Green Car Journal logo
BMW i3 at EVgo charging station.

It’s well understood that driving electric is more efficient with a lower cost-per-mile than driving internal combustion vehicles. That’s especially true if you're charging an EV up at home. But what if you need to use public chargers on the road or live in an apartment where a commercial pay-per-use charger is your only option?

The cost can vary significantly since commercial chargers use different methods of payment. For example, many providers charge for the time it takes to charge a battery rather than the kWh of electricity delivered. This would be like gasoline stations charging for the length of time a nozzle dispenses gas in the fuel tank, not by the number of gallons of gas pumped. A few providers charge a per-session fee or require a monthly or annual charging subscription. While many public chargers at businesses and parking lots remain free of cost to EV drivers, that is changing over time.

The Weird Science of Electrons

When you pay by the minute, charging cost is influenced by an EV battery’s state of charge, ambient temperature, and the size of the EV’s on board charger. Different size chargers can mean a big difference in the cost of a charge even though the same number of kW hours are delivered. For example, earlier Nissan LEAFs had a 3.6 kW (3.3 kW actual output) on board charger while later ones had an updated 6.6 kW (6.0 kW output) version. Thus, it takes almost twice as long to charge an earlier LEAF at double the expense than later ones, even though both have the same 30 kWh battery. Many EVs now come standard with a 6.6 or 7.2 kW charger. When considering buying or leasing an electric model, keep in mind that a more powerful on-board charger means quicker and potentially more cost-efficient charging.

It’s an interesting bit of science that while charging an electric vehicle, the rate of charge isn’t linear but rather decreases as a battery approaches full capacity. If an EV has a lower state of charge (SOC) at the beginning of a charging session, charging occurs at its maximum rate, such as 3.3 kW, 6.6 kW, 7.2 kW, and so on. As the battery approaches 100 percent SOC, charging can slow to a trickle. The last 20 percent of charge can sometimes take as long as the initial 80 percent. To be most cost efficient, it’s recommended to only charge to 80 percent full capacity when using a public charger, especially one that includes time-based pricing.

For a charging cost comparison, let’s look at charging an EV with a 40 kWh/100 mile rating and a 50 kW on board charger. At a Level 3 charging station it would take about 48 minutes to get an additional 100 miles of range and cost between $6.24 to $16.80, depending where you did the charging. With a 350 kW fast charger this would take about 7 minutes and cost between $1.82-$6.93 to add 100 miles. This compares to $10.00-$13.33 for a gasoline vehicle that gets 30 mpg and fuels up at $3.00 to $4.00 per gallon. This shows the need for fast charging when away from home and charging with time of use chargers, and more importantly, the need for pricing solely on a per kWh basis.

Time-Based vs. kWh

While kWh charging is fairer to the consumer, some companies prefer time-based charging because the longer customers are connected, the more profit is made. However, public charging could be moving from time-to-charge to the kWh charge model. This will put the energy cost of EV operation in line with that of gasoline vehicles where fueling cost is determined by the cost of a gallon of gasoline, not the time it takes to refuel. Clearly, this change is needed.

New rules in California will eventually ban public charging operators from billing by the minute and require the fairer billing by kWh. The ban will apply to new Level 2 chargers beginning in 2021, and to new DC fast chargers beginning in 2023. Chargers installed before 2021 can continue time-based billing until 2031 for Level 2 chargers or 2033 for DC fast chargers.

The new rules do not prohibit operators from charging overtime, connection, or parking fees, or fees for staying connected after reaching 100 percent SOC, providing they are disclosed. Electrify America already charges 40 cents per minute if your vehicle is not moved within the 10 minute grace period after your charging session is complete. It remains to be seen whether more states will follow California’s lead. Laws will have to be changed in about 20 states where only regulated utilities can presently sell electricity by the kWh.

Other Charging Considerations

Charging providers like Tesla and Brink presently charge by the kWh in states where it’s allowed. For example, Tesla charges $0.28 per kWh while Blink charges $0.39 to 0.79 per kWh, depending on location and user status. California regulations require Tesla and others to show the price per kWh and a running total of the energy delivered, just like a gas pump.

Other charging considerations can affect the actual long-term cost of operating an EV. These include lower charge pricing and discounts that come with subscriptions, free charging incentives that accompany a vehicle purchase (like the first 1000 kWh provided free or 100 kWh of free charging per month), or if a charger is shared with another user. For Teslas, free unlimited Supercharger access has often come with the purchase or lease of a new Tesla model.

While EV technology is now relatively mature, pricing electric vehicle use is evolving. Hopefully, competition and a bit of government regulation should ultimately make it as understandable as it is now for gasoline vehicles.

Mitsubishi’s Outlander PHEV, the world's best-selling plug-in-hybrid SUV, features innovative technology to provide welcome performance and family-friendly, fuel efficient all-wheel-drive capability. The combination of a gasoline engine and two electric motors, lithium-ion battery, and plug-in capability allows the Outlander PHEV to travel 310 miles on hybrid power and 22 all-electric miles on  a completely charged battery. The Outlander PHEV has an EPA rating of 25 city/highway combined mpg when operating on gasoline and 74 MPGe (miles-per-gallon equivalent) when operating on battery power.

The Mitsubishi Plug-in Hybrid EV System features three modes to achieve its unique series-parallel operation. Plus, there’s the ability to select up to six levels of regenerative braking to tailor the driving experience.

An integral part of the vehicle’s plug-in hybrid drivetrain is a Mitsubishi Innovative Valve timing Electronic Control (MIVEC) engine that combines maximum power output, low fuel consumption, and a high level of clean performance. This 2.0-liter, 16-valve DOHC engine produces 117 horsepower at 4,500 rpm and 137 lb-ft torque at 4,500 rpm. It drives an electric generator that supplies electricity to the vehicle’s lithium-ion battery or directly to the electric motors. Each of its two AC synchronous permanent magnetic motors are rated at 80 horsepower (60 kW). A maximum combined 197 horsepower is available. The lack of  a driveshaft or transfer case means response and control much faster than a  traditional 4WD setup.

A 12 kilowatt-hour, high-energy density, lithium-ion battery is located beneath the floor where it contributes to a low center of gravity and stable driving performance. This battery can be charged in 10 hours with a household Level 1, 110-volt source or four hours with a Level 2, 240-volt charger. Using DC Fast Charging that’s available at commercial charging facilities, the Outlander PHEV will charge up to 80 percent capacity in as little as 25 minutes. The Outlander PHEV holds the distinction as being the first PHEV capable of DC Fast Charging capability.

The  Outlander PHEV’s parallel-series hybrid features three operating modes that are automatically selected for maximum efficiency, according to the driving conditions. These modes are EV Drive, Series Hybrid, and Parallel-Series.

In the EV Drive mode the Outlander is powered exclusively by the electric motors, with no battery charging except from regenerative braking. EV Drive is used for medium- to low-speeds during city driving. The two electric motors power the Outlander when operating in Series Hybrid mode, except when battery power is low or quick acceleration or hill climbing is needed. Then, the gasoline engine automatically starts to drive the generator and provide electric power for the electric motors to augment battery power. The engine-generator also charges the battery.

In Parallel Hybrid mode the gasoline engine supplies power to the front wheels with the two electric motors adding additional power as needed. The engine also charges the battery pack in Parallel Hybrid mode under certain driving conditions. At high speeds, the Parallel Hybrid mode is more efficient since internal combustion engines operate with greater efficiency than  electric motors at high rpms.

A driver can also choose Charge Mode so the generator charges the lithium-ion battery at any time. Save Mode conserves the battery charge for later use. EV Priority Mode, which can be used at any time, ensures the gasoline engine only runs when maximum power is required. Mitsubishi’s Twin Motor  S-AWC integrated control system delivers optimal power and control by managing Active Yaw Control (AYC), an Anti-lock braking system (ABS), and Active Stability Control (ASC) with Traction Control (TCL).

No matter the hybrid mode, whenever the Outlander PHEV decelerates regenerative braking charges the battery to augment electric driving range. There are six levels of regenerative braking –B1 to B5 plus a B0 coast  mode – that are conveniently selected by a pair of paddles behind the steering wheel. Regenerative braking strength can also be selected by console-mounted controls. Automatic Stop and Go (AS&G) automatically stops and restarts the engine when the vehicle stops, further conserving fuel.     

