Green Car Journal logo

For a lot of folks, Volkswagen’s all-new ID.4 introduced last year checked off all the boxes, except maybe one. It powered its rear wheels only with a single electric motor. Now a new ID.4 AWD model adds a second electric motor up front for better overall performance and all-wheel drive traction.

Power in the base rear-wheel drive ID.4 is delivered by a 201 horsepower permanent magnet motor featuring 229 lb-ft torque. The AWD version adds a second 107 horsepower asynchronous electric motor up front that not only provides all-wheel drive capability, but a boost to 295 horsepower total output and 339 lb-ft torque.

Energy is stored in an 82 kWh lithium-ion battery pack. In the single motor version this delivers a driving range of up to 260 miles at an EPA estimated 99 combined MPGe fuel efficiency, with the more powerful AWD version achieving up to 249 miles of range at 97 MPGe. Charging with a 240-volt Level 2 charger takes about 7 to 8 hours, with 30 miles of range provided in about an hour. Level 3 fast-charging can add around 60 miles of range in just 10 minutes. VW ID.4 buyers get three years of DC fast-charging through Electrify America public chargers for free.

The ID.4 rides on MacPherson struts and coil springs in the front and a multilink suspension in the rear, with anti-roll bars at both ends. It also sports VW’s electronic stability control system as standard equipment. ID.4 features a 108.9-inch wheelbase and a 62.5-inch track, making it quite maneuverable in tight city driving situations. It rides on either 19- or 20-inch aluminum alloy wheels with all-season tires to keep a good grip on the road. A low 0.28 coefficient of drag enhances the model’s overall efficiency. Because the ID.4 is designed as a utility vehicle, the standard version is designed to tow 2200 pounds with the AWD capable of handling 2700 pounds.

True to its German roots, the interior of the ID.4 emphasizes a purposeful design with clean styling and minimal frills, while offering all the functional equipment expected in a modern vehicle. The driver is treated to a commanding driving position behind a sporty three spoke steering wheel fitted with all the primary control buttons the driver might need. It has an overall interior volume of 99.9 cubic feet, roomy for the vehicle’s overall footprint. VW’s Car Talk allows the vehicle to communicate with the driver through voice commands so the driver’s eyes never need to leave the road. IQ.DRIVE, Volkswagen’s suite of advanced driver assist technologies, provides an array of desired features such as hands-on semi-autonomous driving, lane assist, and active cruise control.

Both single and dual motor ID.4 models are available in Pro and Pro S trim, with prices starting at $39,995 to $43,675.

The 2022 Kona Electric from South Korean automaker Hyundai stands out in the ever growing electric car market on many fronts. Trim and nimble, this compact SUV has plenty of punch to deliver a spirited driving experience, yet has great electric range at a price point that makes it a real value. Base price for the Kona Electric starts at a reasonable $34,000. EPA-estimated range comes in at 258 miles, with the Kona Electric’s. EPA fuel economy rating up there with the best in the industry at 132 MPGe in the city, 108 on the highway, and 120 combined.

Power is stored in a 64 kWh lithium-ion polymer battery pack that energizes the model’s 201 horsepower electric motor. Hyundai says expect a full charging time in just over 9 hours with a Level II home or public charger. Charging time shortens considerably to 64 minutes for a 10-to-80 percent charge at an available public 50 kW Level III quick charger and just 47 minutes if charging at a 100 kW Level III charging station.

Exterior styling is markedly cleaner on the 2022 Kona Electric compared to the previous year’s model. It looks sleek and purposeful with a more aggressive stance and on road presence, featuring a stretched hood, revised front and rear fascia, and air inlets in the bumper corners. The charging port is cleanly built into the front fascia/bumper for easy connections when pulling straight into a charging spot, a welcome feature for those accustomed to charge ports mounted on the side of an electric vehicle. Night driving is made safer with the addition of high intensity halogen projector beam headlights and LED daylight running lights make the Kona easier to spot by other drivers. The taillights are also bright energy saving LEDs.

Kona Electric is very welcoming on the inside. The driver is treated to an 8-way adjustable seat with power lumbar support with the passenger provided a 6-way adjustable bucket seat, both of them heated. A Harmon Kardon engineered and tuned multi-speaker audio system includes a center console-mounted sub-woofer. The system is Apple CarPlay and Android compatible and controlled through a 10.25 inch color LCD touch screen at the center of the dash. A second 10.25 digital cluster is located in front of the driver. Interior panels are accented by trim with the look of brushed aluminum.

A full suite of driver assist and advanced safety systems is available . Among these are Smart Cruise Control with stop and go, Lane Following Assist, Forward Collision Avoidance Assist, Highway Drive Assist, Blind Spot Collision Avoidance, and more.

The Kona platform is right-sized for many mobility missions, compact for easy city maneuverability and parking but also accommodating enough to provide a comfortable experience for driver and passengers. It measures in with an overall length of 165.6 inches and is built on a 102.4 inch wheelbase chassis, offering welcome ride-quality for around-town driving and longer daily commutes.

In the company’s words, the $129,990 Tesla Model S Plaid is ‘beyond ludicrous,’ with a new, three-motor powertrain producing a combined 1,020 horsepower, 0 to 60 times of 1.99 seconds, and 9-second quarter-mile sprints. It’s rated as delivering a 398 mile driving range, though that’s figured in a typical EPA test regimen. Given that buyers of the Model S Plaid are likely in it for the car’s performance potential, driving this car to its potential will certainly mean commensurately less range. Other models like the even more range conscious Model S Long Range can go an estimated 405 miles using dual motors producing 670 horsepower.

Recently, a Model S Plaid was dragstrip tested by Motor Trend in an attempt to independently verify Tesla’s claimed sub-2-second 0 to 60 time. They were successful in doing so on a surface fully-prepped with VHT, a resin-based compound typically used at dragstrips. On asphalt without a sticky coating of VHT, the Plaid took 2.07 seconds, making it the quickest production car that publication ever tested.

The Model S has been facelifted for 2022 with new front and rear fascia and fender bulges to fit wider wheels and tires. The new look continues inside with a more spacious cabin and an all-new interior design, featuring an aircraft-style yoke to replace the conventional steering wheel. ‘No stalks, no shifting’ to distract from the pure driving experience, says Tesla.

In the center of the dashboard is a 17-inch, landscape-oriented cinematic display that controls the navigation, infotainment, and tri-zone climate controls. The rear seat has been redesigned with extra head- and legroom for three passengers, and a stowable center armrest has storage compartments and wireless charging. The rear seat also folds flat to accommodate lengthy cargo. There’s a video monitor in the rear of the front armrest; Tesla says the Model S has up to 10 teraflops of processing power, enabling console-like in-car gaming. Wireless controller capability allows game play from any seat.

Tesla owners can take advantage of more than 25,000 Supercharger stations globally. On a Supercharger, the Plaid can charge at up to 250 kW, which has the capability to 200 miles of range in just 15 minutes.

