.5 kW-hour battery pack for normal gasoline-electric hybrid operation. Ordinary hybrids require batteries that supply short bursts of electrical boost with a nearly constant state-of-charge to ensure battery longevity. PHEV batteries must provide this high power burst while additionally handling full charge to deep discharges like a BEV. Another concern focuses on whether enough electric power will be available should PHEVs become extraordinarily popular. However, a study by the Department of Energy’s Pacific Northwest National Laboratory says the nation’s existing electric power grid could support up to 180 million PHEVs.
All this is unfolding, now. Technology marches on, costs diminish through efficiencies, and interest drives further development...all good things that should bring the plug-in hybrids we desire to our highways sooner than later.
Cheap to own and cool to customize, mini-trucks from the likes of Chevy, Dodge, Ford, Isuzu, Mazda, and Toyota once offered a great way to get around on the cheap. They were light-truck-functional and fun. There was even a custom mini-truck culture that developed around these small pickups with customized examples everywhere, mini-truck clubs nationwide, and enthusiast magazines focused on reporting the latest mini-truckin’ trends.
It’s been decades now since the mini-truck phenomenon faded and these pint-sized trucks largely disappeared from our highways. But that doesn’t mean right-sized trucks aren’t a really good idea in an era of ever-bigger, heavier, and brawnier pickups on our roads. Without a doubt, full- and mid-size pickups fill a crucial need for a wide array of business and commercial needs, which makes them the perennially best-selling vehicles on the market. At the same time, their five-passenger cabins and diverse capabilities also make them attractive for a huge number of personal-use drivers who own pickups entirely for pleasure, recreation, and for occasionally hauling loads, towing trailers, or carrying gear. Clearly, smaller pickups that fulfill these needs could provide an attractive option while saving gas, carbon emissions, and cash.
That’s the aim of Ford’s Maverick, a compact pickup larger than the mini-trucks of old yet smaller than its mid-size brethren like the Ford Ranger, Chevy Colorado, or Toyota Tacoma. Maverick features pleasant exterior styling that appeals to any age buyer. It also has a strong work ethic and is equipped to do the job with its 54.4-inch long bed, 1500-pound payload capability, and 2,000 pound tow rating in base form. Check a few additional boxes on the order form and that tow rating jumps to 4,000 pounds.
Ford did a lot of things right when it introduced the Maverick three years ago. Built on a unibody platform with an eleven inch shorter overall length than even the mid-size Ranger pickup (38 inches shorter than the F-150) and a 40-foot turning diameter, the Maverick was designed brawny enough to warrant pickup-lover attention while also being small enough to be perfect for the city. It’s also great for the open road with the model’s hybrid engine delivering a combined 37 mpg EPA rating (42 city/33 highway) and over 500 miles of range.
Today, Ford has again flipped the powertrain script for the 2025 Maverick. When the all-new 2022 Maverick was introduced, it was the super-efficient 2.5-liter hybrid powertrain that was standard fare, featuring 191 horsepower, a variable speed transmission, and available exclusively in front wheel drive. Buyers could optionally choose a 2.0-liter EcoBoost four-cylinder delivering 250 horsepower and 277 lb-ft torque, backed by an 8-speed automatic transmission and available with either front or all-wheel drive. The EcoBoost choice was more powerful but less efficient, scoring an EPA combined rating of 25 mpg (22 city/29 highway).
Following its debut year, Ford made the EcoBoost engine standard with the hybrid available as a higher priced option. Now, recognizing the popularity of hybrid power, Ford has once again made the hybrid powertrain standard for 2025 Maverick buyers. Maverick hybrids are also now available with either two- or four-wheel drive capability.
The 2025 Maverick comes in five trim levels – XL, XLT, Lariat, Tremor, and Lobo – that start at $26,395 to $36,835 for the first three trims and run upward to $39,895 to $42,000 for the highest-end Tremor and Lobo. The latter two are high-performance specialty variants that champion a pair of popular customization themes, both powered exclusively by the more powerful EcoBoost engine.
Tremor is outfitted for rigorous off-road duty with underbody protection, special suspension tuning for handling uneven road surfaces, all-terrain tires wrapped around 18-inch aluminum alloy wheels, Hill Decent Control, and additional drive modes including Mud/Rut and Sand. Maverick’s latest Lobo variant lends sport truck appeal to the pickup with a lower ride height, torque vectoring, and street performance-tuned suspension, shocks, and steering. It also offers a “Lobo” drive mode intended for closed course driving. Its street performance image in enhanced with a black-painted roof, 19-inch black wheels, painted bumpers, and a unique front fascia.
While the Maverick is an affordably priced truck, it still provides a wide array of standard comfort, safety, and convenience features. Among these are a 13.2-inch center touchscreen, an 8-inch digital instrument cluster above the steering wheel, Ford SYNC 4 with connected navigation and enhanced voice recognition, Apple Car Play/Android Auto connectivity, and on-board 5G WiFi. All Mavericks are also now equipped with Ford’s Co-Pilot360 technology suite. This provides pre-collision assist with automatic emergency braking, lane-keeping aid, a rear view camera, and auto LED high-beam headlamps.
Optionally available are items like a wireless phone charger, power locking tailgate, and 110-volt cab and bed outlets. Additional driver assist options include adaptive cruise control, blind spot monitoring, cross-traffic alert, lane centering with evasive steering assist, and Pro Trailer Hitch Assist. New-for-2025 is a 360-degree camera that enables a split view of what’s immediately behind and ahead of the vehicle along with cross-traffic views.
In the end, the Maverick reinforces what everyone in Texas already knows: Just because you don’t need a truck every day doesn’t mean you might not want one. The Ford Maverick not only speaks to this desire but also makes owning a pickup more appealing for a great many buyers with its more compact form, high efficiency, and approachable cost of entry. The addition of off-road and sport truck choices expands the Maverick’s compelling nature even further.
About that “first car” thing? Look, we know it’s a truck. But at a starting price of just over $26,000, the Ford Maverick really is the perfect first – or entry-level – car for anyone looking for some pretty cool transportation…and it comes with a highly functional truck bed as a bonus!
There’s a continued disconnect between what the broader automotive industry sees from growing, albeit slowly, EV sales and how U.S. dealers view this class of vehicles. At CDK, we wanted to uncover if anecdotes about a lack of enthusiasm on the retail level were real and to test our own hypothesis that it could be largely driven by where the dealers were located.
Why is geography so important? One word, or place: California.
More EVs are sold in California than anywhere else in the country. Nearly one-third of all battery electric vehicles (BEVS) in the first half of 2024 were sold in the Golden State. And the state of Washington is a major player too. That means dealers in those states likely view the technology much differently than clearly those in more rural areas but also populous areas in states from Michigan and Ohio to Tennessee and South Carolina.
In CDK’s Dealers Face the EV Transition white paper, the map is broken down not just regionally but at a subregional level. That allowed us to look at what’s happening on the ground for dealers, their sales teams, and what store leadership sees as the impact on their bottom line.
It was plain to see that Pacific shoppers were the most interested in EVs at 55 percent while the mid-Atlantic states of Pennsylvania, New York, and New Jersey saw far, far less interest at just 10 percent. That might seem counter to popular thinking, but dealers sell cars in every town, and from the suburbs on out, cars are a way of life that’s hard to change. The least interest came from West South Central – Arkansas, Oklahoma, Louisiana, and Texas at 3 percent. Yes, even though a lot of EV sales happen in Texas, dealers across the state and surrounding states aren’t feeling electric love from customers.
These results came before recent retreats from automakers on their EV plans. Dealer networks are the frontlines when it comes to sales and service, and leadership wasn’t rosy on how EVs would impact their bottom line.
Nearly three-quarters (73 percent) of dealers think EVs will have some negative impact on their bottom line with 53 percent saying they’ll have a negative impact on both their front and back end gross. Only 7 percent see EVs as having a positive financial impact.
Despite this pessimism, nearly three out of five dealers (59 percent) have already started transitioning their stores to sell and service EVs. Only 11 percent remain steadfast against EVs in the near future, saying they don’t plan any changes to adjust for selling and servicing EVs. But as we noted in our white paper: “Most of these EV-resistant dealers are generally smaller operators, with 75 percent saying they own one to two rooftops, and 89 percent are located in rural areas.”
With all these fluctuating conditions, the key stat of the white paper may actually not be as negative as it seems at first glance. When asked if they were optimistic or pessimistic about the EV transition, most (65 percent) fell into the pessimism camp with 19 percent being optimistic and the rest (16 percent) being neutral. The fact that the pessimism number comes below the number of dealers forecasting lower profits is a tiny sliver of a silver lining.