The Outlander PHEV benefits from Mitsubishi Innovative Valve timing Electronic Control system (MIVEC) technology that controls valve timing and amount of lift to achieve optimum power output, low fuel consumption, and low exhaust emissions. MIVEC adjusts intake air volume by varying intake valve lift stroke and throttle valves, reducing pumping losses and thus improving fuel efficiency. The MIVEC engine improves fuel consumption through other strategies, including improvement of combustion stability through optimization of the combustion chamber and reduction of friction through optimization of the piston structure.

An important measurement of your vehicle’s efficiency is understanding the cost per mile of your daily driving. For a gasoline vehicle, one merely divides the cost of a gallon of gasoline by the miles-per-gallon the vehicle gets to determine cost per mile. As we move into the electric vehicle era, determining a vehicle’s operating cost becomes more complicated. That’s because an electric vehicle’s cost per mile can depend on many factors that influence what you pay for charging its batteries – the price of electricity, the length of time it takes to charge, time of day, how close to ‘full’ the battery is, and even an EV’s onboard charger capabilities. The cost of charging EVs can also vary considerably based on whether they are being charged at home or at public chargers.

We’ll guide you through the process of understanding electric vehicle charging and how this directly impacts driving costs. Just a note, though, that our calculations focus on battery electric vehicles (EVs) and plugin hybrid electric vehicles (PHEVs) when running solely on battery power. Because things get more complicated when the gasoline engine of a PHEV is operating, this is not covered here.

Crunching the Numbers

Electric vehicle energy use is measured in terms of kilowatt hours per 100 miles (kWh/100 miles). This would be like gallons per 100 miles in a gasoline vehicle. The Environmental Protection Agency (EPA) includes this number on the window stickers of plug-in vehicles along with their estimated miles per gallon equivalent (MPGe), since we’re so used to a gas vehicle’s mpg rating as an efficiency reference. EPA determines MPGe by assuming a gallon of gasoline is equivalent to 33.7 kWh of electrical energy (MPGe = 3370/kWh/100).

So how do you determine what each mile of driving costs in your electric vehicle? Let’s do an example. The cost of electricity in a sample California city is about 15 cents per kWh ($0.15/kWh). If a current model Kia Soul Electric with an EPA rating of 31 kWh/100 miles was charged here, it would cost $4.65 to travel 100 miles. This translates to $0.15/ kWh x 31 kWh/100 miles = $4.65/100, or 4.65 cents per mile.

Gasoline prices in the U.S. vary considerably depending on markets and world events. In recent times, that range was between $3 to $4 per gallon, while the average price of electricity ranged from $0.095/kWh in Louisiana to $0.31/ kWh in Hawaii. Even within a state the rate depends on what a specific utility charges, which can differ substantially. Thus, the cost to drive an electric Kia Soul could range from 2.95 to 9.6 cents per mile. In comparison, the cost of driving a gasoline Soul could range from 10.0 to 13.3 cents per mile.

Charging at Home

Unlike gasoline, the price of electricity can vary not only by location, but the time of day it is used. Utilities typically have two types of rate plans – level-of-use and time-of-use. With level-of-use, the price rises with the amount of electricity used. Here, the last kilowatt used in a month could cost more than the first one, which would most likely be the case for electric vehicle owners. With time-of-use, utilities divide a day into peak, off-peak, and sometimes a mid-peak period. Some utilities have as many as six time-of-use periods. In any case, electricity is most expensive during peak usage times, usually in the morning, late afternoon, and early evening. Others offer a lower rate for EV charging than the rest of a home’s electrical service, but the savings may not amortize out considering the fee charged for installing a separate meter. Additionally, many offer the option of a special EV rate plan that can make the cost of charging an electric vehicle more financially favorable.

You can charge an EV or PHEV using Level 1 household 110 volt current using a portable charger often provided with a plug-in model, with the charger powered via a standard wall outlet. Typically, electricity is supplied at a 1.4 kW rate. This is workable for topping off batteries after limited daytime driving where little battery power was used, but the time required for charging a fully depleted battery can be considerable. For example, to charge a Chevy Bolt’s 66 kWh battery to 80 percent state of charge (SOC) with Level 1 charging would take about 38 hours…far too long for most drivers. This time is reduced to about 7 hours with a Level 2 charger at 240 volts and a 7.2 kW charging rate. Level 2 charging is recommended for any vehicle with a battery capacity larger than 10 kWh.

Best Bet: A Level 2 Charger at Home

While the latest generation EVs and some PHEVs have the capability to fast-charge to 80 percent SOC in a half-hour or less at a Level 3 and above charging rate, Level 3 charging is not available for homes since this requires 480 volt electrical service. In all cases it’s important to avoid discharging EV batteries to near-zero percent SOC to avoid diminishing battery longevity.

Charging at home with a Level 2 wall charger.

Charging at home at a more convenient Level 2 rate requires special Electric Vehicle Supply Equipment (EVSE). These wall or portable chargers cost between $200 to $1000, with wall chargers also requiring installation that can run from $800 to $1300. Most automakers offering EVs and PHEVs have a recommended EVSE provider, but there are many companies selling EVSEs.

In penciling out the financial benefit of a plug-in vehicle, your number crunching should include the cost of the EVSE. For example, if an EVSE costs $1500 installed and you plan to drive an EV 75,000 miles over a five year period, the EVSE’s amortized cost will be 2 cents per mile. Since most people will likely drive their EV for many more years, amortized EVSE cost could be much lower.

While the overall cost of driving electric can vary widely depending on vehicle purchase or lease cost, electricity rates, EVSE and installation cost, and the length of time an EV is driven, as a general rule owning and operating an EV will be less than that of an equivalent gasoline vehicle.

These days, Henrik Fisker bringing to bear insights and lessons learned from his first effort at Fisker Automotive to his new company, Fisker Inc, with what looks like another groundbreaking vehicle – the Fisker Ocean. Most recently, the company has made moves to bolster the funding of its new electric vehicle launch with a $2.9 billion reverse merger with Spartan Energy Acquisition Corp. a move that’s taking Fisker public. Plus, there’s reportedly a deal in the works with VW to use that automaker’s MEB platform for Fisker’s new electric vehicle.

Fisker’s all-electric, five seat SUV is slated to begin manufacturing late in 2022 and feature several versions with two- or four-wheel-drive. The quickest variant will feature a 302 horsepower electric motor that will accelerate the Ocean from 0 to 60 mph in under 3 seconds, with power from an 80 kWh battery said to provide a range of 300 miles. A Combined Charging System (CCS) Type 2 Combo plug offers a 150 kW charging capability that Fisker says will allow the battery to be fast-charged to provide 200 miles of range in 30 minutes.

A state-of-the-art heads-up display integrated into the windshield is complemented by a 16-inch center touchscreen and a 9.8-inch cluster screen. Karaoke mode displays lyrics for your favorite song in the windshield so you can keep eyes on the road. A full-length solar roof provides electric energy. One-touch ‘California Mode’ simultaneously opens all side windows, rear hatch glass, and the solar roof to create an instant open-air feeling. This feature allows the rear hatch glass to roll down to handle carrying long items.

Over time Fisker has brought in some significant talent to help get the job done. One of these moves is bringing in Burkhard Huhnke, former vice president of e-mobility for Volkswagen America, as chief technology officer to lead Fisker’s R&D activities in Los Angeles and Silicon Valley. Another member of Fisker’s executive team is senior vice president of Engineering Martin Welch, formerly with McLaren cars and Aston Martin.

Fisker says the Ocean will start at $37,449 and will be leased for $379 per month, allowing an impressive 30,000 miles per year with maintenance and service included. The company is currently accepting $250 deposits.

The MINI E was a pretty cool car based on the MINI Cooper two-door hardtop, fun to drive and pretty attention-getting with its unique, yellow electric plug graphics. We were sorry to see it go and really expected to see a production version introduced shortly after the MINI-E’s 2009/2010 field trials came to an end…but that wasn’t to be.

