Green Car Journal logo
Greg Roche, Clean Energy Fuels.
Greg Roche, VP of Sustainability at Clean Energy.

Trucking companies, and the shippers that hire trucking companies, are making bold commitments to cut their carbon footprint – such as becoming net zero by 2030. Yet achieving net zero or better requires more than operational improvements. Alternative technologies are needed to move beyond even the cleanest diesel platform. Renewable natural gas (RNG) has emerged as the leading pathway for low carbon, clean air trucking. There are three compelling reasons why RNG is helping sustainable companies decarbonize their transportation today.

Lowest Carbon Transportation Fuel

RNG is derived from organic material found in green waste, food waste, landfills, sewage treatment, and livestock manure. These organic wastes naturally decompose into methane. Methane that leaked into the atmosphere is a potent short-lived climate pollutant and greenhouse gas. Rather than releasing into the atmosphere, methane can be captured and converted into a drop-in replacement fuel for conventional natural gas.

When used for vehicle fueling, RNG reduces carbon by capturing methane that would escape into the atmosphere; and by replacing high-carbon diesel fuel. The chart below shows the carbon intensity of traditional fossil fuels and low-carbon alternative fuels. RNG produced from dairy manure has carbon emissions that are up to 300 percent cleaner than diesel fuel, and has the potential to be negative carbon intensive. Replacing just 25 percent of a fleet’s diesel trucks with negative carbon intensive RNG from dairy manure can reduce a fleet’s carbon emissions by 100 percent.

RNG is lowest carbon alternative fuel.

RNG Trucks Improve the Air

Many areas of the U.S. have harmful air, and diesel trucks play an oversized role in local air pollution. The greater Southern California area, California’s Central Valley, Houston, Dallas, Salt Lake City, and other metro areas share this air pollution problem. Air pollution contributes to respiratory, cardio, and other illnesses. Studies have linked local air pollution to susceptibility to COVID-19, Alzheimer’s disease, and cancer. Diesel trucks emit high amounts of local air pollutants such as oxides of nitrogen (NOx) and diesel particulate matter. Diesel particulate matter is classified as a toxic air contaminant and is composed of carcinogenic compounds.

Trucks powered by RNG have 90 percent lower NOx emissions than a new diesel truck and over 98 percent lower NOx emissions than many of the diesel trucks in use today. RNG-powered trucks have zero emissions when it comes to carcinogenic diesel particulate matter.

RNG Trucks Save Money

RNG fuel costs less than diesel fuel. Fuel savings are particularly amplified today with skyrocketing diesel prices. RNG prices are also less volatile than petroleum fuel.

RNG trucks have great economics compared to other emerging clean technologies. The cost of these emerging technologies is 200 percent to 300 percent more expensive than RNG trucks. These emerging technologies have far more expensive charging or fueling infrastructure costs than RNG fueling. An RNG truck at one-half to one-third the cost of other technologies has better carbon reduction and equivalent air quality benefits.

Leaders are Taking Action Today

Climate pollution and air pollution are problems that exist today, not far in the future. While it is noteworthy for companies to make aspirational goals to achieve net zero carbon emissions in the future, RNG trucks offer the ability to achieve net zero immediately. RNG truck technology has been proven and perfected over the past 14 years. RNG engines are mass produced by Cummins, and RNG trucks are mass produced by Freightliner, Peterbilt, Kenworth, Volvo, and Mack. RNG fueling infrastructure is available throughout North America and is rapidly expanding. Clean Energy alone has over 560 fueling locations at customer sites and at retail locations.

Companies like Amazon, UPS, Waste Management, SAIA, Estes, and TTSI are deploying thousands of RNG trucks today. What do these sustainability-leading companies know? RNG is the lowest carbon fuel available and offers an affordable alternative to diesel today that is proven and scalable.

Greg Roche is the Vice President of Sustainability at Clean Energy, the country’s largest provider of the cleanest fuel for the transportation market.

Tim Reeser, CEO of Lightning eMotors electric vehicles.
Tim Reeser, CEO of Lightning eMotors.

It’s been more than 100 years since Henry Ford’s Model T revolutionized the way the world moves people and goods. Ford didn’t invent the car, but over the course of about 30 years, he transformed the way vehicles are manufactured – increasing volumes, driving down costs, and converting them from expensive novelties to affordable conveyances for workers and families. Just as importantly, over the last 100 years, other entrepreneurs and innovators developed an infrastructure ecosystem to ensure these vehicles could be fueled, serviced, and customized.

More than a century later, we find ourselves on a new transportation frontier that is once again transforming the way society moves people and goods. This time we are transforming how vehicles are propelled, from internal combustion engines (ICE) to electric, and modernizing the fueling infrastructure. Gone will be the days of imported crude, cumbersome fluid tanker trucks, and lines at the gas station, in favor of producing fuel via localized grids and microgrids, and distributing that fuel via depot chargers, home chargers, and public charging stations.

As we approach 30 years since the first modern retail offering of battery-powered electric vehicles, it’s clear that EVs – of all shapes, sizes, models, and payloads – are here to stay. I am certain of this because nearly every day I witness the reaction of drivers when they operate a Lightning eMotors commercial EV for the first time – smooth, quiet, powerful, and equipped with safety features never before available on commercial vehicles. I see their response when we talk about efficiency of nearly 60 MPGe on the exact same vehicle that got 13 mpg as a gasoline vehicle.

These products and this industry are my passion. I have dedicated myself to creating a company that not only builds amazing products, but also builds products that make both environmental and business sense, a company that helps move the planet in the right direction. As CEO of Lightning eMotors (NYSE:ZEV), a leading manufacturer of commercial vehicle electrification, telematics, and energy and charging solutions, I have seen that it is possible to build exciting products that also have a compelling business case and are environmentally transformational.

Industry and Government Aligned

Not only has growing public awareness of the environmental and health benefits of electric vehicles led to government legislation and funding to promote the transition from internal combustion engines to electric, but evidence for the EV business case continues to grow as well. Companies of all sizes and purposes are dedicating resources to support the transformation of their fleets to electric vehicles.

In addition to the growing list of companies that has pledged a commitment to reducing their fleet impact on the environment, within just the past year the Environmental Protection Agency allocated $5 billion to replace existing school buses with zero-emission and low-emission models through the Clean School Bus Program. In addition, the Federal Transit Administration announced almost $5 billion for public transit agencies, states, and Tribal governments to support public transportation across the country through its Low or No Vehicle Emissions Program; and the United States passed the $1.2 trillion Infrastructure and Jobs Act and the Inflation Reduction Act, both of which provide billions in new funding for EVs and EV infrastructure. History has rarely seen industry and government so closely aligned on a path forward. This is yet another sign that electric vehicles are the future.

Plugging in Lightning eMotors electric vehicles.

Specialty Commercial Vehicles

While it’s true, for the time being, that up-front costs are higher than their petroleum-powered counterparts, as industry continues to invest in EV technologies and as government continues to provide incentives to purchase, more electric vehicles are being manufactured. Scale is growing and costs are coming down. What’s more, data is proving that over their lifetimes, electric vehicles will last longer and require far lower maintenance and fuel costs.

Critics point to the bumps in the road for EV makers as proof that the endeavor itself cannot succeed. Of course, establishing a successful EV industry comes with challenges. But we are at the point where EVs have proven themselves to make sense logistically, financially, and environmentally, and transitioning from internal combustion engines to electric is both financially prudent and impactful for the environment.

A little-talked-about factor helping to lower the cost of entry is the increasing production of specialty commercial vehicles. In fact, according to the 2022 IEA Global Electric Vehicle Outlook, the business case for light commercial vehicles (LCV) is stronger than for cars, with sales of LCVs increasing 70 percent in 2021.

Passenger vans are among Lightning eMotors' electric vehicles.

EVs in Commercial Fleets

Those of us who spent more time at home during the pandemic, marveling at how easy and ubiquitous home delivery has become, are probably not surprised by that. And it’s only increasing. In a post-COVID world, e-commerce sales are forecast to rise 37 percent from 2020 to 2024, according to Statista Digital Market Outlook 2020.

We estimate there to be 2,500 electric vehicles in use in commercial fleets across North America – many as transit buses and cargo delivery vans and trucks, but also as passenger vans, shuttle buses, school buses, ambulances, and motor coaches. And the number is growing every day, as business and industry recognize the value of zero-emission transportation options for customer satisfaction, growing investor demands for sustainability and, importantly, their bottom lines.

Adoption no longer depends on emotion. Choosing EVs for commercial use is a demonstrably smart business decision. It’s no longer a matter of if the world’s primary source of transportation will be EVs but when…and when is now.

Lightning eMotors electric RV.

Electric Vehicles are More Efficient

At Lightning eMotors, we see firsthand through our advanced telematics capabilities the efficiency of all our zero-emission vans, trucks, and buses through every phase of their lifecycles. Our vehicles have demonstrated between four-and-six-times better efficiency than their gasoline-powered siblings over the last 2.3 million real-world miles. In total, vehicles deployed by Lightning have removed more than 1,850 tons of CO2 from our environment.

As pathways toward adoption continue to grow, some companies will succeed, some will consolidate, and a few will fold. Regardless, the commercial EV market is now firmly established and will continue to make a positive impact on air quality, greenhouse gas emissions, and its customers’ bottom lines.

Henry Ford is quoted as having said: “Don’t find fault, find a remedy.”

The commercial EV industry is a remedy. It’s a remedy for business costs, efficient and effective resource use, and reducing carbon emissions into the environment, and it has been quietly making inroads into the mainstream for the past three decades.