The thing to remember is that we’re indeed in a transitional period, shifting an entire national fleet of cars from something familiar (and often nostalgic) to an electric future that hasn’t made its case in every corner of the country. The nation’s car dealers are pragmatists and offer an unvarnished view of what they see in showrooms every day.
David Thomas is Director of Content Marketing at CDK Global, a leading provider of cloud-based software to dealerships and original equipment manufacturers across automotive and related industries.
The automotive field is at a crossroads. It’s clear that buyers want more environmentally positive choices and this has driven enormous interest in electric vehicles on the part of consumers, government, and the auto industry. Some drivers are ready to go all-in with battery electric vehicles. Others prefer to ease into electrification with a hybrid or plug-in hybrid. It’s all good because that means we’re heading in the right direction. Green Car Journal’s annual Green Car Awards™ honor new, or nearly new, models that stand out as champions of environmental achievement and lead us in that more positive direction.
Honoring the best and the brightest of these vehicles, Green Car Journal has awarded nine prestigious 2025 Green Car Awards™ to environmentally positive models from Chevrolet, Dodge, Fiat, Ford, Mitsubishi, Toyota, Volvo, and Volkswagen. Six award winners are powered exclusively by batteries, two are gas-electric hybrids, and another champions plug-in hybrid power, illustrating the outstanding diversity of electrified choices available to new car buyers today.
Rising to the top to claim the coveted title of 2025 Green Car of the Year®, Toyota’s all-new generation Camry sedan is a stylish, highly efficient, and tech-rich evolution of Toyota’s popular mid-size sedan. The new Camry is available in front- or all-wheel drive and exclusively powered by Toyota’s fifth-generation Toyota Hybrid System, which delivers up to a combined 51 mpg and a driving range of 663 miles. Finalists and recipients of the 2025 Green Car Product of Excellence award are the Honda Civic Hybrid, Honda CR-V e:FCEV, Tesla Model 3, and Volkswagen ID. Buzz.
The iconic VW ID. Buzz, Volkswagen’s battery electric homage to the storied VW Microbus of an earlier era, is honored with Green Car Journal’s 2025 Green Van of the Year award, capping off its yearslong journey to VW showrooms. The ID. Buzz is powered by single or dual motors with 282-330 horsepower, seats up to seven, and features a driving range up to 234 miles. Finalists and recipients of the 2025 Green Car Product of Excellence award are the Chrysler Pacifica Hybrid, Kia Carnival, Mercedes-Benz Sprinter EV, and Toyota Sienna.
Capturing the 2025 Urban Green Car of the Year award is the fashionable and oh-so-cool Fiat 500e, marking back-to-back 2004/2005 wins for this diminutive electric vehicle. Fiat's 500e is unique among its peers as the ultimate right-sized electric city car that's Italian-chic, nimble, fun, and highly maneuverable in urban environs and elsewhere due to its modest footprint. Finalists and recipients of the 2025 Green Car Product of Excellence award are the Hyundai Kona, MINI Countryman SE ALL4, and Nissan Kicks.
The Ford Maverick compact pickup is the magazine’s 2025 Commercial Green Truck of the Year. Maverick makes for a compelling work truck with its efficiency, reasonable price of entry, and welcome functionality like a 1500 pound payload rating, FlexBed storage system, and 110-volt outlets. Its hybrid engine option gets up to 42 city mpg, which makes it ideal for tradesmen and municipalities. Finalists and recipients of the 2025 Green Car Product of Excellence award are the Bollinger B4, Chevrolet Silverado EV Work Truck, Ford F-150 Lightning, and Isuzu NRR EV.
The all-new Dodge Charger Daytona powers its way to recognition as Green Car Journal’s 2025 Performance Green Car of the Year. This brand’s first ell-electric model features an appealing muscular design, zero-emission electric drive with up to 670 horsepower, and the kind of image and muscle car performance that has long been a signature of the brand. Finalists and recipients of the 2025 Green Car Product of Excellence award are the Ford Mustang Mach-E Rally, Hyundai Ioniq 5 N, Porsche Macan EV, and Tesla Model 3 Performance.
Taking 2025 Luxury Green Car of the Year honors is Volvo’s EX90, this automaker’s new electric flagship SUV. Along with its captivating design and all-electric operation, the U.S.-built EX90 features a high-tech cabin, a premium interior, three row seating, and a pair of twin-motor options delivering 402 to 510 horsepower. It features an electric driving range of 308 miles. Finalists and recipients of the 2025 Green Car Product of Excellence award are the Acura ZDX, Cadillac Optiq, Genesis Electrified GV70, and Polestar 3.
Honored as the 2025 Green SUV of the Year is the Chevrolet Equinox EV, a mainstream electric SUV offering a sporty design, a fun-to-drive nature, and an affordable point of entry for a great many buyers interested in going electric. It offers up to 319 miles of battery electric driving range in its standard front-wheel drive configuration. Dual motor all-wheel drive is also available. Finalists and recipients of the 2025 Green Car Product of Excellence award are the Dodge Hornet, Honda Prologue, Hyundai Santa Fe, and Kia EV9.
Mitsubishi’s Outlander PHEV takes the magazine’s 2025 Family Green Car of the Year honor, the third time this automaker’s flagship plug-in hybrid model has been distinguished with this award. Its combination of attractive style, three row seating, Super All-Wheel Control for navigating all driving conditions, and PHEV operation make it ideal for family-friendly use as an EV around town or a hybrid on longer drives. Finalists and recipients of the 2025 Green Car Product of Excellence award are the Kia Carnival, Lexus TX 550h+, Mazda CX-90 PHEV, and Toyota Grand Highlander Hybrid.
Chevrolet BrightDrop earns the magazine’s 2025 Commercial Green Car of the Year award with its battery-powered BrightDrop 400 and 600 commercial vans. Now a Chevrolet product sold and serviced through Chevrolet’s commercial vehicle network, these electric vans aim at zero-emission delivery and feature a 159 to 272 mile electric driving range, depending on model and battery configuration. Finalists and recipients of the 2025 Green Car Product of Excellence award are the Ford E-Transit, RAM ProMaster EV, Mercedes-Benz Sprinter EV, and Rivian Delivery Van.
VW’s iconic Beetle and Transporter were signature vehicles on the roads of America because, for a time some six or seven decades back, they were virtually everywhere. They were also underpowered and pretty utilitarian, though that didn’t stop them from getting the love from adoring fans. That same love is soon to befall the all-new VW ID. Buzz.
The Transporter of old – known by many here as the VW Microbus, or just the VW Bus – never achieved the sheer volume of its cousin the Beetle (aka Bug). Still, it has an enduring place in the hearts of Americans who see the occasional restored VW Bus on the road or at the beach, harkening back to a simpler time when affordable and adorable vehicles were available to everyone.
When VW debuted its ID. Buzz electric microbus concept in the States seven years back, an instant cult following emerged. People wanted this, and they wanted it bad. We could see why after experiencing an up-close-and-personal tour of the production model last year in Southern California. We have to say…we liked what we saw.
Comparable in size to VW’s Atlas Cross Sport, the ID. Buzz is visually stunning and showcases modern stylings with futuristic elements, but doesn't lose that vintage essence shared by the VW Buses of old. One such homage to its ancestry is the model’s vibrant color palette that optionally contrasts with white splashes on both the interior and exterior. Keeping things modern is standard IQ.Drive with adaptive cruise control, a digital dash with a 12.9 inch infotainment center, plus USB and wireless charging options for all your electronic devices.
Inside is an inviting cabin with three rows of seats that can accommodate up to seven. Front seats feature standard heating, cooling, and massage features, while the second row comes with heated seats. Both rear rows are fully foldable, with the rearmost row entirely removable to create additional space for adventures. The ID. Buzz features a pair of power sliding side doors, sliding windows in the cabin, an optional sunroof that can be darkened, and a spacious rear hatch. Three interior color ‘worlds’ are available including mid-century modern-vibed Copper, moody dark themed Moonlight, and coastal-themed Dune.
Two power choices are available for the ID. Buzz, with a rear-mounted electric motor offering 282 horsepower or dual motors producing 330 horsepower. A 91 kWh lithium-ion battery energizes both versions. The rear-drive ID. Buzz features an EPA estimated 234 mile driving range with the all-wheel drive two-motor variant delivering a 231 mile range. It’s worth noting that the ID. Buzz comes with the ability to tow via a manually-retractable tow hitch that’s cleverly hidden behind the rear bumper when not in use.