More recently, MINI has been offering its Cooper SE Countryman ALL-4, a plug-in hybrid model featuring gasoline engine power and 18 miles of all-electric driving. It’s not all-electric, but does champion MINI’s continuing interest in electrification. Now, after a long wait by MINI fans, the follow-up all-electric 2020 MINI Cooper SE has arrived.

The earlier Mini E’s battery pack replaced the rear seat, making it a two-seater. Contrasting this is the T-shaped battery pack in the new MINI Cooper SE that’s located beneath the rear seat and runs between the front seats. Thus, the Cooper SE remains a four-seater without compromising passenger or luggage space. While the MINI E had a range of about 100 miles on its 35 kWh lithium-ion battery, the Cooper S E improves on this a bit with an EPA estimated range of 110 miles with power from a smaller 32.6 kWh battery. It’s also energy efficient with an EPA rated 108 combined MPGe (miles per gallon equivalent).

Powering  the Cooper SE is a synchronous electric motor featuring 181 horsepower and 199 lb-ft torque.  Since maximum torque is available from standstill, the front-drive Cooper SE accelerates from zero to 60 mph in a brisk 7.3 seconds. To prevent slip during launch, the electric traction control system was integrated into the MINI’s primary electronic control unit (ECU), enabling computer control to shorten the time between wheel slippage and system response.

Four driving modes are offered. The default MID setting brings comfort-oriented steering characteristics, while a GREEN mode results in greater efficiency to increase range. GREEN+ disables features like heating, air conditioning, and seat heating to further increase range. SPORT mode, as you would expect, provides more sporty driving.

A driver can control the car’s degree of regenerative braking to increase or decrease deceleration intensity. A stronger regen setting can be selected if one-pedal driving is preferred. With aggressive regen, a Cooper SE begins decelerating as soon as a driver’s foot is lifted from the accelerator, enabling the car to be slowed at low speeds without using the hydraulic brakes. The softer regen setting is available for those who prefer a more conventional driving and braking feel.

Cabin heating is provided by an energy-efficient heat pump system that collects waste heat from the motor, drive controller, high-voltage battery, and outside temperatures. The result is 75 percent less energy use than a conventional electric heating system, thus saving all-important battery power to gain additional driving range. On hot or cold days, cabin temperature can be pre-conditioned by activating heating or cooling through the MINI Connected Remote App on a smartphone. The app also displays battery state-of-charge, available range, and energy consumption statistics. A map shows nearby public charging stations.

Standard equipment includes either Connected Navigation or Connected Navigation Plus, depending on the trim level. Connected Navigation includes a 6.5-inch central touchscreen. It enables Real Time Traffic Information to help a driver navigate around traffic congestion, along with Apple CarPlay and the internet platform MINI Online. Connected Navigation Plus includes an 8.8-inch color screen and adds wireless cellphone charging.

Speed, remaining range, battery charge level, and power demand are shown on a 5.5-inch digital instrument cluster screen behind the steering wheel. Also shown are navigation directions, selected MINI driving modes, status of driver assistance systems, and traffic sign detection.

The Cooper SE can be charged with a 120 volt AC household outlet or quicker with a 240 volt Level 2 wall or public charger, the latter taking about 3 1/2 hours from depleted to full charge. When 50 kW Level 3 fast-charging is available, the Cooper SE can be charged to 80 percent battery capacity in only 35 minutes. Charging is via a charge port above the right-hand rear wheel, the same location where you refuel a conventional MINI.

MINI’s Cooper SE is what fans of the marque have been waiting for. It’s packed with technology and promises a fun driving experience, at a reasonable base price of $29,900. Sign us up!

The 2020 Karma Revero GT is a major remake that delivers a new model substantially more refined than the original Karma Revero, which evolved from an existing series hybrid sedan. Externally, all of the Revero GT’s body panels have been restyled, including the doors. Most noticeable are the new grille and front fascia that present quite a departure from the Revero’s original and rather massive grillework.

Besides a more modern look, weight has been reduced by more than 500 pounds, an important move since this is one heavy grand touring car weighing in at some 5,050 pounds total. Optional carbon fiber wheels shave off an additional 55 pounds. Inside, there are new seats, center console, and an all-new infotainment system.

There are also big changes in the drivetrain. A turbocharged 1.5-liter three-cylinder engine, sourced from the BMW i8, replaces the previous GM-sourced 2.0 liter engine originally used in the Revero series hybrid. Two electric motors drive the rear wheels through a single speed transmission. Combined power output has noticeably increased from 403 to 535 horsepower, with a beefy dose of 550 lb-ft torque at the ready. All this brings an impressive 0-60 mph sprint in just 4.5 seconds. In a departure from the norm, the exhaust for the Karma GT’s three-cylinder engine is located behind the front wheels.

A lighter 28-kWh battery pack is configured to run down the spine of the car. This nickel-manganese-cobalt lithium-ion pack provides a battery electric range of up to 80 miles, an impressive gain over that offered by the 2019 Revero. With the 280 mile range afforded by electricity from the car’s gasoline engine-generator, overall driving range comes in at 360 miles. EPA rates the 2020 Karma Revero GT at 26 combined mpg and 70 MPGe when driving exclusively on battery power.

Drivers can choose between Stealth, Sustain, and Sport modes to tailor the driving experience. Stealth is for all-electric driving. Sustain mode uses the BMW range-extender engine to supply electricity to the rear motors, preserving power from the battery pack for later use. Sport mode maximizes performance by combining the power from both the engine-generator and battery pack. Three levels of regenerative braking can be selected using steering wheel paddles.

A Karma Revero GTS is planned for introduction later in 2020. Here, torque will be increased to a massive 635 lb-ft for even greater performance. The GTS variant will also feature electronic torque vectoring and Launch Control to handle all that torque. In addition, a planned battery upgrade is expected to provide up to 80 miles of all-electric driving.

Porsche has entered the electric vehicle market in a big way with its long-awaited Taycan, known for some time by its concept name, the Mission E. While Porsche has had plug-in hybrids in its model line for some time, this is the marque’s first all-electric vehicle.

Taycan comes in three versions to fit varying desires – the Taycan 4S, Taycan Turbo, and Taycan Turbo S. All variants feature all-wheel-drive using two electric motors, one driving each axle. The three Taycan versions differ only in battery capacity and horsepower, with each featuring varying levels of performance and driving range.

The point of entry for the model is the $103,800 Taycan 4S, which features a 79.2 kWh battery pack and 522 horsepower from its two motors. The $150,900 Taycan Turbo is energized by a 93 kWh battery and delivers 616 peak horsepower. This same 93 kWh battery pack is optional on the Taycan 4S. At $185,000, the Taycan Turbo S shares the same powertrain as the Turbo model but is tuned to deliver an even greater 750 horsepower when using launch control. Launch control power lasts for short bursts of 2.5 seconds. After that, all models reduce output slightly to protect the drivetrain from heat.

EPA rates the Taycan Turbo at a 201 mile driving range. That breaks the 200 mile barrier perceived by many as necessary for next-generation electric vehicles, but it is lower than some other electrics like the Audi e-tron and Tesla Model S. EPA fuel efficiency for the Taycan Turbo is a combined 69 MPGe (miles-per-gallon equivalent). Efficiency and range ratings for the Taycan 4S and Taycan Turbo S have not yet been released.

Porsche’s Taycan is the first electric vehicle to use an 800-volt electrical architecture. This allows more powerful 270 kW charging that enables recharging the battery from 5 to 80 percent in about 22 minutes. This requires an 800 volt DC public fast charger that is still quite rare. More common 400 volt DC fast-charging is limited to 50 kW, with some 150 kW chargers available that triple maximum charging power at 400 volt DC fast-charging stations. These can bring an 80 percent charge in 90 minutes or less.  Charging the Taycan using a widely-available 240-volt Level 2 public or home charger takes 10 to 11 hours.

