More people around the world recognize Arnold Schwarzenegger as the ‘Terminator’ rather than California’s 38th governor, a high-profile role he filled from 2003 to 2011. A prolific actor and world-class bodybuilder who achieved the titles ‘Mr. Universe’ and ‘Mr. Olympia’ many times over, Schwarzenegger was nominated for the President’s Council on Physical Fitness and Sports by President George H. W. Bush in 1990. Clearly, public service agreed with him. When the Republican ‘Governator’ successfully ran for office in a recall election against then-Governor Gray Davis in 2003, his chances for turning around a state in financial turmoil were widely debated. What occurred during his tenure was strong leadership and a surprising knack for championing both business and the environment. This interview 18 years ago by Green Car Journal editor Ron Cogan shares former Governor Schwarzenegger’s strong views on hydrogen, electric vehicles, alternative fuels, and the need to mitigate air pollution and carbon emissions.
This article shares a 2006 interview of Governor Schwarzenegger by editor/publisher Ron Cogan and is presented as it originally ran in Green Car Journal’s Spring 2006 issue.
Ron Cogan: Air pollution has represented one of California’s epic challenges. How would you say the state’s air quality is doing today?
Gov. Schwarzenegger: “California has made great strides to improve air quality in the past 20 years. There are far fewer Stage One smog alerts, for example, than there were just five or 10 years ago. But so much more remains to be done. That’s why in my Action Plan for California’s Environment, I pledged to reduce air pollution by 50 percent by the end of this decade, and we’ve worked hard to achieve that goal. In my first year in office, we put $140 million a year of permanent funding into the Carl Moyer program and more money into the Breathe Easier campaign, two programs that take the most polluting cars, trucks, and buses off the road and put clean, alternative fuel vehicles in their place. We’ve also put state government on an ‘energy diet’ with my Green Buildings Initiative because electricity generation is another source of air pollution. And in my Strategic Growth Plan, I made air quality a component of our state infrastructure – right up there with roads, mass transit, water projects, and schools.”
RC: Your most high-profile vision for California’s transportation future involves hydrogen. Why this fuel?
Schwarzenegger: “Hydrogen is fantastic because the only emission from the tailpipe is water. It is also a fuel that we can produce in California, instead of relying on oil from foreign countries. In fact, we can make hydrogen from solar power and water; we can make it from biomass that comes from our farms; we can make it from waste materials. It’s the best hope we have to make California and the United States energy independent and end our oil addiction.”
RC: Have you gained the support you were expecting for this hydrogen effort from auto and energy companies?
Schwarzenegger: “Absolutely. They are my partners in the Hydrogen Highway Network and we couldn’t do it without the car companies, the energy companies, the environmental groups, our amazing California universities, and my team at CalEPA. As I always say, we get much more done when we all work together.”
RC: What about political support?
Schwarzenegger: “That’s been fantastic too. The members of the Legislature are my partners and the Hydrogen Highway is a great example of how we can get great things done for the people of California when we work together. And may I add, that we have all enjoyed driving the hydrogen cars that are being demonstrated throughout the state right now.”
RC: How much do you expect a hydrogen fueling infrastructure to cost the state?
Schwarzenegger: “Thanks to the 200 partners who helped us draft the blueprint for the Hydrogen Highway Network, the state is actually investing a very small amount compared to the terrific investments being made by energy companies, automakers, local air districts, the federal government, and many other partners.”
RC: What financial impact would you expect hydrogen vehicles, and the supporting industries surrounding a growing hydrogen vehicle fleet, to have on the state?
Schwarzenegger: “California is already the center of the hydrogen technology revolution. Just like Silicon Valley is to computers, we will see more and more hydrogen businesses starting up or expanding in our state and that’s great for our economy.”
RC: Other states are also striving for hydrogen leadership. How can California stay ahead and attract hydrogen-related business?
Schwarzenegger: “By continuing our partnerships and implementing the vision of the Hydrogen Highway. That’s what was missing from the efforts in every state. No one wanted to build fueling stations without vehicles; and no one wanted to mass produce hydrogen vehicles without a network of fueling stations. We’ve solved that problem and that’s why everyone is coming to California to start the hydrogen economy.”