Three versions of the ID. Buzz will be offered at launch including the entry-level Pro S at $59,995; the Pro S Plus at $63,495 to $67,995; and the 1st Edition at $65,495 to $69,995. The higher figure for the latter pair comes with dual motor all-wheel drive. Fans of this iconic electric microbus/van will find the ID. Buzz hitting North American highways later this year.
In the ever-evolving world of battery technology, the safety of lithium-ion (Li-ion) batteries has become a paramount concern, especially as the demand for electric vehicles (EVs) and renewable energy storage systems surges globally. Epsilon Advanced Materials (EAM), a leader in the production of high-quality battery materials, is at the forefront of addressing these safety challenges. Through innovative solutions and a deep commitment to sustainability, EAM is enhancing the performance of lithium-ion batteries and significantly reducing risks associated with their use.
EAM’s journey is rooted in a vision of decarbonizing economies and driving the transition to cleaner energy technologies. It all began when an entrepreneur with a passion for sustainability crossed paths with a battery engineering scientist who had developed an exceptional battery material in his backyard. This meeting of minds sparked the creation in 2018 of EAM, a company dedicated to perfecting the art and science of advanced battery materials. Since its inception, EAM has sought to lead the way in providing innovative battery solutions that meet the demands of a rapidly changing world.
EAM’s approach to battery safety is through its focus on synthetic graphite anode materials. These materials are designed to improve fast charging performance, a feature that is increasingly important as consumers demand quicker charging times for their EVs. Traditional battery materials can struggle to handle the higher currents involved in fast charging, leading to stress on the battery and an increased risk of overheating. However, EAM’s synthetic graphite anode material is engineered to handle these higher currents with less stress, significantly reducing the risk of overheating and enhancing the overall safety of the battery.
Another key factor in the safety of Li-ion batteries is the direct current internal resistance (DCIR), which represents the resistance to current flow within the battery. Higher resistance can generate heat, which in turn increases the risk of thermal runaway – a dangerous situation where the battery can overheat uncontrollably. EAM’s synthetic graphite-based anode material boasts lower DCIR, meaning it offers less resistance to current flow. This reduction in resistance provides better heat management within the battery, minimizing the chances of thermal runaway and ensuring safer operation even under high-stress conditions.
In addition to these advancements, EAM’s synthetic graphite anode material also offers superior cycling stability compared with natural graphite. Over time, battery materials can degrade, leading to unwanted reactions within the battery that can generate heat and compromise safety. EAM’s material, however, degrades less over time, maintaining its stability and reducing the likelihood of these unwanted reactions. This enhanced cycling stability not only extends the lifespan of the battery but also ensures that it operates safely throughout its life cycle.
EAM’s commitment to safety and innovation is further demonstrated by its plans to open a state-of-the-art battery materials and components plant in North Carolina in 2026. This $650-million facility will be a significant step forward in the domestic production of battery materials, including both natural and synthetic graphite anodes. With a targeted annual production capacity of 60,000 tons of anode materials by 2031, the plant could eventually supply enough materials for up to 1.1 million electric vehicles in the U.S.
The decision to establish this manufacturing plant in Brunswick County, NC is strategic, as this location will be part of a burgeoning EV battery hub in the state, positioning EAM to play a critical role in the U.S. battery supply chain. This move is particularly timely given recent developments in the global graphite market. China, which dominates synthetic graphite production, has recently curbed exports of the material, leading to concerns about supply chain stability and rising costs. By developing a domestic source for synthetic graphite, EAM is not only reducing reliance on imported Chinese materials but also bolstering the U.S. battery industry against potential supply disruptions.
EAM’s U.S.-made battery components and materials are expected to qualify for incentives under the Inflation Reduction Act and related U.S. legislation aimed at building domestic supply chains for EVs and batteries. This support from the U.S. government underscores the importance of EAM’s work in ensuring that the next generation of batteries is not only high-performing but also safe and sustainable.
As EAM continues to innovate and expand, its focus remains firmly on the safety and sustainability of Li-ion batteries. The company’s advanced materials and cutting-edge technologies are setting new standards for battery safety, ensuring that as the world shifts towards cleaner energy and electric mobility, the batteries powering this transition are as safe as they are efficient. EAM is not just meeting the challenges of today’s battery industry but is also anticipating and addressing the needs of tomorrow. Through its commitment to innovation, safety, and sustainability, EAM is playing a key role in shaping the future of energy storage and electric mobility.
Sunit Kapur is Chief Executive Officer of Epsilon Advanced Materials, a global battery material manufacturer focused on sustainable battery solutions.
Today’s developments surrounding EVs are not a surprise. They were predictable, an awakening of sorts, to the realities of personal mobility needs and the true desires of a driving public amid a significant and sustained push toward electrification.
Unsold inventories of battery EVs at dealer lots, significant price cuts to move metal, and a rethinking of strategies are just part of today’s electric vehicle universe. We are seeing this new reality across the automotive spectrum as companies previously committed to being “all-in” for EVs – from Ford and GM to Volkswagen and Volvo – reassess the way forward.
Yes, interest in battery electric vehicles has grown substantially in recent years. EV sales have captured a larger slice of the new car market than might have been imagined in just the recent past and that percentage has been growing faster than before. This should rightfully be celebrated by EV enthusiasts. An impressive expansion of the zero-emission EV market should also be celebrated because of the considerable impact this has on decreasing carbon emissions, though it’s becoming increasingly clear that the hoped-for wholesale move toward battery EVs will not resolve our carbon challenges.
After more than three decades of documenting the commercialization of electric vehicles, I feel compelled to point out that EVs still represent a fraction of the overall automotive market and there remains great interest in more familiar options. Battery electric vehicles simply do not meet everyone's needs at this time. Barring significant breakthroughs in technology, cost, and convenience – the latter bolstered by an expansive and reliable national charging network and a resilient electrical grid to support it – there’s a possibility they may not meet all motorists’ needs for some years in the future. To our collective detriment, that has not stopped the powers-that-be from forcing an EV-first agenda.
The assumption that government can severely restrict consumer vehicle choices without alienating huge numbers of car buyers, creating financial havoc and uncertainties within the auto industry, and bringing an array of unintended consequences in coming years is simply an act of hubris. I've witnessed other examples of this over the years. Ultimately, the outcomes have not favored those in power who overstep and assume they know more about the needs and desires of car buyers than buyers themselves.
There are many reasons for this, but fundamentally let’s remember that a motor vehicle – beyond serving as a social conveyance for projecting image, status, values, or nuances of all sorts – is a crucial tool to get folks safely and reliably to work, school, the market, or wherever they need to be, regardless of distance or driving conditions. And lest we forget, a new car typically represents the second largest consumer purchase after a home. That makes buying a car an important financial decision beyond just being a very personal choice.
The battery EV’s rather eye-opening depreciation, identified by car search engine and research firm iSeeCars as averaging 49.1 percent over the first five years, isn’t very comforting from the standpoint of a financial strategy. It’s worth noting that iSeeCars doesn't see this same kind of depreciation across the board for electrification, identifying hybrids as having a nearly 12 percentage point advantage over EVs in value retention over a five year period, slightly better than the depreciation rate for all types of cars.
How much has changed for electric cars over the years? A lot…and too little. To share some perspective, I’d like to offer up a Green Car Journal editorial I wrote in 2012, Curb Your (EV) Enthusiasm. It seems prescient today. In it, a dozen years ago, I pointed out that:
– After decades of battery development, the expectation that battery breakthroughs would come to make EVs cost competitive with internal combustion vehicles had not materialized.
– Battery electric cars still required significant federal subsidies to encourage sales because of their high battery cost and retail price.
– In a normal world, a compact electric SUV should not cost $50,000, a four-door electric sedan $40,000, or a small electric hatchback over $30,000.
– A small number of electric vehicles might be available under $30,000, but comparable internal combustion models would typically be priced many thousands of dollars less while offering greater functionality.
– Government agencies viewed EVs as a panacea for decreasing CO2 emissions, improving air pollution, and enhancing energy security.
- States embraced electric vehicles in their State Implementation Plans as a strategy for showing how they would meet air quality standards mandated by the Clean Air Act.
– Automakers recognized electric propulsion as a strategy for meeting increasingly higher fleet fuel economy targets.
– Electric utilities viewed EVs as a pathway to selling electricity as a motor fuel.
The conclusion about the way forward a dozen years ago? Battery electric vehicles are one part of the solution along with advanced combustion vehicles, hybrids, plug-in hybrids, and extended-range electric vehicles that create on-board electricity to provide full functionality.