All Taycans come with a 10.9-inch infotainment screen, Apple CarPlay, navigation, Bluetooth, HD and satellite radio, four USB ports, panoramic sunroof, and adaptive air suspension. Among the model’s standard safety equipment is a rearview camera, parking sensors, forward collision warning with brake assist, lane keep assist, traffic sign recognition, and adaptive LED headlights. Optional safety items include blind spot monitoring, adaptive cruise control, night vision camera,  and a surround-view parking camera system. Adding the optional performance package brings four-wheel steering and active anti-roll bars.

Aston Martin Lagonda's production-ready Rapide E, the marque’s first all-electric production car, is on its way to market. The first car built at Aston Martin’s state-of-the-art St Athan production facility – the brand’s Home of Electrification – Rapide E represents a pioneering first step towards achieving the company’s more comprehensive electrification strategy and the successful fruition of Lagonda, the world’s first zero-emission luxury brand.

Inside and out, Rapide E is equipped with the materials and technology befitting of the marque’s first EV model. Gone are the analog displays of the past. A 10-inch digital display now sits in their place, delivering all essential information to the driver including the battery’s state of charge, current motor power levels, regenerative performance, and a real-time energy consumption meter. Swathes of carbon fiber have been deployed throughout, assisting in delivering the strict weight targets set by Aston Martin’s engineering team.

A redesigned underfloor streamlines airflow from the front splitter all the way through to Rapide E’s new more massive rear diffuser, a feature now wholly dedicated to aero efficiency due to the removal of the exhaust system required in the past. The model’s forged aluminum aerodynamic wheels, which are shod with low rolling-resistance Pirelli P-Zero tires, have also been redesigned to provide further efficiency without compromising brake cooling capability. The sum of these changes gives Rapide E’s aerodynamic package an 8 percent improvement over the previous internal combustion model.

An 800-volt electrical architecture battery powers Rapide E – encased in a carbon fiber and Kevlar casing – with a 65 kWh capacity using over 5600 lithium-ion cylindrical cells. This bespoke battery pack lies where the gas model’s 6.0-liter V-12, gearbox, and fuel tank were located. This battery system powers two rear-mounted electric motors producing a combined target output of just over 600 horsepower and a colossal 700 lb-ft torque. Top speed for Rapide E is 155 mph with a 0-60 mph time of under 4 seconds.

A special edition with a production run strictly limited to 155 units, Rapide E has been developed in collaboration with Williams Advanced Engineering.

Lou Ann Hammond is CEO and editor-in-chief at drivingthenation.com

The driving range of electric vehicles is becoming less of an issue as they surpass 200 miles or greater, approaching the distance between fill-ups of some internal combustion engine vehicles…or maybe the bladder capacity of their drivers. However, the time it takes to recharge an EV is still a negative attribute.

Generally, EVs charge at a fairly slow rate. A 240-volt Level 2 home or public charger will charge a Chevy Bolt from depleted to full in about 4 1/2 hours, providing a range of about 238 miles. That’s a far cry from 5 minutes to fill a gas tank. It’s significantly slower when charging a Bolt with a Level 1 charger using a household’s standard 120-volt power since this adds only about 4 miles an hour!

Of course, charging companies and automakers are working together to expand the small-but-growing network of fast chargers in key areas of the country, allowing EVs to gain up to 90 miles of charge in around 30 minutes. Tesla claims that its Supercharger stations being upgraded to Version 3 can charge a Tesla Model 3 Long Range at the rate of about 15 miles a minute, or 225 miles in just over 15 minutes under best conditions.

If current technology EVs become popular for mid- to long-range travel, gasoline stations, truck stops, and public charging stations equipped with Level 2 and even somewhat faster chargers run the very real risk of becoming parking lots.

Photo: EVgo

When it comes to charging EVs, charging times come down to kilowatts available. The best Tesla V3 charger is rated at 250 kilowatts peak charge rate. Now, much research is being done here and in other countries on what is called Extreme Fast Charging (XFC) involving charge rates of 350-400 kilowatts or more. The U.S. Department of Energy is sponsoring several projects aimed at reducing battery pack costs, increasing range, and reducing charging times.

There are several challenges for XFCs. First, when lithium-ion (Li-ion) batteries are fast charged, they can deteriorate and overheat. Tesla already limits the number of fast charges by its standard Superchargers because of battery degradation, and that’s only at 120-150 kilowatts. Also, when kilowatt charging rates increase voltage and/or amperage increases, which can have a detrimental effect on cables and electronics.

This begs the question: Is the current electrical infrastructure capable of supporting widespread use of EVs? Then, the larger question is whether the infrastructure is capable of handling XFC with charging rates of 350 kilowatts or more. This is most critical in urban areas with large numbers of EVs and in rural areas with limited electric infrastructure.

The answer is no. Modern grid infrastructures are not designed to supply electricity at a 350+ kilowatt rate, so costly grid upgrades would be required. Additionally, communities would be disrupted when new cables and substations have to be installed. There would be a need for costly and time-consuming environmental studies.

One approach being is XFC technology being developed by Zap&Go in the UK and Charlotte, North Carolina. The heart of Zap&Go's XFC is carbon-ion (C-Ion) energy storage cells using nanostructured carbons and ionic liquid-based electrolytes. C-Ion cells provide higher energy densities than conventional supercapacitors with charging rates 10 times faster than current superchargers. Supercapacitors and superchargers are several technologies being considered for XFCs.

According to Zap&Go, the C-Ion cells do not overheat and since they do not use lithium, cobalt, or any materials that can catch fire, there is no fire danger. Plus, they can be recycled at the end of their life, which is about 30 years. Zap&Go's business model would use its chargers to store electric energy at night and at off-peak times, so the current grid could still be used. Electrical energy would be stored in underground reservoirs similar to how gasoline and diesel fuels are now stored at filling stations. EVs would then be charged from the stored energy, not directly from the grid, in about the same time it takes to refuel with gasoline.

The fastest charging would work best if C-Ion cell batteries are installed in an EV, replacing Li-ion batteries. EVs with Li-ion batteries could also be charged, but not as quickly. Alternatively, on-board XFC cells could be charged in about five minutes, then they would charge an EV’s Li-ion batteries at a slower rate while the vehicle is driven, thereby preserving the life of the Li-ion battery. The downside is that this would add weight, consume more room, and add complexity. Zap&Go plans to set up a network of 500 ultrafast-charge charging points at filling stations across the UK.

General Motors is partnering with Delta Electronics, DOE, and others to develop XFSs using solid-state transformer technology. Providing up to 400 kilowatts of power, the system would let properly equipped electric vehicles add 180 miles of range in about 10 minutes. Since the average American drives less than 30 miles a day, a single charge could provide a week’s worth of driving.

The extreme charging time issue might be partly solved by something already available: Plug-in hybrid electric vehicles (PHEVs). As governments around the world consider banning or restricting new gasoline vehicles in favor of electric vehicles, they should not exclude PHEVs. Perhaps PHEVs could be designed so their internal combustion engines could not operate until their batteries were depleted, or their navigation system determines where they could legally operate on electric or combustion power.

Part of Honda’s Clarity triple-play – along with the hydrogen-powered Clarity Fuel Cell and more mainstream Clarity Plug-In Hybrid – the Clarity Electric is a model that clearly cuts its own path.

It does not aim to be part of the ‘200 mile club,’ the latest generation of uber-electrics that claim a battery electric driving range greater than 200 miles between charges. It also does not cultivate efficiencies through a compact form designed to eke the most from every electron. Nor is it exceptionally lightweight, another common nod to the need for making the most of the battery power carried on board. In fact, there is little about the Clarity Electric that makes us think of other all-electric vehicles…save for the fact that it runs exclusively on zero-emission battery power, of course. This mid-size, five-passenger battery electric vehicle aims to be in a league of its own.

First of all, let’s discuss driving range, which is EPA rated at 89 miles between charges while delivering a combined 114 MPGe (miles-per-gallon equivalent). Yes, that’s more limiting than that of the 200+ mile club, but there’s a reason. Honda designed the Clarity Electric with the needs of commuters in mind…those who want their daily drive to be in a highly-efficient, zero-emission electric car with a sophisticated look and premium feel. And they designed it so it was significantly more affordable than premium competitors offering higher-end electric models with features similar to those of the Clarity. Currently, the Clarity Electric is offered at a $199 monthly lease in California and Oregon where this battery-powered model is available.

