Green Car Journal logo
Harjinder Bhade , CTO at Blink Charging.

As the country comes to the realization that a future of electrified mobility is crucial to mitigating the effects of climate change, government leaders and the electric vehicle (EV) industry have made it their mission to build a network of 500,000 EV chargers across America.

At the same time, the past year has demonstrated how disruptions in globally interconnected supply chains can lead to severe bottlenecks and slow production. The EV charging industry is not immune to these conditions. In order to achieve the ambitious electrification goals set by our elected officials and business leaders, EV charging companies must ramp up their domestic manufacturing capabilities to ensure they can meet the demand, regardless of global factors.

Meeting “Buy America” Requirements

There’s no better time than now to increase American manufacturing. With the Biden Administration’s Infrastructure Investment and Jobs Act (IIJA) earmarking $7.5 billion to build a nationwide charging network, there is more investment in the space than ever before. However, in order to qualify for these federal funds, EV charging manufacturers must meet the “Buy America” requirements – standards that call for equipment and projects to use American-made material and products, as well as be manufactured domestically. While domestic production of EV chargers holds much promise in solving supply chain concerns, this requirement also presents several challenges.

When considering the “Buy America” requirements for EV chargers, two provisions are most relevant. First, all steel in a finished product must be sourced locally. Secondly, under current criteria as clarifying language is pending, at least 55 percent of a finished product must come from the U.S.

Generally, meeting the steel requirement is not a challenge for EV charging manufacturers as chargers do not require large amounts of steel and steel can be locally sourced without undue burden. However, the larger challenge for EV charging manufacturers is sourcing domestically made chips, as most chip manufacturing is done offshore and imported to the U.S. From microprocessors to Wi-Fi and cellular modem chips, these necessary components are hard to source domestically, presenting a significant roadblock for EV charging manufacturers looking to meet the “Buy America” requirements.

Woman at Blink EV charger.

Manufacturing Corridors

In addition to the challenges presented by the “Buy America” requirements, there are also logistical challenges that come with relocating a manufacturing process, that was previously done overseas, entirely to the U.S.

In other countries, robust manufacturing corridors exist – areas of production where the various parts of a product are all sourced near one another – that help reduce the time and cost it takes to assemble critical components. However, in recent decades many of these components have been imported from overseas, and the U.S. has far fewer manufacturing corridors. This means domestic manufacturing facilities will have to re-invent their processes and supplier relationships to better centralize them and avoid the expenses and pollution incurred by shipping parts across the country.

As we transition to this new age, EV charging manufacturers are facing a plethora of challenges as well as unprecedented/exciting growth opportunities. From adhering to the “Buy America” procurement requirements to working out the logistics of a new supply chain, manufacturers have a lot to overcome, all while trying to keep up with the demand of a growing population of EV owners.

Building Out Domestic Manufacturing

Right now, the biggest hurdle facing domestic EV charger manufacturing is time. In order to tap into the federal funds made available by recent legislation, manufacturers must build up domestic capabilities and expertise in new areas, from sheet metal fabrication to PVC manufacturing, quickly.

With these challenges, it may seem daunting to make the transition to domestic manufacturing. However, Blink Charging, a leader in the EV charging industry for close to 14 years, has long been aware of these concerns and is taking steps to overcome them.

Driver with Blink EV charger app.

Managing the EV Charger Supply Chain

In June of 2022, Blink acquired SemaConnect, a leading provider of EV charging infrastructure solutions in North America with a state-of-the-art manufacturing facility in Maryland. This acquisition brought the complete design and manufacturing processes of Blink’s EV chargers in-house, allowing the company to comply with the “Buy America” provisions in federal law. The acquisition also marks Blink’s emergence as the only EV charging company to offer complete vertical integration – from research & development and manufacturing to EV charger ownership and operations – creating unparalleled opportunities for the company to control its supply chain and accelerate go-to-market speed while reducing operating costs.

In addition, Blink recently announced its commitment to establish a new manufacturing facility in the United States, which will further increase its charger production capacity. While the search for the facility’s location is still ongoing, the plant will offer 200,000 square feet of space with the latest technology to manufacture both DC Fast Charging (DCFC) and Level 2 Chargers.

With one facility already up and running and another on the way, Blink is leading the charge in domestic manufacturing of EV charging infrastructure in the U.S.

Harjinder Bhade is Chief Technology Officer at Blink Charging

Green Car Time Machine - archive articles from Green Car Journal.

As GM was taking a high-profile with its Impact electric vehicle prototype in the U.S., Nissan was showcasing the marque’s FEV (Future Electric Vehicle) that GCJ editors saw in Japan. Over the next several years, Nissan continued its electric vehicle development and showed its FEV-II, a less sexy but more practical electric vehicle prototype. As its program evolved, the FEV series was dropped in favor of other electric and hybrid electric vehicle studies. Still, the design of the initial FEV in particular resonates as we look back at early electric vehicle programs. This article is reprinted just as it originally ran in Green Car Journal’s December 1995 issue to share perspective on Nissan’s early electric vehicle development efforts.

Excerpted from December 1995 Issue: The Nissan FEV, which debuted at the Tokyo Motor Show in late 1991, was a milestone electric vehicle concept for this automaker. It showed considerable thought as to what an electric vehicle could and should be, from its stylish exterior and handsome interior to an innovative powertrain and quick-charge system that garnered substantial world-wide attention.

Side view of Nissan Future Electric Vehicle concept car.

FEV a Quick Charge Electric Vehicle

As they say, that was then, and this is now. Nissan has now provided a follow-though by introducing its latest electric vehicle iteration, the FEV-II. This model is a bit less sporty than the original but definitely appropriate for the coming electric vehicle market. Somewhat in the vein of Volkswagen's Beetle-like Concept1, the FEV-II is handsome, rounded, and sure to be popular on the auto show circuit, and maybe even the highway.

The four-passenger (2+2) coupe's design is the handiwork of Nissan Design International, located in Southern California. It features a flat floor so batteries can be secreted beneath without infringing upon passenger comfort or space – a nice touch.

Nissan is once again credited with offering advanced thinking in its electric vehicle concepts. The FEV-II uses the advanced lithium-ion batteries this automaker is developing in conjunction with Sony. Top speed of the 3120-pound car is said to be 75 mph, while single-charge driving range is a claimed 125 miles. The EV can be charged from any standard electrical outlet via a detachable charging system.

Nissan FEV II electric vehicle concept rear view.

FEV-II Uses Lithium-Ion Batteries

Nissan is among many automakers who are actively working to develop viable electric vehicles to meet the 1998 ZEV mandate in California and other states. While GCJ editors have not yet road tested Nissan's new FEV-II, behind-the-wheel time has been spent in the automaker's Avenir demonstration EV. Not surprisingly, GCJ testers found it to be quite a capable electric vehicle with good acceleration and handling, indicating a great deal of sophistication in Nissan's EV development program. This electric station wagon also exhibited a high level of comfort – surprising from an electrically retrofitted production vehicle.

The automaker has been field testing 15 Avenir electric vehicles with Kyushu Electric Power Company, a Japanese utility which helped develop the electric variant. The station wagon is reportedly capable of a 50 to 100 mile single charge driving range with a top speed of 70 mph.

Roger Caiazza, blogger, Pragmatic Environmentalist of New York.

Not so long ago, it was generally accepted that plug-in hybrid electric vehicles (PHEVs) and compressed natural gas (CNG) vehicles could be used as bridge technologies until ‘zero-emissions’ vehicles could perform like existing vehicles, at similar cost.  Unfortunately, politics in New York and elsewhere demand net-zero by 2050 with policies that preclude their use. 

I have spent a lot of time the last three years evaluating New York’s net-zero by 2050 target mandated by the Climate Leadership and Community Protection Act (Climate Act) from a pragmatic point of view. Pragmatic environmentalism is all about balancing the risks and benefits of both sides of issues. Most troubling in the quest for net zero is the lack of consideration for tradeoffs.

PHEV and CNG vehicles banned by Climate Act.

In New York the mandated technology is ‘zero-emissions,’ either battery electric or hydrogen fuel cells.  PHEV and CNG vehicles have direct emissions and so will be banned.  The Climate Act fossil fuel accounting requirements inflate the global warming effects as compared to all other jurisdictions and mandate that upstream and life-cycle emissions also be considered.  On the other hand, the life-cycle emissions and impacts of the ‘zero-emissions’ technologies are ignored.

The Climate Act’s net-zero by 2050 transition is extraordinarily ambitious. The Scoping Plan that outlines the framework to implement this transition projects that in order to meet the net-zero schedule, over 30 percent of all light-duty vehicles sold will either be battery-electric vehicles (BEVs) or hydrogen fuel cell vehicles (HFCVs) in 2025, and 100 percent by 2035. For medium- and heavy-duty truck sales, the Scoping Plan projects that at least 10 percent sold will either be BEVs or FCEVs in 2025, and 64 percent by 2035.