RC: We’ve heard before that California’s Zero Emission Vehicle mandate had a direct influence on development of Partial Zero Emission Vehicles and on hybrids. Do you see a value in mandates like this?
Schwarzenegger: “Each advance stands on the shoulders of what came before. Hydrogen vehicles will benefit from battery electric car technology and so many other innovations that started right here in California.”
RC: How important are extremely low emission hybrids to our transportation mix?
Schwarzenegger: “Very important. When I visited Japan, Prime Minister Koizumi and I talked about how he was ‘greening’ the government fleet there, both to clean up air pollution and to get more out of limited fuel supplies. We’re doing the same thing here, which is why I launched the ‘Flex Your Power at the Pump’ campaign to educate drivers about how to save as much as 15% of their fuel, which saves money and spares the air.”
RC: What about other alternative fuels like ethanol and natural gas?
Schwarzenegger: “These fuels are important too, because we must end our addiction to oil and while hydrogen vehicles are not yet affordable for everyone, right now you can go out and buy flex fuel vehicles or vehicles that run on natural gas and biofuels.”
RC: You’ve called for substantial reductions in greenhouse gas emissions. What kind of changes will be required for motor vehicles to contribute their share to these reductions?
Schwarzenegger: “We know that vehicles contribute as much as 50 percent of the greenhouse gases, so they will have to make big reductions. That’s why I’ve said all along that I support California’s landmark greenhouse gas reduction law (AB 1493 Pavley) and will defend it in court from the challenges that we know are coming.”
RC: How do you stand on cleaning up school buses?
Schwarzenegger: “My budget each year has provided money to scrap the dirtiest, oldest buses and replace them with cleaner vehicles. I’ve seen the studies that show how bad the air quality is inside those old buses and we must protect our children.”
RC: How important is it to focus on non-road vehicles and other sources to address air pollution?
Schwarzenegger: “Of course, that’s important too. That’s why I appointed Bob Sawyer as Chair of the California Air Resources Board, because he’s the leading scientist on these matters and I know that with our other Board members and the great staff at CARB, we will win the battle against air pollution, no matter what the source.”
RC: California uses an enormous amount of gasoline and diesel fuel. How can the state decrease its vulnerability to price spikes and possible motor fuel shortages?
Schwarzenegger: “We need to expand the use of biodiesel in California and get more of our trucks and buses running on natural gas and other cleaner fuels. Of course, if we reduce our demand for gasoline that also allows refineries to produce more diesel, which reduces the potential for shortages. But the key thing is to move away from petroleum and towards hydrogen and other clean fuels.”
RC: If there was one thing you could do to improve air quality or energy diversity during your time as Governor, what would it be?
Schwarzenegger: “I’d say the key thing is to make sure every Californian understands that each of us is responsible to solve these problems of air pollution and oil addiction. Each of us can walk more or ride a bike, take a bus, drive a fuel-efficient car, promote energy efficiency in the workplace, and take other measures to improve air quality and reduce our dependence on oil. And of course, as soon as hydrogen cars are in the showrooms – within the next few years – I hope everyone will buy them and start driving on California’s Hydrogen Highway!”
There’s no doubt that plug-in hybrids loom large on the minds of drivers today. One might assume this is a recent phenomenon given the constant media attention today. But really, this has been an ongoing area of interest for quite some time. In fact, some 17 years ago, Green Car Journal technical editor Bill Siuru penned a feature offering an overview of this interest. This article from our archives is worth sharing today since it not only indicates the reasons why plugging in is such a positive thing, but considering the interest at the time, it also illustrates the surprisingly long time it has taken to reach where we are today. Other revelations are included here, like the potential for vehicle batteries to be used for V2G (vehicle-to-grid) and V2H (vehicle-to-home) energy, and of course Volvo’s growing commitment to its electrified future. Here, we present this article from Green Car Journal’s fall 2007 issue.
Excerpted from Fall 2007 Issue: The tremendous interest in plug-in hybrid vehicles (PHEVs) is driven by many things, from a desire for greater fuel efficiency to decreasing emissions, achieving long-term reductions in fuel cost, and promoting energy diversity so we’re much less dependent on imported oil. Each of these is important to our future. Together, they make a compelling case for the PHEV that bears further exploration.