Before long, the days of internal combustion engines dominating our roadways will be as much a symbol of the past as Ford’s Model T.

Tim Reeser is CEO and Founder of Loveland, Colorado-based Lightning eMotors

Green Car Time Machine - archive articles from Green Car Journal.

Toyota’s path to producing all-electric vehicles has been a long one, highlighted by the RAV4 EV model it fielded to fleets in response to the California Air Resources Board’s Zero Emission Mandate in the 1990s. Green Car Journal editors test drove variations of this small electric SUV during those early years of the modern electric vehicle’s development. We were impressed by Toyota’s exploration of the potential market for battery EVs at the time. To lend perspective on this automaker’s electric vehicle development, we present this article on the Toyota RAV4 EV pulled from our archives, just as it ran in our January 2002 issue.

Excerpted from January 2002 issue: Many thought the RAV4 EV – the electrically motivated compact sport utility vehicle from Toyota – was gone, the victim of a completed agreement with the State of California in the late 1990s. But it’s not. Toyota Motor Sales USA is bringing the sporty little EV back, this time making it available to retail customers in California, not just fleets. Sales are slated to begin in February 2002.

Rear view of Toyota RAV4 EV.

Fleet Service First

RAV4 EVs made their mark during the late-1990s as hundreds of these were leased and placed in fleet service. Some 700 of the 900 RAV4 EVs were in use in California. That occurred because of requirements imposed on automakers, including Toyota, by the California Air Resources Board, the result of the Memoranda of Agreement that accompanied postponement of the 1998 Zero Emission Vehicle Mandate.

That was then, this is now. No mandate exists this year, although all automakers are feeling the pressure of the impending 2003 ZEV rule that will require major automakers to sell large numbers of EVs to meet a 2 percent threshold. In retrospect, maybe Toyota’s move to bring the RAV4 EV back isn’t surprising after all.

RAV4 EV Powertrain

The RAV4 EV is powered by a maintenance-free, permanent magnet motor that produces 67 horsepower (50kW) and 140 lb.-ft. torque, providing an electronically governed top speed of 79 mph. Front wheel drive is via a single speed transaxle, with reverse provided by backward motor rotation.

A sealed, 288 volt nickel-metal-hydride (NiMH) battery pack provides energy to the motor. This pack, comprised of 24 12-volt modules, is located beneath the SUV’s floor to minimize intrusion into the passenger compartment and optimize the vehicle’s center of gravity. Charging this pack requires five to six hours.

Driving the Toyota RAV4 EV

Stopping power is supplied by an anti-lock and regenerative braking system that utilizes solid aluminum front discs and steel rear drums. The regenerative system returns energy to the batteries whenever the RAV4 EV is coasting or braking.

Time spent behind the wheel of the RAV4 EV has shown this vehicle to be fun, dependable, and capable of fulfilling most daily missions with ease, so long as they fit within the vehicle’s range capabilities. Since an electric motor produces peak torque immediately, the RAV4 EV offers good off-the-line acceleration but a rather modest 0-60 mph elapsed time of about 18 seconds. Driving range is between 80 to 100 miles per charge.

Efficient Heat Pump HVAC

Seating for five and ample space for cargo is provided in this five-door compact SUV. The interior offers the high level of function and comfort expected of a Toyota product, featuring such standard amenities as split fold-down rear seats, heated driver and front-passenger seats, adjustable-height front seatbelt anchors, and dual front airbags. Convenience is well accommodated by a heated windshield, rear-window wiper and defogger, and power door mirrors, windows, and door locks. An AM/FM stereo system with CD provides the needed tunes. Rear seat heaters and traction control are available options for cold climate use.

One of the advantages of electric vehicles is their use of heat-pump type air conditioning, an innovation that allows climate control functions to operate while a vehicle is turned off and parked. RAV4 EV drivers have the ability to set a timer and adjust their vehicle’s pre-heat or pre-cool function so the SUV’s interior is at a desired comfort level regardless of outside temperatures.

RAV4 EV Priced at $42,000

Toyota says the RAV4 EV will have a rather lofty suggested retail price of $42,000, although a $9,000 California Air Resources Board incentive and $3,000 federal tax credit brings the price of entry down to $30,000. This includes an in-home charger. Three introductory lease options will be offered that also include the use of the charger.

Every major metro market in California will soon find a participating RAV4 EV dealer. While initial sales are aimed exclusively in California due to Toyota’s need to address this state’s 2003 ZEV mandate, success here would certainly find the RAV4 EV making its way to other markets soon enough, starting with those poised to follow California’s lead by adopting the state’s ZEV requirements.

Toyota aims to make it easy for buyers to connect with their new electric vehicle. Like the Prius gas/electric hybrid, customers will have the ability to order the RAV4 EV online and take delivery through a participating dealer, as is the case with the Prius currently.

Mike Stanton, NADA Chairman and CEO.

Dealers are ‘all in’ on EVs and incredibly excited about the new electrified products that are being announced almost daily. Dealers are hungry for the sales and service opportunities that are going to come with having numerous new EV models to sell.

While today’s EVs are exceptional, particularly compared to those of just a decade ago, the reality is that almost all appeal primarily either to stalwart supporters of reducing greenhouse gas emissions or luxury vehicle l buyers who want to be on the cutting edge of technology and performance.

One of the great mistakes we make in assessing our progress on converting America’s fleet to electric is assuming that today’s EV buyers will look like the EV buyers of tomorrow. This simply isn’t true.

It is undisputed that Tesla has been extremely successful at selling its products, and the company deserves significant credit for what it has been able to accomplish. But Tesla’s success does not prove that you can sell EVs in great quantities in America: What Tesla has proven is that you can sell Teslas very successfully in America to a certain, and small, subset of affluent new-car buyers.

Mass adoption of EVs in America won’t be achieved using a Tesla-type of direct to consumer model. Why? Because the typical Tesla, Rivian, or Lucid buyer isn’t who’s going to be buying the next generation of EVs.

EVs Entering the Mainstream

Look around at so many of EVs being announced and marketed heavily lately – the electric Chevy Silverado and Blazer, the VW ID.4, and the Hyundai IONIQ 6, for example. Far from status or luxury vehicles, each actually has a starting MSRP below the average transaction price of a new vehicle – including ICE cars and trucks – sold today.

As the EV market continues to leave the luxury niche status and enters the mainstream, its customers will come to resemble the average car buyer more and more. And it’s these EV customers of the future who we need to cater to if we are to have meaningful and broad EV adoption. Because to sell effectively to mass-market buyers, you need to capitalize on what has worked for mass-market buyers for generations.

Dealers: More Than a Transaction

National Automotive Dealers Association Academy sign.

Things like consumer education about the product, help with comparing models, working with a customer’s budget constraints, financing assistance, helping with trade-ins, allowing test drives, and – yes – even good-old-fashioned tire kicking. And this is all in addition to the new challenges specific to EVs, such as the complexities of charging – the fact, for instance, that electric rates vary based on the time of day and the level of charge – and other variables that don’t exist in the ICE market.

Dealers are absolutely essential in this world of new EVs. Because once you get past luxury vehicles and into the mass market, you will not achieve broad acceptance of any product, regardless of how it’s powered, by rejecting the attributes of the sales and service process that mass-market vehicle buyers aren’t just accustomed to, but that they depend on to confidently choose the right vehicle at the right price that best meets all their needs.

Greater Effort = Greater Volume

This is a critical juncture in our march towards a cleaner future. And it’s a good time for policymakers and stakeholders at all levels to think critically about what it’s going to take to sell EVs in greater volumes to customers who haven’t experienced EVs yet.

Because the reality is that it’s going to take a lot. It’s going to take a network of tens of thousands of retail and service points located in just about every corner of the country, not just a website. It’s going to take hundreds of thousands of knowledgeable sales staff, not just a 1-800 number. And it’s going to take hundreds of thousands of highly trained technicians capable of providing professional service on the spot, not just mobile repair trucks. It’s going to take dealers. Fortunately, we’re already here, and we are raring to go.

Mike Stanton is Chairman and CEO of the National Automobile Dealers Association

Lexus NX Hybrid driving on road.

With few exceptions, it’s true that gas-electric hybrids cost more than conventional internal combustion vehicles. That makes many wonder if buying one of these high efficiency vehicles is worth the extra cost and, importantly, if the difference can be offset over time – the hybrid payoff – from buying less fuel.

While plenty of generalizations have been made about this in recent years, the concept of payback for a hybrid’s incremental cost involves many variables and can only be answered on a case-by-case basis. Green Car Journal’s research shows that a realistic answer is not so simple, and boiling this down into a simple chart is misleading…so we’re not going to do that. Instead, we’re going to do this the right way and help you come up with a valid payback factor for the hybrid you may be considering. 

Hybrid Payoff a Moving Target

You need to know that crunching the numbers involves some elements that are moving targets. For example, higher gasoline prices work to shorten the number of miles and time needed for payback. At the same time, high gas prices are also finding many drivers putting fewer miles on their vehicles in order to save money. Fewer miles can lead to a longer payback. Plus, let us not forget that the retail price of hybrids – or really any cars these days – is also in play. Many dealers are tacking on a serious premium – sometimes thousands of dollars – onto the suggested retail price of any new vehicle because of today’s high demand and supply chain restraints.

Still, the basic equation for determining a hybrid’s breakeven point is straightforward. It begins by identifying the combined city/highway mpg number for a hybrid and that of its closest conventional counterpart. These mpg figures can be found online at fueleconomy.gov. Once armed with these numbers you can calculate each vehicle’s operating cost per mile based on current fuel prices. 

Toyota RAV4 Hybrid Example

Toyota RAV4 driving on highway.