PHEVs a Logical Bridge Technology

It's wishful thinking to presume that large percentages of people will choose BEVs and HFCVs, forgoing the flexibility of a personal car that has much greater range in all seasons, can be refueled quickly on long trips, and does not require expensive charging equipment at home.  PHEV technology eliminates range anxiety, refueling, and home equipment concerns. It also reduces fuel use and air pollution emissions significantly and uses a smaller battery pack than a BEV, which reduces the environmental impacts of rare earth mineral supplies and disposal that the Climate Act ignores.

When all the physical, cost, and logistical issues associated with hydrogen use are considered, it will not play a major role in the future. BEV technology doesn’t appeal to a majority of car owners because of nuisance constraints, but the technology could work. The same cannot be said for battery electric heavy-duty vehicles since range, refueling, and charging infrastructure constraints are deal breakers that prevent heavy-duty trucks from meeting the 2050 net-zero target. 

Natural gas trucks are a bridge technology to zero emissions.

CNG Trucks a Viable Alternative

There are serious inhalable particulate air pollution issues associated with diesel truck emissions at freight terminals in New York City. The Scoping Plan claims that replacing these trucks with zero-emission alternatives provides significant benefits. However, the plan’s zero-emissions aspirations ignore technological tradeoffs and the reality that CNG heavy-duty trucks are a viable alternative that would markedly reduce inhalable particulate emissions.  The problem with CNG is not technology since we know it works, but a problem with the development of fueling infrastructure and vehicle fleet turnover. It is not pragmatic to insist that heavy-duty trucks use unproven battery electric technology over other alternatives that can markedly reduce the air quality issues. 

The use of PHEV and CNG vehicles for personal and freight transport offers the opportunity for significant air quality benefits, at a cheaper societal cost, with less impacts on personal choice, and sooner than the ‘zero-emissions’ alternatives. Failing to consider those benefits while insisting upon a riskier technological approach is not good social policy. Someday, there may be a better alternative, but in the meantime bridge technologies that provide most of the benefits are the more appropriate policy approach.

Roger Caiazza, a retired Certified Consulting Meteorologist who has worked in the air quality industry for over 40 years, is a blogger at Pragmatic Environmentalist of New York

Instrument display as you drive electric.

You know the drill. Get in the car, commute to work, run your usual errands, and at regular intervals stop at the gas station to fill up. It’s a routine that’s been ingrained in the driving psyche for decades. If you want to simplify, then consider a move from gas and instead drive electric. Driving an EV is not a panacea to life’s constant demands but all in all, it calls for less of your time and attention. Here are a few reasons why driving an electric vehicle may be for you.

EVs Can Enhance Convenience

How much is your time worth? Charging an EV’s battery can conveniently be done at home with a garage charger, through a growing public charging network, and increasingly at workplace chargers. Those regular trips to gas stations? Cross them off your list, forever. Another benefit that can save time – and frustration – is the ability for solo EV drivers to use high occupancy vehicle (HOV/carpool) lanes in some states, which can shave plenty of time off a commute.

It's Cheaper to Drive Electric

Electricity is a far cheaper way to fuel a car than gasoline. In fact, electric motors are so much more efficient than internal combustion engines, the most efficient electric vehicle today nets an EPA combined city/highway rating of 140 MPGe. The savings don't stop there. If you charge at home, additional savings can be realized by signing up for an electric utility’s favorable electric vehicle rate plan, then timing a charging session during a plan’s specified hours.

Less Maintenance Required

Vehicle maintenance is key to a healthy vehicle. Tune-ups keep a typical car running its best over the long haul, making the most efficient use of the gas it consumes and optimizing combustion so it produces fewer tailpipe emissions. One of the important benefits of an electric vehicle is that maintenance needs and costs are significantly diminished. Simply, there are far fewer moving parts in an EV than a conventional internal combustion vehicle, which means there’s less to take care of and fewer appointments needed for service.

Get a Subsidy to Drive Electric

Electric vehicles today are almost universally more expensive than those powered by traditional internal combustion engines. But if you want one, the federal government – along with many states, electric utilities, and other sources – can make it easier to buy an EV with generous subsidies of many thousands of dollars. The most valuable of these subsidies comes from the recently passed Inflation Reduction Act of 2022, which offers a potential clean vehicle tax credit up to $7,500 if you buy a new plug-in electric vehicle and up to $4,000 on a qualifying used EV.

Polestar 2 driving on highway.

Status Comes with the Territory

Driving an EV makes a statement. We’ve seen this over time as Toyota’s Prius hybrid made its way to U.S. highways just over 20 years ago and was embraced by environmentalists and celebrities. The instantly recognizable profile of the Prius was part of the attraction, which shouted, “Look, I care about the Earth!” To many, that was reason enough to drive a Prius. To a whole lot of others it was just kind of obnoxious. Thankfully, today’s expanding field of eco-friendly electric vehicles offer a different approach. Some feature futuristic design cues that push the envelope in a positive way, but most are so mainstream you have to look for EV badging. Either way, your immediate circle of influence will recognize that you’re driving an electric vehicle and that confers positive status.

2023 Green Truck of the Year logo.

The movement that’s bringing ever-greener vehicles to our highways is in hyperdrive today, with enormous focus, funding, engineering, and production devoted toward decarbonizing transportation at all levels. In today’s pickup field, this increasingly means the addition of batteries and electric motors to the powertrain in hybrid or full electric configurations.

Other approaches to increasing efficiencies and reducing carbon emissions are also being taken through more traditional methods, like improving combustion engines and transmissions, lightweighting a pickup’s body and frame, and improving aerodynamics and rolling resistance. Pickups employing these diverse strategies are all considered in the Green Truck of the Year™ program since there is no single pathway to greater environmental performance.

Illustration of a hybrid pickup.

What's Important to Truck Buyers

The pickup truck is a unique proposition in the ‘green’ car field. While its uses are pretty expansive – from highly functional personal use vehicles to high horsepower, ‘stump pulling’ workhorses – there are some givens when we talk pickups. We know this well because of the many years Green Car Journal writers and editors have spent working at pickup and off-road magazines in the past. Trucks must serve their core missions, seamlessly. Their job is to work hard, play hard, tow dependably, and haul what’s needed. They can serve as family vehicles these days with ease, so car-like comfort, connectivity, and style are paramount…even as they deliver the high functionality and improved environmental performance buyers demand.

Through the Green Truck of the Year™ program presented at the San Antonio Auto & Truck Show in Texas, it’s Green Car Journal’s mission to identify the pickup that best represents environmental performance while balancing the core needs of pickup buyers. Among the cornerstones of Green Truck of the Year™ analysis is weighing the merits of pickups integrating the latest efficiency technologies, balanced with cost, value, functionality, performance, and other factors. Also considered is a model’s availability to consumers, since the ability to actually buy and drive more environmentally positive models on our highways is as important as the ‘green’ technologies and capabilities they champion.

These are more complex issues today. We’ve seen order banks for some new or popular pickups like the Ford F-150 Lightning and Ford Maverick unexpectedly close for the model year, which means consumers are no longer able to buy one. Price is also an important consideration. While annual price increases for new models are a tradition in the automotive market, sudden and significant price spikes are not. Today’s reality is that materials costs and supply are wild cards in the auto industry, with silicon chips and especially materials for electric vehicle batteries major issues. How an auto manufacturer chooses to deal with this, such as Ford’s $12,000 increase in the entry level cost of its F-150 Lightning, has a direct impact on a vehicle’s affordability and availability to buyers. All this is taken into consideration in determining the Green Truck of the Year™.

Green Truck of the Year press conference.

Green Truck of the Year Finalists

Pickups that made the cut as finalists this year included the Ford F-150 Lightning, Ford Maverick, Hyundai Santa Cruz, RAM 1500, and Toyota Tundra. Each, in its own way, offers features and powertrains allowing pickup enthusiasts the opportunity to drive with greater efficiency and lower carbon emissions. Because of their commendable environmental achievements, these five finalists are recognized with Green Car Journal's 2023 Green Car Product of Excellence™ distinction.

Electric Ford F-150 Lightning pickup truck.

Ford F-150 Lightning

The Ford F-150 Lightning is a champion of electrification. Powered exclusively by lithium-ion batteries and electric motors, this finalist features zero-emission travel of 240 to 320 miles before requiring a charge, depending on battery pack. F-150 Lightning does this while carrying on the Ford F-150’s reputation for dependability, durability, and performance. In fact, the F-150 Lightning’s acceleration and performance is stellar. It can haul up to 2235 pounds and tow up to 10,000 pounds, though towing or hauling heavy loads can significantly decrease the driving range of this all-electric pickup. The Lightning starts at about $52,000, though Ford’s order bank for this model is now closed.