Plug-in hybrids could provide most of the environmental and fossil fuel-savings benefits long promised by battery electric vehicles (BEVs), but not yet delivered. Also called grid-connected hybrids, PHEVs overcome the biggest challenge of BEVs – insufficient range. With all-electric range of up to 60 miles, under most driving scenarios a PHEV can be a true zero-emission vehicle (ZEV), just like a BEV. In reality, however, plug-in hybrids offer much more since gasoline-electric hybrid power is ready to take over from all-electric drive once battery energy is depleted.
Initially, aftermarket suppliers like EnergyCS in California and Hymotion in Canada developed PHEV retrofit kits for popular hybrids like the Toyota Prius, Ford Escape Hybrid, and Mercury Mariner Hybrid. These have been quite expensive and aimed exclusively at fleets because of cost. Major automakers have now joined in. General Motors’ much-publicized Chevy Volt will be a PHEV with an all-electric range of 40 miles. According to GM, 75 percent of all commuters drive 40 miles or less to and from work. A plug-in Saturn Vue hybrid, in the works and possibly available in advance of the Volt, could double the fuel economy of any current SUV and provide some 10 miles of electric-only propulsion. Toyota, Nissan, Ford, and several other manufacturers have PHEVs in the works, as well.
While most hybrid cars, SUVs, light trucks, and PHEVs unveiled to date are parallel hybrids, several have followed a different approach with a series hybrid configuration. One of the latest is the Volvo ReCharge Concept. The ReCharge series hybrid uses an internal combustion engine solely to drive a generator for producing electricity that powers the vehicle’s electric motors. Essentially, the ReCharge is a battery electric vehicle with an internal combustion engine for range extension. This drive configuration allows the 1.6-liter, four-cylinder Volvo Flexifuel engine to operate in its optimum rpm range for best fuel economy and minimum emissions. An added advantage when not directly connecting an internal combustion engine to the wheels is much more design flexibility.
In this instance, the ReCharge uses four individually controlled electric drive motors for all-wheel drive. Individual wheel motors also allow optimum weight distribution and maximizing both traction and mechanical efficiency. Since a transmission is no longer needed, mechanical gear friction is reduced substantially. The ReCharge can run on battery power alone for just over 60 miles and also operate its engine on biofuels like E85 ethanol, all the while retaining the sporty performance of the Volvo C30 sport coupe on which it is based. For a 93 mile (150 km) drive starting with a full charge via an ordinary electric outlet, it will use less than three-quarters of a gallon of fuel, which equates to almost 125 mpg. A driver would rarely need to fill up the tank if driven less than 60 miles daily.
PHEVs offer us more than just emissions reduction and increased efficiencies. They also have the unique ability to supply large amounts of electrical power for uses other than just propulsion. This feature is being exploited in the plug-in hybrid Trouble Truck Project by a consortium consisting of the Electric Power Research Institute, Eaton, Ford Motor Co., and California’s South Coast Air Quality Management District. Trouble trucks, used by utility repair crews, are typically operated in residential neighborhoods. Since their internal combustion engines are left idling to power buckets, power tools, lights, and accessories, emissions and noise occur at job sites as a matter of course. Providing power through a PHEV’s battery and electrical system means continuous engine operation is no longer needed.
These PHEV trouble trucks use Eaton’s parallel pre-transmission hybrid system with either a Ford 6.8-liter V-10 gasoline engine or 6.0-liter V-8 diesel engine. Along with reducing consumption and emissions while traveling to and from worksites, the PHEV trouble trucks provide engine-off cab air conditioning and standby AC electrical generating capacity, including 5 kW of exportable power for at least six hours to power equipment. PHEV trouble trucks based on Ford’s F-550 truck chassis are used by Southern California Edison, Los Angeles Department of Water and Power, and Pacific Gas & Electric. This project will later expand to 50 Ford F-550-based trucks and E-450-based vans for utility and public fleets. Since the F-550 and E-440 chassis are widely used as shuttle buses, urban delivery trucks, cable service trucks, and even motorhomes, there’s every potential that volume production could reduce per-vehicle cost. In fact, PHEV technology could find a home in high-end motorhomes where, perhaps in conjunction with solar panels, it could replace noisy and polluting generators typically used to power on-board electrical components while parked.