Honda figures that an approach focused on commuters is a sweet spot for the Clarity Electric. Its range fits the needs of most commutes and its price is certainly justifiable for a commuter car, and a luxurious one at that, with fuel costs substantially less than conventionally-powered models. Plus, most households have two cars at their disposal, sometimes more. Having a Clarity Electric as a primary commuter car with a conventional gasoline or hybrid vehicle also in a household’s stable covers all bases.

Honda gave a lot of thought to the cabin design with welcome touches throughout. We especially like the ‘floating’ design of the center console with its array of integrated controls and flat storage tray beneath, with 12-volt and USB outlets. The dash features a handsome suede-like material and an 8-inch touchscreen display elegantly integrated into the dash. Deep cupholders feature flip-up stays for holding smaller drinks. Side door pockets are large enough to accommodate water bottles. The trunk offers plenty of room and is illuminated when the trunk lid is remotely or manually unlatched. At night this allows you to immediately note what’s inside through the trunk lid’s clear back panel before opening…something we’ve really come to appreciate over time.

Driving the Clarity Electric is a satisfying experience, with this sedan both well-mannered and responsive. Power is delivered by a 161 horsepower electric motor energized by a 25.5 kWh lithium-ion battery that can be charged in about three hours with a 240 volt charger, or in as little as 30 minutes with a public DC fast-charge system to an 80 percent state-of-charge. While its primary job may well be to handle everyday driving needs and negotiate traffic, it also delivers plenty of fun on twisty canyon roads with flat cornering and confident steering. It’s quick, like almost all electrics are because of instant torque delivered at launch, providing very satisfying acceleration.

Also appreciated is the Clarity’s handy Apple CarPlay integration and its Honda Sensing suite of driver-assist technologies. Among these are important features like adaptive cruise control with low-speed follow, forward collision warning, collision mitigation braking, lane departure warning, and road departure mitigation.

The Clarity Electric has served us well on our daily drives over the course of Green Car Journal’s ongoing long-term test. Its use supports what Honda envisioned for this efficient electric car. It has been ideal for around-town duty, area trips within its range, and daily commutes. Its thoughtful and sophisticated – dare we say futuristic – design and very satisfying drive experience are appreciated every day we’re behind the wheel.

Karma Automotive has emerged a notable force in the luxury electric vehicle world with 1,000 employees since its launch in 2014, with multiple offices in the U.S. and a manufacturing facility in Southern California. Over these years it has focused on forming relationships with companies developing new technologies, taking engineering risks, and challenging convention in automotive design.

One of its recent forays is a partnership with famed Italian design house Pininfarina to explore a two-door variant of the already-stunning Karma Revero sedan. Known for its design collaborations with the likes of Ferrari, Maserati, and Alfa Romeo, Pininfarina’s efforts have resulted in an all-new, bespoke Grand Touring version of the original Revero.

Pininfarina’s sinewy two-door Karma GT features all-new body sides along with softer overall features and a relaxed shoulder line. Its aggressive front end integrates innovative LED headlamps and a slatted grille with large air intakes, while the rear features an elegant look with boomerang-style taillamps. The Revero’s existing frame and suspension were modified for the coupe design.

Why the partnership with Pininfarina? According to Karma Automotive, it illustrates how the company is moving toward a new business model that shares resources and platforms for creating multiple revenue streams.

“As a relatively young start-up company, Karma does not yet have the deep financial and in-house technological resources of an established OEM,” shares Dr. Liang Zhou, Karma Automotive CEO. He adds that the company will “use partnerships to accelerate our progress by acquiring and developing key technologies important to connectivity, performance, artificial intelligence, shared mobility platforms, and electrification. Partners can use our product platform as an incubator to test and prove their new innovations, and likewise, our engineering and design resources can be offered to help other partners advance their needs.”

If consumer interest is high, it’s possible Pininfarina may build a limited run of Karma GTs at its facility outside of Turin, Italy, with customers able to configure the model to their personal tastes. Regardless of how this evolves, it appears that the Karma/Pininfarina GT collaboration is just the beginning of a long-term relationship between the two companies.

Henrik Fisker, former head of design at such places as Aston Martin, BMW, and Ford, is best known in the ‘green’ car space for the gorgeous Fisker Karma electric grand touring sedan he designed and briefly sold under his own brand in 2012. He’s back in the game at Fisker Inc. with his previously-shown eMotion electric supercar prototype, and now an electric SUV the company says it intends to sell first.

The as-yet unnamed electric SUV is a strategic move since SUVs represent the most important and fastest-growing segment in the automotive market. Powering the Fisker SUV will be front and rear electric motors offering all-wheel drive functionality. An ‘enhanced’ 80 kWh lithium-ion battery pack aims to offer a range approaching 300 miles. The SUV will feature a large heads-up display, a premium interior, and the latest emerging connected technologies…all at a targeted starting price under $40,000.

The eMotion is planned to use Fisker’s flexible solid state batteries under development for even greater range. Fisker claims this next-generation battery technology will offer 2.5 times the energy of today’s lithium-ion batteries.

Fisker has appointed Don Jackson – formerly president of manufacturing at Volkswagen of America and vice-president of manufacturing at Toyota – as the company’s senior advisor of manufacturing. The company says a driveable prototype of the electric SUV will be coming later this year with a production model out the last half of 2021.

Jaguar’s first electric vehicle, the I-PACE offers a pleasing and aggressive design, luxury appointments, and exceptional driving characteristics. Part of Jaguar’s PACE family of vehicles along with the gasoline-powered E-PACE and F-PACE, the electric I-PACE blazes its own trails with great acceleration and handling on purely battery power, something it proved time after time in Green Car Journal’s drives on interstates, in the city, and on twisty canyon roads.

The I-PACE is is available in three trim levels, S, SE and HSE, starting at $69,500. Besides being Jaguar Land Rover’s first all-electric vehicle, it is also the first one that can receive over-the-air system software updates as new capabilities become available.

I-PACE is powered by two identical 197 horsepower electric motors that produce a total of 394 horsepower and 512 lb-ft torque. One motor drives the front wheels while the other powers the rear, resulting in all-wheel-drive. It can also operate on a single motor for more efficient two-wheel drive motoring when appropriate. Acceleration from 0-to-60 mph is a claimed 4.5 seconds, a performance characteristic we enjoyed throughout our drives.

This Jaguar electric SUV is essentially equal to its all-electric competitors when it comes to range between charges at 234 miles. Electrical energy is stored in a 90 kilowatt-hour, underfloor battery pack consisting of 432 high-energy density lithium-ion pouch cells. The battery pack's location provides a low center of gravity that enhances driving dynamics.

The I-PACE has an aluminum body like other current Jaguar Land Rover vehicles. In this case the underfloor battery pack housing is used as a structural component, which provides I-PACE the greatest torsional stiffness of any model in Jaguar Land Rover’s lineup. The battery pack can be charged to 80 percent capacity in 40 minutes from a 100 kW source or in 85 minutes with a 50 kW charger.

Because there is no engine up front, the base of the windshield has been moved forward compared to the E-PACE and F-PACE to provide more interior space. Thus, while being similar in dimensions to its conventionally-powered siblings, it has a roomier interior. While a battery electric vehicle, it retains the appearance of an internal combustion model. For instance, there’s a radiator behind the front grille for the battery's liquid-coolant system. The grille also directs airflow through the hood scoop to reduce drag, and active vanes in the grille and front bumper can close to further improve aerodynamics when battery cooling and the climate-control system aren’t needed. Other aerodynamic features include powered hideaway door handles. Air springs are standard and can lower the car by as much as 0.4 inches at highway speeds to further reduce drag.

Torque Vectoring by Braking gives the I-PACE sports car-like agility. Controlled independent braking on the individual inside front and rear wheels adds to the turning forces acting on the car. Under most conditions, more braking pressure is applied to the rear inside wheel as this best supports increased cornering capability, while the front inside wheel is braked for greater effectiveness and refinement. Adaptive Surface Response constantly monitors the car's driving environment and adjusts appropriate motor and brake settings.