Ford Maverick hybrid pickup truck.

Ford Maverick

Ford’s Maverick also brings efficiencies and carbon reduction to the pickup market, but in a different way. Starting at just over $22,000, this more compact pickup offers a standard 2.5-liter hybrid powerplant that nets up to 42 miles per gallon in the city, or a more powerful 2-liter EcoBoost engine. Maverick speaks to those who want a pickup with a smaller physical footprint that still fulfills a pickup’s expected mission, which it does handily. Clever engineering means the Maverick’s four-and-a-half foot bed can still carry a 4 by 8 foot sheet of plywood, with its multi-position tailgate at its halfway position and the plywood resting on top of the pickup bed’s wheel wells. Like the F-150, the order bank for the Ford Maverick has closed.

Hyundai Santa Cruz exterior.

Hyundai Santa Cruz

The Hyundai Santa Cruz is another example of a downsized pickup with high efficiency. Described by its maker as a Sport Adventure Vehicle, the Santa Cruz features a functional pickup bed that’s just over 4 feet in length, with the bed offering hidden bed storage and a lockable tonneau cover. It’s powered by a 2.5 liter four-cylinder achieving up to 26 highway miles per gallon, or a more powerful turbocharged 2.5-liter four, and comes in front- or all-wheel-drive. It can tow up to 3500 pounds and has a payload rating of 1500 to 1750 pounds. Santa Cruz offers a starting price of $25,500.

RAM 1500 pickup truck in the woods.

RAM 1500

With an entry point of just over $37,000, the RAM 1500 is a stylish and highly functional pickup that fits a variety of needs, whether at the worksite or the campsite, trailer in tow. It’s offered in Quad Cab and Crew Cab choices, with two- and four-wheel drive, two pickup box lengths, and eight trim levels. Gas and hybrid power options offer 305 to 702 horsepower and include a 3.6-liter eTorque V-6, 5.7-liter eTorque HEMI V-8, and 6.2-liter supercharged V-8. This pickup’s efficient 3.0-liter EcoDiesel is a fuel economy champ at 33 highway mpg. RAM 1500 offers a dedicated work ethic with the ability to tow up to 12,750 pounds and carry payloads up to 2300 pounds.

Toyota Tundra pickup truck exterior.

Toyota Tundra

Introduced in its third generation last year, the Toyota Tundra offers rugged styling and a broad range of capabilities. It’s available with two efficient twin-turbocharged 3.5-liter engines, the 389 horsepower i-FORCE V-6 or a 437 horsepower i-FORCE MAX V-6 parallel hybrid. It can tow up to 12,000 pounds and carry payloads up to 1920 pounds, with a driving range that can reach 700 miles. Tundra offers a wide range of features, amenities, and advanced driver assist systems and is available in Double Cab or CrewMax choices with two- and four-wheel drive,

Kimerly Shults of Stellantis and Ron Cogan of Green Car Journal.
Kimberly Shults of Stellantis accepts 2023 Green Truck of the Year award from Green Car Journal publisher Ron Cogan.

RAM 1500: Green Truck of the Year

Green Car Journal’s 2023 Green Truck of the Year™ is the RAM 1500. This pickup presents an excellent choice for buyers seeking a stylish and hard-working truck that offers efficient hybrid engine choices, plus the ability to tow and haul loads within its substantial ratings, with no limitations.

RAM 1500 features handsome styling, loads of connectivity and driver assist features, and the kind of comfort and functionality appreciated by everyday drivers and those who use their hard-working pickups on the job. Performance is a given. The 3.6-liter eTorque-powered RAM 1500 delivers up to 26 highway mpg with a driving range approaching 600 miles, while the 3.0-liter EcoDiesel nets 33 highway mpg and a driving range of 1,000 miles. Highway driving is a joy and off-roading an adventure if you’re so inclined. Importantly, this pickup’s capabilities dependably meet all the needs of personal, work, and recreational use, confidently delivering the substantial hauling and worry-free towing capability so many truck buyers expect and demand.

Green Truck of the Year trophy on truck tailgate.

Green Car Time Machine - archive articles from Green Car Journal.

Everyone is familiar with Tesla these days. In its early years, though, Tesla was just another aspiring automaker with big dreams and enormous challenges, and at times, seemingly insurmountable financial hurdles. That’s all changed and Tesla is now viewed as a serious competitor by the world’s legacy automakers. Today there’s the Tesla Model 3, Model S, Model X, Model Y, and Tesla Semi. Coming up will be a second-generation Tesla Roadster and Tesla's highly-anticipated Cybertruck. Sixteen years ago, Green Car Journal featured the company’s original electric Roadster and shared the emergence of Tesla as a potential competitor in the electric vehicle field. We present this article just as it ran in Green Car Journal’s Fall 2006 issue to lend context to the ever-unfolding Tesla story.

Excerpted from Fall 2006 issue: Only giant corporations have the resources to develop competent, competitive automobiles, and only internal combustion-powered cars offer the performance and practicality required by today’s drivers. The team at Tesla Motors is tasked with turning these conventions onto their respective heads…and they’re doing it. 

Tesla Roadster cutaway illustration.

Lithium-Ion Battery Pack

From its founding in 2003, most of the company’s efforts have gone into developing the heart of the car, the Energy Storage System (ESS). Some 6,831 lithium-ion cells – each slightly larger than a typical AA battery – are contained inside a large enclosure that fits neatly behind the Roadster’s two seats. The batteries are liquid cooled and attached to an elaborate array of sensors and microprocessors that maintain charge balance between the cells. Tesla chose a commonly used lithium-ion cell so that battery development will continue to drive down the cost and improve performance.

Also developed internally is the motor, which features remarkably high output for its small size: 248 hp and 180 lbs-ft of torque. The motor acts as a generator whenever the driver lifts off the throttle, providing an ‘engine braking’ effect similar to conventional cars, while also recharging the batteries.

Tesla Roadster driving on highway.

Tesla Roadster has Lotus Influence

The Roadster’s chassis is based on that of the Lotus Elise sports car, but lengthened and beefed up to handle the Roadster’s roughly 350 pounds of extra weight, largely attributable to the battery pack. The body design was penned by the Lotus Design Studio, and final assembly is completed at the Lotus manufacturing facility in England.

Along with a top speed of 130 mph, the company claims a zero to 60 mph time of four seconds, on par with some of the world’s top supercars. But the real test for an electric car is range. Tesla says the batteries will last for 250 miles of pure highway driving, and can be recharged using Tesla’s home-based charging system in under four hours. The batteries are expected to last five years or 100,000 miles, after which time they’ll have 80 percent of their original capacity. In terms of real-world practicality, these are some of the most impressive numbers we’ve seen from an electric car.

Behind the wheel of the Tesla Roadster.

High Performance, High Price

There’s one more crucial number: price. The Tesla Roadster starts at $89,000 and tops out at $100,000. That’s steep, but not wholly unrealistic given the level of performance the car achieves.

Tesla Motors thinks there’s plenty of demand for their car, and early signs look good: the first 100 Roadsters were snapped up right away. It will be interesting to see if that kind of buying fervor continues as Tesla opens its direct sales and service centers, first in Northern and Southern California, followed by Chicago, New York, and Miami. The company begins the first production run of 600 to 800 cars next spring, maxing out at 2500 per year after three years if demand holds.

Tesla Roadster with blurred background.

Tesla Roadster an Ideal Launch Vehicle

Plans are already in the works for the next model, a 4-door sedan in the vein of Toyota’s Prius. Tesla’s Mike Harrigan thinks that in five to six years, the cost of batteries will have been cut in half – the Roadster’s pack costs about $25,000 today – and will be capable of providing a family sedan with a range of 500 miles, double that of the Roadster.

The Tesla Roadster may be the perfect weapon to launch the Tesla brand. It’s eye-catching and fast and targeted at a segment that can realistically command high prices, thereby helping to absorb the high cost of the batteries and high-tech control system. The next step, and perhaps the greater challenge, is to drive this high concept down to the mainstream. We’ll be watching intently.  

Rear view of Tesla Roadstery.
Toyota Crown sedan with rear hatch open.

Rather than following the industry’s massive trend toward models powered exclusively by batteries, Toyota is confident there’s a better way forward. Its strategy is to optimize the use and environmental impact of batteries by offering a diversity of electrified vehicles consumers will actually buy and drive in great numbers, thus leveraging the potential for carbon reduction. This clearly plays to the automaker’s strength: hybrids and plug-in hybrids. There’s the all-electric Toyota bZ4X, of course, and other battery electric Toyota models to come. Just don’t expect that’s all the world’s largest automaker will be offering in the short term.

Enter the 2023 Toyota Crown sedan, this automaker’s newest hybrid. Toyota’s all-new Crown is somewhat of a milestone since so many automakers are killing off their sedans in favor of uber-popular crossover SUVs. In many cases, those crossovers are less SUV than mildly oversized hatchback, but that’s the auto industry for you. The Crown is a sophisticated looking sedan that doesn’t pretend to be something it is not, though it does offer a few twists.