PHEVs can produce so much electricity that excess energy could be supplied to the electrical grid using vehicle-to-grid (V2G) technology. V2G allows two-way sharing of electricity between PHEVs, BEVs, and the electric power grid. With V2G, an electric or plug-in hybrid vehicle not only could be plugged in for battery recharging, but under certain conditions could also send electricity back from the batteries to the grid. For instance, vehicles could store electrical energy generated during off hours for use during peak power demands. This would eliminate the need for utilities to buy expensive overcapacity electricity on the spot market or fire up older, and high-polluting, fossil fuel ‘peaker’ generating plants. To encourage consumers to participate in a V2G program, utilities could pay motorists for the use of their PHEV or BEV, or owners could sell back energy to the utility when demand is highest.
In what’s called V2H – or emergency home backup – a PHEV could be used for emergency power. For instance, the PG&E demonstrator supplies 9 kW hours of electricity and the average home uses about 2.5 kW of electricity an hour, which means that hours worth of backup power is available if needed. Volvo says the ReCharge Concept’s efficient generator, essentially an Auxiliary Power Unit (APU), is powerful enough to supply an entire house with electricity. Thus, with minor modifications it could be used in case of a power failure.
Like the BEV, the practicability and affordability of the PHEV is governed by battery technology and cost. Its greater all-electric range capability requires larger, heavier, and much more expensive battery systems to store additional electric energy. Plug-in hybrid Dodge Sprinter vans have a 14 kW-hour nickel-metal-hydride or lithium-ion battery system that provides 20 miles of electric-only power. In contrast, the Prius uses a 1.5 kW-hour battery pack for normal gasoline-electric hybrid operation. Ordinary hybrids require batteries that supply short bursts of electrical boost with a nearly constant state-of-charge to ensure battery longevity. PHEV batteries must provide this high power burst while additionally handling full charge to deep discharges like a BEV. Another concern focuses on whether enough electric power will be available should PHEVs become extraordinarily popular. However, a study by the Department of Energy’s Pacific Northwest National Laboratory says the nation’s existing electric power grid could support up to 180 million PHEVs.
All this is unfolding, now. Technology marches on, costs diminish through efficiencies, and interest drives further development...all good things that should bring the plug-in hybrids we desire to our highways sooner than later.
It’s pretty amazing that it has taken over 20 years for hybrid electric vehicles to generate truly significant interest. Yet, that’s the story today as many who are interested in electrification have decided to try a gas-electric hybrid first to sate their appetite for an electrified vehicle. It’s an easy choice since there is no real downside to a hybrid – great fuel efficiency, no range anxiety, and a more affordable price of entry compared to a fully electric vehicle. But how do they work? This article, which ran in Green Car Journal a dozen years ago, explained hybridization in an easy-to-understand way that still resonates today. We’re sharing it here just as it originally ran in Green Car Journal’s Summer 2012 issue.
Excerpted from Summer 2012 Issue: The term ‘hybrid vehicle’ covers a lot of territory. Motivated by two or more different power sources, a hybrid electric vehicle (HEV) uses an internal combustion engine (ICE) and one or more electric motors with batteries that store electrical energy. The ICE is usually a gasoline engine, but diesel engines can be used.
In the future, we will see hydrogen fuel cell hybrids where a fuel cell replaces the ICE. Then, there are hydraulic hybrids, now found in large trucks and buses. Here, energy in the form of high pressure hydraulic fluid is stored in accumulators and reservoirs rather than batteries, and hydraulic pressure rather electric motors drive the wheels.
There are both series hybrids and parallel hybrids, with the latter configuration currently far more popular in automotive applications. Cars like the Chevrolet Volt and Fisker Karma are series hybrids. Here, the ICE’s sole or primary job is to drive a generator that supplies electric energy to the battery or directly to an electric motor, or motors, that power the wheels. The engine in a series hybrid can operate at an optimum speed for best fuel economy since its focus is generating electricity rather than providing mechanical power to the wheels.