To come up with a hybrid payoff calculation, simply divide the price of fuel (such as $5.00 per gallon) by a vehicle’s combined mpg. As an illustration, a Toyota RAV4 compact SUV with a combined rating of 30 mpg would pencil out as follows, assuming the above gas cost: $5.00 ÷ 30 mpg = $0.167, (16.7 cents) per mile operating cost. If a RAV4 Hybrid with a combined average of 40 mpg is substituted, that number comes down to $0.125 (12.5 cents) per mile. So, the hybrid variant would cost $.042  (4.2 cents) less for each mile driven.

A wild card here is the type of driving you’ll be doing on a daily basis. Conventionally powered models can get considerably higher gas mileage in highway driving than in the city. On the other hand, hybrids get better city mpg than on the highway because hybrid electric power offers the biggest efficiency bump during lower speed, stop-and-go city driving. Simply, a hybrid’s electric motor and battery are doing more of the work under these driving conditions.

Highway vs. City Driving

Vehicle display showing hybrid operation.

Placing this in context, a standard RAV4 nets 27 city mpg with the hybrid coming in at 41 city mpg, a significant difference of 14 mpg. On the highway, the difference in mpg is much less. The conventional RAV4 is estimated at 35 mpg on the highway and the hybrid at 38 mpg, a mere difference of 3 mpg. Thus, if you’re doing mostly highway commuting miles then the cost differential between standard and hybrid models may not be worth the additional cost. That is, if price is your primary motivator and not environmental impact. We’ll stick with EPA’s combined city/highway mpg figures to keep things simple.

Next, determine the manufacturer’s suggested retail price (MSRP) for the models you’re comparing. The RAV4 has an MSRP of $26,975 while the RAV4 Hybrid is $29,575. To find the projected mileage to a breakeven point – where the increased fuel efficiency offsets the extra cost of a hybrid – start by calculating the difference in price between the hybrid model and an identical conventionally powered model.

Beyond the Basics

Hybrid payoff comes from an efficient powerplant.

If all this sounds simple, rest assured it’s not. Finding direct hybrid/gasoline model comparisons can be tricky since some features that come standard on hybrid models may only come as additional cost options on their gasoline powered counterparts. Auto manufacturers often sweeten the deal on hybrids with additional content to soften a hybrid’s higher price. These extra features cost the manufacturer much less than the added retail value they bring to the consumer, so this content serves to take some of the sting out of the additional money being paid for more expensive hybrid technology. 

The challenge in identifying a direct hybrid comparison is illustrated by the Toyota RAV4. Exploring the various engine and trim levels available for the non-hybrid model shows that none offer the exact mix of options and components as the hybrid model.

Additional Hybrid Payoff Variables

High efficiency delivers a hybrid payoff over time.

Still other factors cloud the issue. Beyond the typical daily use mentioned – mostly city driving versus highway commuting – driving habits can influence the payback equation. If you drive conservatively with fuel economy in mind, fuel efficiency can sometimes vary by as much as 5 mpg either way, regardless of whether your vehicle has a conventional or hybrid powerplant. And remember our mention of dealers currently adding premium pricing? A check at our local Toyota dealer showed $3,000 being added to the base cost of a standard RAV4 and $5,000 to the base cost of a RAV4 Hybrid. That, of course, skews the math for a payback analysis. Again, to keep things straightforward, we’re using the manufacturer’s suggested retail price for these two models without markup. That said, the hybrid payoff calculation can be easily adjusted to reflect the actual sales cost of the conventional and hybrid models you’re considering in real time.

So here’s the math: The differential between the MSRP for the conventional and hybrid RAV4 models is $2,600. At a savings of $.042 (4.2 cents) per mile, this differential cost would be recaptured in some 61,904 miles of driving the RAV4 Hybrid. How long will that take? Again, there are variables. But according to the Federal Highway Administration, figuring the national average of 14,000 miles yearly, this means the payoff would arrive in just under 4 1/2 years (61,904 miles ÷ 14,000 miles = 4.42 years).

How Long Will It Take?

High mpg means a quicker hybrid payoff.

Keep in mind that the actual length of time to reach this payoff point may be influenced by the state in which you live, lifestyle, your work/transportation circumstances, and the proliferation of public transportation options. As an example, wide-open states like Wyoming find drivers traveling the most annual miles, at an average of just over 24,000 miles yearly. Other states like New York and Rhode Island see drivers behind the wheel far less, at about 10,000 miles annually, more or less. In the case of the former, the hybrid payoff could arrive in under 3 years. In the latter case, payoff would take just over 6 years.

A major consideration when shopping for a new hybrid is the length of time you plan to keep it. If you’re a short-term buyer, then the math to breakeven can be harder to achieve. The big variable here is the resale or residual value when you sell the car or, if a lease, when it’s time to turn it in. A hybrid may well retain much of the value of the premium you pay due to high demand, particularly if you sell it or trade it in after only a few years. That’s because of today’s significantly higher value for used cars, a reflection of the high demand/low inventory automotive market these days. This could work in your favor even if you lease a hybrid, since a high residual value often means you can buy your vehicle at end-of-lease rather than just turn it in. Then you can sell it, or trade it in, at a profit. A high value at the end of your purchase or lease term can effectively reduce the time or miles to hit breakeven. 

Battery Replacement Cost

Hybrid electric vehicle battery pack.

We’re not factoring in the eventual cost of a hybrid’s battery replacement because our focus is on acquiring a new hybrid model. Frankly, most buyers aren’t likely to keep their new hybrid long enough for battery replacement to be an issue. Manufacturers offer a federally mandated minimum 8 year/100,000 mile battery warranty for their hybrids so replacement in a new hybrid model is expected to be quite a ways down the road. Of course, the case is different for those buying a used hybrid because battery packs will eventually need to be replaced, at a likely cost of thousands of dollars, depending on model.

When will a hybrid pay for itself? We like to think the day you drive the vehicle off the lot. In hard numbers using our straightforward formula, though, you can figure it out yourself and come up with an approximation that fits your particular circumstances.

Being an adopter of environmentally positive technology, reducing oil dependency, and creating less pollution and greenhouse gas emissions has its own rewards. The substantial savings realized at the pump every time a new hybrid is filled up provides real and immediate financial gain. All things considered, the answer to those questioning whether a hybrid will pay off seems pretty clear. 

Jeep Grand Cherokee front end.

Jeep is on a roll. This enduring brand, symbolically aligned with the American persona due to its rich history here, is certainly getting it right. Long popular with those seeking on- and off-road capabilities and the rugged image that comes with that, there’s a Jeep model to fit diverse desires and needs. The Jeep Grand Cherokee, introduced in its fifth generation in 2021, is at the luxe side of the spectrum.

Beyond the Jeep Grand Cherokee’s obvious benefits for families – roominess, high functionality, desirable features, and style – this full-size SUV offers something that’s increasingly important to a great many new car buyers today: electrification. This comes in the form of the Grand Cherokee 4xe model, a plug-in hybrid offering efficient hybrid operation as well as the ability to plug in, the latter capability enabling 25 miles of zero-emission, on- and off-road driving on battery power at the flick of a switch.

Plug-in charging port in Jeep Grand Cherokee 4xe.

Best-Selling PHEV

We’ve noted Jeep’s interest in electrification for some time as part of Chrysler/Dodge/Jeep electric concept vehicle explorations, most notably back in 2008. Jeep started its modern electrification push with the ever-popular Wrangler, introducing the Wrangler 4xe plug-in hybrid variant in the 2021 model year. By 2022, this model laid claim to being the best-selling plug-in hybrid in North America. That’s saying a lot given the wide array of PHEVs now available to consumers.

The electrified Grand Cherokee 4xe is the expected, and welcome, follow up. Sporting an appealing and sophisticated design, the Grand Cherokee 4xe features distinctive Jeep styling cues, low-silhouette headlights and taillights, a handy roof rack, and angular, metal-trimmed through-the-bumper exhaust. Blue front tow hooks are exclusive to the 4xe model, as is a chargeport found at the driver’s side front fender.

Rancho-Guadalupe Dunes Preserve sign.

Jeep Grand Cherokee on the Road

We recently had the opportunity to take a road trip in Jeep’s electrified Grand Cherokee 4xe, which included a fascinating visit to the Guadalupe-Nipomo Dunes National Wildlife Refuge on California’s Central Coast. Our time behind the wheel illustrated why this is such a popular model. The ride is comfortable and performance solid, with all the acceleration you need delivered by a turbocharged 2.0-liter four cylinder engine and a pair of electric motors. Together, this package delivers an abundant 375 hp and 470 lb-ft torque that’s delivered to the road via a TorqueFlite eight-speed automatic transmission. Energy is provided by a temperature controlled 17 kWh lithium-ion battery pack packaged beneath the vehicle’s floor and protected by skid plates.

Driving modes are selectable on a panel at the lower left of the steering column – Hybrid, Electric, and e-Save. The first enables driving in gas-electric hybrid mode using both the combustion engine and electric motors. Electric mode uses motor-battery propulsion exclusively for zero-emission driving. The e-Save function allows running without any use of battery power, allowing a driver to save maximum energy for all-electric driving in desired areas, such as on trails. The Jeep’s Selec-Terrain system features controls on the center console that allow optimizing driving characteristics with selections for Sport, Rock, Snow, Mud/Sand, and Auto. Hill Descent Control and 4WD Low are also selectable on the center console. Shifting to Park, Reverse, Neutral, and Drive is handled with a rotary dial.

Driving mode selections in Jeep Grand Cherokee 4xe.