The I-PACE offers a wide array of driver assist  and connectivity features that vary with trim level. The Park Package includes Park Assist, 360-degree Parking Aid, and Rear Traffic Monitor. A Drive Package provides Blind Spot Assist, Adaptive Cruise Control with Stop & Go, and High-Speed Emergency Braking. Connectivity features include Remote, Navigation Pro, Connect Pro, 4G Wi-Fi Hotspot), and Stolen Vehicle Locator.

Nissan updated its LEAF last model year with new styling and now offers its LEAF PLUS with even greater driving range. The second-generation Nissan LEAF is more attractive and has excellent aerodynamics, resulting in a drag coefficient of only 0.28. The latter includes a sealed underbody, diffuser-type rear bumper, and aero wheels. Improved aerodynamics also mean a quieter ride and improved vehicle stability.

The LEAF PLUS features an increase in battery capacity to 62 kWh compared to 40 kWh in the standard LEAF model. This results in an increase in EPA range from 151 miles for the LEAF to 226 miles for the LEAF PLUS.

While the interior dimensions of the latest generation LEAF remain essentially unchanged, the rear cargo area has been redesigned for more luggage space. Even with an increase in energy storage capacity, the LEAF PLUS battery pack is almost the same size and configuration as in the LEAF. The car’s exterior and interior dimensions are virtually unchanged. On the outside, the LEAF PLUS gets some small accents and distinctive emblems on the rear. Other subtle changes include a revised front fascia with blue highlights.

Connectivity and advanced driver assist systems are a big thing in this model. Nissan Intelligent Mobility focuses on three key elements including Nissan Intelligent Power (how Nissans are Powered), Nissan Intelligent Driving (how Nissans are driven), and Nissan Intelligent Integration (how Nissans are integrated into society). Nissan Intelligent Power includes the e-powertrain that provides 147 hp in the LEAF and 214 hp in the LEAF PLUS, with both exhibiting increased torque for improved acceleration.

Nissan Intelligent Driving includes ProPILOT cruise control that maintains distance to the vehicle ahead.  If that vehicle stops, ProPILOT automatically applies the brakes to bring the LEAF to a full stop, remaining  stationary even if the driver’s foot is off the brake. The car resumes driving when the driver touches a switch or lightly presses the accelerator to reactivate ProPILOT.

ProPILOT also helps steer and keep the vehicle centered in its lane at speeds between 19 and 62 mph. Other LEAF technologies include Intelligent Lane Intervention, Lane Departure Warning, Intelligent Emergency Braking, Blind Spot Warning, Rear Cross Traffic Alert, and Intelligent Around View Monitor with moving object detection.

Using NissanConnect, a key part of Nissan Intelligent Integration, the driver can search for continuously updated information such as the location and operating hours of free charging stations and station availability. Owners can also access their smartphone to check the battery’s state of charge, schedule charging for minimum electric rates, find the nearest charging station, and pre-heat or cool the car. NissanConnect links drivers, vehicles, and communities to share power between electric vehicles and homes, buildings, and power grids. While connected to vehicle-to-home systems, the battery can store surplus solar energy during the daytime and use it to help power a home in the evening.

The dashboard is dominated by a 7-inch display for infotainment and the navigation system, if equipped, as well as Nissan’s Safety Shield, the vehicle’s state-of-charge, and a power gauge. The driver is faced with another 7-inch screen in place of conventional dials. Apple CarPlay and Android Auto are  included with the higher-spec infotainment system that also includes navigation. LEAF PLUS gets a larger 8-inch touchscreen and an updated navigation system. Applications, maps, and firmware are updated over the air.

Nissan’s LEAF is the world’s best-selling electric vehicle and the automaker aims to keep it that way with approachable prices. The LEAF offers an MSRP of $29,900 with the longer-range LEAF PLUS coming in at $36,550, before federal and state incentives.


Audi e-tron
Audi's new 2019 e-tron electric SUV joins Jaguar and Porsche in giving Tesla some serious competition. The automaker’s first-ever all-electric vehicle looks much like the rest of the Audi lineup, foregoing the temptation to go too futuristic or quirky in an effort to stand out as an electric. Its iconic Audi grille reinforces the sense of normalcy even as it handles the distinctly-electric job of directing cooling air to pass under the battery pack. Some electrification cues are provided, though, as the e-tron features slats running across the rear bumper that highlight the lack of tailpipes. Lights in the front are also designed to look like the bars of a charge status indicator. A dark colored section along the sides show battery pack location.

Efficient aerodynamics and other efficiency-enhancing touches were important in designing the e-tron, which features a drag coefficient of just 0.30. Features include cooling ducts for the e-tron’s front brakes and its adaptive, speed-dependent air suspension. Standard ultra-low rolling resistance 20-inch wheels are aerodynamically optimized. Full underbody cladding incorporates an aluminum plate to help protect the battery and also lower drag.

Audi e-tronThe e-tron's electric quattro all-wheel drive uses two asynchronous motors, each driving one set of wheels. Single-stage transmissions transfer torque to the axles via differentials. At moderate cruising speeds, the e-tron is powered mainly by the rear motor. The battery pack's location between the axles plus the low positioning of other drive components results in low center of gravity. Weight distribution is approximately 50:50. A driver can select from seven different driving modes, from comfortable to sporty, that alter suspension stiffness, steering responsiveness, and how aggressively the SUV accelerates.

Two electric motors accelerate the e-tron from 0-60 mph in 5.5 seconds with a top speed of 124 mph. It can tow up to 4000 pounds when equipped with the optional tow package. While EPA has yet to provide driving range numbers, testing in Europe resulted in 248 miles from the 95 kWh battery pack. EPA's testing here tends to yield somewhat lower range numbers.

2019-audi-etron-cabin-1Audi put heavy emphasis on recuperating as much energy as possible. Depending on driving conditions, terrain, and driving style, regenerative braking can provide as much as 30 percent of the e-tron’s range. The driver can select how aggressively the car uses this system, allowing for "one pedal" driving where taking the foot off the throttle will bring the car to a full stop using only regenerative braking.

The e-tron is available with a full range of standard or optional driver assistance packages including adaptive cruise assist, intersection assist, rear cross traffic assist, lane change and vehicle exit warning, and park steering assist. It comes in three trim levels - Premium Plus, Prestige, and First Edition. A panoramic glass sunroof is standard.

Audi e-tron

Tesla’s Model 3 was promised from the beginning to be an advanced electric sedan at an affordable $35,000 entry price. That, as anyone who has followed Tesla with any kind of regularity, has been an elusive goal as only higher-end and much more expensive versions of the Model 3 have been offered. And now…the $35,000 Model 3 is finally a reality.

Model 3 is a stylish and high-tech sedan offering a signature Tesla look and lots of advanced technology. Tesla’s third all-electric vehicle, the Model 3 follows in the footsteps of the well-regarded Model S sedan and Model X crossover SUV. Like these vehicles, the Model 3 is fast and fun to drive. Importantly, it does what Teslas are known to do – offer all-electric driving from about 220 miles up to 310  miles before requiring a recharge, which does a lot to ease range anxiety.

Just as Tesla’s approach to being an automaker is different, so too are its cars. Compared to the Model X, which the company packed in as many ‘firsts’ as possible  – a crossover with gullwing-like ‘falcon’ doors and the industry’s largest windshield – the Model 3 is more aligned with the needs of mass production. In fact, Tesla describes the Model 3 as ‘smaller and simpler’ than its predecessors to make it more affordable than the Model S.

The $35,000 entry price tag is important since the Model 3 has been widely-promoted as a $35,000 ‘everyman’s electric vehicle’ affordable to the masses, even as the cheapest model available was initially $49,000, then $46,000, and ultimately $43,000 before Tesla finally made the leap to its recently-announced $35,000, slightly decontented base model. At that price it’s doubtful that Tesla will make money, and in fact it wasn’t long ago when Tesla CEO Elon Musk said the company would lose money on the Model 3 at that price point. An array of industry experts agree with that assessment. But that’s another story.