In a parallel hybrid, both the ICE and electric motor(s) can power the wheels together or individually. The ICE can also keep the battery charged. The ICE in parallel hybrids can be smaller and more fuel efficient since their electric motors can supply supplemental power for peak loads.
Then there are mild hybrids and full hybrids. In a mild hybrid, the ICE and motor/generator operate in parallel, with the motor/generator used for regenerative braking, stop-start capability, and battery charging. While the ICE provides most of the propulsion power, the electric motor can supply additional power, such as during acceleration and hill climbing. A mild hybrid cannot travel solely on its electric motor. The Chevrolet Malibu Eco, Buick eAssist, and BMW ActiveHybrids are examples of mild hybrids.
A full hybrid adds the ability to operate on electric power alone, at least for short distances. Sometimes a full hybrid is called a series-parallel hybrid since, like a series hybrid, its ICE and motor/generator can charge the battery that in turn powers the wheels. Examples include Toyota, Lexus, and Nissan hybrids, including the Prius with its Hybrid Synergy Drive (HSD) and Ford’s Fusion and C-Max hybrids.
Microhybrids are not really hybrids according to the above definition since they save fuel simply by shutting off the engine when a vehicles stops, such as at traffic lights. Their advantage is that microhybrids can deliver a 5 to 10 percent improvement in fuel economy with only minor modifications to a powertrain, while adding only a small amount to a vehicle’s cost. They do require more robust and powerful starters to handle the greater number of starts, plus more capable batteries to keep the air conditioning, radio, and other electronics running during the stop-and-start process when the engine is shut down. . As expected, maximum fuel economy comes in stop-and-go urban driving with no savings achieved during long-distance highway drives.
Often, stop-start is combined with regenerative braking for further fuel savings. This adds complexity since the braking system must have the ability to recoup braking energy and convert it to electricity that’s used to keep batteries charged. Virtually every mild and full hybrid features stop-start and regenerative braking. In fact, these two systems are what help hybrids achieve greater EPA estimated fuel economy in city driving compared to driving on the highway, where steady speeds have traditionally resulted in much better mpg than when driving in stop-and-go traffic.
As the name implies, the plug-in hybrid electric vehicle (PHEV) operates as a conventional hybrid but can also be plugged into the electric grid to recharge its batteries. This is in contrast to conventional hybrids that recharge only by their onboard generator and regenerative braking. PHEVs, which have a larger battery pack than standard hybrids so they can be driven longer on battery power alone, may never need a drop of gasoline if driven relatively short distances. Longer drives use a combination of battery and internal combustion engine power. Examples include the Toyota Prius Plug-In, Ford Fusion Energi, and C-Max Energi hybrids.
An Extended Range Electric Vehicle (EREV), sometimes called a Range-Extended Electric Vehicle (REEV), is designed for battery electric driving. It creates its own on-board electricity when batteries are depleted to extend all-electric driving range. EREVs can have either series or parallel hybrid configurations. The series hybrid Chevrolet Volt and Fisker Karma are high-profile examples that travel 25 to 50 miles on battery power and then hundreds of miles more with on-board generated electricity. Other similarly-powered extended range electric vehicles are on their way. The upcoming BMW i3, for example, will have a REx option with a small ICE that extends its nominal 100 mile all-electric range.
Here’s an advanced propulsion system that sought to answer a question not yet asked. As Toyota looked forward in the mid-1990s, it launched an inspired program to engineer an all-new powerplant that would be highly fuel efficient, offer extremely low tailpipe and carbon emissions, and feature unheard of environmental performance. The Toyota Hybrid System – now Toyota’s Hybrid Synergy Drive – was the result that debuted in the all-new Prius that hit the world stage in 1997 and emerged on our shores in 2000. It has been refined over the years to deliver more power and even greater efficiency, eventually making its way to a great many Toyota and Lexus models today. This article is reprinted just as it ran in Green Car Journal’s Winter 2004 issue, sharing our perspective 20 years ago on how important a breakthrough this innovative propulsion technology represented at the time, and why it continues to resonate in the automotive market today.