Trail Rated Jeep PHEV

We drove mostly in hybrid drive during our trip, though we did spend time driving exclusively in electric mode when we had the ability to charge up during our journey. Both deliver all the acceleration you really need. Overall efficiency while driving in conventional mode is pegged at a combined city/highway 23 mpg by EPA. Driving exclusively on battery power nets a 56 MPGe (miles per gallon equivalent) combined rating, all the while running emissions-free.

Though we didn’t do serious off-roading during our journey or tow any toys along with us, this vehicle’s capabilities in these areas are considerable. The Trail Rated Grand Cherokee 4xe features Jeep’s Quadra Trac II 4x4 system with two-speed transfer case, up to 10.9 inches of ground clearance, and is capable of towing up to 6,000 pounds. This electrified Jeep can also ford up to 24 inches of water without issue since all high-voltages electronics are sealed and waterproof.

Jeep Grand Cherokee 4xe on road.

Jeep Grand Cherokee 4xe Interior

During our drive, we really came to appreciate this Jeep’s accommodating interior and thoughtful appointments. The automaker’s latest Uconnect 5 infotainment system is integrated, along with wireless Apple CarPlay and Android Auto. Driver information, system controls, and entertainment functions are displayed on three digital display screens. The far-right screen, which can be turned on and off with a dash-mounted switch, offers the right-seat passenger digital entertainment, co-pilot and navigation assistance, and camera viewing. Found at the front of the center console are USB and USB-C ports, a port for 12-volt DC accessories, and an HTML port.

Seats are upholstered in handsome gray leather with contrast stitching, a luxury-oriented theme carried throughout the interior with leather-trimmed door panels, center console, dashboard, and steering wheel. Sophisticated gray wood accents on the dash and door panels a stylish touch. Front seats are nicely bolstered for support and comfort.

Accommodating Third Row Seats

Seating in in the rear of this full-size SUV is quite accommodating, affording plenty of legroom and headroom. Rear seating features a center fold-down armrest with drink holders, plus 60/40 split seatback functionality to enhance rear cargo-carrying capacity. Rear side windows offer lift up sunshades, a nice touch. Back seat passengers are provided controls at the rear of the center console for their own seat heaters, a display with controls for heating and air conditioning, and registers for directing airflow as needed. Below that is a 115 volt, 150 watt AC plug for a computer or other devices that use standard household current. Also found here are USB and mini USB ports for mobile devices.

Of course, advanced driver assist systems are part of the package. The Grand Cherokee 4xe includes standard adaptive cruise control with stop and go, lane departure warning with active lane keep assist, full-speed collision warning with active braking, intersection collision assist, and much more. Beyond the daily convenience afforded by a rear back-up camera, rear park assist sensors, and a 360-degree surround view camera system, there’s also parallel and perpendicular park assist to make any kind of parking situation easier.

Display screen in Jeep Grand Cherokee 4xe.

Electric Drive is Handy

High levels of comfort, expansive connectivity, and confident driving are delivered in good measure by the Grand Cherokee 4xe. The fact that this is also a plug-in hybrid with 25 all-electric miles at the ready for our usual daily drives is a resounding plus.

We have many years of experience living with different plug-in hybrid models, and have found that our trips to gas stations are infrequent and our around-town driving handled almost exclusively on battery power. That is, until another road trip beckons and we head off with confidence knowing will be driving largely on hybrid power, with no charging stops needed unless they are convenient and fit into our schedule. This was our experience with the Jeep Grand Cherokee 4xe and we just wish it were staying longer in our care.

Jeep Grand Cherokee 4xe second row seating.

2022 Hyundai Tucson plug-in hybrid on highway.

The Hyundai Tucson has long been a popular choice for those desiring the functionality of a crossover SUV at a reasonable price. Making the case even stronger now is an expanded list of Tucson offerings highlighted by plug-in hybrid and enthusiast-oriented N Line models that have joined the line’s gas-powered and electric hybrid variants.

Conventionally-powered Tucsons are equipped with a 2.5-liter engine delivering 180 hp and 195 lb-ft torque, delivering 26 city/33 highway mpg. PHEV and hybrid Tucson models share a 1.6-liter, turbocharged and direct-injected inline four-cylinder gas engine. These are equipped with Hyundai’s Continuously Variable Valve Duration technology that optimizes valve opening duration to improve power, efficiency, and emissions. The hybrid gets a 59 horsepower electric motor and 1.5 kWh lithium-ion battery that brings 226 total system horsepower and up to 38 city/38 highway mpg.

2022 Hyundai Tucson PHEV charging.

PHEV Has Bigger Battery, More Power

With the addition of the plug-in hybrid’s 90 hp electric motor and a larger 13.8 kWh lithium-ion battery, total system horsepower increases to 261 hp and 258 lb-ft torque. EPA rates the Tucson PHEV’s electric-only range at 33 miles and fuel economy at 80 MPGe, with a 35 mpg combined city/highway mpg rating running on gasoline. Hyundai says the model’s onboard 7.2 kW charger will allow charging the battery in less than two hours when connected to a 220-volt Level 2 charger.

The remainder of the Tucson PHEV’s drivetrain consists of a six-speed automatic transmission with steering wheel-mounted paddle shifters and a standard HTRAC AWD system with selectable drive modes. All Tucson models, including the PHEV, have a maximum tow rating of 2,000 pounds. The PHEV’s curb weight is a few hundred pounds higher than the conventional and hybrid models, so its payload capacity is commensurately less, rated at 1,012 pounds for SEL models and 1,166 pounds for Limited versions.

2022 Hyundai Tucson PHEV front end detail.

A Better-Driving Hyundai Tucson

A higher level of driving dynamics is delivered to match the Tucson’s sporty new exterior design. The AWD PHEV and hybrid models are built with Hyundai’s e-handling technology that, under certain road conditions and driving inputs, applies an incremental amount of electric motor torque to the wheels. This enables the e-handling system to affect vehicle weight transfer – and therefore the tire’s contact patch – to improve cornering.

Tucson models are equipped with a number of safety technologies as part of Hyundai’s SmartSense Safety Feature suite. Standard safety features on both the SEL and Limited models of the Tucson PHEV include Forward Collision-Avoidance Assist, Blind-Spot Collision-Avoidance Assist, Lane-Keeping Assist, Driver-Attention Warning, and Rear Cross-Traffic Collision-Avoidance Assist. Limited models add such features as blind-view and surround-view monitors and Remote Smart Parking Assist.

2022 Hyundai Tucson PHEV interior.

Hyundai Tucson Tech

The Tucson PHEV’s interior amenities vary depending on model. Both SEL and Limited are equipped with Apple CarPlay and Android Auto capabilities and have USB charging points for front and rear passengers. Stepping up to the Limited adds a 10.25-inch digital instrument cluster and 10.25-inch color touchscreen (SEL has an 8-inch screen), a Bose premium sound system, and wireless device charging.

Prices start at $25,800 for the standard 2.5-liter powered Tucson with the hybrid coming in at $29,750 and the plug-in hybrid $35,400.

Green Car Journal’s Green Car Awards, the annual awards program honoring the year’s most standout  new ‘green’ models, was presented at the Virtual Greenbuild Conference + Expo in November  this year. The 2021 virtual awards program was an innovation during an unusual year, amid the postponement and cancellation of international auto shows where the Green Car Awards typically take place.

Over the years, these high-profile awards have grown along with the expanding field of ‘green’ cars on the road. They now recognize not only the magazine’s signature Green Car of the Year, but also exceptional models that speak to families, city dwellers, luxury buyers, pickup enthusiasts, and those requiring the functionality of an SUV. All provide the traditional touchstones of safety, quality, value, style, and performance, plus that fun-to-drive quality important to most drivers. What they add are greater efficiency, lower carbon and tailpipe emissions, petroleum reduction or displacement, or operation on battery electric power.

GREEN CAR OF THE YEAR

This year’s candidates for 2021 Green Car of the Year reflect the auto industry’s transition toward electrification, even as it continues to make internal combustion ever-more efficient. Three of this year’s finalists, the Mustang Mach-E, MINI Cooper SE, and Volkswagen ID.4, drive exclusively on zero-emission battery power. The BMW 330e is a plug-in hybrid that drives up to 23 miles on battery power and hundreds more as a hybrid. The Hyundai Elantra is offered with either an efficient gasoline engine or a gas-electric hybrid achieving up to 50 miles per gallon.

Rising to the top of the field is Green Car Journal’s 2021 Green Car of the Year, Ford’s all-new Mustang Mach-E, a model that boasts an instantly-recognizable name and heritage, while breaking new ground as an all-electric crossover featuring up to 300 miles of range. Performance is part of the package, as is unmistakable style and all the latest advanced electronics.

The 2021 Green Car of the Year® is selected by a highly-respected jury comprised of energy and environmental leaders including Mindy Lubber, president of CERES; Jean-Michel Cousteau, president of Ocean Futures Society; Dr. Alan Lloyd, president emeritus of the International Council on Clean Transportation and senior research fellow at the Energy Institute, University of Texas at Austin; Clay Nesler, interim president of the Alliance to Save Energy; and Matt Petersen, president and CEO of Los Angeles Cleantech Incubator and advisory board chair of Climate Mayors. Rounding out the Green Car of the Year jury is celebrity auto enthusiast Jay Leno and Green Car Journal editors .

LUXURY GREEN CAR OF THE YEAR

At a more premium price point, 2021 Luxury Green Car of the Year finalists also illustrate the momentum achieved by electric drive in the new car vehicle field. Four of these premium vehicles are all-electric models – the Audi e-tron Sportback, Polestar 2, Tesla Model Y, and Volvo XC40 Recharge. The fifth, the Lincoln Corsair Grand Touring, is the plug-in hybrid variant of Lincoln’s Corsair compact crossover that combines gas-electric hybrid and all-electric driving.