Rebirth of a Model

The Crown has an interesting history, first debuting in 1955 as Toyota’s first mass production passenger vehicle before making its way to the States three years later, distinguished as the first Japanese model here on our shores. It had a 17 year run before it was retired from Toyota’s U.S. showrooms.

Now it’s back in all new form as a full-size, four-door sedan available in XLE, Limited, and Platinum grades. While it is a sedan measuring in just a bit larger than Toyota’s popular Camry, the Crown also integrates a slightly taller roofline, thus the ‘twist.’ This taller roof flows rearward into an elegant sportback design, accented by thin blade-style rear taillights. The front features blade running lights, sharp headlights, and a distinctively imposing grille design that’s come to signify Toyota and Lexus products these days. Its sides are handsomely sculpted and accented by large alloy wheels and wheel well cladding.

Hybrids Power the Toyota Crown

Beneath the hood resides one of two available hybrids, no surprise since this a Toyota and hybrids are its game. The more efficient of the two-motor hybrid models is powered by a fourth-generation, 2.5-liter Toyota Hybrid System (THS) that Toyota says should net an estimated 38 combined mpg. It connects to an electronically controlled continuously variable transmission.

Those looking for higher performance may opt for the Platinum grade, which comes standard with a  2.4-liter turbocharged HYBRID MAX powerplant, the first application of this more powerful Toyota hybrid system in a sedan. Delivering power to the road through a direct shift six-speed automatic transmission, the HYBRID MAX boasts 340 horsepower for spirited performance and offers a Toyota-estimated 28 combined mpg. All grades come with electronic on-demand all-wheel drive. A plug-in hybrid variant is said to be coming but details are not yet available.

Sedan With a Premium Feel

The Crown’s cabin is designed to deliver a premium feel, featuring nicely bolstered front seats with 8-way power adjustment, intelligent controls, and wireless Qi charging with an array of readily accessible ports to accommodate today’s electronic devices. A Multi Information Display ahead of the driver provides the usual instrumentation along with selectable functions, including hybrid information that coaches eco-driving for netting maximum efficiency. In addition, a 12.3-inch center Toyota Audio Multimedia display features Apple CarPlay and Android Auto integration and is audio and touch capable.

Upholstery is either Softex and black woven fabric or leather, depending on grade. A panoramic moonroof standard on Platinum and Limited grades lends an additional feel of openness to the cabin. LED ambient lighting adds to the interior’s ambiance and upscale feel. Significant effort has been devoted to creating a relaxed and quiet cabin environment through extensive placement of sound-deadening materials throughout plus the use of acoustic glass.

Toyota Crown Safety

Toyota Safety Sense 3.0 is standard across all grades to enhance safety on the road. This includes such desired features as pre-collision with pedestrian detection, dynamic radar cruise control, lane departure alert with steering assist, blind spot monitor, and rear cross traffic alert. Other assist features such as automatic high beams, road sign assist, rear seat passenger reminder, and hill start assist control are also standard fare for all versions of the Crown. Those stepping up to the Platinum trim level also get Toyota’s advanced park system that identifies available parking spots and allows automated parallel and reverse/forward perpendicular parking.

Toyota’s Crown is a timely addition to this automaker’s lineup, giving fans of the brand a new, more exciting sedan option just as the more conservative Avalon sedan is heading off into the sunset. Pricing has not yet been announced but we figure the Crown will start somewhere in the neighborhood of the low $40,000s. We also expect this new model to be a hit for Toyota, serving the automaker well  as it hones its hybrid and plug-in hybrid strategy while continuing to evolve its future electrified product line.

2023 Toyota Crown headlight detail.
2022 Hyundai Tucson plug-in hybrid on highway.

The Hyundai Tucson has long been a popular choice for those desiring the functionality of a crossover SUV at a reasonable price. Making the case even stronger now is an expanded list of Tucson offerings highlighted by plug-in hybrid and enthusiast-oriented N Line models that have joined the line’s gas-powered and electric hybrid variants.

Conventionally-powered Tucsons are equipped with a 2.5-liter engine delivering 180 hp and 195 lb-ft torque, delivering 26 city/33 highway mpg. PHEV and hybrid Tucson models share a 1.6-liter, turbocharged and direct-injected inline four-cylinder gas engine. These are equipped with Hyundai’s Continuously Variable Valve Duration technology that optimizes valve opening duration to improve power, efficiency, and emissions. The hybrid gets a 59 horsepower electric motor and 1.5 kWh lithium-ion battery that brings 226 total system horsepower and up to 38 city/38 highway mpg.

2022 Hyundai Tucson PHEV charging.

PHEV Has Bigger Battery, More Power

With the addition of the plug-in hybrid’s 90 hp electric motor and a larger 13.8 kWh lithium-ion battery, total system horsepower increases to 261 hp and 258 lb-ft torque. EPA rates the Tucson PHEV’s electric-only range at 33 miles and fuel economy at 80 MPGe, with a 35 mpg combined city/highway mpg rating running on gasoline. Hyundai says the model’s onboard 7.2 kW charger will allow charging the battery in less than two hours when connected to a 220-volt Level 2 charger.

The remainder of the Tucson PHEV’s drivetrain consists of a six-speed automatic transmission with steering wheel-mounted paddle shifters and a standard HTRAC AWD system with selectable drive modes. All Tucson models, including the PHEV, have a maximum tow rating of 2,000 pounds. The PHEV’s curb weight is a few hundred pounds higher than the conventional and hybrid models, so its payload capacity is commensurately less, rated at 1,012 pounds for SEL models and 1,166 pounds for Limited versions.

2022 Hyundai Tucson PHEV front end detail.

A Better-Driving Hyundai Tucson

A higher level of driving dynamics is delivered to match the Tucson’s sporty new exterior design. The AWD PHEV and hybrid models are built with Hyundai’s e-handling technology that, under certain road conditions and driving inputs, applies an incremental amount of electric motor torque to the wheels. This enables the e-handling system to affect vehicle weight transfer – and therefore the tire’s contact patch – to improve cornering.

Tucson models are equipped with a number of safety technologies as part of Hyundai’s SmartSense Safety Feature suite. Standard safety features on both the SEL and Limited models of the Tucson PHEV include Forward Collision-Avoidance Assist, Blind-Spot Collision-Avoidance Assist, Lane-Keeping Assist, Driver-Attention Warning, and Rear Cross-Traffic Collision-Avoidance Assist. Limited models add such features as blind-view and surround-view monitors and Remote Smart Parking Assist.

2022 Hyundai Tucson PHEV interior.

Hyundai Tucson Tech

The Tucson PHEV’s interior amenities vary depending on model. Both SEL and Limited are equipped with Apple CarPlay and Android Auto capabilities and have USB charging points for front and rear passengers. Stepping up to the Limited adds a 10.25-inch digital instrument cluster and 10.25-inch color touchscreen (SEL has an 8-inch screen), a Bose premium sound system, and wireless device charging.

Prices start at $25,800 for the standard 2.5-liter powered Tucson with the hybrid coming in at $29,750 and the plug-in hybrid $35,400.

Green Car Journal’s Green Car Awards, the annual awards program honoring the year’s most standout  new ‘green’ models, was presented at the Virtual Greenbuild Conference + Expo in November  this year. The 2021 virtual awards program was an innovation during an unusual year, amid the postponement and cancellation of international auto shows where the Green Car Awards typically take place.

Over the years, these high-profile awards have grown along with the expanding field of ‘green’ cars on the road. They now recognize not only the magazine’s signature Green Car of the Year, but also exceptional models that speak to families, city dwellers, luxury buyers, pickup enthusiasts, and those requiring the functionality of an SUV. All provide the traditional touchstones of safety, quality, value, style, and performance, plus that fun-to-drive quality important to most drivers. What they add are greater efficiency, lower carbon and tailpipe emissions, petroleum reduction or displacement, or operation on battery electric power.

GREEN CAR OF THE YEAR

This year’s candidates for 2021 Green Car of the Year reflect the auto industry’s transition toward electrification, even as it continues to make internal combustion ever-more efficient. Three of this year’s finalists, the Mustang Mach-E, MINI Cooper SE, and Volkswagen ID.4, drive exclusively on zero-emission battery power. The BMW 330e is a plug-in hybrid that drives up to 23 miles on battery power and hundreds more as a hybrid. The Hyundai Elantra is offered with either an efficient gasoline engine or a gas-electric hybrid achieving up to 50 miles per gallon.

Rising to the top of the field is Green Car Journal’s 2021 Green Car of the Year, Ford’s all-new Mustang Mach-E, a model that boasts an instantly-recognizable name and heritage, while breaking new ground as an all-electric crossover featuring up to 300 miles of range. Performance is part of the package, as is unmistakable style and all the latest advanced electronics.