It appears there’s a growing consensus today that we’ve come full circle to this way of thinking. As electric vehicle sales cool, multiple automakers have shared they are backing off from previously-announced timelines for EV model introductions, new EV assembly lines, and greenfield battery plants. There’s also a new emphasis on producing an expanding lineup of hybrid and plug-in hybrid models that consumers increasingly desire, even on the part of major automakers that have previously announced plans to exclusively build battery electric vehicles and have shown little interest in hybrid power.
All this underscores that as much as we’re enamored with modern battery electric vehicles and their ability to address carbon emissions, they are not the singular answer to future mobility. They are a choice among other vehicles and technologies that also speak to individual needs, desires, and environmental sensibilities. And that’s the way it should be.
We’ve spent hundreds of thousands of miles behind the wheel of a great many electric vehicles, hybrids, and plug-in hybrid models over the years. They all have their advantages and appeal…and each speaks to the very specific needs of different types of drivers and their daily rhythms. If you’re inclined to go electric as a way of addressing efficiency and environmental concerns – but hesitant to rely exclusively on battery power for reasons compelling to you and your situation – then you’re an excellent candidate for a plug-in hybrid.
Beyond its advanced technology and user friendliness, there’s an elegant beauty inherent in a PHEV. Within the capabilities of its battery powered range, a plug-in hybrid allows driving on electric power, internal combustion power, or a combination of the two. You are effectively in an electric vehicle with options and the transition from electrons to gas is essentially seamless.
Plug-in hybrids present a logical choice because they present no limitations. These days, chief among these limitations with battery electric vehicles is range anxiety, whether imagined or real. When driving an electric vehicle, remaining battery power is always top of mind to ensure there’s adequate on board energy to get you to where you need to be. This is less of an issue today with popular electric models offering much longer range in the many hundreds of miles, but the concern persists.
Not so with plug-in hybrids. With PHEVs, you get the benefits of an electric vehicle while driving on batteries like zero emissions, near-silent operation, and improved performance. When battery energy in a PHEV is depleted you keep on going with combustion or hybrid power as long as there’s gas in the tank.
Like hybrids, plug-in hybrids take several forms. The most common of these is the parallel plug-in hybrid, which uses an internal combustion engine and one or more battery powered electric motors to directly drive the wheels. A series plug-in hybrid, also known as an extended range electric vehicle (EREV), delivers power to the wheels through its electric motor, or motors, with the combustion engine and batteries providing electricity to power the motors. In this configuration the engine operates exclusively as a generator with no mechanical connection to the road. An example of this is Karma’s GS-6. Some models, like the Toyota Prius Prime and Mitsubishi Outlander PHEV, are series-parallel hybrids that use both power strategies for motive power, along with the zero-emission electric driving for which plug-in hybrids are known.
Both plug-in hybrids and conventional gas-electric hybrids achieve their higher efficiency through an intricate computer-controlled dance that blends electric and combustion power in response to real-time driving conditions. While each benefits from the efficiencies that gas-electric hybrid power delivers, at best a hybrid may drive exclusively on battery power for very short distances with a light touch on the accelerator pedal.
Plug-in hybrids are different. They’re equipped with larger battery packs than hybrids, though these packs are still quite smaller than full electric vehicles. These larger batteries, and the ability to plug in and charge up, allows a PHEV to drive greater distances on battery power alone. The Volvo S60 T8 Recharge plug-in hybrid sedan, for example, features 40 miles of electric driving and an overall 530 mile range, while the Kia Sportage PHEV delivers 34 miles on battery power with a total 430 mile driving range.
Determining your needs is an important step in deciding whether a plug-in hybrid is the right choice. For example, if your daily drives average 30 miles or so, then either of the above examples – and quite a few other PHEV models – will allow driving electric without the need for hybrid power to kick in. Just charge your PHEV’s battery overnight and you’re ready to go again the next day, with no need for a trip to the gas station. Even plug-in models with shorter electric driving range will still do for your commute if there’s charging available at your workplace, since a workplace charge opportunity can effectively double a PHEV's round-trip battery electric range.
Here’s the underlying advantage of a plug-in hybrid vehicle: If you do need to drive farther than a PHEV’s electric range, then you’ll take advantage of the zero-emission efficiencies of battery power with gas-electric hybrid drive handling the rest of your miles. The same holds true for those longer drives, such as visits with far-away friends or longer vacations and road trips. Easy.
So is a plug-in hybrid right for you? It’s a personal decision based on preferences and the degree to which you want to go electric. For those who want to ease into an electric future without limitations, then a plug-in hybrid may well be the best choice for you.
There’s an all-new Dodge Charger Daytona hitting the streets of America. This storied name channels echoes of of the past with the mind’s eye visualizing the rare, wildly-winged 1969 Dodge Charger Daytona of the muscle car era, a model that raced in NASCAR and was available only in small numbers to well-monied car enthusiasts. While the 2024 Charger Daytona is a bit more civilized than its namesake of 55 years ago, it is equally dramatic in its own way.
Back in the day, muscle cars were a dominating force on dragstrips and, more importantly, on the highways of America. These go-fast models delivered the whole package for car enthusiasts – exciting looks with stripes, scoops, and a stance with attitude, their mere presence tantalizing the senses with a low engine rumble at idle, a throaty roar at speed, and if you were the one behind the wheel, an adrenaline rush like no other.
They also sucked gas on an epic scale with their four-barrel, six-pack, and sometimes dual-quad carburetors. High horsepower small- and big-block engines were high-compression to eke the most power from the air-fuel mixture fed to combustion chambers, which meant more expensive high-octane premium fuel. Muscle cars, and really most cars of the era, had tailpipe emissions that were nothing to brag about. Still, these were iconic hot rods that defined an era.
While the performance-infused Daytona designation has been used sporadically by Dodge since, this is different. Stellantis has read the tea leaves well and the all-new Dodge Charger is not only fast and formidable, but also headlined by two fully electric variants, the Daytona R/T and Daytona Scat Pack. This move ensures the Charger’s claim as the world’s quickest muscle car, and the most powerful.
That doesn’t mean the automaker has abandoned the high horsepower gas engines that have powered this model over the years. Car enthusiasts who wish that familiar experience can opt for the Charger SIXPACK 3.0-liter twin turbo Hurricane engine in either Standard Output or High Output versions.
Specs for the electric Charger Daytona models surpass those of the gas versions, with the electric Daytona R/T besting the SIXPACK S.O. with 496 horsepower vs. the gas version’s 420. The Daytona Scat Pack does even better by delivering an electrified 670 horsepower vs. the gas high output engine’s 550, a bump of 120 ponies overall. The Daytona R/T is expected to deliver 317 miles of driving range with the more powerful Scat Pack a shorter, but still substantial, 260 miles.
Acceleration is impressive, with the Daytona Scat Pack expected to close a 0-60 mph sprint in just 3.3 seconds while earning a quarter-mile elapsed time of 11.5 seconds. Performance is enhanced in Daytona models with a PowerShot feature that provides an additional 40 horsepower boost for up to 15 seconds when needed. Stopping power is bolstered with 16-inch Brembo vented rotors and distinctive red six-piston calipers up front and eight-piston calipers at the rear. All Charger models are four-wheel drive. Driver-selectable Auto, Eco, Sport, and Wet/Snow drive modes allow tailoring the driving experience, with the Scat Pack adding Track and Drag modes for good measure.
Serene silence is not the hallmark of the new Daytona as it is in other electrics. Rather, Daytona R/T and Scat Pack sound the part of earth-pounding muscle cars with their all-new Fratzonic Chambered Exhaust that replicates a Dodge Hellcat exhaust profile, with sound intensity tied to performance. Drivers can alternatively select a ‘stealth’ sound mode if that’s more to their liking…but what’s the fun in that?
All this power and performance would be academic if not packaged in an athletic form, and the new Dodge Charger does pull that off with a pure uninhibited muscle car presence. Its lines are sharp, evolved, and definitively true to the breed, featuring an appealing profile and a powerful widebody stance. This muscle car’s appealing ‘hidden hatch’ design is accentuated by a black painted flowing roofline that can be made more dramatic with an optionally available full-length glass roof. We particularly like that the front end is not closed off in a snout like so many electric cars, but rather features stylishly understated openings above and below the bumper fascia.