The Model S is equipped with front-, side-, and rear-facing cameras to provide a 360-degree view around the car. In addition there are 12 ultrasonic sensors to assist in the car’s self-driving features, which include Autopilot, Auto Lane Change, Summon, and AutoPark. Over-the-air software updates enable instantaneous upgrades as they become available.

Karma’s new GS-6 is offered in Standard, Luxury, and Sport models, all sharing the sleek exterior design of the company’s upmarket Revero GT. The three GS-6 variants are powered by a transversely mounted, 400 kW twin-motor rear drive module (RDM) energized by a 28 kWh lithium-ion battery pack that delivers 61 miles of battery-electric range. The combination, which produces 536 horsepower and 550 lb-ft of peak torque, comes with an EPA rating of 70 combined city/highway MPGe. Range increases to 330 miles with additional electricity from a 1.5-liter, turbocharged three-cylinder gas engine spinning a 170 kW generator.

The driver can select one of three modes that control how the motor is powered: Stealth mode uses the battery pack only; Sustain mode accesses the generator to create electricity to power the car; Sport mode uses both the batteries and the generator to supply power directly to the motors.

The drive system’s Sport mode is available in all GS-6 versions, not just the Sport model. The line-topping Sport model is differentiated from the other GS-6 versions by its 22-inch wheels (21s are standard on the others), red Brembo brake calipers, and torque vectoring from the RDM.

The GS-6’s leather interior is available in a choice of five colors and accent trim that range from carbon fiber to reclaimed wood from forests burned by California wildfires. The car’s Human-Machine Interface enables driver control of features including steering feel, accelerator pedal aggressiveness, and its Advanced Driver Assistance System (ADAS). Controls in the haptic steering wheel give the driver command of the sound system and phone, driving modes, adaptive cruise control, and a three-mode regenerative brake system. The center touchscreen contains controls for the HVAC system, heated and ventilated seats, audio, and lighting. Also controlled through the center screen is the GS-6’s Track Mode, which provides data ranging from lap times and g-forces to energy use and even tire pressure and temperature.

The ADAS aboard the GS-6 has a long list of assistance and safety features including adaptive cruise control with stop and go, lane-keep assist, automatic emergency braking, blind-spot monitoring/rear cross-traffic alert, forward collision warning, and parking distance monitoring. Onboard cameras provide a 360-degree view around the Karma. Apple Car Play and Android Auto capability are built into the GS-6, and it can receive over-the-air updates for remote diagnostics and software upgrades.

While it sells vehicles globally, Karma's operations are in Southern California with headquarters in Irvine and a production facility in Moreno Valley.

The all-new five-door, five-passenger BMW i4 is right-sized for fans of the marque, similar in overall length and wheelbase to its 3 Series stablemates. Both i4 variants utilize BMW’s fifth-generation eDrive technology, which combines an 83.9 kWh lithium-ion battery pack with either a single electrically-excited synchronous motor on the rear axle (in eDrive 40) or motors front and rear (in M50). BMW expects up to 300 miles of driving range in the single motor i4 and an estimated 245 miles in the M50.

Taking its Ultimate Driving Machine strategy a step further, the all-wheel-drive i4 M50 – the first fully electric performance model from BMW’s M Group – ups the 335 horsepower of the standard i4 eDrive40 to a combined 536 horsepower. In addition, special attention is paid to chassis tuning and powertrain responsiveness in the M50 so it delivers the level of driving engagement expected from a BMW with the M badge.

The i4’s combined charging unit accepts either home-based AC power, at a rate of up to 11 kW, or up to 200 kW of DC power at a fast-charging station. BMW has partnered with EVgo to provide i4 owners access to EVgo and partner charging network stations. The partnership includes $100 in EVgo charging credit for buyers and lessees of qualifying BMW electric vehicles.  

Helping to boost the i4 models’ efficiency are their adaptive energy recuperation systems, which use data from the navigation and driver-assistance systems to vary the intensity of brake energy recuperation. The driver may also select high, medium, or low brake energy recuperation via the iDrive menu. Putting the gear selector in drive mode B provides enough regen for one-pedal driving with little or no use of the brakes, depending on driving habits and current driving conditions.  

The i4’s handling dynamics benefit from the battery pack’s location in the floor, which lowers its center of gravity below that of a 3 Series sedan. Both models are equipped with a rear air suspension using a self-leveling and lift-related shock system that controls damping force based on spring travel. An adaptive M suspension, optional on the eDrive 40 and standard on the M40, enables the driver to adjust shock settings electronically at each wheel.

Inside the i4, the BMW Curved Display puts the 12.3-inch driver information display and 14.9-inch control display behind a single piece of glass. Features in BMW’s new iDrive 8 system can be operated via the Curved Display or by voice commands. Among them is the new Cloud-based BMW Maps navigation system, which combines real-time information with forecasting models to improve navigation accuracy. Both Apple Car Play and Android Auto are programmed into the i4.

There are more than 40 driver assistance systems available for the i4 as either standard or optional equipment, including some Level 2 automated driving functions such as speed limit assist and route guidance when the optional active cruise control is engaged. Collision warning, pedestrian warning, and lane departure warning are all standard. Cross-traffic warnings, blind-spot detection, and rear-collision prevention are part of the optional driving assistant system. Optional parking assistant will control the i4 when entering or exiting parallel or perpendicular parking spaces, while its back-up assistant offers automatic reversing for up to 50 yards. A Driving Assistance Professional system utilizes three front cameras, one front-facing radar sensor ,and four side-facing radar sensors “to build a detailed picture of the car’s surroundings,” says BMW. That data is used for such functions as active navigation, steering and lane control assistant, lane-keeping assistant, emergency stop assistant, and evasion assistant.

The BMW i4 eDrive40 can be preordered now starting at $56,395 with the performance-oriented i4 M50 coming in at $66,895. Availability here in the States is spring 2022, according to BMW.

Similar in size to Audi’s Q5 SUV, the Q4 e-tron is powered by one or two electric motors depending on configuration. The base Q4 40 e-tron sends an estimated 240 horsepower to the rear wheels through a permanently excited synchronous motor. The Q4 50 e-tron quattro and Q4 50 Sportback e-tron quattro add a temporary on-demand asynchronous motor to drive the front wheels as needed. The second motor brings total output to an estimated 290 horsepower. When not in use, the front motor doesn’t consume any energy or add any load resistance, so the drivetrain’s efficiency is like that of the rear-wheel drive system.

Both drive configurations are powered by a single 77 kWh battery located between the axles to optimize weight distribution. Preliminary estimates put the Q4 40 e-tron’s range at approximately 250 miles.

The drivetrain is configured to regenerate energy using what Audi calls intelligent recuperation, which incorporates navigation and topographical data in addition to the three regen modes selectable via steering wheel paddles and brake pedal modulation. The battery can be charged using either alternating or direct current, up to 11 kW with AC and up to 125 kW DC using a high-speed charger.