Honored as this year’s Luxury Green Car of the Year is the Polestar 2, a groundbreaking model from Polestar on many levels. This all-new premium vehicle is only the second of this new auto brand’s model offerings, and the first to be all-electric. This zero-emission, two-door fastback looks to the future even as it foregoes futuristic styling, instead choosing to offer an understated yet elegant and sophisticated design, tasteful appointments, and a nearly 300 mile range on battery power.

URBAN GREEN CAR OF THE YEAR

Urban environments pose their own unique challenges – tight spaces, often crowded streets, and hard-to-find parking. Here, smaller vehicles with a compact physical footprint and easy maneuverability are always top choices. The 2021 Urban Green Car of the Year award recognizes vehicles especially well-suited for life in the city. Top choices for this year’s award are the Hyundai Venue, Kia Seltos, Kia Soul, MINI Cooper SE, and Nissan Versa. Four are conventionally-powered – three of them crossover SUVs and one a compact sedan – with the fourth, the MINI Cooper SE, an all-electric crossover.

Taking top honors for 2021 Urban Green Car of the Year is the all-electric MINI Cooper SE. Standing out as an ideal vehicle for the city, the Cooper SE is compact in stature and big on features. Its represents what this brand all about: An iconic look, great maneuverability, and driving fun wrapped in a small package. Plus, electric power means zero localized emissions and no trips venturing out to the gas station in a crowded urban environment.

FAMILY GREEN CAR OF THE YEAR

While any model can serve family duty, those offering extra versatility and thoughtful family-friendly features are high on many shopping lists. Today, driving ‘green’ has also become a priority. Minivans have always been a solid choice, but these days three-row crossover SUVs can also do the job as family hauler. Finalists for 2021 Family Green Car of the Year are the Chrysler Pacifica Hybrid, Honda Odyssey, Kia Sorrento Hybrid, Toyota Highlander Hybrid, and Toyota Sienna. The Kia Sorrento Hybrid and Toyota Highlander Hybrid crossovers drive on efficient hybrid power. Honda’s Odyssey minivan features an efficient V-6 with variable cylinder management. The Toyota Sierra is exclusively a hybrid-powered minivan, while the Chrysler Pacifica Hybrid minivan also offers plug-in hybrid power.

Standing out as Family Green Car of the Year is the Toyota Sienna, a minivan that seeks to set the standard for modern family haulers. The stylish and fuel-efficient Sienna offers premium sedan-like style, admirable hybrid fuel efficiency, and a thoughtful blend of family-desired features along with driver-centric characteristics not always associated with minivans. It shows Toyota’s keen grasp of how to make a modern minivan that not only serves up family functionality, but also premium car style and appeal.

GREEN SUV OF THE YEAR

The hottest segment in the automotive field today is the SUV, either full-size or compact, traditional or crossover, two-row or three, conventional, hybrid, or plug-in. There are no shortage of choices, which makes narrowing the field to five outstanding finalists no small challenge. The top five finalists emerging this year for Green SUV of the Year are the Audi Q5 55 TFSI e, BMW X3 xDrive 30e, Jeep Wrangler 4xe, Toyota RAV4 Prime, and Toyota Venza. Four of these –from Audi, BMW, Jeep, and Toyota – are plug-in hybrids with an all-electric driving range from 18 to 42 miles, and additional hundreds of miles on hybrid power. Toyota’s Venza is an all-wheel drive, tech-rich hybrid with exceptional fuel efficiency.

Taking top honors for the 2021 Green SUV of the Year title is the Jeep Wrangler 4xe,  an SUV that’s different in many ways from others in its class. To some, it’s an SUV in the traditional sense with high functionality and loads of versatility that’s perfect for the diversity of everyday life. But to others, it’s that, plus a means of escape, heading toward the city one day and then driving the path less taken on another, a path often rough, unpaved, and pointed towards adventure.

GREEN TRUCK OF THE YEAR

This year’s Green Truck of the Year finalists embody all the workhorse capabilities expected of a modern pickup while offering passenger car-like comfort, advanced on-board electronics, and levels of fuel efficiency unheard of in pickups of just a decade ago. Pickups honored as finalists for Green Truck of the Year are the Chevrolet Colorado, Chevrolet Silverado, Ford F-150, Jeep Gladiator EcoDiesel, and RAM 1500. All offer diverse powertrain choices, from gasoline and diesel internal combustion to variations of mild- and full-hybrid power.

Powering its way to well-deserved recognition as 2021 Green Truck of the Year is the Ford F-150, a pickup long distinguished as the best-selling model in the nation and a champion of innovation. Beyond its wide array of configurations, powertrain choices, payload capacities, and towing capabilities, it now adds such innovations as an efficient PowerBoost hybrid powerplant, fold-flat ‘sleeper’ seats, and an available Pro Power Onboard output system with outlets that allow the truck to function as a mobile generator at worksites or campsites.

The Green Car Awards™ program, presented annually since 2005, is an important part of Green Car Journal's mission to showcase environmental progress in the automotive field.

The driving range of electric vehicles is becoming less of an issue as they surpass 200 miles or greater, approaching the distance between fill-ups of some internal combustion engine vehicles…or maybe the bladder capacity of their drivers. However, the time it takes to recharge an EV is still a negative attribute.

Generally, EVs charge at a fairly slow rate. A 240-volt Level 2 home or public charger will charge a Chevy Bolt from depleted to full in about 4 1/2 hours, providing a range of about 238 miles. That’s a far cry from 5 minutes to fill a gas tank. It’s significantly slower when charging a Bolt with a Level 1 charger using a household’s standard 120-volt power since this adds only about 4 miles an hour!

Of course, charging companies and automakers are working together to expand the small-but-growing network of fast chargers in key areas of the country, allowing EVs to gain up to 90 miles of charge in around 30 minutes. Tesla claims that its Supercharger stations being upgraded to Version 3 can charge a Tesla Model 3 Long Range at the rate of about 15 miles a minute, or 225 miles in just over 15 minutes under best conditions.

If current technology EVs become popular for mid- to long-range travel, gasoline stations, truck stops, and public charging stations equipped with Level 2 and even somewhat faster chargers run the very real risk of becoming parking lots.

Photo: EVgo

When it comes to charging EVs, charging times come down to kilowatts available. The best Tesla V3 charger is rated at 250 kilowatts peak charge rate. Now, much research is being done here and in other countries on what is called Extreme Fast Charging (XFC) involving charge rates of 350-400 kilowatts or more. The U.S. Department of Energy is sponsoring several projects aimed at reducing battery pack costs, increasing range, and reducing charging times.

There are several challenges for XFCs. First, when lithium-ion (Li-ion) batteries are fast charged, they can deteriorate and overheat. Tesla already limits the number of fast charges by its standard Superchargers because of battery degradation, and that’s only at 120-150 kilowatts. Also, when kilowatt charging rates increase voltage and/or amperage increases, which can have a detrimental effect on cables and electronics.

This begs the question: Is the current electrical infrastructure capable of supporting widespread use of EVs? Then, the larger question is whether the infrastructure is capable of handling XFC with charging rates of 350 kilowatts or more. This is most critical in urban areas with large numbers of EVs and in rural areas with limited electric infrastructure.

The answer is no. Modern grid infrastructures are not designed to supply electricity at a 350+ kilowatt rate, so costly grid upgrades would be required. Additionally, communities would be disrupted when new cables and substations have to be installed. There would be a need for costly and time-consuming environmental studies.

One approach being is XFC technology being developed by Zap&Go in the UK and Charlotte, North Carolina. The heart of Zap&Go's XFC is carbon-ion (C-Ion) energy storage cells using nanostructured carbons and ionic liquid-based electrolytes. C-Ion cells provide higher energy densities than conventional supercapacitors with charging rates 10 times faster than current superchargers. Supercapacitors and superchargers are several technologies being considered for XFCs.

According to Zap&Go, the C-Ion cells do not overheat and since they do not use lithium, cobalt, or any materials that can catch fire, there is no fire danger. Plus, they can be recycled at the end of their life, which is about 30 years. Zap&Go's business model would use its chargers to store electric energy at night and at off-peak times, so the current grid could still be used. Electrical energy would be stored in underground reservoirs similar to how gasoline and diesel fuels are now stored at filling stations. EVs would then be charged from the stored energy, not directly from the grid, in about the same time it takes to refuel with gasoline.

The fastest charging would work best if C-Ion cell batteries are installed in an EV, replacing Li-ion batteries. EVs with Li-ion batteries could also be charged, but not as quickly. Alternatively, on-board XFC cells could be charged in about five minutes, then they would charge an EV’s Li-ion batteries at a slower rate while the vehicle is driven, thereby preserving the life of the Li-ion battery. The downside is that this would add weight, consume more room, and add complexity. Zap&Go plans to set up a network of 500 ultrafast-charge charging points at filling stations across the UK.

General Motors is partnering with Delta Electronics, DOE, and others to develop XFSs using solid-state transformer technology. Providing up to 400 kilowatts of power, the system would let properly equipped electric vehicles add 180 miles of range in about 10 minutes. Since the average American drives less than 30 miles a day, a single charge could provide a week’s worth of driving.

The extreme charging time issue might be partly solved by something already available: Plug-in hybrid electric vehicles (PHEVs). As governments around the world consider banning or restricting new gasoline vehicles in favor of electric vehicles, they should not exclude PHEVs. Perhaps PHEVs could be designed so their internal combustion engines could not operate until their batteries were depleted, or their navigation system determines where they could legally operate on electric or combustion power.