Inside is a driver-centric cabin featuring an instrument cluster with either a 10.25- or optional 16-inch screen, along with a center 12.3-inch touch screen angled toward the driver. A forward-looking flat top/flat bottom steering wheel design features an array of controls for popular functions and also includes paddle shifters for rapidly adjusting regenerative braking settings on the fly. The center console features a pistol-grip shifter and start button. Standard seating is cloth and vinyl with either black or red Nappa leather available as an upgrade. Rear seats can be folded flat for additional cargo capacity. As expected, a full suite of advanced safety and driver assist systems are standard or available.
Two-door coupe versions of the 2024 Charger Daytona R/T and Scat Pack feature an MSRP of $59,595 and $73,190, respectively, and begin production this summer. Four-door variants of the electric models will start production in the first half of 2025 with two- and four-door gas Charger SIXPACK models coming later that year. Pricing for these will be disclosed closer to their release.
Green Car Journal editor/publisher Ron Cogan was editor of Hot Rod’s Musclecar Classics in the mid-1980s.
It’s pretty amazing that it has taken over 20 years for hybrid electric vehicles to generate truly significant interest. Yet, that’s the story today as many who are interested in electrification have decided to try a gas-electric hybrid first to sate their appetite for an electrified vehicle. It’s an easy choice since there is no real downside to a hybrid – great fuel efficiency, no range anxiety, and a more affordable price of entry compared to a fully electric vehicle. But how do they work? This article, which ran in Green Car Journal a dozen years ago, explained hybridization in an easy-to-understand way that still resonates today. We’re sharing it here just as it originally ran in Green Car Journal’s Summer 2012 issue.
Excerpted from Summer 2012 Issue: The term ‘hybrid vehicle’ covers a lot of territory. Motivated by two or more different power sources, a hybrid electric vehicle (HEV) uses an internal combustion engine (ICE) and one or more electric motors with batteries that store electrical energy. The ICE is usually a gasoline engine, but diesel engines can be used.
In the future, we will see hydrogen fuel cell hybrids where a fuel cell replaces the ICE. Then, there are hydraulic hybrids, now found in large trucks and buses. Here, energy in the form of high pressure hydraulic fluid is stored in accumulators and reservoirs rather than batteries, and hydraulic pressure rather electric motors drive the wheels.
There are both series hybrids and parallel hybrids, with the latter configuration currently far more popular in automotive applications. Cars like the Chevrolet Volt and Fisker Karma are series hybrids. Here, the ICE’s sole or primary job is to drive a generator that supplies electric energy to the battery or directly to an electric motor, or motors, that power the wheels. The engine in a series hybrid can operate at an optimum speed for best fuel economy since its focus is generating electricity rather than providing mechanical power to the wheels.
In a parallel hybrid, both the ICE and electric motor(s) can power the wheels together or individually. The ICE can also keep the battery charged. The ICE in parallel hybrids can be smaller and more fuel efficient since their electric motors can supply supplemental power for peak loads.
Then there are mild hybrids and full hybrids. In a mild hybrid, the ICE and motor/generator operate in parallel, with the motor/generator used for regenerative braking, stop-start capability, and battery charging. While the ICE provides most of the propulsion power, the electric motor can supply additional power, such as during acceleration and hill climbing. A mild hybrid cannot travel solely on its electric motor. The Chevrolet Malibu Eco, Buick eAssist, and BMW ActiveHybrids are examples of mild hybrids.
A full hybrid adds the ability to operate on electric power alone, at least for short distances. Sometimes a full hybrid is called a series-parallel hybrid since, like a series hybrid, its ICE and motor/generator can charge the battery that in turn powers the wheels. Examples include Toyota, Lexus, and Nissan hybrids, including the Prius with its Hybrid Synergy Drive (HSD) and Ford’s Fusion and C-Max hybrids.
Microhybrids are not really hybrids according to the above definition since they save fuel simply by shutting off the engine when a vehicles stops, such as at traffic lights. Their advantage is that microhybrids can deliver a 5 to 10 percent improvement in fuel economy with only minor modifications to a powertrain, while adding only a small amount to a vehicle’s cost. They do require more robust and powerful starters to handle the greater number of starts, plus more capable batteries to keep the air conditioning, radio, and other electronics running during the stop-and-start process when the engine is shut down. . As expected, maximum fuel economy comes in stop-and-go urban driving with no savings achieved during long-distance highway drives.
Often, stop-start is combined with regenerative braking for further fuel savings. This adds complexity since the braking system must have the ability to recoup braking energy and convert it to electricity that’s used to keep batteries charged. Virtually every mild and full hybrid features stop-start and regenerative braking. In fact, these two systems are what help hybrids achieve greater EPA estimated fuel economy in city driving compared to driving on the highway, where steady speeds have traditionally resulted in much better mpg than when driving in stop-and-go traffic.
As the name implies, the plug-in hybrid electric vehicle (PHEV) operates as a conventional hybrid but can also be plugged into the electric grid to recharge its batteries. This is in contrast to conventional hybrids that recharge only by their onboard generator and regenerative braking. PHEVs, which have a larger battery pack than standard hybrids so they can be driven longer on battery power alone, may never need a drop of gasoline if driven relatively short distances. Longer drives use a combination of battery and internal combustion engine power. Examples include the Toyota Prius Plug-In, Ford Fusion Energi, and C-Max Energi hybrids.
An Extended Range Electric Vehicle (EREV), sometimes called a Range-Extended Electric Vehicle (REEV), is designed for battery electric driving. It creates its own on-board electricity when batteries are depleted to extend all-electric driving range. EREVs can have either series or parallel hybrid configurations. The series hybrid Chevrolet Volt and Fisker Karma are high-profile examples that travel 25 to 50 miles on battery power and then hundreds of miles more with on-board generated electricity. Other similarly-powered extended range electric vehicles are on their way. The upcoming BMW i3, for example, will have a REx option with a small ICE that extends its nominal 100 mile all-electric range.
Green Car Journal has closely followed the evolution of the Toyota Prius since our early hands-on experience at Toyota’s Arizona Proving Grounds in mid-1997. Here, we piloted a Toyota Corona test mule powered by an exotic gas-electric powerplant concept that was unlike anything we had driven before. Little did we know that this test car’s Toyota Hybrid System would make its way in production form to the automaker’s all-new Prius, a model that debuted later that year at COP 3, the third United Nations climate conference. This is where the landmark Kyoto Protocol international treaty was adopted to mitigate greenhouse gases and climate change.
The Prius was there to make a statement that Toyota recognized the environmental challenges ahead and was prepared to lead. Prius sales began in Japan in 1997 and expanded worldwide in 2000. The rest is history. In the 27 years since the Prius was introduced, this hybrid has stayed true to its original mission as a model of high efficiency and low carbon emissions. It has shape-shifted over time, starting out as a quirky subcompact sedan and then morphing into a hatchback with a distinctive and easily-recognizable profile.
Now in its all-new fifth generation, Toyota’s Prius is a true game changer presenting as a wondrous liftback with a whole new outlook that far transcends eco consciousness, though that is still the core of its being. Today’s Prius is now sleek and visually compelling, extraordinarily fuel efficient at up to 57 combined mpg, and delivers surprising levels of performance for an eco-champion priced at just $27,950.
For an additional five grand the model’s plug-in hybrid variant, Prius Prime, features all this along with a more powerful 13 kWh lithium-ion battery that brings an EPA estimated 45 miles of electric driving and up to 600 miles of overall range. Along with its admirable EPA estimated 52 combined mpg as a hybrid, Prime achieves up to 127 MPGe when running on its batteries.
Prius Prime’s considerable battery electric range makes it the ideal electric vehicle for a great many who wish to drive zero emission every day, but also want the ability to tackle longer trips seamlessly. This characteristic, and so many others that elevate the model above its peers, distinguished Toyota’s Prius Prime as Green Car Journal’s 2024 Green Car of the Year®.
Performance in a traditional sense, like quick acceleration and impressive driving dynamics, has never been expected of a Prius. That wasn’t its mission. This changes in a big way with the new Prius presenting as a driver’s car, a model that speaks to car enthusiasts who value appealing style and a fun-to-drive nature alongside environmental performance. The new Prius Prime’s 220 system horsepower, delivered by a 2.0-liter engine and 161 hp electric motor-generator, changes the performance equation with nearly 100 more horsepower and a third greater torque than the previous generation Prime. That extra power is a big deal and drivers will appreciate Prius Prime’s surprising ability to sprint from 0-60 mph in just 6.6 seconds.