If not an exercise in simplicity, then perhaps the Model 3  is a statement that ‘less-is-more,’ even as it delivers desired levels of performance, range, technology, and safety. For example, rather than more costly aluminum construction like the Model S and Model X, the Model 3 uses both aluminum and less-costly steel. Its interior is also a model of simplicity devoid of instrumentation and external controls, knobs, or switches, with everything – including the speedometer – incorporated into its 15-inch center-mounted touchscreen display.

Buyers have a choice of battery packs and motors that deliver varying levels of performance and range. The lowest motor output currently available is estimated to offer 220 horsepower and rear-wheel drive, with a range of 220 miles. The dual motor model features 450 horsepower with all-wheel drive and a range of 310 miles.

Like all Tesla models, the Model 3 includes the hardware needed in the future for full self-driving, although this capability is dependent upon extensive software validation and local regulatory approval. Model 3 offers forward radar, eight cameras, and 12 ultrasonic sensors that enable an array of safety and driver-assist functions including automatic emergency braking, collision avoidance, and side collision warning. Over-the-air software updates are part of the package and Tesla’s AutoPilot semi-autonomous driving system is an available option.

Tesla now offers two levels of Connectivity: Standard that is free and Premium that comes at a modest annual cost. Standard  Connectivity offers basic maps and navigation, music and media over Bluetooth, and software updates over Wi-Fi. Both receive maps and navigation functionality, traffic-based routing, trip planner, and Supercharger stall availability. All cars with Standard Connectivity will simply need to connect to a Wi-Fi network to receive software updates. Premium Connectivity adds satellite-view maps with live traffic visualization, in-car streaming music and media, and over-the-air software updates via Wi-Fi and cellular.

In an interesting twist to the $35,000 Model 3 saga, Tesla shuttered some of its stores and galleries in an effort to save money in tandem with the lower-cost Model 3 availability, with the intention of potentially closing all of them and exclusively selling online. The company then changed its mind and kept most of its Tesla stores and galleries open. Again, another story…so stay tuned.

Green Car Time Machine.

The Nissan LEAF benefits from early electrics like the circa-1998 Nissan Altra EV, the first model to use lithium-ion batteries. The Altra EV was one of many electrics explored during Nissan’s decades-long electric vehicle development program, including the Future Electric Vehicle (FEV), FEV II, Prairie Joy EV, Nissan Hypermini, Altra EV, and of course the LEAF. To lend insight into the early years of Nissan’s electric vehicle development, we present the following article from the Green Car Journal archives, as it was originally published in June 1998.

Excerpted from June 1998 Issue: The Nissan Altra EV, an electrified iteration of the all-new R’nessa minivan, an internal combustion model sold only in Japan, created quite a stir at its official North American debut at this year’s 1998 Greater L.A Auto Show.

The reason? It’s the first time any production electric vehicle has used lithium-ion batteries, scaled-up versions of the batteries found in the highest-end notebook computers and video cameras. Just as lithium-ion allows these portable devices to operate longer on battery power, this advanced battery technology also provides an EV with a longer single charge driving range – 120 miles in the case of this minivan.

Sony lithium-ion battery module.

Greater EV Range Possible

It could have been more. Nissan chose to go with a minivan because of its universal appeal and functionality. However, there was a desire on the part of some Nissan executives to go with a smaller, lighter EV because the Li-ion batteries could have provided a stunning 200 mile single-charge driving range in a smaller platform. Instead, the automaker chose a platform that weighs in at just over 100 pounds more than Honda’s EV Plus.

The Altra EV’s Li-ion battery pack consists of 12 modules of eight cells connected in series, or a total of 96 cells, each measuring 2.6″ in diameter and 16″ in length. A Hughes-type inductive charging system, the same as GM’s EV1, is used on the Altra EV. A full charge from empty takes about five hours.

The decision to integrate Sony Li-ion batteries represents substantial vision on the part of Nissan, and also, it seems, an ability to absorb significant short term losses. While Nissan sources will not officially comment on the actual cost of the Li-ion battery pack, insiders say that early versions cost somewhere between $50,000 to $70,000 each. Obviously, these costs will drop dramatically and quickly as the technology advances and greater numbers of these batteries are produced. In the meantime, high costs for early EVs used in limited demonstrations are to be expected.

Nissan Altra EV in front of building.

Driving the Nissan Altra EV

Power is provided by a 83 horsepower permanent magnet synchronous motor and a 32-bit high-speed RISC motor controller processor. The motor features a compact design that weighs just 85 pounds. This electric powertrain achieves a high overall energy efficiency lf approximately 90 percent under ordinary driving conditions.

Green Car Journal editors had the opportunity to put the Altra EV through its paces at the automaker’s Tochigi test track in Japan. This test drive proved the Altra EV to be quite a capable performer, with good acceleration and handling characteristics. In fact, no apparent shortcomings were detected other than some slight gear whine, not a surprising occurrence since this vehicle’s operation is otherwise silent, with no internal combustion engine or exhaust noise to mask normal mechanical sounds.

Inside, an innovative, titanium-colored digital instrument panel displays performance and charge status that was easy to read during our test drive. Comfortable seating for four is provided with front and mid-section bucket seats. A good amount of cargo area is provided at the rear.

This four-place seating configuration, rather than the six- or seven-place seating found in conventional minivans, is simply a concession to the need to keep total gross vehicle weight within certain limits to ensure optimum driving range. Everything, from vehicle weight to aerodynamics to rolling resistance, is crucial in electric vehicles that carry a very finite amount of energy onboard. This is an especially important consideration since the Altra EV carries an 800 pound battery pack mounted beneath the floorboard.

Power diagram for Nissan Altra EV electric minivan.

Nissan Altra EV Coming to U.S.

Nissan is bringing 30 Altra EVs to the U.S. for testing this year, mostly within its own employee fleet and in the fleets of several electric utilities. Nissan sources tell Green Car Journal that delivery of the first 15 Altra EVs from Japan is slightly behind schedule, but they are expected imminently. After the initial 30 examples arrive, an additional 90 Altra EVs are scheduled to be brought to the U.S. for placement with fleets by 2000.

Of course, the Altra EV represents but one highly visible part of this automaker’s electric vehicle program. By all accounts there’s also a hybrid electric variant coming, possibly based on the efficient Nissan Avenir developmental hybrid platform that Green Car Journal editors had the opportunity to test drive at the automaker’s Tochigi track in late 1997.

While this hybrid vehicle was clearly still in the development stage – much of the interior was devoted to battery placement and instrumentation – it was far enough along to prove the viability of Nissan’s hybrid work.

Tadao Takei, Nissan’s executive vice president, has been quoted as predicting a January 1999 launch of a Nissan hybrid EV in Japan. This follows the late-1998 launch of Toyota’s Prius hybrid EV in the Japanese market. Takei expressed doubt that Nissan would reach the current 3,000 unit-per-month production of the Prius, which was recently ramped up to meet unexpectedly high demand for the Toyota hybrid.

Still, the fact that Nissan is moving forward with a hybrid launch signals an important commitment to what promises to be an exciting and growing segment of the auto industry.

Technical Specifications

POWERTRAIN

Type: Neodymium permanent magnet DC electric motor

Dimensions: 8.11 inches diameter x 12.01 inches length

Power: 83 hp (162 kW)

Maximum Torque: 17 ft-lbs

Maximum RPM: 13,000

Transmission: Transaxle type with 2-stage planetary gear set

Controller: 216-400 volt input range, Vector controller

Drive Configuration: Front-mounted motor, front-wheel drive

BATTERY

Type: Lithium-ion

Capacity (AH/Hour): 94/3

Nominal Voltage (V/Set): 345

Number of modules: 12

CHARGING SYSTEM

Charger Type: Inductive

Charging Time: 5 hours

BODY/CHASSIS/SUSPENSION

Body Type: Unibody construction

Front Suspension: MacPherson strut with coil springs and stabilizer bar

Rear Suspension: Rear multi-link beam with coil springs

STEERING

Steering Type: Power-assisted electric oil pump

Turning Circle (ft.): 36.2

Turns (lock-to-lock): 4.11

BRAKING SYSTEM

Brake System Type: Electric assist regenerative antilock braking

Front: Ventilated disc brakes

Rear: Drum rear brakes

Input Voltage: 12

Motor Type: DC brush

WHEELS & TIRES

Wheels: 5-spoke aluminum alloy

Size: 15-inch

Tire Type: Low rolling friction all-season radial

Tire Size: 205/65R15

DIMENSIONS

Overall Length: 191.7 inches

Overall Width: 69.5 inches

Overall Height: 66.8 inches

Wheelbase: 110.2 inches

Tread Width (front/rear): 60.4/59.8 inches

Min. Ground Clearance: 5.51 inches

Coefficient of Drag (Cd): 0.36

WEIGHTS & CAPACITIES

Seating Capacity: 4

Curb Weight: 3,749Ibs.