The Kona, Hyundai’s newest and smallest crossover, serves up a pleasing design and welcome functionality. It is offered with a choice two gasoline engines that net up to 33 highway mpg, and also as a battery electric vehicle.

Styling cues are a bit different on the Kona Electric, but subtle except for its distinctive closed grille. Silver side sills, unique 17-inch alloy wheels, and badging also differentiate the electric variant. Kona Electric sales are initially being focused on California and select states that have adopted California’s Zero Emission Vehicle (ZEV) program.

Hyundai Kona Trim Levels

The Kona is available in three trim levels – SEL, Limited, and Ultimate. Kona SE and SEL models are powered by a 147-horsepower, 2.0-liter four-cylinder coupled to a six-speed automatic transmission. This combo achieves an EPA rating of 28 city/32 highway mpg. Kona Limited and Ultimate trim levels are powered by a 175-horsepower, turbocharged 1.6-liter four-cylinder with a seven-speed, dual-clutch automatic transmission. Here,  EPA numbers are 27 city/33 highway mpg. Front-wheel drive is standard with all-wheel drive an option for both powerplants.

Powering the Kona Electric is a 201 horsepower, permanent-magnet electric motor driving the front wheels. Energy is provided by a 64 kWh lithium-ion polymer battery that delivers an impressive EPA estimated 258 mile range. Offshore markets also get a base electric version with a smaller 39.2 kWh battery that’s good for about 186 miles, but that configuration is not offered in North America. The Kona Electric earns a combined EPA efficiency rating of 120 MPGe. Acceleration is quite good with a 0-60 mph sprint taking 7.6 seconds. Kona Electric’s top speed is electronically limited at 104 mph.

Quick Charge Options

When connected to a fast-charge 10 kW Combined Charging System, the battery pack can be recharged from a depleted state in about 54 minutes. It takes 75 minutes to recharge with a more common 50 kW CCS fast-charge system. With more readily-available Level 2 (240-volt AC) public or home charging and the Kona’s onboard 7.2 kW charger, replenishing a depleted battery takes about 10 hours. The charge port is located in the front fascia just below the driver’s side headlight.

There are a host of driver assist features available. Hyundai SmartSense safety technologies standard on all trim levels include Forward Collision-Avoidance Assist, Driver Attention Warning, and Lane Keeping Assist. Optionally available are Rear Cross-Traffic Collision Avoidance Assist, Blind Spot Collision Warning, High Beam Assist, Rear View Monitor, and Smart Cruise Control.

The gasoline-powered Kona has an MSRP of $19,990, while the Kona Electric is offered at a base price of $36,450.

Part of Honda’s Clarity triple-play – along with the hydrogen-powered Clarity Fuel Cell and more mainstream Clarity Plug-In Hybrid – the Clarity Electric is a model that clearly cuts its own path.

It does not aim to be part of the ‘200 mile club,’ the latest generation of uber-electrics that claim a battery electric driving range greater than 200 miles between charges. It also does not cultivate efficiencies through a compact form designed to eke the most from every electron. Nor is it exceptionally lightweight, another common nod to the need for making the most of the battery power carried on board. In fact, there is little about the Clarity Electric that makes us think of other all-electric vehicles…save for the fact that it runs exclusively on zero-emission battery power, of course. This mid-size, five-passenger battery electric vehicle aims to be in a league of its own.

First of all, let’s discuss driving range, which is EPA rated at 89 miles between charges while delivering a combined 114 MPGe (miles-per-gallon equivalent). Yes, that’s more limiting than that of the 200+ mile club, but there’s a reason. Honda designed the Clarity Electric with the needs of commuters in mind…those who want their daily drive to be in a highly-efficient, zero-emission electric car with a sophisticated look and premium feel. And they designed it so it was significantly more affordable than premium competitors offering higher-end electric models with features similar to those of the Clarity. Currently, the Clarity Electric is offered at a $199 monthly lease in California and Oregon where this battery-powered model is available.

Honda figures that an approach focused on commuters is a sweet spot for the Clarity Electric. Its range fits the needs of most commutes and its price is certainly justifiable for a commuter car, and a luxurious one at that, with fuel costs substantially less than conventionally-powered models. Plus, most households have two cars at their disposal, sometimes more. Having a Clarity Electric as a primary commuter car with a conventional gasoline or hybrid vehicle also in a household’s stable covers all bases.

Honda gave a lot of thought to the cabin design with welcome touches throughout. We especially like the ‘floating’ design of the center console with its array of integrated controls and flat storage tray beneath, with 12-volt and USB outlets. The dash features a handsome suede-like material and an 8-inch touchscreen display elegantly integrated into the dash. Deep cupholders feature flip-up stays for holding smaller drinks. Side door pockets are large enough to accommodate water bottles. The trunk offers plenty of room and is illuminated when the trunk lid is remotely or manually unlatched. At night this allows you to immediately note what’s inside through the trunk lid’s clear back panel before opening…something we’ve really come to appreciate over time.

Driving the Clarity Electric is a satisfying experience, with this sedan both well-mannered and responsive. Power is delivered by a 161 horsepower electric motor energized by a 25.5 kWh lithium-ion battery that can be charged in about three hours with a 240 volt charger, or in as little as 30 minutes with a public DC fast-charge system to an 80 percent state-of-charge. While its primary job may well be to handle everyday driving needs and negotiate traffic, it also delivers plenty of fun on twisty canyon roads with flat cornering and confident steering. It’s quick, like almost all electrics are because of instant torque delivered at launch, providing very satisfying acceleration.

Also appreciated is the Clarity’s handy Apple CarPlay integration and its Honda Sensing suite of driver-assist technologies. Among these are important features like adaptive cruise control with low-speed follow, forward collision warning, collision mitigation braking, lane departure warning, and road departure mitigation.

The Clarity Electric has served us well on our daily drives over the course of Green Car Journal’s ongoing long-term test. Its use supports what Honda envisioned for this efficient electric car. It has been ideal for around-town duty, area trips within its range, and daily commutes. Its thoughtful and sophisticated – dare we say futuristic – design and very satisfying drive experience are appreciated every day we’re behind the wheel.

With the growing market acceptance of electric vehicles in the U.S. comes an unprecedented auto industry focus on delivering these vehicles to consumers. Today nearly all major auto manufacturers and a handful of boutique automakers offer a growing lineup of electrified models.

When considering the purchase of an electric vehicle, the task of home charging is second in importance only to an electric’s driving range. How long will a charge take, and how often will it be needed? The cost associated with enabling home charging is also top-of-mind since using public or workplace chargers is a plus, but nothing beats the conveniences of overnight charging at home.

There’s an affordable and easy answer to these home EV charging concerns with the AV TurboCord Dual, developed by AeroVironment and available as part of Webasto’s EV Solutions product line. TurboCord Dual presents a portable transformable solution that aims to promote convenient electric vehicle charging using the two most common electrical outlets found in homes.

AV TurboCord Dual is a portable EV charging solution enabling both 120 or significantly faster 240 volt charging as needed through a quick clip-release adapter interface. It does not require hardwired installation to facilitate dual voltage charging, but rather connects to a standard 120 volt household outlet or 240 volt outlet.

While there is much competition in the home charging segment, there’s a lot to like about the AV TurboCord for its compact size,  portability, and ease of operation. TurboCord Dual will look familiar to anyone who has used AV public charging stations in much of the U.S. Simply open the charge port on your EV of choice, look for the pulsing light on the business end of the TurboCord, and you’re charging. When the unit stops blinking, you’re done.

TurboCord  Dual delivers a great solution for battery electric and plug-in hybrid vehicles alike, either at home or on the road. A handy carrying case easily stores the charger, power cord, and chargeport connector. AV TurboCord is available online or from your local building center.

沃尔沃全新XC40外观Volvo’s smallest crossover features an aggressive design that’s a bit of a departure for the automaker, even as it retains the fundamental styling cues that say ‘Volvo.’ The first model built on the automaker’s Compact Modular Architecture, the new XC40 is offered as either a T4 front-wheel drive or T5 all-wheel drive and in three trim levels. The XC40 looks deceptively small but has plenty of cargo and passenger capacity for longer trips. A plug-in hybrid and possibly an all-electric model are likely in the future.

Inside, the stylish cabin aims for an uncluttered look while still providing all the amenities SUV buyers desire. Functionality is a top priority, which the XC40 provides in intelligent ways with features like spacious door bins that accommodate a laptop or tablet, easily accessible under-seat drawers for stashing wallets or other necessities, and even a trash bin for cleaning up clutter. The front storage compartment holds a wireless charge pad for smartphones. Other welcome features include a standard 9-inch Sensus Connect touchscreen and an available panoramic sunroof that provides loads of available light.

New Volvo XC40 - interiorAll XC40s are powered by a 2.0-liter, turbocharged four-cylinder Drive-E engine. In the T4 this engine is rated at 187 horsepower and 221 lb-ft torque. Engine output increases to 248 horsepower and 258 lb-ft torque in the all-wheel drive T5. Both connect to an eight-speed automatic transmission. Manual gear shifts are possible with the Volvo’s shift lever or, alternatively, via steering wheel shift paddles on the R-Design model.

Standard on all XC40s are Automated Emergency Braking with Pedestrian Detection, Forward-Collision Warning, Lane-Keeping Assist with Lane-Departure Warning, Automatic High-Beam Headlamps, Driver-Attention Monitor, and Traffic-Sign Detection.  A self-parking feature, front and rear parking sensors, and Blind-Spot Monitoring with Rear Cross-Traffic Alert can be added as part of the Vision package.