The Q4 e-tron interiors feature a 10.25-inch digital instrument cluster in front of the driver and a second, 10.1-inch touchscreen to operate the infotainment and navigation systems. A new steering wheel has seamless touch surfaces to control the instrument cluster. Available as an option is an augmented reality head-up display, which superimposes relevant driving information over the real-world view out the windshield at what is perceived to be a distance of 30 feet ahead of the driver, “creating an integrated and eyes-forward experience,” says Audi.

Several driver-assist systems are packaged into the Q4 e-tron models, ranging from High-Beam Assist to Adaptive Cruise Assist. Combined with Traffic Jam Assist, the adaptive cruise control can guide the SUV through its entire speed range. A Predictive Efficiency Assist program optimizes energy consumption over the duration of a trip.  

Audi expects to produce the Q4 e-tron models at its Zwickau, Germany, plant with a net carbon-neutral footprint. Zwickau will incorporate renewable electricity to help achieve this certification. The Q4 e-tron SUVs should be on sale in the U.S. in late 2021 with a starting MSRP of less than $45,000.

Volvo’s positioning of the C40 Recharge is interesting in an era where an abundance of new models are identified by their makers as SUVs, though many could just as easily be called large hatchbacks. This is in reverse. Volvo doesn’t describe the C40 Recharge as an SUV – thought it certainly could be categorized that way – but rather, says it ‘has all the benefits of an SUV’ like a high seating position, but with a sleeker body design. We’ll chalk it up to marketing.

However you define it, the model is powered by a 78 kWh battery driving front and rear electric motors for zero-emission driving. Anticipated range is estimated at about just over 200 miles on a charge, with an official EPA rating still to come. Range is expected to improve over time with over-the-air software updates, Volvo says. The battery is configured to be fast-charged to 80 percent in about 40 minutes. Buyers of the C40 Recharge, and all-fully electric 2022 Volvo vehicles, will receive 250 kWh of complimentary charging for the first three years of ownership using Electrify America’s charging network. After that, owners will be eligible for Electrify America’s Pass+, with Volvo picking up the membership fees for the first year.

The C40 Recharge is the first Volvo with a leather-free interior. Upholstery options include renewable wool fiber or a combination of suede textile (made of recycled plastic) and micro-tech material. The carpet and much of the interior panels and trim are also made using recycled plastics.

Other interior features include dual-zone automatic climate control, heated front and rear seats, a heated sport steering wheel wrapped in a synthetic material, a 12-inch driver display instrument panel, and a 9-inch center display panel. The infotainment system in the C40 Recharge was developed with Google and is based on the Android operating system. Google services, such as Google Maps, Google Assistant, and the Google Play Store are built in, and owners have access to Google apps using the car’s unlimited data.

Driver aids built into the C40 Recharge include Adaptive Cruise Control, Lane Keeping Aid, Oncoming Lane Mitigation, and Road Sign Information, which displays information alerts – speed limits, do not enter and other signs – in the speedometer.

Starting at a base price somewhat south of $60,000, the C40 Recharge is available through online orders only. It will come with a convenient care package that includes service, warranty, roadside assistance, insurance, and home-charging options. To simplify the online ordering process, the C40 Recharge will be available in one trim level called Ultimate. This model has ‘every available feature,’ says Volvo, including a panoramic fixed moonroof, pixel LED lighting, 360-degree surround-view camera, and Harmon Kardon premium sound.

While performance is a given at any level, it’s been Tesla’s highest-end, dual-motor models that really set the bar for the ultimate in electric drive thrill seekers. While Tesla has pretty much had a lock on this for some time, serious competition has been in the pipeline. Audi’s new-for-2022 e-tron GT not only considerably extends the reach of Audi’s unfolding all-electric e-tron lineup, it presents a compelling option to those who would otherwise consider a Tesla.

Sleek and sinewy, the e-tron GT is what electric performance should be about. If Audi’s 610 horsepower, V-10 powered R8 supercar screams performance, then the more luxury-oriented electric e-tron GT simply exudes it in a refined and luxurious sort of way, without making a fuss. The e-tron GT is beautifully designed with a sloping roofline, a long wheelbase, wide stance, and large 20-inch alloy wheels as standard fare, with the uplevel RS variant offering available 21-inch alloys.

And performance? As expected. Front and rear permanently excited synchronous motors in the GT – 235 horsepower at the front and 429 at the rear – offer a net combined output of 469 horsepower for exhilarating acceleration. A greater 522 horsepower with overboost and launch control is delivered for a brief 2 1/2 seconds as needed. This delivers a 3.9 second 0-60 mph sprint and a top speed of 152 mph. The RS e-tron GT uses the same front motor but integrates a more powerful 450 horsepower motor at the rear, offering 590 horsepower overall and 637 horsepower with overboost. It reaches 0-60 mph in just 3.1 seconds, matching the breathtaking performance of Audi’s V-10 R8.

Power in both versions is delivered to the road via a two-speed transmission that accentuates quick acceleration while providing a second taller gear for extended highway driving. All-wheel steering, available in GT models and standard in the RS e-tron, provides a maximum of 2.8 degrees of opposite direction in the rear to increase low-speed agility at speeds up to 30 mph, and in the same direction at higher speeds to aid stability. Three-chamber air suspension is standard to enable tuning for comfort or performance.

Energy is delivered to the motors by a 93.4 kWh lithium-ion battery pack housed within an aluminum frame. Audi estimates a 238 mile range for the GT and 232 miles for the RS GT based on its own testing approximating EPA test cycles. Both are standard and fast charge capable, with the latter bringing the e-tron’s battery from 5 to 80-percent charge is just over 22 minutes.

Arriving this year, the Audi e-tron GT quattro Premium Plus carries an MSRP of $99,900, with the GT quattro Prestige upping the ante to $107,100 and the RS e-tron GT to $139,900.

Henrik Fisker is one of the most fascinating figures in the auto industry today. After a distinguished career designing memorable vehicles for others like the Aston Martin DB9 – and notably the BMW Z8 and Aston Martin V8 Vantage famously driven by James Bond – he set off on his own path. His first effort, featuring the gorgeous plug-in Fisker Karma of his own design, ended abruptly in 2013. But everyone loves a good comeback story, and Fisker is delivering one with Fisker Inc., the company he and CFO wife/cofounder Geeta Gupta-Fisker launched in 2016.

RON COGAN: You’ve designed some amazing and iconic vehicles for legacy automakers. What drove you to become an automaker yourself?

HENRIK FISKER: “I felt like in my corporate career I had hit the ceiling, and the pinnacle was designing two cars for Aston Martin, the V8 Vantage and DB9. I wanted to get out and get my hands dirty, and start doing something where I challenged myself. I really had a passion for the idea of coming up with sustainable vehicles that were also emotional and exciting. That’s how I started Fisker Automotive, originally with the Fisker Karma.”