The 2021 Green Car of the Year® is selected by a highly-respected jury comprised of energy and environmental leaders including Mindy Lubber, president of CERES; Jean-Michel Cousteau, president of Ocean Futures Society; Dr. Alan Lloyd, president emeritus of the International Council on Clean Transportation and senior research fellow at the Energy Institute, University of Texas at Austin; Clay Nesler, interim president of the Alliance to Save Energy; and Matt Petersen, president and CEO of Los Angeles Cleantech Incubator and advisory board chair of Climate Mayors. Rounding out the Green Car of the Year jury is celebrity auto enthusiast Jay Leno and Green Car Journal editors .

LUXURY GREEN CAR OF THE YEAR

At a more premium price point, 2021 Luxury Green Car of the Year finalists also illustrate the momentum achieved by electric drive in the new car vehicle field. Four of these premium vehicles are all-electric models – the Audi e-tron Sportback, Polestar 2, Tesla Model Y, and Volvo XC40 Recharge. The fifth, the Lincoln Corsair Grand Touring, is the plug-in hybrid variant of Lincoln’s Corsair compact crossover that combines gas-electric hybrid and all-electric driving.

Honored as this year’s Luxury Green Car of the Year is the Polestar 2, a groundbreaking model from Polestar on many levels. This all-new premium vehicle is only the second of this new auto brand’s model offerings, and the first to be all-electric. This zero-emission, two-door fastback looks to the future even as it foregoes futuristic styling, instead choosing to offer an understated yet elegant and sophisticated design, tasteful appointments, and a nearly 300 mile range on battery power.

URBAN GREEN CAR OF THE YEAR

Urban environments pose their own unique challenges – tight spaces, often crowded streets, and hard-to-find parking. Here, smaller vehicles with a compact physical footprint and easy maneuverability are always top choices. The 2021 Urban Green Car of the Year award recognizes vehicles especially well-suited for life in the city. Top choices for this year’s award are the Hyundai Venue, Kia Seltos, Kia Soul, MINI Cooper SE, and Nissan Versa. Four are conventionally-powered – three of them crossover SUVs and one a compact sedan – with the fourth, the MINI Cooper SE, an all-electric crossover.

Taking top honors for 2021 Urban Green Car of the Year is the all-electric MINI Cooper SE. Standing out as an ideal vehicle for the city, the Cooper SE is compact in stature and big on features. Its represents what this brand all about: An iconic look, great maneuverability, and driving fun wrapped in a small package. Plus, electric power means zero localized emissions and no trips venturing out to the gas station in a crowded urban environment.

FAMILY GREEN CAR OF THE YEAR

While any model can serve family duty, those offering extra versatility and thoughtful family-friendly features are high on many shopping lists. Today, driving ‘green’ has also become a priority. Minivans have always been a solid choice, but these days three-row crossover SUVs can also do the job as family hauler. Finalists for 2021 Family Green Car of the Year are the Chrysler Pacifica Hybrid, Honda Odyssey, Kia Sorrento Hybrid, Toyota Highlander Hybrid, and Toyota Sienna. The Kia Sorrento Hybrid and Toyota Highlander Hybrid crossovers drive on efficient hybrid power. Honda’s Odyssey minivan features an efficient V-6 with variable cylinder management. The Toyota Sierra is exclusively a hybrid-powered minivan, while the Chrysler Pacifica Hybrid minivan also offers plug-in hybrid power.

Standing out as Family Green Car of the Year is the Toyota Sienna, a minivan that seeks to set the standard for modern family haulers. The stylish and fuel-efficient Sienna offers premium sedan-like style, admirable hybrid fuel efficiency, and a thoughtful blend of family-desired features along with driver-centric characteristics not always associated with minivans. It shows Toyota’s keen grasp of how to make a modern minivan that not only serves up family functionality, but also premium car style and appeal.

GREEN SUV OF THE YEAR

The hottest segment in the automotive field today is the SUV, either full-size or compact, traditional or crossover, two-row or three, conventional, hybrid, or plug-in. There are no shortage of choices, which makes narrowing the field to five outstanding finalists no small challenge. The top five finalists emerging this year for Green SUV of the Year are the Audi Q5 55 TFSI e, BMW X3 xDrive 30e, Jeep Wrangler 4xe, Toyota RAV4 Prime, and Toyota Venza. Four of these –from Audi, BMW, Jeep, and Toyota – are plug-in hybrids with an all-electric driving range from 18 to 42 miles, and additional hundreds of miles on hybrid power. Toyota’s Venza is an all-wheel drive, tech-rich hybrid with exceptional fuel efficiency.

Taking top honors for the 2021 Green SUV of the Year title is the Jeep Wrangler 4xe,  an SUV that’s different in many ways from others in its class. To some, it’s an SUV in the traditional sense with high functionality and loads of versatility that’s perfect for the diversity of everyday life. But to others, it’s that, plus a means of escape, heading toward the city one day and then driving the path less taken on another, a path often rough, unpaved, and pointed towards adventure.

GREEN TRUCK OF THE YEAR

This year’s Green Truck of the Year finalists embody all the workhorse capabilities expected of a modern pickup while offering passenger car-like comfort, advanced on-board electronics, and levels of fuel efficiency unheard of in pickups of just a decade ago. Pickups honored as finalists for Green Truck of the Year are the Chevrolet Colorado, Chevrolet Silverado, Ford F-150, Jeep Gladiator EcoDiesel, and RAM 1500. All offer diverse powertrain choices, from gasoline and diesel internal combustion to variations of mild- and full-hybrid power.

Powering its way to well-deserved recognition as 2021 Green Truck of the Year is the Ford F-150, a pickup long distinguished as the best-selling model in the nation and a champion of innovation. Beyond its wide array of configurations, powertrain choices, payload capacities, and towing capabilities, it now adds such innovations as an efficient PowerBoost hybrid powerplant, fold-flat ‘sleeper’ seats, and an available Pro Power Onboard output system with outlets that allow the truck to function as a mobile generator at worksites or campsites.

The Green Car Awards™ program, presented annually since 2005, is an important part of Green Car Journal's mission to showcase environmental progress in the automotive field.

The driving range of electric vehicles is becoming less of an issue as they surpass 200 miles or greater, approaching the distance between fill-ups of some internal combustion engine vehicles…or maybe the bladder capacity of their drivers. However, the time it takes to recharge an EV is still a negative attribute.

Generally, EVs charge at a fairly slow rate. A 240-volt Level 2 home or public charger will charge a Chevy Bolt from depleted to full in about 4 1/2 hours, providing a range of about 238 miles. That’s a far cry from 5 minutes to fill a gas tank. It’s significantly slower when charging a Bolt with a Level 1 charger using a household’s standard 120-volt power since this adds only about 4 miles an hour!

Of course, charging companies and automakers are working together to expand the small-but-growing network of fast chargers in key areas of the country, allowing EVs to gain up to 90 miles of charge in around 30 minutes. Tesla claims that its Supercharger stations being upgraded to Version 3 can charge a Tesla Model 3 Long Range at the rate of about 15 miles a minute, or 225 miles in just over 15 minutes under best conditions.

If current technology EVs become popular for mid- to long-range travel, gasoline stations, truck stops, and public charging stations equipped with Level 2 and even somewhat faster chargers run the very real risk of becoming parking lots.

Photo: EVgo

When it comes to charging EVs, charging times come down to kilowatts available. The best Tesla V3 charger is rated at 250 kilowatts peak charge rate. Now, much research is being done here and in other countries on what is called Extreme Fast Charging (XFC) involving charge rates of 350-400 kilowatts or more. The U.S. Department of Energy is sponsoring several projects aimed at reducing battery pack costs, increasing range, and reducing charging times.

There are several challenges for XFCs. First, when lithium-ion (Li-ion) batteries are fast charged, they can deteriorate and overheat. Tesla already limits the number of fast charges by its standard Superchargers because of battery degradation, and that’s only at 120-150 kilowatts. Also, when kilowatt charging rates increase voltage and/or amperage increases, which can have a detrimental effect on cables and electronics.

This begs the question: Is the current electrical infrastructure capable of supporting widespread use of EVs? Then, the larger question is whether the infrastructure is capable of handling XFC with charging rates of 350 kilowatts or more. This is most critical in urban areas with large numbers of EVs and in rural areas with limited electric infrastructure.

The answer is no. Modern grid infrastructures are not designed to supply electricity at a 350+ kilowatt rate, so costly grid upgrades would be required. Additionally, communities would be disrupted when new cables and substations have to be installed. There would be a need for costly and time-consuming environmental studies.