New Volvo XC40 - 360 cameraVolvo offers Pilot Assist as a part of a Premium package. This is essentially adaptive cruise control with a semi-autonomous driving mode. It keeps the XC40 within its own lane and maintains a set speed and distance behind the vehicle ahead. Unlike some other near-self-driving systems, Pilot Assist requires the driver to keep his hands on the steering wheel at all times…perhaps not a surprise considering Volvo’s longstanding focus on safety.

The 2019 XC40 serves up 23 city and 33 highway mpg, at a starting cost of $33,700. Another option is Care by Volvo, an innovative subscription service that includes use of a new XC40 Momentum ($600 per month) or R-Design ($700 per month) for a maximum of 15,000 miles per year. Insurance, maintenance, and road-hazard protection are included, plus the opportunity for the lessee to upgrade to a new XC40 each year for the same all-inclusive monthly payment. A subscription lasts for 24 months.

沃尔沃全新XC40外观

MY19 Nissan Altima

Nissan's all-new, sixth-generation Altima has been extensively redesigned with greater refinement and efficiency, along with a more aerodynamic body boasting an impressive 0.26 drag coefficient. Distinctive styling cues include a more aggressive front facia with a V-motion grille and streamlined boomerang lights.

Inside there is a standard 7-inch driver display and a NASA-inspired zero gravity seat that enhances comfort and fights fatigue. Apple CarPlay and Android Auto come standard. Every 2019 Altima also comes equipped with a standard 8-inch multi-touch color display, Bluetooth hands-free phone system, streaming audio via Bluetooth, hands-free text messaging assistant, and Siri eyes free voice recognition. Some remote features are also accessible through NissanConnect Services’ Amazon Alexa Skill and Google Assistant Action.

MY19 Nissan Altima

Power is provided by a naturally aspirated, 2.5-liter four-cylinder engine producing 188 horsepower. There’s also an all-new, 2.0-liter turbocharged four-cylinder engine with 248 horsepower on tap. The world’s first production variable compression engine, this 2.0-liter powerplant enables compression ratio to adjust from 8:1 to 14:1  by continuously raising or lowering piston reach for performance or greater efficiency. Both engines connect to an Xtronic continuously variable transmission. Paddle shifters are available with the SR grade.

Every 2.5-liter Altima is now available with Intelligent All-Wheel Drive with a 50:50 torque split in most situations, a first for a Nissan sedan and something that remains a relative rarity in this segment. Front-wheel drive 2.5-liter models are rated at 28 city/39 highway mpg.

2019 Nissan Altima

Unique in the class, Nissan’s ProPILOT Assist helps drivers stay centered in the lane, navigate stop-and-go traffic, maintain a set vehicle speed, and maintain a set distance to the vehicle ahead.  To activate the system, a driver simply pushes the blue ProPILOT Assist ON button, then sets the Intelligent Cruise Control when the desired speed is reached, similar to a conventional advanced cruise control system. It uses a forward-facing camera, forward-facing radar, sensors, and an electronic control module.

Along with ProPILOT Assist, also new for 2019 is Rear Automatic Braking that helps a driver by detecting and warning of objects while backing up, and if necessary applying brakes to help avoid a collision. Other safety and convenience features include standard Automatic Emergency Braking, Intelligent Forward Collision Warning, and Intelligent Driver Alertness 3 on all grades.

Intelligent Around View Monitor is standard on the Altima Platinum. Safety Shield 360 includes Automatic Emergency Braking with Pedestrian Detection, Rear Automatic Braking, Lane Departure Warning, radar-based Blind Spot Warning, Rear Cross Traffic Alert, and High Beam Assist (HBA). A new Traffic Sign Recognition system provides the most recent speed limit information.

The 2019 Nissan Altima offers a base cost of $23,900, a point of entry approachable for a great many buyers seeking a fun-do-drive, stylish vehicle offering laudable fuel efficiency and some of the most advanced technology available in its class.

Our drive of the 2019 Lexus ES 300h, the hybrid variant of this automaker’s all-new, seventh-generation ES sedan, was accommodating as expected from this luxury brand with welcome performance. During our drives we found turn-in sharp and precise. Considering front-to-rear weight distribution is heavy over the front wheels, the suspension compensates well and the car feels well-balanced.

Built on Lexus’ new Global Architecture-K platform, the ES enjoys a 2.6-inch increase in length, 1.8-inch increase in width, and wider front and rear tracks compared to the model it replaces. It also offers a two-inch longer wheelbase at 113 inches and a more spacious rear compartment.

The luxury sedan’s most striking angle is its profile that shows low hood and roof lines. From the front it’s the automaker’s unmistakable spindle grill that dominates, enhanced by slim L-shaped LED projector headlights.

The ES 300h layout is front engine, front wheel drive with power derived from a 2.5-liter 4-cylinder engine, plus an electric motor mated to an all new hybrid transaxle. This delivers 215 total system horsepower. A six-speed automatic transmission with paddle shifters is electronically controlled and continuously variable.

Powering the electric motor is a nickel-metal-hydride battery that's more power dense and compact than its predecessor, allowing it to be relocated from the trunk to beneath the rear seat, thus adding welcome trunk space. This fourth-generation Hybrid Drive System enables accelerating from 0-60 mph in 8.1 seconds and provides a nearly 600-mile driving range, plus excellent combined 44 mpg fuel economy.

Inside is a well-appointed cabin that’s tranquil and free of exterior noise. New suction-type ventilated cooling seats kept us as comfortable and entertained as any in the new movie theaters. There are lots of choices for interior personalization with three color schemes available, four trims, and three material options for the seats. The car’s standard audio has 10 speakers, and to please audiophiles there’s the optional Mark Levinson audio with 1800 watts and 17 speakers.

Of course, the ES 300h offers all the latest driver assistance systems plus an array of convenience features like Apple CarPlay, and it will be Amazon Alexa-enabled for Android phones and iPhones. Outstanding fuel consumption, a striking design, and first-class amenities make the new Lexus ES 300h a real contender for today’s premium car buyers. 

The price of entry for the conventionally powered 2019 Lexus ES is $39,500, with the ES 300h hybrid just $1,810 more at $41,310. 

nissan-leaf-straight-on-2First off, this is not the LEAF we’ve grown accustomed to seeing on the road since the model’s introduction in 2010. Our drive of the new generation 2018 Nissan LEAF quickly reinforced this is a whole-new animal, a new generation of the venerable electric car intended to capture the imagination and, not coincidentally, market share in the increasingly competitive electric vehicle field.

We have history with the LEAF. Green Car Journal first experienced the original LEAF’s capabilities in a technology demonstrator designed to share what Nissan had in mind for its groundbreaking, soon-to-come production electric vehicle. At Nissan’s behest, we tested the automaker’s LEAF-destined electric drivetrain in its EV-12 test mule back in 2009 at Nissan’s global headquarters in Yokohama, Japan. We later witnessed the LEAF’s unveiling, clearly showing Nissan’s willingness to push the envelope for electric cars with an edgy design.

nissan-ev-12-test-muleWe were impressed. So much so, in fact, that Green Car Journal honored the LEAF with the magazine’s 2010 Green Car Vision Award™ in Washington DC, ahead of its introduction to the market. Nissan’s insight into what electric vehicle buyers desired has indeed proved visionary over the years. Testament to this is the LEAF’s standing as the world’s leading affordable, mass production EV since its launch.

The all-new generation Nissan LEAF aims to expand on this success with new styling and a 50-percent increase in driving range. It also features a full suite of Nissan Intelligent Mobility technologies. This all-electric model is more attractive with excellent aerodynamics that result in a low 0.28 drag coefficient. Improved aerodynamics not only means a quieter ride but also contributes to greater range. That’s an important consideration in electric cars with near-silent drivetrains that don’t mask outside noise.

nissan-leaf-rearThe new Leaf features a 150-mile driving range between charges compared to the previous generation’s 100 miles. This is an important milestone that serves to overcome potential ‘range anxiety.’ Why 150 miles rather than shooting for the 200+ mile range like the Chevy Bolt EV and Tesla Model 3? It’s all about balancing price with functionality. Simply, Nissan aimed at providing an affordable price point under $30,000 for the LEAF. That meant delivering the range it figured would fit the driving needs of most drivers while keeping battery costs within reason. It’s a sound strategy.

A more powerful 40 kWh lithium-ion battery pack features improvements and revised chemistry that bring a 67 percent increase in energy density. Nissan designers have located the low-slung battery pack and other heavy components to the middle of the chassis to enhance the car’s center of gravity and handling. Fun fact: Using vehicle-to-home systems, the LEAF’s battery can store a home’s surplus solar energy while parked during the daytime and use it to help power a home in the evening.

nissan-leaf-underhoodLEAF’s electric powertrain features a 147-horsepower electric motor that’s well-suited to the model. It provides 38 percent more horsepower than the previous version with 26 greater torque for improved acceleration. Acceleration is crisp with more than enough power at the ready for all the driving situations we encountered on twisty roads and Interstates. Intelligent Ride Control delivers more precise motor torque control during cornering. This also reduces vibration while improving ride quality and steering control. Electric power steering software has been tweaked for improved steering feel. The LEAF’s steering torsion bar is also stiffer for better feedback and more linear response to steering inputs.