RC: What are the most important lessons you’ve learned from your experience with the former Fisker Automotive, and how are you applying those at Fisker Inc. today?

FISKER: “If you have the ability to de-risk something, then do it. That’s lesson number one. An example would be, originally with Fisker Automotive, we didn’t really have a choice of a battery maker. There were only three and we were left to take the third one, which was A123, because Panasonic was with Tesla at the time and I think LG Chem had an exclusive with GM.

“Today we have the possibility to either choose some untested battery technology from a new startup, or we take tested battery technology from a large battery maker. We have chosen the latter, because I believe there’s too big a risk there, and we don’t really need to take that risk because the technology is getting better and better. We think it’s going to take a lot longer to come up with radical new battery technologies than we, and a lot of people, originally thought…I think we’re at least seven to 10 years away.”

RC: How will you stay ahead of the advanced battery curve?

FISKER: “When you buy a car today, any new car, the technology in that car is probably three to four years old, because it was decided three or four years ago. What we are trying to do is shorten that time down to 18 to 24 months, where we can decide on technology that late. When you get our car in the next year, we decided on the battery technology this year, which means we have the latest, newest technology.

“To give you an example, when we looked at technology in 2020, only a year ago, we estimated a range of 300 miles. Because we could delay that decision to now, we now can have a better, more energy-efficient cell and a more energy-efficient pack, which means we are getting up to about a 350-mile range. That is the advantage of being able to choose technology very late in the development process.”

RC: Any other lessons learned?

FISKER: “Number two, I would say, is financing. Originally, at Fisker Automotive we had many, many financing rounds, and we saw other companies as well, like Tesla, having many financing rounds. What happens is you end up having delays, because you never get the financing when you need it. When you have a delay developing a car you actually end up increasing costs because time is cost. The other lesson learned: Go and get the total amount of money you need for your first car.”

RC: Does that mean you have enough now to fully produce the Ocean?

FISKER: “We needed slightly less than a billion dollars to get the Fisker Ocean to market, and said we aren’t going to kick off the program full speed until we raised the entire amount of money. We decided last year to do a SPAC merger, where we went public and we raised over $1 billion. To this date we have had no delays. We are going full speed, and we are still on target to launch the vehicle next year.”

RC: Can you share insight into your asset-light business model?

FISKER: “The advantage is that you’re taking less risk, specifically in manufacturing. We have seen what Tesla has gone through, ‘manufacturing hell.’ They have been pretty clear about it. I don’t know that either investors or customers have the patience that they may have had many, many years ago, where it was still the early adopters that bought electric cars.

“I think the competition is a lot stronger today, and I think the expectation is a high-quality car on par with any other traditional OEM out there. This was really important for us. Yes, there might be some car enthusiast fanatics that feel it’s super cool if you make your own car, but the reality is that I don’t want to risk our company or the quality just to prove we can manufacture a car better than Toyota. I don’t think it has any real relevance to our stakeholders or to our customers, quite frankly. Nobody questions the fact that Apple doesn’t make its own phones.”

RC: So you’ve contracted your manufacturing out to Magna.

FISKER: “Magna is probably one of the best automotive manufacturers in the world, manufacturing some of the highest-quality cars out there, for German luxury makers to even one large Japanese conglomerate. We know this is their job. We are paying them to do it, and they will deliver a high-quality vehicle straight out of the gate.

“If you are manufacturing in your own plant and you’re still in the learning process, that means you’re going to spend more hours per car, and that is cost. I’ll bet you our vehicle is actually at a lower cost-per-vehicle to manufacture than any of our startup competitors, because they aren’t going to make perfect vehicles in the lowest amount of time straight out of the box, like Magna can do it. They will do it at the right man-hours per vehicle, and therefore our costs per vehicle are already fixed. This gives us an advantage, which is why we can already announce pricing on our vehicle, because we know those costs.”

RC: How important is your deal with Foxconn to your future plans?

FISKER: “I think it’s extremely important and it has accelerated our business model. Through this partnership, we are able to get to an even more affordable vehicle much quicker than the Fisker Ocean. It also gives us the opportunity to revolutionize the future of the automobile in a way that would have taken longer under normal circumstances. We are partnering with a group that was part of the smartphone revolution, quite frankly, and they’re an amazing partner for making a revolution in the automotive industry.”

RC: Can you share more details?

FISKER: “It’s going to be very futuristic. I’m going to take a lot of risk in terms of design and certain features in this vehicle to really shake up things, and look at maybe new ways of usability in what I would call a mobility device. Let’s call it that right now. I think this vehicle will be hard to categorize – in the way we normally say, ‘it’s a sedan or an SUV, or so on’ – and it’s on purpose.”

RC: What’s ahead?

FISKER: “You can’t forget the fact that a car company really, in my opinion, only becomes a car company once you have multiple models. We did not want to launch the Fisker Ocean and then start the next program, because that way you’re waiting another two and a half years for the next vehicle. Instead, we are actually working on multiple vehicles right now, so we can have a quick cadence of products. Our plan is to come up with four vehicles before 2025, and so far, we are on course for that.”

Electrification has not been a primary interest at Mazda. Efficiency? Yes, SKYACTIV technology. Family friendliness? Yep, with four crossover/SUVs of varying stripes. Performance? Well, yeah, Mazdas are fun to drive and the MX-5 Miata is a perennial sports car favorite, plus the brand is competitive in all sorts of racing.

There clearly hasn’t been any urgency to embrace electrification at Mazda, even as most of its competitors have done so. The brand has dabbled, though. There was a Miata EV concept in the 1990s and a short-lived Demio EV demonstration project in Japan back in 2012, but little else. Now things have changed.

Enter the 2022 Mazda MX-30, a model representing the first step in this automaker’s journey toward electrification. Aimed initially at the California market this fall with a likelihood of expanding to other ‘green’ states, the electrified crossover is powered by a 144 horsepower electric motor with 200 lb-ft torque driving the front wheels. Energy is provided by a 35.5 kWh lithium-ion battery. Mazda has not provided U.S. range estimates for its new electric, though the MX-30 is rated at delivering 124 miles of single-charge driving range on the European WLTP testing cycle. Translating that to the more conservative EPA testing cycle is not a science, but you could reasonably conclude that a full battery would deliver about 100 miles of driving on U.S. roads.

Yes, that’s pretty limited range given the direction of new electric vehicle offerings in the U.S., which skew toward 200 miles of driving range or better, courtesy of larger battery packs. Charging via a standard 220-volt wall charger is convenient and assures that when you’re home for the night, just plug in and you’ll have a full charge in the morning. If you’re on the road or just want to pick up additional range while out, plugging into a rapid-charger will bring the battery from 20 to 80 percent charge in about 36 minutes.