One approach being is XFC technology being developed by Zap&Go in the UK and Charlotte, North Carolina. The heart of Zap&Go's XFC is carbon-ion (C-Ion) energy storage cells using nanostructured carbons and ionic liquid-based electrolytes. C-Ion cells provide higher energy densities than conventional supercapacitors with charging rates 10 times faster than current superchargers. Supercapacitors and superchargers are several technologies being considered for XFCs.

According to Zap&Go, the C-Ion cells do not overheat and since they do not use lithium, cobalt, or any materials that can catch fire, there is no fire danger. Plus, they can be recycled at the end of their life, which is about 30 years. Zap&Go's business model would use its chargers to store electric energy at night and at off-peak times, so the current grid could still be used. Electrical energy would be stored in underground reservoirs similar to how gasoline and diesel fuels are now stored at filling stations. EVs would then be charged from the stored energy, not directly from the grid, in about the same time it takes to refuel with gasoline.

The fastest charging would work best if C-Ion cell batteries are installed in an EV, replacing Li-ion batteries. EVs with Li-ion batteries could also be charged, but not as quickly. Alternatively, on-board XFC cells could be charged in about five minutes, then they would charge an EV’s Li-ion batteries at a slower rate while the vehicle is driven, thereby preserving the life of the Li-ion battery. The downside is that this would add weight, consume more room, and add complexity. Zap&Go plans to set up a network of 500 ultrafast-charge charging points at filling stations across the UK.

General Motors is partnering with Delta Electronics, DOE, and others to develop XFSs using solid-state transformer technology. Providing up to 400 kilowatts of power, the system would let properly equipped electric vehicles add 180 miles of range in about 10 minutes. Since the average American drives less than 30 miles a day, a single charge could provide a week’s worth of driving.

The extreme charging time issue might be partly solved by something already available: Plug-in hybrid electric vehicles (PHEVs). As governments around the world consider banning or restricting new gasoline vehicles in favor of electric vehicles, they should not exclude PHEVs. Perhaps PHEVs could be designed so their internal combustion engines could not operate until their batteries were depleted, or their navigation system determines where they could legally operate on electric or combustion power.

The Kona, Hyundai’s newest and smallest crossover, serves up a pleasing design and welcome functionality. It is offered with a choice two gasoline engines that net up to 33 highway mpg, and also as a battery electric vehicle.

Styling cues are a bit different on the Kona Electric, but subtle except for its distinctive closed grille. Silver side sills, unique 17-inch alloy wheels, and badging also differentiate the electric variant. Kona Electric sales are initially being focused on California and select states that have adopted California’s Zero Emission Vehicle (ZEV) program.

Hyundai Kona Trim Levels

The Kona is available in three trim levels – SEL, Limited, and Ultimate. Kona SE and SEL models are powered by a 147-horsepower, 2.0-liter four-cylinder coupled to a six-speed automatic transmission. This combo achieves an EPA rating of 28 city/32 highway mpg. Kona Limited and Ultimate trim levels are powered by a 175-horsepower, turbocharged 1.6-liter four-cylinder with a seven-speed, dual-clutch automatic transmission. Here,  EPA numbers are 27 city/33 highway mpg. Front-wheel drive is standard with all-wheel drive an option for both powerplants.

Powering the Kona Electric is a 201 horsepower, permanent-magnet electric motor driving the front wheels. Energy is provided by a 64 kWh lithium-ion polymer battery that delivers an impressive EPA estimated 258 mile range. Offshore markets also get a base electric version with a smaller 39.2 kWh battery that’s good for about 186 miles, but that configuration is not offered in North America. The Kona Electric earns a combined EPA efficiency rating of 120 MPGe. Acceleration is quite good with a 0-60 mph sprint taking 7.6 seconds. Kona Electric’s top speed is electronically limited at 104 mph.

Quick Charge Options

When connected to a fast-charge 10 kW Combined Charging System, the battery pack can be recharged from a depleted state in about 54 minutes. It takes 75 minutes to recharge with a more common 50 kW CCS fast-charge system. With more readily-available Level 2 (240-volt AC) public or home charging and the Kona’s onboard 7.2 kW charger, replenishing a depleted battery takes about 10 hours. The charge port is located in the front fascia just below the driver’s side headlight.

There are a host of driver assist features available. Hyundai SmartSense safety technologies standard on all trim levels include Forward Collision-Avoidance Assist, Driver Attention Warning, and Lane Keeping Assist. Optionally available are Rear Cross-Traffic Collision Avoidance Assist, Blind Spot Collision Warning, High Beam Assist, Rear View Monitor, and Smart Cruise Control.

The gasoline-powered Kona has an MSRP of $19,990, while the Kona Electric is offered at a base price of $36,450.

Part of Honda’s Clarity triple-play – along with the hydrogen-powered Clarity Fuel Cell and more mainstream Clarity Plug-In Hybrid – the Clarity Electric is a model that clearly cuts its own path.

It does not aim to be part of the ‘200 mile club,’ the latest generation of uber-electrics that claim a battery electric driving range greater than 200 miles between charges. It also does not cultivate efficiencies through a compact form designed to eke the most from every electron. Nor is it exceptionally lightweight, another common nod to the need for making the most of the battery power carried on board. In fact, there is little about the Clarity Electric that makes us think of other all-electric vehicles…save for the fact that it runs exclusively on zero-emission battery power, of course. This mid-size, five-passenger battery electric vehicle aims to be in a league of its own.

First of all, let’s discuss driving range, which is EPA rated at 89 miles between charges while delivering a combined 114 MPGe (miles-per-gallon equivalent). Yes, that’s more limiting than that of the 200+ mile club, but there’s a reason. Honda designed the Clarity Electric with the needs of commuters in mind…those who want their daily drive to be in a highly-efficient, zero-emission electric car with a sophisticated look and premium feel. And they designed it so it was significantly more affordable than premium competitors offering higher-end electric models with features similar to those of the Clarity. Currently, the Clarity Electric is offered at a $199 monthly lease in California and Oregon where this battery-powered model is available.

Honda figures that an approach focused on commuters is a sweet spot for the Clarity Electric. Its range fits the needs of most commutes and its price is certainly justifiable for a commuter car, and a luxurious one at that, with fuel costs substantially less than conventionally-powered models. Plus, most households have two cars at their disposal, sometimes more. Having a Clarity Electric as a primary commuter car with a conventional gasoline or hybrid vehicle also in a household’s stable covers all bases.

Honda gave a lot of thought to the cabin design with welcome touches throughout. We especially like the ‘floating’ design of the center console with its array of integrated controls and flat storage tray beneath, with 12-volt and USB outlets. The dash features a handsome suede-like material and an 8-inch touchscreen display elegantly integrated into the dash. Deep cupholders feature flip-up stays for holding smaller drinks. Side door pockets are large enough to accommodate water bottles. The trunk offers plenty of room and is illuminated when the trunk lid is remotely or manually unlatched. At night this allows you to immediately note what’s inside through the trunk lid’s clear back panel before opening…something we’ve really come to appreciate over time.

Driving the Clarity Electric is a satisfying experience, with this sedan both well-mannered and responsive. Power is delivered by a 161 horsepower electric motor energized by a 25.5 kWh lithium-ion battery that can be charged in about three hours with a 240 volt charger, or in as little as 30 minutes with a public DC fast-charge system to an 80 percent state-of-charge. While its primary job may well be to handle everyday driving needs and negotiate traffic, it also delivers plenty of fun on twisty canyon roads with flat cornering and confident steering. It’s quick, like almost all electrics are because of instant torque delivered at launch, providing very satisfying acceleration.

Also appreciated is the Clarity’s handy Apple CarPlay integration and its Honda Sensing suite of driver-assist technologies. Among these are important features like adaptive cruise control with low-speed follow, forward collision warning, collision mitigation braking, lane departure warning, and road departure mitigation.

The Clarity Electric has served us well on our daily drives over the course of Green Car Journal’s ongoing long-term test. Its use supports what Honda envisioned for this efficient electric car. It has been ideal for around-town duty, area trips within its range, and daily commutes. Its thoughtful and sophisticated – dare we say futuristic – design and very satisfying drive experience are appreciated every day we’re behind the wheel.

With the growing market acceptance of electric vehicles in the U.S. comes an unprecedented auto industry focus on delivering these vehicles to consumers. Today nearly all major auto manufacturers and a handful of boutique automakers offer a growing lineup of electrified models.

When considering the purchase of an electric vehicle, the task of home charging is second in importance only to an electric’s driving range. How long will a charge take, and how often will it be needed? The cost associated with enabling home charging is also top-of-mind since using public or workplace chargers is a plus, but nothing beats the conveniences of overnight charging at home.

There’s an affordable and easy answer to these home EV charging concerns with the AV TurboCord Dual, developed by AeroVironment and available as part of Webasto’s EV Solutions product line. TurboCord Dual presents a portable transformable solution that aims to promote convenient electric vehicle charging using the two most common electrical outlets found in homes.