Nissan’s e-Pedal slows down the car via regenerative and friction braking when a driver’s foot lifts off the accelerator. This delivers electricity to the battery while essentially providing braking force without using the car’s brake pedal. It even brings the car to a complete stop. We found that driving with e-Pedal kept our LEAF tester in place while stopped on a steep hill without requiring a foot on the brake pedal. Notably, e-Pedal allows drivers to go without using the brake pedal 90 percent of the time.

nissan-leaf-interiorLEAF’s ProPILOT cruise control conveniently maintains a constant distance to the vehicle ahead.  If that vehicle stops, ProPILOT automatically applies brakes to also bring the LEAF to a full stop. It remains stopped even with your foot off the brake. Driving resumes when ProPILOT is activated with the touch of a switch or light pressure on the accelerator. The system also helps keep the LEAF centered in its lane at speeds between 19 and 62 mph. Other LEAF driver-assist technologies include Intelligent Lane Intervention, Lane Departure Warning, Intelligent Emergency Braking, Blind Spot Warning, Rear Cross Traffic Alert, and Intelligent Around View Monitor with moving object detection.

The new LEAF’s interior has a more luxurious and high-end look. Its dashboard is dominated by a seven-inch display for infotainment and the navigation system, if so equipped, plus Nissan's Safety Shield state-of-charge and power gauge. Another seven-inch screen faces the driver in place of conventional dials. Apple CarPlay and Android Auto are included on LEAFs with the higher-spec infotainment/navigation system.

nissan-leaf-chargingToday’s electric car market is different than that of the past. There are more choices in a growing number of vehicle classes and this makes it tougher for automakers to compete. Nissan aims to not only compete in the electric car field but dominate globally as it has in recent years.

The LEAF’s status as a true world car is underscored by widespread availability like the previous-generation LEAF. It’s also reinforced by Nissan’s global manufacturing capabilities with assembly plants in Japan, England, and in Smyrna, Tennessee. Offering the all-new LEAF at a base price of $29,990 here in the U.S. is a strategy that should bode well for Nissan in today’s increasingly competitive electric vehicle market.

nissan-leaf-1


vw-allroad-side-1Volkswagen added its 4MOTION all-wheel drive and a few other tweaks to the Golf SportWagen to create the Golf Alltrack, a five-seat hatchback with off-road capability. Available in S, SE, and SEL trim levels, it features a full suite of connectivity and driver assistance systems, either as standard or optional equipment.

Like the Golf SportWagen, the Golf Alltrack is powered by VW's 1.8 liter DOHC four-cylinder TSI engine. This turbocharged and intercooled, 16-valve direct fuel-injected powerplant is rated at 170 horsepower and 199 lb-ft torque. A six-speed manual is standard on the S and SE, with a 6-speed dual-clutch automatic with manual shifting mode and available steering wheel paddle shifters optional, but standard on the top SEL model.  EPA rates the Alltrack at 22 city/32 highway mpg, a few mpg less than the SportWagen that comes with 4MOTION.

vw-allroad-underhood-1VW’s 4MOTION all-wheel drive system normally delivers power to the front wheels and can also sends torque to the rear wheels when needed, with the system automatically adapting to varying road conditions for additional traction. Drivers can select between Normal, Sport, Custom, and Off-Road modes. All-wheel-drive also works in conjunction with other active stability systems like Electronic Differential Lock (EDL). Hill Descent Control actively helps control brake application when descending steep inclines, a feature that’s especially helpful in slippery conditions to maintain a constant, controlled speed. An available three-gauge Off-Road Monitor provides information about altitude, steering wheel angle, compass heading, and more.

The Alltrack is 2.1 inches taller than the SportWagen with an increased ground clearance of 6.9 inches. It also features rugged bumpers for tough conditions. Bi-xenon headlights with LED daytime running lights are available on the SEL. The model’s optional adaptive front-lighting system turns the headlights slightly with steering at certain speeds. A power tilting/sliding panoramic sunroof is available along with roof rails that work with VW accessories for carrying outdoor equipment.

vw-allroad-front-with-kayak-1Car-Net App-Connect allows the use of select apps from a compatible smartphone on the dash, providing information, support, and assistance to make this the center of a driver’s mobile universe. The system’s Guide & Inform features handy items like enhanced navigation with traffic updates, sports scores, weather information, and more. VW Car-Net Security & Service allows a smartphone to locate the car’s last parked location, check to see if doors are locked, or call for help in an emergency.

VW provides desired driver assistance systems that include a rearview camera system and much more. Front Assist, which includes Forward Collision Warning with front sensors, helps monitor traffic and warn of a potential collision. If a collision is imminent, Front Assist’s autonomous emergency braking helps brake the car. Adaptive Cruise Control helps maintain a preset distance from the car in front. If the car in front speeds up or slows down, sensors detect the change and respond by slowing or stopping the Alltrack automatically. Lane Departure Warning senses when an Alltrack driver is drifting into another lane without a turn signal activated and provides steering input to keep the car in its correct lane.

ron-driving-vw-alltrackPark Distance Control uses sensors that help a driver drive into or back out of a parking spot. Audible signals and an optical parking system function in the display indicate how much space is available behind or in front while parking. An alert sounds as a warning if you get too close. The display provides additional support for a driver by showing the position of obstacles. Park Assist determines if a parking spot is big enough, then helps steer the vehicle into the space while a driver operates the accelerator, brake, and shifter.

Those looking to get into a handsome and versatile wagon with off-road capabilities should give the VW Alltrack a close look. It features VW’s expected attention to detail and quality while delivering a fun-to-drive nature and capabilities that allow heading for roads less traveled, at a reasonable MSRP of $25,850 that fits a lot of budgets.

vw-allroad-cabin

vw-beetle-dune-leadIn the late 1960s, many VW Beetle sedans and convertibles were converted into Baja Bugs for desert or beach duty, or just to look cool. Like the iconic dune buggies conceived by Bruce Meyers, the Baja Bug originated in Southern California. Unlike dune buggies that had completely new fiberglass bodies on a shortened Beetle chassis like the Meyers Manx, Baja Bugs retained most of the Beetle's sheetmetal and chassis modifications were not required. Conversions were often done by individual owners. There was a shortened fiberglass front and an abbreviated rear that left the engine mostly exposed, plus tubular steel cage-type front and rear bumpers and shorter fiberglass front and rear fenders.

For 2017, the Beetle Dune Convertible joins the Dune Coupe that first appeared as a 2016 VW model following its debut as a concept car at the 2014 Detroit Auto Show. Though much more sophisticated, VW says the Dune was inspired by the original Baja. While based on the third-generation New Beetle, the bolder Dunes gets a raised ride height of 0.4 inches and a 0.6-inch wider track for a more rugged appearing stance.

vw-beetle-dune-34-frontFront and rear facias of the VW Dune Convertible are more aggressive looking than the standard model and feature black 0.6 inch wheel arch extensions that flow into the bumper. The front bumper integrates a large central air intake with a black honeycomb screen and aluminum-looking surround that morphs into the front skid plate. Foglights are located on either side of the intake in two black honeycomb vents. An available Lighting Package adds Bi-Xenon headlights with LED Daytime Running Lights and LED rear license plate lighting.

The sides of the Dune are characterized by the contrast between polished aluminum sills black trim strips that remind you of the running boards on the original Beetle. At the rear is a large spoiler on both coupe and convertible variants, standard LED taillights, and a rear bumper design with matte black and aluminum elements that mimic the front facia. The rear diffuser also acts as a skid plate. Dune rides on 18-inch Canyon aluminum-alloy wheels fitted with 235/45 all-season tires.

vw-beetle-dune-tsi-engineLike other Beetle 1.8T models, the Dune is powered by a 1.8-liter, direct-injected and turbocharged TSI four-cylinder engine that delivers 170 horsepower and 184 lb-ft torque. The engine is mated to a six-speed automatic transmission. EPA fuel economy numbers are 24 mpg city/31 mpg for both Dune models. During our drives on backroads and interstates we found the Beetle Dune

The top on the Dune Convertible is operated by a header-mounted switch and can be opened in 9.5 seconds. Closing takes 11 seconds, and both can be done at speeds up to 31 mph…just in case a up/down decision comes just before a traffic light turns green. The Dune’s 50/50 rear seat accommodates two. Its trunk can hold 7.0 cubic feet of cargo regardless of the top’s position.

vw-beetle-dune-cabinBeetle Dunes are available in three exterior colors include Sandstorm Yellow, Pure White, or Deep Black Pearl. Sandstorm Yellow cars have an interior that features body-color upper door trims and dash pads, with the Pure White and Black Pearl cars featuring black door and dash pad trim.

While original Bajas were very spartan with few creature comforts, the Dune presents quite a departure. It’s filled with the latest technologies like a standard MIB II infotainment system ready for Apple CarPlay, Android Auto, and MirrorLink smartphone platforms via Volkswagen’s Car-Net system. Its 6.3-inch touchscreen has a capacitive touch sensor like smartphones and tablets for gesture controls like swiping and pinch-zooming. MIB II also features a proximity sensor that detects when a hand is nearby and automatically switches its display to allow an array of features. A rearview camera and Park Distance Control are standard. A Technology package is available that adds dual-zone automatic climate control, a premium audio system, KESSY keyless access with push-button start, and a tilt-and-slide sunroof.

vw-beetle-dune-rear-airfoilJust like the rest of the Beetle line-up, Dunes are fitted with the automaker’s Automatic Post-Collision Braking System. This takes into account that a collision is rarely a single, instantaneous action, but a series of events that follow the initial impact – the most significant of which can cause additional collisions. The system helps address this by applying brakes when a primary collision is detected by the airbag sensors, thus helping reduce residual kinetic energy and the chance of additional damage.

The VW Beetle Dune coupe is available at an approachable $23,995 with the convertible upping the ante to $29,395. Cool-looking with a bit of nostalgia built in, the techie Dune is fun, eye-catching, and efficient…a great combination for fans of the iconic Beetle.