Mazda has more in store for the MX-30 beyond this initial all-electric version. Coming later is a range-extended variant featuring the addition of Mazda’s signature rotary engine, with this powerplant operating exclusively as a rotary generator that creates electricity to augment battery power. This, in effect, creates a series-hybrid electric MX-30 with the ability to motor on long after battery power is gone.

Inside the handsome cabin is a floating center console with an electronic shifter and command knob. A 7-inch display is provided and flanked by controls. Adding to the new model’s innovations are rear doors that are hinged at the rear and swing outward at the front.

A handy MyMazda app allows locking doors, monitoring state-of-charge, and adjusting climate controls via a user’s cellphone. A full suite of the automaker’s i-Activsense safety and driver assist systems will be offered, though details about this and the model’s suggested retail price have not yet been revealed.

The MX-30 represents the first of Mazda’s electrification thrust, with a hybrid crossover option coming and a plug-in hybrid variant to be offered in a new large-platform SUV. All promise expected Mazda driving dynamics courtesy of an enhanced SKYACTIVE vehicle architecture. Base price of the MX-30 is $34,645 plus destination charge.

The EV6 paints a bold picture of Kia’s take on the booming electric vehicle experience. A close cousin to the Hyundai IONIQ 5, EV6 is compact and efficient yet also aggressive, with this five-door hatch presenting a sporty fastback profile. It offers the muscular styling cues of Kia rally cars with sleek and clean lines while prioritizing a spirited driving experience. It has a long wheelbase for the car’s overall footprint that should add to both on road stability and overall ride quality.

This is the first Kia model to be built on the South Korean automaker’s dedicated Electric-Global Modular Platform. It was designed from the ground up aa a pure electric vehicle, rather than being derived from an existing internal combustion engine model. Kia is signaling a serious commitment to the electric car market with the introduction of the EV6.

While diminutive on the outside, EV6 manages a very spacious interior due to the intelligent packaging of electric drive components. In fact, interior volume compares favorably to that of a midsize to large crossover or SUV, with its roomy cabin translating into a comfortable space for five occupants. Recycled materials are used throughout the cabin. Naturally, all the latest electronic driver assist tools are front-and-center in the EV6 cockpit, along with other innovative systems like an augmented reality head-up display that projects driving info in the driver’s line of sight, plus alerts from the car’s driver assist system.

Kia will offer the EV6 with a variety of drivetrain and battery pack options, including a choice of standard 58 kWh and long-range 77.4 kWh packs. Two- and all-wheel drive versions will be available. The standard range two-wheel drive model uses a 168 hp motor powering the rear wheels or a 232 hp motor powering both front and rear wheels. The longer range variant integrates a 225 hp motor driving the rear wheels with a 320 hp motor delivering power to front and rear.

Those who desire a real performance rush will be interested in the high torque, high power EV6 GT that turns up the volume to deafening levels. Powered by dual motors producing 576 hp, this all-wheel drive EV6 accelerates from 0-60 in about 3.5 seconds, true supercar performance territory.

EV6 enables both 400 and 800 volt charging capability without the need for adaptors, delivering quick charge times and greater flexibility on the road. A high-speed charge bringing the battery from 10 to 80 percent in any EV6 variant takes just 18 minutes. Those in a hurry will find their 2WD 88.4 kWh model gaining about 60 miles of driving range in less than five minutes with a high-speed charge. EV6 features multiple drive modes to accommodate a range of driving styles, from aggressive regenerative braking with a one-foot driving experience to a sail mode that disengages the powertrain to deliver extended coasting.

Kia is planning to launch the EV6 in 2022 and round out their EV portfolio with a total of 11 electric models by 2026.

The Hummer EV SUV will share key components with the Hummer EV pickup, from its Ultium powertrain platform to the open-air driving experience that comes from its removable Infinity Roof panels. Both the SUV and pickup are being touted as having significant off-roading chops, including the ability to ‘crab walk’ diagonally around trail obstacles thanks to four-wheel steering, and an Extract Mode that utilizes the Hummer’s Adaptive Air Ride suspension to raise the body some 6 inches out of harm’s way.  

Because the SUV is shorter than the pickup – overall by about 10 inches and with a wheelbase nearly 9 inches shorter – GMC is promoting it as having ‘best in class off-road proportions.’ Those proportions, combined with its four-wheel-steering capability, do give it a tight turning radius of 35.4 feet, equal to that of the Chevrolet Bolt.

The smaller platform, though, does have a cost: less room for batteries. The Hummer EV SUV’s double-stacked battery pack contains 20 modules, while the Hummer EV pickup has 24. That means, on paper, anyway, the SUV is less powerful. The Edition 1 version of the SUV that will be available at launch is rated at up to 830 horsepower compared to the pickup’s 1,000. Range is shorter, too, at 300 miles compared to the pickup’s 350. Torque remains rated at up to 11,500 lb-ft, a number GM arrived at by multiplying the twisting force through the gear ratios in the Ultium platform’s front and rear drive units.

How Hummer configures that platform will be a key differentiator between Hummer EV SUV models. Edition 1 and 3X models will have three drive units, one to power the front wheels and one each for the rear wheels. The 2X and 2 models will have two drive units, one up front and one at the rear. The 2 will also have 16 instead of 20 battery modules, lower power output, and shorter range, but will be priced accordingly – 79,995 compared to $105,595 for the Edition 1.

Adding the Extreme Off-Road Package to an Edition 1 raises its MSRP by $10,000, for which the Hummer buyer receives 35-inch Goodyear Wrangler Territory tires on 18-inch wheels (22s are standard). Also provided are underbody armor and rock sliders, front and rear lockers, heavy-duty half-shafts, and the UltraVision camera system that provides up to 17 views around the vehicle to see the surrounding terrain, including under the body, in real time.

Those UltraVision images are among the infotainment channels broadcast on a 13.4-inch high-def touchscreen positioned between the driver and passenger. In front of the driver is another 12.3-inch information screen. GMC promises Hummer occupants a  ‘multisensory, immersive experience’ with customizable features that can tailor not just the sound through the Bose entertainment system and the feel through the haptic driver’s seat, but also the SUV’s steering, suspension, and acceleration response. The center screen can also be used with an updated version of the myGMC mobile phone app to show satellite-rendered trail maps for navigating off-road. The revised app also tracks real-time energy consumption and can find local charging stations.

On the subject of charging, an optional Power Station generator can be used not just to charge personal devices and power recreational gear, but has the power (240v/25A/6kW) to charge other electric vehicles.

The low-floor, skateboard-like Ultium drivetrain platform has one other advantage: It affords several gear storage options. Folding the SUV’s rear seat flat and opening the powered tailgate reveals nearly 82 cubic feet of cargo space, more than GMC’s Acadia SUV with its second and third row seats folded. There is additional storage space hidden beneath the load floor and more in the Hummer’s front trunk.