AV TurboCord Dual is a portable EV charging solution enabling both 120 or significantly faster 240 volt charging as needed through a quick clip-release adapter interface. It does not require hardwired installation to facilitate dual voltage charging, but rather connects to a standard 120 volt household outlet or 240 volt outlet.

While there is much competition in the home charging segment, there’s a lot to like about the AV TurboCord for its compact size,  portability, and ease of operation. TurboCord Dual will look familiar to anyone who has used AV public charging stations in much of the U.S. Simply open the charge port on your EV of choice, look for the pulsing light on the business end of the TurboCord, and you’re charging. When the unit stops blinking, you’re done.

TurboCord  Dual delivers a great solution for battery electric and plug-in hybrid vehicles alike, either at home or on the road. A handy carrying case easily stores the charger, power cord, and chargeport connector. AV TurboCord is available online or from your local building center.

沃尔沃全新XC40外观Volvo’s smallest crossover features an aggressive design that’s a bit of a departure for the automaker, even as it retains the fundamental styling cues that say ‘Volvo.’ The first model built on the automaker’s Compact Modular Architecture, the new XC40 is offered as either a T4 front-wheel drive or T5 all-wheel drive and in three trim levels. The XC40 looks deceptively small but has plenty of cargo and passenger capacity for longer trips. A plug-in hybrid and possibly an all-electric model are likely in the future.

Inside, the stylish cabin aims for an uncluttered look while still providing all the amenities SUV buyers desire. Functionality is a top priority, which the XC40 provides in intelligent ways with features like spacious door bins that accommodate a laptop or tablet, easily accessible under-seat drawers for stashing wallets or other necessities, and even a trash bin for cleaning up clutter. The front storage compartment holds a wireless charge pad for smartphones. Other welcome features include a standard 9-inch Sensus Connect touchscreen and an available panoramic sunroof that provides loads of available light.

New Volvo XC40 - interiorAll XC40s are powered by a 2.0-liter, turbocharged four-cylinder Drive-E engine. In the T4 this engine is rated at 187 horsepower and 221 lb-ft torque. Engine output increases to 248 horsepower and 258 lb-ft torque in the all-wheel drive T5. Both connect to an eight-speed automatic transmission. Manual gear shifts are possible with the Volvo’s shift lever or, alternatively, via steering wheel shift paddles on the R-Design model.

Standard on all XC40s are Automated Emergency Braking with Pedestrian Detection, Forward-Collision Warning, Lane-Keeping Assist with Lane-Departure Warning, Automatic High-Beam Headlamps, Driver-Attention Monitor, and Traffic-Sign Detection.  A self-parking feature, front and rear parking sensors, and Blind-Spot Monitoring with Rear Cross-Traffic Alert can be added as part of the Vision package.

New Volvo XC40 - 360 cameraVolvo offers Pilot Assist as a part of a Premium package. This is essentially adaptive cruise control with a semi-autonomous driving mode. It keeps the XC40 within its own lane and maintains a set speed and distance behind the vehicle ahead. Unlike some other near-self-driving systems, Pilot Assist requires the driver to keep his hands on the steering wheel at all times…perhaps not a surprise considering Volvo’s longstanding focus on safety.

The 2019 XC40 serves up 23 city and 33 highway mpg, at a starting cost of $33,700. Another option is Care by Volvo, an innovative subscription service that includes use of a new XC40 Momentum ($600 per month) or R-Design ($700 per month) for a maximum of 15,000 miles per year. Insurance, maintenance, and road-hazard protection are included, plus the opportunity for the lessee to upgrade to a new XC40 each year for the same all-inclusive monthly payment. A subscription lasts for 24 months.

沃尔沃全新XC40外观

MY19 Nissan Altima

Nissan's all-new, sixth-generation Altima has been extensively redesigned with greater refinement and efficiency, along with a more aerodynamic body boasting an impressive 0.26 drag coefficient. Distinctive styling cues include a more aggressive front facia with a V-motion grille and streamlined boomerang lights.

Inside there is a standard 7-inch driver display and a NASA-inspired zero gravity seat that enhances comfort and fights fatigue. Apple CarPlay and Android Auto come standard. Every 2019 Altima also comes equipped with a standard 8-inch multi-touch color display, Bluetooth hands-free phone system, streaming audio via Bluetooth, hands-free text messaging assistant, and Siri eyes free voice recognition. Some remote features are also accessible through NissanConnect Services’ Amazon Alexa Skill and Google Assistant Action.

MY19 Nissan Altima

Power is provided by a naturally aspirated, 2.5-liter four-cylinder engine producing 188 horsepower. There’s also an all-new, 2.0-liter turbocharged four-cylinder engine with 248 horsepower on tap. The world’s first production variable compression engine, this 2.0-liter powerplant enables compression ratio to adjust from 8:1 to 14:1  by continuously raising or lowering piston reach for performance or greater efficiency. Both engines connect to an Xtronic continuously variable transmission. Paddle shifters are available with the SR grade.

Every 2.5-liter Altima is now available with Intelligent All-Wheel Drive with a 50:50 torque split in most situations, a first for a Nissan sedan and something that remains a relative rarity in this segment. Front-wheel drive 2.5-liter models are rated at 28 city/39 highway mpg.

2019 Nissan Altima

Unique in the class, Nissan’s ProPILOT Assist helps drivers stay centered in the lane, navigate stop-and-go traffic, maintain a set vehicle speed, and maintain a set distance to the vehicle ahead.  To activate the system, a driver simply pushes the blue ProPILOT Assist ON button, then sets the Intelligent Cruise Control when the desired speed is reached, similar to a conventional advanced cruise control system. It uses a forward-facing camera, forward-facing radar, sensors, and an electronic control module.

Along with ProPILOT Assist, also new for 2019 is Rear Automatic Braking that helps a driver by detecting and warning of objects while backing up, and if necessary applying brakes to help avoid a collision. Other safety and convenience features include standard Automatic Emergency Braking, Intelligent Forward Collision Warning, and Intelligent Driver Alertness 3 on all grades.

Intelligent Around View Monitor is standard on the Altima Platinum. Safety Shield 360 includes Automatic Emergency Braking with Pedestrian Detection, Rear Automatic Braking, Lane Departure Warning, radar-based Blind Spot Warning, Rear Cross Traffic Alert, and High Beam Assist (HBA). A new Traffic Sign Recognition system provides the most recent speed limit information.

The 2019 Nissan Altima offers a base cost of $23,900, a point of entry approachable for a great many buyers seeking a fun-do-drive, stylish vehicle offering laudable fuel efficiency and some of the most advanced technology available in its class.

Our drive of the 2019 Lexus ES 300h, the hybrid variant of this automaker’s all-new, seventh-generation ES sedan, was accommodating as expected from this luxury brand with welcome performance. During our drives we found turn-in sharp and precise. Considering front-to-rear weight distribution is heavy over the front wheels, the suspension compensates well and the car feels well-balanced.

Built on Lexus’ new Global Architecture-K platform, the ES enjoys a 2.6-inch increase in length, 1.8-inch increase in width, and wider front and rear tracks compared to the model it replaces. It also offers a two-inch longer wheelbase at 113 inches and a more spacious rear compartment.

The luxury sedan’s most striking angle is its profile that shows low hood and roof lines. From the front it’s the automaker’s unmistakable spindle grill that dominates, enhanced by slim L-shaped LED projector headlights.

The ES 300h layout is front engine, front wheel drive with power derived from a 2.5-liter 4-cylinder engine, plus an electric motor mated to an all new hybrid transaxle. This delivers 215 total system horsepower. A six-speed automatic transmission with paddle shifters is electronically controlled and continuously variable.

Powering the electric motor is a nickel-metal-hydride battery that's more power dense and compact than its predecessor, allowing it to be relocated from the trunk to beneath the rear seat, thus adding welcome trunk space. This fourth-generation Hybrid Drive System enables accelerating from 0-60 mph in 8.1 seconds and provides a nearly 600-mile driving range, plus excellent combined 44 mpg fuel economy.

Inside is a well-appointed cabin that’s tranquil and free of exterior noise. New suction-type ventilated cooling seats kept us as comfortable and entertained as any in the new movie theaters. There are lots of choices for interior personalization with three color schemes available, four trims, and three material options for the seats. The car’s standard audio has 10 speakers, and to please audiophiles there’s the optional Mark Levinson audio with 1800 watts and 17 speakers.

Of course, the ES 300h offers all the latest driver assistance systems plus an array of convenience features like Apple CarPlay, and it will be Amazon Alexa-enabled for Android phones and iPhones. Outstanding fuel consumption, a striking design, and first-class amenities make the new Lexus ES 300h a real contender for today’s premium car buyers. 