Greater performance aside, the most noticeable change in the new Prius is clearly its attention-grabbing, smoothly sculpted design. We know this first-hand. Over the past few months, we’ve spent significant time behind the wheel of an uplevel ($39,670) Prius Prime XSE long-term test vehicle equipped with this model’s full complement of advanced electronics and a cabin smartly upholstered in leatherlike SofTex. Inevitably, we get looks, questions, and overt signs of appreciation from a great diversity of people during our drives, many of them drivers of earlier Prius models and others who simply love the car’s forward-leaning and distinctive look.
We get it. The new Prius exudes a sporty appearance with its low roofline and sweeping aerodynamic profile, lending homage to the Prius of old while transforming its look into something more compelling. Once attention moves beyond the car’s most noticeable and eye-catching feature, there’s plenty inside to appreciate as well. Here, one finds a comfortable and functional cabin featuring a pleasing balance of tech, comfort, and style, with a distinctive instrument panel design that takes its cues from Toyota’s bZ4X electric car.
We’ll be sharing our experiences of daily life with the Prius Prime in the months ahead, and no doubt, more stories of interactions with others who find the all-new Prius as compelling as we do.
Here’s an advanced propulsion system that sought to answer a question not yet asked. As Toyota looked forward in the mid-1990s, it launched an inspired program to engineer an all-new powerplant that would be highly fuel efficient, offer extremely low tailpipe and carbon emissions, and feature unheard of environmental performance. The Toyota Hybrid System – now Toyota’s Hybrid Synergy Drive – was the result that debuted in the all-new Prius that hit the world stage in 1997 and emerged on our shores in 2000. It has been refined over the years to deliver more power and even greater efficiency, eventually making its way to a great many Toyota and Lexus models today. This article is reprinted just as it ran in Green Car Journal’s Winter 2004 issue, sharing our perspective 20 years ago on how important a breakthrough this innovative propulsion technology represented at the time, and why it continues to resonate in the automotive market today.
Excerpted from Winter 2004 Issue: Years ago, as automakers struggled to engineer electric vehicles that could offer practical driving range between charges, more pragmatic developers proposed overcoming the battery EV’s range limitation with a ‘range extender.’ Simply, this concept would add a small on-board gasoline engine to keep batteries charged and supplement electric propulsion when more power was needed.
While no longer a true zero emission vehicle – a key goal of electric vehicle enthusiasts – the concept promised cars that would appeal to a mass market. It would provide significantly higher fuel economy than conventional automobiles and achieve near zero emissions levels, all the while offering performance, functionality, and affordability similar to that of the familiar internal combustion engine vehicles we’ve driven for many decades. This concept has evolved into today’s gasoline-electric hybrid vehicle (HEV).
Toyota and Honda can be credited with first producing HEVs that appealed to wide spectrum of vehicle buyers. Toyota introduced its first-generation Prius hybrid in 1997 to the Japanese market. North America saw its first hybrids with the debut of Honda’s two-seat Insight as an early 2001 model, shortly followed by the introduction of the Toyota Prius to American roads.
Toyota uses its sophisticated Hybrid Synergy Drive system to power today’s Prius, a follow-on to the first-generation Toyota Hybrid System. Both automakers are now offering their second generation hybrid vehicles. In 2003, Honda introduced the five-passenger Honda Civic Hybrid, which offers a more powerful adaptation of its Integrated Motor Assist (IMA) hybrid system. A completely redesigned and more powerful Prius appeared as a 2004 model.
Both the Toyota and Honda hybrids are parallel configurations, with wheels driven by both their internal combustion engine and electric motor. In detail, however, they work quite differently. The Honda IMA system’s electric motor/generator supplies additional power to the gasoline engine when needed for acceleration or when driving demands are greater, such as when climbing grades, thus the designation ‘motor assist.’ The Honda gasoline engine always provides propulsion.
Things are reversed with Toyota’s Hybrid Synergy Drive, which finds the Prius starting out on battery electric power. The gasoline engine seamlessly starts up to provide additional power during acceleration, at higher speeds, or when driving up grades. This ability to run at times on battery power alone is an important distinction to some folks, since this means Toyota’s hybrids are actually zero emission vehicles during the time they’re electrically driven. Honda’s hybrids cannot do this.
The Prius uses a four-cylinder, 1.5-liter Atkinson cycle engine. The four-stroke Atkinson cycle, invented by James Atkinson in 1882, is different than the Otto cycle engine we’re used to driving in very distinct ways. Compared to the Otto cycle, where the intake valve is closed near bottom-dead-center, the Atkinson cycle does not close the intake valve at BDC, but leaves it open as the piston rises on the compression stroke. What this means is that some of the air/fuel charge is pushed back out and into the intake manifold and is used in other cylinders. This reduces the volume of the air/fuel mixture that’s compressed and combusted without severely restricting the throttle opening. Restricting throttle opening results in large pumping losses and greatly reduced efficiency. This method of reducing power output without incurring large pumping losses makes the Prius engine much more efficient than a conventional Otto cycle engine under most operating conditions. Effectively, the use of the Atkinson cycle allows the Prius engine to operate quite efficiently at relatively low power levels while still having sufficient power for climbing hills at freeway speeds.
Prius uses the same basic 1.5 liter engine as the Toyota Echo, an engine rated at 108 horsepower at 6000 rpm. The Atkinson cycle allows the engine to be downsized to 76 horsepower at 4600 rpm while still being as efficient, or perhaps more so, than the Echo variant. Also, adding a supercharger to the Atkinson cycle results in the Miller cycle like that used in the Mazda Millenia.
Variable intake valve timing (VVT-I) reduces cylinder pressure to eliminate knocking, important because the engine has a 13:1 compression ratio. A high compression ratio, while good for performance and efficiency, can lead to pre-ignition (knocking), which can damage an engine if unchecked. The aluminum, dual overhead camshaft (DOHC) 16-valve engine produces 76 horsepower at 5000 rpm and 82 lbs-ft of torque at 4200 rpm. Because the engine speed is limited, it can use smaller and lighter components for improved fuel economy. The engine earns an Advanced Technology Partial Zero Emission Vehicle (AT-PZEV) rating, is a Super Ultra Low Emission Vehicle (SULEV), and has an EPA rating of 60 mpg city/51 mpg highway, for a combined estimated 55 mpg fuel economy rating.
Toyota’s HSD also takes special measures to address cold start emissions. Since combustion is not as efficient when an engine is cold and a catalytic converter must reach operating temperature before it can treat exhaust gases, cold starts result in greater emissions levels. The HSD system stores hot coolant in a three-liter vacuum bottle and dumps this into the engine during a cold start to help remedy this.
The permanent magnet, AC (alternating current) synchronous motor produces 67 horsepower (50 kilowatts) at 1200-1540 rpm. Most importantly, it produces 295 lbs-ft of torque at 0-1000 rpm, more than enough to get the car going without help from the gasoline engine. A sealed nickel-metal-hydride (NiMH) battery is used.
An inverter converts the battery’s DC (direct current) to AC for use by the electric motor and generator, and vice-versa. Precise current and voltage control is assured by an intelligent power module. A built-in transformer converts some of the hybrid battery’s power into 12 volts DC to operate vehicle accessories. In the latest generation Prius, the high voltage converter system increases battery voltage from 202 volts to 500 volts for driving the electric motor. This reduces power loss by up to 25 percent because electricity can be supplied at lower current, ensuring large amounts of electricity to the motor for significantly greater output while allowing for a smaller battery.
The Prius’ transaxle contains a planetary gear that adjusts and blends the amount of torque from the engine and motor as it’s applied to the front wheels. It also functions as a continuously variable transmission (CVT) with drive ratio controlled by varying the rpm of the generator that also runs off the planetary gear. This Power Split Device allows the engine to operate in its most efficient load and speed range most of the time. The planetary gear system connects the engine, generator, and motor together, allowing operation in a parallel hybrid mode with the electric motor and gasoline alone or together powering the car. It can also operate like a series hybrid when the gasoline engine operates independently of the vehicle speed to charge the battery or provide power to the wheels. Finally, it allows the generator to start the engine so a separate starter is not needed.
Toyota’s Hybrid Synergy Drive is presently packaged in the sleek, aerodynamic, and efficient five-door Prius hatchback that’s officially classified as a mid-sized car, quite a leap forward from the compact and somewhat quirky first generation Prius. This advanced hybrid vehicle shares virtually nothing with other Toyota models. Features include a throttle-by-wire and an electric air compressor for the air conditioning.
Hybrid Synergy Drive is quite scalable, so expect to see it used in other Toyota and Lexus models. For example, it will be used in the 2006 Lexus RX 400h luxury SUV that will go on sale this coming April 15, along with the Toyota Highlander Hybrid that will debut later in the year. Both models are expected to be mated to a 3.3-liter V-6 engine with front and optional rear motors, in a package producing 270 horsepower. Other Toyota hybrid models will be sure to follow.