GMC expects to launch the Hummer EV SUV in Edition 1 form in early 2023. It will  be followed by 3X and 2X models in the spring of ’23, and the base 2 model in spring ’24.

The Ford Mustang Mach-E, a slick crossover SUV with a name harkening back to the marque’s performance-based Mustang Mach 1 that debuted some five decades back, presents a new twist in Mustang heritage. Unlike the Mach 1, there’s no rumbling 428 cubic-inch big block V-8 and no emissions…because there’s no tailpipe. That’s because the Mach-E is powered by an all-electric powertrain that provides zero-emission driving.

As a five-door crossover, The Mach-E is far afield from the two-door Mustang coupe it joins in the Ford lineup. But key Mustang influences throughout let us know this is indeed of Mustang lineage, even as Mach-E exhibits more futuristic DNA. Among its signature Mustang styling cues are a long hood, aggressive headlights, tri-bar taillights, and of course all the expected Mustang badging. What’s different is decidedly a departure from the familiar Mustang form, most notably a silhouette that blends elements of crossover and coupe design.

The Mach-E is available as Standard Range and Extended Range variants featuring differing battery capacities, with rear- or all-wheel drive. The Standard Range version uses a 75.7 kWh lithium-ion battery that’s expected to offer a 230 mile range in rear-wheel drive trim. Up to 300 miles will be delivered by the Extended Range version with its larger 98.8 kWh battery. A single permanent magnet motor is used on the rear axle of the rear-wheel drive Mach-E and one on each axle for all-wheel drive models. Performance specs for these Mach-E models range from 255 to 332 horsepower and 306 to 417 lb-ft torque.

A Mustang Mach-E GT Performance Edition slated for next summer raises performance levels with 459 horsepower and 612 lb-ft torque that should deliver 0 to 60 mph sprints in the mid-three second range. This performance model is equipped with a MagneRide Damping System, an adaptive suspension technology that enables the car to hug the road while delivering an exciting and comfortable ride

Batteries are located inside the underbody of the Mach-E between the axles. Liquid cooling optimizes performance in extreme weather. Positioning batteries outside the passenger and cargo areas allows ample room inside for five adults and 33.8 cubic feet of cargo, with capacity increasing to 59.6 cubic feet with the rear seat folded. Mach-E buyers can opt for a 240 volt Ford Connected Charge Station for home charging. A 120-volt mobile charger included with the Mach-E conveniently plugs into a standard household outlet, but charges considerably slower. The Mach-E can handle 150 kW fast charging at public charge stations offering this capability.

Three Mach-E models are currently available to order – Select, Premium, and California Route 1 – priced at $42,895 to $49,800. The Mach-E GT coming later next year can be pre-ordered at an entry price of $60,500.

The 2021 introduction of the e-tron Sportback now adds a second all-electric model to Audi’s stable of electrified vehicles, contributing to the automaker’s corporate goal of electrifying 30 percent of its U.S. model lineup by 2025. The e-tron Sportback is a crossover SUV like the standard e-tron, but with a coupe-like four-door body influenced by the shape of the A7 Sportback sedan. Despite the steep pitch of the e-tron Sportback’s rear roof, there is ample headroom at all five seating positions.

Mechanically, the 2021 e-tron Sportback benefits from several improvements Audi made to the e-tron powertrain. The e-tron’s quattro all-wheel-drive system is powered via asynchronous electric motors on the front and rear e-tron axles. In a new-for-2021 development, only the rear axle provides e-tron Sportback propulsion in most driving conditions to improve efficiency. The front motor is designed to engage instantly in spirited driving and cornering situations or before wheel slip occurs in inclement weather conditions.

Power for the motors is provided by a 95 kWh battery that Audi has configured to use at less than total capacity, thus optimizing battery longevity and repeatable performance. For 2021, e-tron drivers can access 91 percent, or 86.5 kWh, of the battery’s total capacity, up 3 kWh from the previous model. Also new for 2021 are battery charge ports on both sides of the vehicle to enhance charging convenience.

Output for the e-tron Sportback is rated at 355 horsepower and 414 lb-ft torque, though with Boost Mode engaged those numbers rise to 402 horsepower and 490 lb-ft. In Boost Mode, the e-tron Sportback accelerates from 0-60 mph in 5.5 seconds. EPA rates the e-tron Sportback’s efficiency at 76 city and 78 highway MPGe, and 77 combined, with driving range of 218 miles. The e-tron Sportback’s regenerative braking system is designed to recoup energy from both motors during coasting and braking. Steering wheel paddles control the amount of coasting recuperation in three stages.

The e-tron Sportback is equipped with 20-inch wheels and adaptive air suspension as standard equipment. Standard driver assistance systems include Audi pre sense basic, side assist with rear cross-traffic assist, and active lane-departure warning. Among the features on the e-tron Sportback’s MMI touch screen system is a map estimating where the SUV can travel given its current state of charge, plus suggested charging station locations along the route. Amazon Alexa is integrated into the e-tron Sportback’s MMI system, and a subscription service provides access to news, music, audiobooks, and control of Alexa-enabled devices from the SUV’s steering wheel.

With a cost of entry at $69,100, the e-tron Sportback’s pricing is solidly in the midst of its competitors in the luxury electric vehicle field, like the Jaguar I-Pace and Polestar 2.

Manufactured in Tennessee on Volkswagen’s MEB modular world electric car platform, the 2021 VW ID.4 presents a new and compelling all-electric SUV that enters a segment presently dominated by Tesla, Chevrolet, and a select few others. What ID.4 brings to the battery electric SUV segment that Tesla doesn’t is price, coming in at a base cost of $39,995, some $10,000 less than Tesla’s Model Y.

For this, electric vehicle buyers get SUV hatchback utility, three-foot legroom in all seating positions, and ample luggage capacity for 5 adults. VW estimates ID.4 driving range at 250 mile on a full charge, and additionally points out that an additional 60 miles of range is attainable in just 10 minutes from a public DC quick-charge station.

Powertrain, battery module, and chassis

Sporting a stature similar to that of Honda’s CR-V, the Volkswagen ID.4 rides on a steel-framed architecture featuring strut-like front suspension and multi-link suspension with coil-over shocks at the rear. This, combined with a long wheelbase and short overhangs, promises a smooth ride dynamic. Braking is handled by front disk and rear drum brakes.

A single permanent magnet, synchronous electric motor directs power to the rear wheels. The ID.4 produces 201 horsepower and 228 lb-ft torque that’s expected to deliver a 60 mph sprint in about 8 seconds. Electricity to power the motor is provided by an air-cooled, frame-integrated 82 KWh lithium-ion modular cell battery. An onboard 11KW charger enables three charge modes via standard 110-volt household power, 220-volt Level 2 charging, or DC fast charging. Typical charging with a home wall charger or public Level 2 charger will bring a full charge in 6 to 7 hours.