Excerpted from Winter 2004 Issue: Years ago, as automakers struggled to engineer electric vehicles that could offer practical driving range between charges, more pragmatic developers proposed overcoming the battery EV’s range limitation with a ‘range extender.’ Simply, this concept would add a small on-board gasoline engine to keep batteries charged and supplement electric propulsion when more power was needed.
While no longer a true zero emission vehicle – a key goal of electric vehicle enthusiasts – the concept promised cars that would appeal to a mass market. It would provide significantly higher fuel economy than conventional automobiles and achieve near zero emissions levels, all the while offering performance, functionality, and affordability similar to that of the familiar internal combustion engine vehicles we’ve driven for many decades. This concept has evolved into today’s gasoline-electric hybrid vehicle (HEV).
Toyota and Honda can be credited with first producing HEVs that appealed to wide spectrum of vehicle buyers. Toyota introduced its first-generation Prius hybrid in 1997 to the Japanese market. North America saw its first hybrids with the debut of Honda’s two-seat Insight as an early 2001 model, shortly followed by the introduction of the Toyota Prius to American roads.
Toyota uses its sophisticated Hybrid Synergy Drive system to power today’s Prius, a follow-on to the first-generation Toyota Hybrid System. Both automakers are now offering their second generation hybrid vehicles. In 2003, Honda introduced the five-passenger Honda Civic Hybrid, which offers a more powerful adaptation of its Integrated Motor Assist (IMA) hybrid system. A completely redesigned and more powerful Prius appeared as a 2004 model.
Both the Toyota and Honda hybrids are parallel configurations, with wheels driven by both their internal combustion engine and electric motor. In detail, however, they work quite differently. The Honda IMA system’s electric motor/generator supplies additional power to the gasoline engine when needed for acceleration or when driving demands are greater, such as when climbing grades, thus the designation ‘motor assist.’ The Honda gasoline engine always provides propulsion.
Things are reversed with Toyota’s Hybrid Synergy Drive, which finds the Prius starting out on battery electric power. The gasoline engine seamlessly starts up to provide additional power during acceleration, at higher speeds, or when driving up grades. This ability to run at times on battery power alone is an important distinction to some folks, since this means Toyota’s hybrids are actually zero emission vehicles during the time they’re electrically driven. Honda’s hybrids cannot do this.
The Prius uses a four-cylinder, 1.5-liter Atkinson cycle engine. The four-stroke Atkinson cycle, invented by James Atkinson in 1882, is different than the Otto cycle engine we’re used to driving in very distinct ways. Compared to the Otto cycle, where the intake valve is closed near bottom-dead-center, the Atkinson cycle does not close the intake valve at BDC, but leaves it open as the piston rises on the compression stroke. What this means is that some of the air/fuel charge is pushed back out and into the intake manifold and is used in other cylinders. This reduces the volume of the air/fuel mixture that’s compressed and combusted without severely restricting the throttle opening. Restricting throttle opening results in large pumping losses and greatly reduced efficiency. This method of reducing power output without incurring large pumping losses makes the Prius engine much more efficient than a conventional Otto cycle engine under most operating conditions. Effectively, the use of the Atkinson cycle allows the Prius engine to operate quite efficiently at relatively low power levels while still having sufficient power for climbing hills at freeway speeds.
Prius uses the same basic 1.5 liter engine as the Toyota Echo, an engine rated at 108 horsepower at 6000 rpm. The Atkinson cycle allows the engine to be downsized to 76 horsepower at 4600 rpm while still being as efficient, or perhaps more so, than the Echo variant. Also, adding a supercharger to the Atkinson cycle results in the Miller cycle like that used in the Mazda Millenia.
Variable intake valve timing (VVT-I) reduces cylinder pressure to eliminate knocking, important because the engine has a 13:1 compression ratio. A high compression ratio, while good for performance and efficiency, can lead to pre-ignition (knocking), which can damage an engine if unchecked. The aluminum, dual overhead camshaft (DOHC) 16-valve engine produces 76 horsepower at 5000 rpm and 82 lbs-ft of torque at 4200 rpm. Because the engine speed is limited, it can use smaller and lighter components for improved fuel economy. The engine earns an Advanced Technology Partial Zero Emission Vehicle (AT-PZEV) rating, is a Super Ultra Low Emission Vehicle (SULEV), and has an EPA rating of 60 mpg city/51 mpg highway, for a combined estimated 55 mpg fuel economy rating.