With Nissan and Ford already HSD licensees and other automakers reportedly investigating this acclaimed hybrid system for their own models, Toyota has clearly gambled big with its huge investment in this technology, and won big as well. We’ll surely be seeing a lot of Toyota’s Hybrid Synergy Drive in the years ahead.
A growing number of car buyers are showing a keen interest in hybrids, those super-efficient cars, trucks, and SUVs that combine the benefits of both electric and internal combustion power. For some, it’s all about stellar fuel economy. Others see a hybrid as an easy entry into electrified vehicles without taking the more unfamiliar leap to a plug-in model, or paying the extra cost.
Whatever the motivation, we’re huge believers in hybrids because of their many obvious benefits. Ready to bust a move? Here are 10 fuel efficient hybrids from five automakers that deliver 37 to 57 combined mpg, available with a reasonable manufacturer’s suggested retail price (MSRP) of $25,000 to $34,000. Yeah, we realize that some models could be in short supply at times and others may be so popular dealers are tempted to add on a mark-up over and above the MSRP. It that’s the case then keep looking since cross-shopping dealers online is pretty straightforward these days and you may find a better deal just a short drive away.
We’ve driven plenty of Mustangs over the years and have owned several, including a 1966 Mustang back in the day and a pristine 2005 Grand Am Cup-themed Mustang GT that resides in the garage now. The latter combustion pony car shares garage space with a charging electric car most of the time, representing a scenario that’s likely to become a fixture of life for many multi-car households in our unfolding mobility future – an EV for most daily driving and a combustion car or hybrid available for good measure.
Playing to this, electrification strategies have varied among the world’s major automakers, from a bit of dabbling with EVs to going all-in with battery electric models. Time will tell which strategy works out best in an era where electrification’s benefits and challenges are often still weighed intently before buyers make their move to go electric, though buyers in growing numbers are doing so these days.
Ford is solidly positioned in the ‘all-in’ category. Along with its electric F-150 Lightning pickup and E-Transit commercial van, perhaps its most high-profile move has been its evolutionary – or perhaps revolutionary – Mustang Mach-E that debuted in late 2020, the electrified stable mate of the legendary gas-powered Mustang.
The Mach-E successfully trades on the Mustang nameplate and carries on distinct Mustang design cues like a long hood and tri-bar taillights, though it is decidedly different with a unique sweeping roofline and coupe/liftback design. While some Mustang afficionados might take issue with the nameplate being applied to a crossover model, it’s really a moot point. The fun factor is there and it’s a Mustang in spirit if not in silhouette.
As expected, the Mach-E continues to evolve with an expanding number of model choices and battery options, including the new dual motor Mach-E GT that we recently drove in the Pacific Northwest. What really got our attention, though, was Ford’s Mustang Mach-E Rally we piloted around the track at the Dirtfish Rally School in Snoqualmie, Washington, just outside of Seattle.
The Rally gets all the content and performance attributes of the GT with additional benefits and features added for its mission. This adventurous model is a departure from the norm for Mach-E, literally, with that departure focused on off-pavement action far from stoplights, traffic, and the hustle of daily life. Our experience test driving for 4 Wheel & Off-Road magazine many years ago means we have a deep appreciation for that kind of opportunity.
The all-wheel drive Mach-E Rally comes specially prepared for the job, with MagneRide suspension featuring an inch higher riding height than the standard Mach-E, RallyCross-tuned shocks and springs, and powertrain calibration and traction control tuned for the rugged and uneven surfaces of dirt-track and rallycross driving. Aluminum underbody shielding provides protection from the hazards and grime inherent in this kind of off-pavement driving.
Power is abundant with the Mach-E Rally’s 480 horsepower delivered by front and rear motors, with an available RallySport drive mode enhancing linear throttle response. Selecting this mode also sets more aggressive damping for improved handling and enables additional yaw for bigger slides, all important in dirt-track driving. Acceleration is impressive with the Rally’s 700 lb-ft torque enabling a 0-60 mph sprint is just 3.4 seconds. Its 91 kWh lithium-ion battery delivers an estimated 265 mile range.
Form follows function with the Mach-E Rally, as it is also distinguished with special body moldings, an aggressive rear liftback spoiler, rally-style fog lights, black painted roof, and eye catching graphics that add to its appeal. Power is delivered to the road via 19-inch gloss-white wheels equipped with Michelin CrossClimate 2 tires ideal for navigating loose surfaces. All this comes at a cost of $59,995, some $20,000 over the base model and six grand more than the Mach-E GT.
Driving the Mach-E Rally at Dirtfish was exhilarating. This specially equipped model exhibited exceptional capabilities and a seriously fun-to-drive nature at speed, which was expected given its rallycross nature. What’s really impressive is the degree to which the Mach-E Rally accomplishes this without sacrificing comfort or capabilities on the street, where most drivers will likely spend most of their time behind the wheel.
So, let’s just share a fundamental: There’s no circumstance in which either of our personal Mustangs would have ventured off-pavement, at least not willingly and not for an extended drive, unless we happened upon a washed-out road and it was our only way home. But the 2024 Mustang Mach-E Rally? Well, that’s another story…and it’s a really good one.
Now that we’ve been behind the wheel of a Mach-E Rally on Dirtfish Rally School’s dirt, gravel, and wet course, our Mustang horizons have expanded. We can say with confidence that heading off the beaten path in a Mach-E Rally is not only a reasonable option, it’s one likely to be calling out to Rally owners with some regularity. After all, while the road ahead may be straight and true, often enough there will be a new adventure awaiting on dirt roads less traveled just a turn of the wheel away.
VW will launch its 2025 ID.7 electric sport sedan in the U.S. in two trim levels and in both rear- and all-wheel drive formats. Typically, a two-trim strategy provides a more basic entry-level model and a mid- or top-range premium version. But since the VW ID.7 is being marketed as a ‘near luxury’ sedan, its base Pro S trim should come very well-equipped. The Pro S Plus will offer even higher levels of posh, adding 20-inch alloys, adaptive ride damping, front premium massage seats with heating and cooling, and an upscale 700-watt, 14-speaker Harman/Kardon sound system.
Rear-drive versions of the 2025 ID.7 will use a single motor mounted on the rear axle rated at 282 horsepower and 402 lb-ft torque. All-wheel drive versions will have two motors – one on each axle – capable of delivering a maximum of 335 horsepower. Both will use an 82 kWh lithium-ion battery pack. Those are the same powerplants installed on the three upper ID.4 electric crossover trims for the 2024 model year. VW is holding back on revealing range estimates for the ID.7 until closer to launch, but the streamlined sedan should deliver a few miles more than the boxier ID.4, which is rated – for 82 kWh battery versions – at 292 miles for rear-drive models and 263 miles for all-wheel drive versions.
Sedans have been phased out by many automakers in the U.S. market and electric sedans are even rarer, so the ID.7 won’t have a lot of direct competition. Midsize premium electric sedans in the ID.7’s anticipated price range are the Hyundai Ioniq 6, which is likely to be the prime competition, plus the Tesla Model 3, lower trim levels of the BMW i4, and some trim levels of the Ford Mustang Mach-E, a crossover with some sedan-like styling characteristics.
The ID.7 may be the roomiest of the bunch. At 195.3 inches, it is longer than any of the others and just .75 inches shorter than the ID.Buzz van. The ID.7 also has a longer wheelbase – an indicator of cabin legroom – than any likely competitor except the Mach-E, which, at 117.5 inches, beats the VW electric sport sedan’s wheelbase by a scant half an inch. Driving range varies among likely competitors’ rear-wheel-drive models, from 256 miles for the base BMW i4 with a 66 kWh (usable) battery to an extended range of 310 miles for the Ford Mustang Mach-E with an 88 kWh (usable) battery.
The ID.7 is expected to come to market with a sporty, EV-modern interior with a flat dash hosting a centrally mounted, 15-inch infotainment touchscreen that will be control central for most vehicle functions. Backlit sliders beneath the screen will provide cabin temperature and audio volume controls, and there’s a touchpad on the left side of the dash with headlight and defroster controls. A head-up display will show drivers most of the info they need, projected directly onto the lower portion of the windshield, but there’s also a small digital driver info screen behind the flat-bottom steering wheel. The shifter is located on the steering column, leaving the center console clean and open.