Controls, displays, and features

A minimalistic yet futuresque cabin with segment leading cabin volume rounds out ID.4’s architecture. Features include a driver-centric, touch sensitive steering wheel and a view-forward 5.3-inch ID information center that replaces conventional gauges. Vehicle operation is through steering wheel-mounted switches, with infotainment, climate control, device connectivity, navigation, and travel information accessed through a 10.3 inch touchscreen monitor. A 12 inch monitor is available with the model’s Statement Package.

Topping the list of features is expanded voice command and a communicative dash-integrated ID light bar. ‘Intuitive Start’ driver key fob recognition enables pre-start cabin conditioning capability. Base model upholstery is ballistic cloth with leatherette seat surfaces optional.

Volkswagen’s IQ Drive driver assist and active safety suite features travel assist, lane assist, adaptive cruise control, front and rear sensors, emergency assist, blinds spot monitoring, rear traffic watch and more. All this comes standard along with Pro Navigation, a heated steering wheel and front seats, wireless phone charging, and app connectivity for compatible devices. 

The ID.4 EV is available in six colors and two trim levels, Gradient and Statement, for personalization. The optional Gradient package features a black roof, silver roof trim, silver accents, and silver roof rails along with 20-inch wheels to complete the upscale look. Looking forward, while rear-wheel drive is the choice today, Volkswagen is already talking up an all-wheel drive variant for early 2021 along with a lower-priced base model. 

As the world’s largest automotive group, Volkswagen has the capacity to change the ever-expanding electric-car landscape. Looking at the style and utility of VW’s all-new ID.4, you can sense the renewed “people’s car” direction of the brand that accompanies the automaker’s commitment to electrification. VW says it’s aiming at selling 20 million electric cars based on the MEB electric car platform by model year 2029. Certainly, the potential for selling in truly significant numbers is reinforced by ID.4 pre-orders selling-out in just weeks, it’s safe to say.

The 2021 all-electric Polestar 2 arrives in North America this year as the brand’s first pure electric vehicle, aiming to take on Tesla in a market that’s seeing increased interest in EVs. Produced in China through a collaboration of Volvo and Geely Motors, this 5-door midsize electric hatchback proudly forwards the Polestar nameplate that was formerly dedicated to Volvo’s performance arm. Now, Polestar represents the maker’s global electric car initiative as a stand-alone car brand.

At first glance, there’s no mistaking the Volvo pedigree of Polestar 2 as it embraces the design language of Volvo’s XC40. Manufactured on Volvo’s CMA (compact modular architecture) platform, it presents premium fit and finish seamlessly blended with the utmost in functionality. This eye-catching model gets high marks for attention to detail, clean lines, and an unapologetically conventional front facade and grille design that fits its persona, without giving way to the whims of those who seem convinced an electric must look decidedly different.

No performance is lost here in the transition to zero-emissions electric power. Polestar 2 is motivated by dual electric motors, one at each axle, producing a combined 408 horsepower and 487 ft-lb torque in the Performance Pack all-wheel drive variant. This delivers a claimed 0 to 60 sprint in just 4.5 seconds.

A 292 mile range is estimated on the electric’s 78 kWh LG Chem lithium-ion battery pack, which is said to be 10 percent more powerful than Audi and Jaguar offerings. Polestar integrates the battery module as a crash-protected unibody stress member, improving overall road handling characteristics through strategic weight distribution. There are multiple charging options with integrated dual inverters and AC/DC at-home and network charge capability. Charging to 80 percent capacity can be had in 45 minutes at a fast-charge station.

Polestar 2’s regenerative braking enables one-pedal driving, a feature pioneered by the BMW i3 some years back and now adopted in an increasing number of electric models. In effect, strong regenerative braking slows a vehicle down sufficiently to often allow coming to a gradual stop without using the brakes, a fun feature that enhances the joy of driving. Although not fully autonomous, Polestar 2 comes standard with the automaker’s Polestar Connect, Pilot Assist, and adaptive cruise control for Level 2 partial automation.

Inside, driver and passengers enjoy a more conventional cockpit and cabin environment than that presented by some competitors. Polestar 2 is minimalistic but also business class posh in its interior design, placing emphasis on low environmental impact manufacturing practices and materials like repurposed Birch and Black Ash wood accents, plus soft touch ‘vegan’ synthetic seat fabrics.

Heated and cooled seats, inductive cellphone charging, ample points for device connectivity, and a standard panoramic digitized sunroof are provided. Information is intelligently presented in the instrument cluster and a large center stack navigation/infotainment touchpad. A familiar center console select shift is used. Easy access to an ample cargo deck is afforded by a power lift rear hatch, with additional room provided by a fold-down second row seat.

The price of entry for Polestar 2 is $59,900 before federal or state incentives, with the model offered in three trim groups, five color combinations, and four add-on price upticks. It’s currently available for order in Los Angeles, San Francisco, and New York. Buyers will discover a no-salesman showcase approach with a take-your-time-and-look buying and lease environment. As the market reacts, Volvo intends to make Polestar 2 available in all 50 states.

It’s well understood that driving electric is more efficient with a lower cost-per-mile than driving internal combustion vehicles. That’s especially true if you charge an EV up at home. But what if you need to use public chargers on the road or live in an apartment where a commercial pay-per-use charger is your only option?

The cost can vary significantly since commercial chargers use different methods of payment. For example, many providers charge for the time it takes to charge a battery rather than the kWh of electricity delivered. This would be like gasoline stations charging for the length of time a nozzle dispenses gas in the fuel tank, not by the number of gallons of gas pumped. A few providers charge a per-session fee or require a monthly or annual charging subscription. While many public chargers at businesses and parking lots remain free of cost to EV drivers, that is changing over time.

When you pay by the minute, charging cost is influenced by an EV battery’s state of charge, ambient temperature, and the size of the EV’s on board charger. Different size chargers can mean a big difference in the cost of a charge even though the same number of kW hours are delivered. For example, earlier Nissan LEAFs had a 3.6 kW (3.3 kW actual output) on board charger while later ones had an updated 6.6 kW (6.0 kW output) version. Thus, it takes almost twice as long to charge an earlier LEAF at double the expense than later ones, even though both have the same 30 kWh battery. Many EVs now come standard with a 6.6 or 7.2 kW charger. When considering buying or leasing an electric model, keep in mind that a more powerful on-board charger means quicker and potentially more cost-efficient charging.

It’s an interesting bit of science that while charging an electric vehicle, the rate of charge isn’t linear but rather decreases as a battery approaches full capacity. If an EV has a lower state of charge (SOC) at the beginning of a charging session, charging occurs at its maximum rate, such as 3.3 kW, 6.6 kW, 7.2 kW, and so on. As the battery approaches 100 percent SOC, charging can slow to a trickle. The last 20 percent of charge can sometimes take as long as the initial 80 percent. To be most cost efficient, it’s recommended to only charge to 80 percent full capacity when using a public charger, especially one that includes time-based pricing.