Weight Distribution: 56/44 front/rear

GVWR: 4.579 .lbs.

Cargo Capacity: 221 1bs.

Maximum Payload: 820 1bs.

FUEL ECONOMY

Hwy/City: 304/342 watt hours/mile

PERFORMANCE

Vehicle Range: 120 miles

Maximum Speed: 75 mph (governed)

Porsche Taycan electric car.

Along with models like the 2019 Jaguar I-PACE, Audi e-tron, and upcoming Porsche Taycan, we're seeing a new generation of high-tech battery-powered vehicles that bring an exciting new direction to legacy automakers. These models also have something important in common: They aim to disrupt Tesla, the industry’s de-facto electric car leader.

Disruption is a word thrown about with abandon these days as veritable institutions of business and commerce fall from grace, or at least profitability, at the hands of an ever-changing and disruptive world. Think Sears, Borders, and Kodak. The list of major companies disrupted – either gone, a shadow of their former self, or on the ropes – continues to grow. While the auto industry has largely escaped this same fate, change is definitely in the wind. And its bogeyman in recent years has clearly been Tesla.

Tesla Model X on highway.

Disruption Long Before Tesla

We’ve seen the auto industry disrupted before, not by innovators but rather by geo-politics, circumstance, and a lack of long-term vision. The Arab Oil Embargo of 1973 and the 1979 Oil Crisis that brought serious gas shortages were a result of political disruption. It was a time when stations ran out of gas, lines of cars snaked for blocks as drivers tried desperately to keep their tanks full and their car-dependent lives on track, and consumers looked for more fuel-efficient vehicles to ease their pain. The problem, however, was there were few fuel-efficient models being produced since there had been no particular demand for them. The auto industry had to adapt, but with typically long product cycles it would take years to adequately fill this need.

Segue to 2003 and the launch of Tesla Motors, an occurrence that seemed interesting but hardly a threat to legacy automakers. Its high-tech Tesla Roadster introduced in 2008 – based on engineless ‘gliders’ produced by Lotus – proved that electric cars could be sporty, fun, and go the distance in ways that all other electrics before it could not, to the tune of 250 miles of battery electric driving on a single charge. Then came the Tesla designed-and-built Model S, Model X, and the new-to-the-scene Model 3. Clearly, the battle for leadership in electric cars was underway.

Jaguar I-PACE rolling chassis.

A History of Innovation

The auto industry’s penchant for innovation has always characterized its giants. Over its long history, this is an industry that brought us the three-point safety belt, airbags, anti-lock braking, cruise control, direct fuel injection, electronic ignition, and near-zero emission gasoline engines. And let us not forget Kettering’s invention of the electric starter that first saw use in 1912 Cadillacs, an innovation that tipped the scales – and history – in favor of internal combustion over electric cars of the era and helped lead to the combustion engine’s dominance to this day.

While Tesla may have established its role as the industry’s electric car innovator, that’s not to say that legacy automakers haven’t made tremendous progress. GM’s short-lived EV1 electric car of the 1990s proved that exciting and fun electric cars were possible, but not necessarily affordable to make at the time. The technologies developed by GM through the EV1 program live on to this day with evolutionary electric-drive technology found in its acclaimed Chevrolet Bolt EV and other electrified models. Advanced battery electric production vehicles have also been a focus at Audi, BMW, Ford, Honda, Hyundai, Jaguar, Kia, Mercedes-Benz, Nissan, Smart, and VW, with others like Porsche set to enter the market with long-range battery EVs.

Jaguar I-PACE racing Tesla Model X.

The Age of Electrification

So here’s the lesson of the day: If a business model no longer works, as was the case with General Motors and Chrysler during the financial meltdown in the late 1990s, you restructure. A brand no longer resonates with consumers? You drop it, like GM did with Oldsmobile. And if a class of vehicles is falling out of favor in lieu of more desired ones, you move on, as Ford is doing by phasing out almost all of its passenger cars in coming years in favor of more desired crossover/SUVs and pickups.

A paradigm shift is also occurring as automakers grapple with changing consumer preferences, regulatory requirements, and the projected demand for future vehicles and technologies. Enter the age of electrification. Over the past decade, Tesla has set the bar for innovative battery electric propulsion, advancements in near-autonomous driving technology, over-the-air vehicle software updates, and more. It has achieved a real or perceived leadership position in these areas and that’s a threat to legacy automakers. Now automakers are responding in a serious way and Tesla itself is under siege.

Chevrolet Bolt EV near building.

Chevy Bolt EV First

GM fired the first volley with its 2017 Bolt EV, beating Tesla’s long-touted Model 3 to market with an affordable long-range EV capable of traveling 238 miles on battery power. While Tesla is now delivering its well-received Model 3 in increasing numbers after a series of production challenges, the race with GM to produce an ‘affordable’ mainstream EV with 200-plus mile range was not much of a race to affordability at all. GM won that one handily, holding the line with a $37,500 price (after destination charges), while Tesla’s $35,000 Model 3 has yet to materialize. As Tesla did with its earlier model launches, the automaker is delivering uplevel, high-content, and higher-performance versions first, in the case of the Model 3 from a recently-lowered base price of $42,900 to $60,900, depending on configuration. The Bolt EV’s MSRP has moved in the other direction, dropping slightly to $36,620 for the 2019 model.

Nissan’s all-new, next-generation LEAF that debuted in 2018 improved its range to 150 miles, with a recently-announced LEAF PLUS model joining the lineup with a bigger battery and a range of 226 miles. Hyundai’s 2019 Kona Electric and Kia’s 2019 Niro Electric offer a battery range of about 250 miles, although these offer availability only in California and perhaps a few other ‘green’ states.

Nissan LEAF electric car.

Exciting New EV Entries

Jaguar’s 2019 I-PACE, a fast and sporty crossover with a 234 mile battery electric range, is now available and priced to compete with Tesla’s Model S and X. We'll soon be seeing Audi e-tron and Porsche Taycan long-range electrics on U.S. highways, with others like Aston Martin and Maserati developing high-end electric models as well.

It will be interesting to see how this all plays out over the coming months and years. To be sure, legacy automakers will not cede their leadership positions and market share without a terrific fight… and that fight is intensifying. Tesla doesn’t fear risk and has shown it will go in new directions that others will not, unless they must.

Audi e-tron electric car.

Tesla Does Things Differently

But Tesla doesn’t operate like legacy automakers that have been around for a long time, some more than a century. Those companies have mastered mass production, fielded extensive model lineups, developed widespread and convenient service networks, and have a history of successful worldwide distribution. Tesla is still learning this game, although it is making headway with its intense and successful efforts to deliver increasing numbers of its Model 3 to customers.

Importantly, legacy automakers are immensely profitable, while Tesla has had but a few profitable quarters since its launch and its losses have been in the billions. Tesla’s well-documented difficulties in ramping up mass production of the company’s 'entry-level' Model 3 – and its initial deliveries of only up-level Model 3 examples at significantly higher cost than its widely-publicized $35,000 base price – have added to its challenges.

Tesla Model 3 electric car.

That said, it would be a mistake to count Tesla out for the long haul based on its current and historic challenges including missed financial and vehicle delivery targets, serious Model 3 production challenges, and a number of high-profile Tesla crashes while driving on its much-touted Autopilot. Regardless of all this, in 2018 Tesla’s Model 3 was the best-selling luxury model in the U.S.

Legacy automakers will have Tesla directly in their sights and Tesla will continue to innovate. A veritable race-to-the-finish!