To make up for the paucity of physical controls and to make it easier for drivers to use the vehicle’s functions – like selecting drive modes – without taking their eyes off the road to stare into the infotainment screen, VW has developed a voice command system that can be used to do more than change audio channels and make phone calls. Drivers will be able to use to it set those drive modes, set up the navigation system and driver-assist systems such as lane-keeping mode, and even adjust the in-dash vents for the climate system.
While VW hasn’t supplied most vehicle measurements yet, the company did disclose that the ID.7’s primary cargo area behind the fold-down second-row seats measures a spacious 18 .8 cubic feet. Among potential competitors, only the Tesla Model 3 and Mustang Mach-E have more.
ID.7 will use VW’s IQ.Drive advanced driver assist system as standard equipment. It features hands-on-wheel semi-autonomous driving in some circumstances. Also standard across the line will be automated Park Assist Plus for parallel and perpendicular parking. We expect standard safety and driver assist systems for the ID.7 to include full-range adaptive cruise control, front collision mitigation, blind spot monitoring, lane departure warning and lane keeping assist, and more. The ID.7 hasn’t yet been crash-tested by either the National Highway Traffic Safety Administration (NHTSA) or the Insurance Institute for Highway Safety (IIHS). But the ID.4, with which the ID.7 shares a platform, has received top crash safety ratings from both.
Pricing is also to come and won’t be revealed until closer to the ID.7's launch in the third quarter of this year.
This was originally published on thegreencarguy.com. Author John O'Dell is a distinguished career journalist and has a been an automotive writer, editor, and analyst specializing in alternative vehicles and fuels for over two decades.
Toyota, a firm believer in the power of hydrogen to help remake the world of transportation, has turned its longtime R&D center in Southern California into its North American hydrogen development headquarters. Christened H2HQ, the small complex in Gardena is being repurposed to bring all of Toyota Motor North America’s hydrogen propulsion and stationary powerplant development activities under one roof. Toyota also has hydrogen research and development centers in Japan and Europe.
The new North American hydrogen facility initially will concentrate on hydrogen technology for heavy trucks and stationary power plants but will also continue working on the automaker’s fuel cell system for passenger vehicles. Toyota’s Mirai sporty sedan is one of only three fuel-cell electric passenger vehicles marketed in the U.S., alongside the Hyundai Nexo SUV and the new Honda CR-V e:FCEV plug-in hybrid. All are available only in California, which has all but two of the nation’s publicly available hydrogen fuel stations.
While such vehicles still serve only a tiny niche market, their fuel cell technology is exportable. Toyota uses the same fuel cell stacks developed for the Mirai in its heavy-duty truck and stationary power generation systems as well. On the heavy truck side, the automaker already has developed a hydrogen fuel cell powerplant ‘kit’ it will market to commercial truck manufacturers to offer their customers as an alternative to diesel engines.
The company believes, as do Hyundai and Honda, that hydrogen fuel cells have a robust future as the basis for clean power for transport and that right now, heavy-duty trucking – under tremendous pressure to clean up the air pollution caused by diesel engines – is where a lot of effort needs to be applied.
Work at H2HQ will enable Toyota to localize its global hydrogen work on both light and heavy-duty fuel cells and fuel cell vehicles, on hydrogen fueling, and on stationary fuel cell power plants, thus “creating real-world products to help reduce carbon emissions,” said Ted Ogawa, TMNA president and chief executive. Meaningful carbon reduction requires hydrogen made using renewable energy, and Toyota is working with various regulators and the power industry to promote increased use of renewables.
The H2HQ campus already includes a scalable test bench for working on stationary power plant applications, a hydrogen fueling station for light- and heavy-duty vehicles, and Toyota’s largest dynamometer, a 1.2 megawatt giant capable of testing electric drive systems for the largest heavy duty vehicles.
On the non-automotive side, Toyota recently developed a one megawatt fuel-cell generator for the National Renewable Energy Laboratory in Colorado and, in collaboration with Kohler Energy, a prototype backup power generator – hydrogen fueled – for a medical facility in Washington.
Toyota also aims to be able to make its new hydrogen research and development facility self-contained. To that end, it is installing a flex-fuel micro grid that combines a 230-kilowatt solar system, a one-megawatt stationary proton exchange membrane fuel cell generator, a 325-kW solid oxide fuel cell, and a 500-kWh battery storage system. It is expected to be able to take the facility off-grid, when needed, by 2026. The company said it also plans to operate a sustainable energy information center at the Gardena facility.
In tandem with the announcement earlier this month of the new H2HQ, Toyota Motor North America (TMNA) also unveiled the world’s first ‘tri-gen’ hydrogen fuel cell power plant at its Port of Long Beach vehicle prep facility. The plant, operated by Toyota partner FC Energy, produces hydrogen, electricity, and water from piped-in natural gas. And to offset its carbon footprint, FC pays for an equivalent amount of biogas from a waste facility near the California high desert town of Victorville.
About a third of the Tri-gen plant’s hydrogen – 1.6 tons a day – is sent to a nearby hydrogen fueling station used by Toyota for its fuel-cell passenger car, the Mirai, as well as by heavy duty fuel-cell electric trucks serving the port. The rest is passed through a pair of fuel cell stacks to produce 2.8 megawatts of electricity and about 1,400 gallons of water, a byproduct of combining hydrogen and oxygen in the fuel cell stacks. The water is used at a car wash at Toyota’s vehicle prep facility. Most of the electricity – 2.3 megawatts – is used at Toyota’s port facility. The remaining 500 kilowatts is used to power the Tri-gen station.
We’re behind the wheel of our Toyota RAV4 long-term test vehicle and just looked at the instrument cluster’s mpg reading. It’s showing 43 mpg toward the end of our 150 mile cruise on the 101 freeway along California’s Central Coast. There was no traffic to speak of, so we had kept our ride at a fairly steady state around 65-70 mph, reasonable for this stretch of California highway though far short of the much faster speeds and stop-and-start driving experienced in Southern California.
The surprise? This welcome fuel efficiency was achieved without hybrid or plug-in power. We were piloting a Toyota RAV4 XLE crossover powered by a 2.5-liter four-cylinder that, at the time we started our adventure, came with a manufacturer’s suggested price of $29,085, topping out at $33,987 after options. Adding to the surprise is that EPA rates this RAV4 at 34 mpg on the highway and 27 mpg in the city. We were beating that by a long shot, not through crazy hypermiling techniques but simply by easy driving without unnecessary bursts of acceleration or driving at higher speeds.
Look, reality check: While that kind of better-than-EPA fuel efficiency can’t be expected as a matter of course – because, let’s face it, we aren’t always driving traffic-free and there are times when we want to go fast – it is possible, as our experience showed. There is a lesson here for anyone who wants to optimize efficiency and lessen their carbon emissions while driving conventional vehicles. High fuel efficiency is out there for those who actively seek it.
During our drives, the RAV4 consistently delivered all the power we needed, seamlessly delivered to pavement through an 8-speed electronically controlled automatic transmission. Riding on independent MacPherson strut suspension up front with multi-link suspension at the rear, we found ride and handling on the money, as we would expect from Toyota. Along the way we have also appreciated filling up with regular 87 octane gas rather than the premium that some models require, which costs up to 35 to 40 cents per gallon more than regular grade in our area.
Inside this RAV4 is a well-appointed interior with an 8 inch multimedia touch display offering Apple CarPlay and Android Auto connectivity. Nicely bolstered seats provide plenty of comfort as the miles drift by. While our RAV4 came with cloth seats and we prefer leather (or these days, artificial leather), Toyota’s SofTex synthetic leather seating only comes with the uplevel XLE Premium trim at nearly $3,000 more, so cloth it is. Hauling life’s usual stuff is well handled with 37 cubic feet of storage behind the rear seat and 70 cubic feet total with the rear seat folded.
Cloth seats aside, our only complaint, and it’s a mild one, is the RAV4’s stop-start system sometimes engages a bit too abruptly from a stop, something we have experienced in other models with stop-start functionality as well. We chalk that up to the quest for maximum efficiency as the engine is shut down after a pause when stopped, then automatically started again when the brake pedal is released.
After six months in our long-term test fleet and some 5,000 miles on the odometer, we can say this: Toyota’s RAV4 is a rock-solid choice for those looking to drive a conventionally powered small SUV at a price a great many can afford. We still find ourselves beating EPA mpg estimates by at least a few mpg if we’re focused, but most of the time we are in the range of the 27 to 34 mpg efficiency expected of this model, depending on whether we’re doing city or highway driving. We’re pretty enthused with our daily drives in this RAV4 test car and looking forward to sharing our continuing experiences in the months ahead.