For a charging cost comparison, let’s look at charging an EV with a 40 kWh/100 mile rating and a 50 kW on board charger. At a Level 3 charging station it would take about 48 minutes to get an additional 100 miles of range and cost between $6.24 to $16.80, depending where you did the charging. With a 350 kW fast charger this would take about 7 minutes and cost between $1.82-$6.93 to add 100 miles. This compares to $10.00-$13.33 for a gasoline vehicle that gets 30 mpg and fuels up at $3.00 to $4.00 per gallon. This shows the need for fast charging when away from home and charging with time of use chargers, and more importantly, the need for pricing solely on a per kWh basis.

While kWh charging is fairer to the consumer, some companies prefer time-based charging because the longer customers are connected, the more profit is made. However, public charging could be moving from time-to-charge to the kWh charge model. This will put the energy cost of EV operation in line with that of gasoline vehicles where fueling cost is determined by the cost of a gallon of gasoline, not the time it takes to refuel. Clearly, this change is needed.

New rules in California will eventually ban public charging operators from billing by the minute and require the fairer billing by kWh. The ban will apply to new Level 2 chargers beginning in 2021, and to new DC fast chargers beginning in 2023. Chargers installed before 2021 can continue time-based billing until 2031 for Level 2 chargers or 2033 for DC fast chargers.

The new rules do not prohibit operators from charging overtime, connection, or parking fees, or fees for staying connected after reaching 100 percent SOC, providing they are disclosed. Electrify America already charges 40 cents per minute if your vehicle is not moved within the 10 minute grace period after your charging session is complete. It remains to be seen whether more states will follow California’s lead. Laws will have to be changed in about 20 states where only regulated utilities can presently sell electricity by the kWh.

Charging providers like Tesla and Brink presently charge by the kWh in states where it’s allowed. For example, Tesla charges $0.28 per kWh while Blink charges $0.39 to 0.79 per kWh, depending on location and user status. California regulations require Tesla and others to show the price per kWh and a running total of the energy delivered, just like a gas pump.

Other charging considerations can affect the actual long-term cost of operating an EV. These include lower charge pricing and discounts that come with subscriptions, free charging incentives that accompany a vehicle purchase (like the first 1000 kWh provided free or 100 kWh of free charging per month), or if a charger is shared with another user. For Teslas, free unlimited Supercharger access has often come with the purchase or lease of a new Tesla model.

While EV technology is now relatively mature, pricing electric vehicle use is evolving. Hopefully, competition and a bit of government regulation should ultimately make it as understandable as it is now for gasoline vehicles.

Mitsubishi’s Outlander PHEV, the world's best-selling plug-in-hybrid SUV, features innovative technology to provide welcome performance and family-friendly, fuel efficient all-wheel-drive capability. The combination of a gasoline engine and two electric motors, lithium-ion battery, and plug-in capability allows the Outlander PHEV to travel 310 miles on hybrid power and 22 all-electric miles on  a completely charged battery. The Outlander PHEV has an EPA rating of 25 city/highway combined mpg when operating on gasoline and 74 MPGe (miles-per-gallon equivalent) when operating on battery power.

The Mitsubishi Plug-in Hybrid EV System features three modes to achieve its unique series-parallel operation. Plus, there’s the ability to select up to six levels of regenerative braking to tailor the driving experience.

An integral part of the vehicle’s plug-in hybrid drivetrain is a Mitsubishi Innovative Valve timing Electronic Control (MIVEC) engine that combines maximum power output, low fuel consumption, and a high level of clean performance. This 2.0-liter, 16-valve DOHC engine produces 117 horsepower at 4,500 rpm and 137 lb-ft torque at 4,500 rpm. It drives an electric generator that supplies electricity to the vehicle’s lithium-ion battery or directly to the electric motors. Each of its two AC synchronous permanent magnetic motors are rated at 80 horsepower (60 kW). A maximum combined 197 horsepower is available. The lack of  a driveshaft or transfer case means response and control much faster than a  traditional 4WD setup.

A 12 kilowatt-hour, high-energy density, lithium-ion battery is located beneath the floor where it contributes to a low center of gravity and stable driving performance. This battery can be charged in 10 hours with a household Level 1, 110-volt source or four hours with a Level 2, 240-volt charger. Using DC Fast Charging that’s available at commercial charging facilities, the Outlander PHEV will charge up to 80 percent capacity in as little as 25 minutes. The Outlander PHEV holds the distinction as being the first PHEV capable of DC Fast Charging capability.

The  Outlander PHEV’s parallel-series hybrid features three operating modes that are automatically selected for maximum efficiency, according to the driving conditions. These modes are EV Drive, Series Hybrid, and Parallel-Series.

In the EV Drive mode the Outlander is powered exclusively by the electric motors, with no battery charging except from regenerative braking. EV Drive is used for medium- to low-speeds during city driving. The two electric motors power the Outlander when operating in Series Hybrid mode, except when battery power is low or quick acceleration or hill climbing is needed. Then, the gasoline engine automatically starts to drive the generator and provide electric power for the electric motors to augment battery power. The engine-generator also charges the battery.

In Parallel Hybrid mode the gasoline engine supplies power to the front wheels with the two electric motors adding additional power as needed. The engine also charges the battery pack in Parallel Hybrid mode under certain driving conditions. At high speeds, the Parallel Hybrid mode is more efficient since internal combustion engines operate with greater efficiency than  electric motors at high rpms.

A driver can also choose Charge Mode so the generator charges the lithium-ion battery at any time. Save Mode conserves the battery charge for later use. EV Priority Mode, which can be used at any time, ensures the gasoline engine only runs when maximum power is required. Mitsubishi’s Twin Motor  S-AWC integrated control system delivers optimal power and control by managing Active Yaw Control (AYC), an Anti-lock braking system (ABS), and Active Stability Control (ASC) with Traction Control (TCL).

No matter the hybrid mode, whenever the Outlander PHEV decelerates regenerative braking charges the battery to augment electric driving range. There are six levels of regenerative braking –B1 to B5 plus a B0 coast  mode – that are conveniently selected by a pair of paddles behind the steering wheel. Regenerative braking strength can also be selected by console-mounted controls. Automatic Stop and Go (AS&G) automatically stops and restarts the engine when the vehicle stops, further conserving fuel.     

The Outlander PHEV benefits from Mitsubishi Innovative Valve timing Electronic Control system (MIVEC) technology that controls valve timing and amount of lift to achieve optimum power output, low fuel consumption, and low exhaust emissions. MIVEC adjusts intake air volume by varying intake valve lift stroke and throttle valves, reducing pumping losses and thus improving fuel efficiency. The MIVEC engine improves fuel consumption through other strategies, including improvement of combustion stability through optimization of the combustion chamber and reduction of friction through optimization of the piston structure.