The price of entry for the conventionally powered 2019 Lexus ES is $39,500, with the ES 300h hybrid just $1,810 more at $41,310. 

nissan-leaf-straight-on-2First off, this is not the LEAF we’ve grown accustomed to seeing on the road since the model’s introduction in 2010. Our drive of the new generation 2018 Nissan LEAF quickly reinforced this is a whole-new animal, a new generation of the venerable electric car intended to capture the imagination and, not coincidentally, market share in the increasingly competitive electric vehicle field.

We have history with the LEAF. Green Car Journal first experienced the original LEAF’s capabilities in a technology demonstrator designed to share what Nissan had in mind for its groundbreaking, soon-to-come production electric vehicle. At Nissan’s behest, we tested the automaker’s LEAF-destined electric drivetrain in its EV-12 test mule back in 2009 at Nissan’s global headquarters in Yokohama, Japan. We later witnessed the LEAF’s unveiling, clearly showing Nissan’s willingness to push the envelope for electric cars with an edgy design.

nissan-ev-12-test-muleWe were impressed. So much so, in fact, that Green Car Journal honored the LEAF with the magazine’s 2010 Green Car Vision Award™ in Washington DC, ahead of its introduction to the market. Nissan’s insight into what electric vehicle buyers desired has indeed proved visionary over the years. Testament to this is the LEAF’s standing as the world’s leading affordable, mass production EV since its launch.

The all-new generation Nissan LEAF aims to expand on this success with new styling and a 50-percent increase in driving range. It also features a full suite of Nissan Intelligent Mobility technologies. This all-electric model is more attractive with excellent aerodynamics that result in a low 0.28 drag coefficient. Improved aerodynamics not only means a quieter ride but also contributes to greater range. That’s an important consideration in electric cars with near-silent drivetrains that don’t mask outside noise.

nissan-leaf-rearThe new Leaf features a 150-mile driving range between charges compared to the previous generation’s 100 miles. This is an important milestone that serves to overcome potential ‘range anxiety.’ Why 150 miles rather than shooting for the 200+ mile range like the Chevy Bolt EV and Tesla Model 3? It’s all about balancing price with functionality. Simply, Nissan aimed at providing an affordable price point under $30,000 for the LEAF. That meant delivering the range it figured would fit the driving needs of most drivers while keeping battery costs within reason. It’s a sound strategy.

A more powerful 40 kWh lithium-ion battery pack features improvements and revised chemistry that bring a 67 percent increase in energy density. Nissan designers have located the low-slung battery pack and other heavy components to the middle of the chassis to enhance the car’s center of gravity and handling. Fun fact: Using vehicle-to-home systems, the LEAF’s battery can store a home’s surplus solar energy while parked during the daytime and use it to help power a home in the evening.

nissan-leaf-underhoodLEAF’s electric powertrain features a 147-horsepower electric motor that’s well-suited to the model. It provides 38 percent more horsepower than the previous version with 26 greater torque for improved acceleration. Acceleration is crisp with more than enough power at the ready for all the driving situations we encountered on twisty roads and Interstates. Intelligent Ride Control delivers more precise motor torque control during cornering. This also reduces vibration while improving ride quality and steering control. Electric power steering software has been tweaked for improved steering feel. The LEAF’s steering torsion bar is also stiffer for better feedback and more linear response to steering inputs.

Nissan’s e-Pedal slows down the car via regenerative and friction braking when a driver’s foot lifts off the accelerator. This delivers electricity to the battery while essentially providing braking force without using the car’s brake pedal. It even brings the car to a complete stop. We found that driving with e-Pedal kept our LEAF tester in place while stopped on a steep hill without requiring a foot on the brake pedal. Notably, e-Pedal allows drivers to go without using the brake pedal 90 percent of the time.

nissan-leaf-interiorLEAF’s ProPILOT cruise control conveniently maintains a constant distance to the vehicle ahead.  If that vehicle stops, ProPILOT automatically applies brakes to also bring the LEAF to a full stop. It remains stopped even with your foot off the brake. Driving resumes when ProPILOT is activated with the touch of a switch or light pressure on the accelerator. The system also helps keep the LEAF centered in its lane at speeds between 19 and 62 mph. Other LEAF driver-assist technologies include Intelligent Lane Intervention, Lane Departure Warning, Intelligent Emergency Braking, Blind Spot Warning, Rear Cross Traffic Alert, and Intelligent Around View Monitor with moving object detection.

The new LEAF’s interior has a more luxurious and high-end look. Its dashboard is dominated by a seven-inch display for infotainment and the navigation system, if so equipped, plus Nissan's Safety Shield state-of-charge and power gauge. Another seven-inch screen faces the driver in place of conventional dials. Apple CarPlay and Android Auto are included on LEAFs with the higher-spec infotainment/navigation system.

nissan-leaf-chargingToday’s electric car market is different than that of the past. There are more choices in a growing number of vehicle classes and this makes it tougher for automakers to compete. Nissan aims to not only compete in the electric car field but dominate globally as it has in recent years.

The LEAF’s status as a true world car is underscored by widespread availability like the previous-generation LEAF. It’s also reinforced by Nissan’s global manufacturing capabilities with assembly plants in Japan, England, and in Smyrna, Tennessee. Offering the all-new LEAF at a base price of $29,990 here in the U.S. is a strategy that should bode well for Nissan in today’s increasingly competitive electric vehicle market.

nissan-leaf-1


vw-allroad-side-1Volkswagen added its 4MOTION all-wheel drive and a few other tweaks to the Golf SportWagen to create the Golf Alltrack, a five-seat hatchback with off-road capability. Available in S, SE, and SEL trim levels, it features a full suite of connectivity and driver assistance systems, either as standard or optional equipment.

Like the Golf SportWagen, the Golf Alltrack is powered by VW's 1.8 liter DOHC four-cylinder TSI engine. This turbocharged and intercooled, 16-valve direct fuel-injected powerplant is rated at 170 horsepower and 199 lb-ft torque. A six-speed manual is standard on the S and SE, with a 6-speed dual-clutch automatic with manual shifting mode and available steering wheel paddle shifters optional, but standard on the top SEL model.  EPA rates the Alltrack at 22 city/32 highway mpg, a few mpg less than the SportWagen that comes with 4MOTION.

vw-allroad-underhood-1VW’s 4MOTION all-wheel drive system normally delivers power to the front wheels and can also sends torque to the rear wheels when needed, with the system automatically adapting to varying road conditions for additional traction. Drivers can select between Normal, Sport, Custom, and Off-Road modes. All-wheel-drive also works in conjunction with other active stability systems like Electronic Differential Lock (EDL). Hill Descent Control actively helps control brake application when descending steep inclines, a feature that’s especially helpful in slippery conditions to maintain a constant, controlled speed. An available three-gauge Off-Road Monitor provides information about altitude, steering wheel angle, compass heading, and more.

The Alltrack is 2.1 inches taller than the SportWagen with an increased ground clearance of 6.9 inches. It also features rugged bumpers for tough conditions. Bi-xenon headlights with LED daytime running lights are available on the SEL. The model’s optional adaptive front-lighting system turns the headlights slightly with steering at certain speeds. A power tilting/sliding panoramic sunroof is available along with roof rails that work with VW accessories for carrying outdoor equipment.

vw-allroad-front-with-kayak-1Car-Net App-Connect allows the use of select apps from a compatible smartphone on the dash, providing information, support, and assistance to make this the center of a driver’s mobile universe. The system’s Guide & Inform features handy items like enhanced navigation with traffic updates, sports scores, weather information, and more. VW Car-Net Security & Service allows a smartphone to locate the car’s last parked location, check to see if doors are locked, or call for help in an emergency.

VW provides desired driver assistance systems that include a rearview camera system and much more. Front Assist, which includes Forward Collision Warning with front sensors, helps monitor traffic and warn of a potential collision. If a collision is imminent, Front Assist’s autonomous emergency braking helps brake the car. Adaptive Cruise Control helps maintain a preset distance from the car in front. If the car in front speeds up or slows down, sensors detect the change and respond by slowing or stopping the Alltrack automatically. Lane Departure Warning senses when an Alltrack driver is drifting into another lane without a turn signal activated and provides steering input to keep the car in its correct lane.

ron-driving-vw-alltrackPark Distance Control uses sensors that help a driver drive into or back out of a parking spot. Audible signals and an optical parking system function in the display indicate how much space is available behind or in front while parking. An alert sounds as a warning if you get too close. The display provides additional support for a driver by showing the position of obstacles. Park Assist determines if a parking spot is big enough, then helps steer the vehicle into the space while a driver operates the accelerator, brake, and shifter.

Those looking to get into a handsome and versatile wagon with off-road capabilities should give the VW Alltrack a close look. It features VW’s expected attention to detail and quality while delivering a fun-to-drive nature and capabilities that allow heading for roads less traveled, at a reasonable MSRP of $25,850 that fits a lot of budgets.

vw-allroad-cabin