Toyota’s HSD also takes special measures to address cold start emissions. Since combustion is not as efficient when an engine is cold and a catalytic converter must reach operating temperature before it can treat exhaust gases, cold starts result in greater emissions levels. The HSD system stores hot coolant in a three-liter vacuum bottle and dumps this into the engine during a cold start to help remedy this.
The permanent magnet, AC (alternating current) synchronous motor produces 67 horsepower (50 kilowatts) at 1200-1540 rpm. Most importantly, it produces 295 lbs-ft of torque at 0-1000 rpm, more than enough to get the car going without help from the gasoline engine. A sealed nickel-metal-hydride (NiMH) battery is used.
An inverter converts the battery’s DC (direct current) to AC for use by the electric motor and generator, and vice-versa. Precise current and voltage control is assured by an intelligent power module. A built-in transformer converts some of the hybrid battery’s power into 12 volts DC to operate vehicle accessories. In the latest generation Prius, the high voltage converter system increases battery voltage from 202 volts to 500 volts for driving the electric motor. This reduces power loss by up to 25 percent because electricity can be supplied at lower current, ensuring large amounts of electricity to the motor for significantly greater output while allowing for a smaller battery.
The Prius’ transaxle contains a planetary gear that adjusts and blends the amount of torque from the engine and motor as it’s applied to the front wheels. It also functions as a continuously variable transmission (CVT) with drive ratio controlled by varying the rpm of the generator that also runs off the planetary gear. This Power Split Device allows the engine to operate in its most efficient load and speed range most of the time. The planetary gear system connects the engine, generator, and motor together, allowing operation in a parallel hybrid mode with the electric motor and gasoline alone or together powering the car. It can also operate like a series hybrid when the gasoline engine operates independently of the vehicle speed to charge the battery or provide power to the wheels. Finally, it allows the generator to start the engine so a separate starter is not needed.
Toyota’s Hybrid Synergy Drive is presently packaged in the sleek, aerodynamic, and efficient five-door Prius hatchback that’s officially classified as a mid-sized car, quite a leap forward from the compact and somewhat quirky first generation Prius. This advanced hybrid vehicle shares virtually nothing with other Toyota models. Features include a throttle-by-wire and an electric air compressor for the air conditioning.
Hybrid Synergy Drive is quite scalable, so expect to see it used in other Toyota and Lexus models. For example, it will be used in the 2006 Lexus RX 400h luxury SUV that will go on sale this coming April 15, along with the Toyota Highlander Hybrid that will debut later in the year. Both models are expected to be mated to a 3.3-liter V-6 engine with front and optional rear motors, in a package producing 270 horsepower. Other Toyota hybrid models will be sure to follow.
With Nissan and Ford already HSD licensees and other automakers reportedly investigating this acclaimed hybrid system for their own models, Toyota has clearly gambled big with its huge investment in this technology, and won big as well. We’ll surely be seeing a lot of Toyota’s Hybrid Synergy Drive in the years ahead.
Plug-in hybrids are expected to play an increasingly important role in the mission to decarbonize transportation. While many think that interest in PHEVs is a recent phenomenon, that’s not the case since the concept has been intermittently explored throughout automotive history. Real momentum gathered soon after mass-market gas-electric hybrids hit our shores over two decades ago, with some envisioning a huge benefit in evolving hybrids to enable driving exclusively on battery power. Here, we share an article focused on this vision from the Green Car Journal archives, just as it ran 18 years ago.
Excerpted from Fall 2005 Issue: It’s hard to imagine a more gripping state of affairs at the start of the 21st century. A cloud of smog hangs over our cities while the threat of global warming looms ever larger. Oil prices are rising to record highs and while there’s no imminent danger of running out of petroleum, no one knows how long supplies will last. For a final dramatic touch, most of that oil sits beneath the powder-keg that is the Middle East.
A hydrogen hero is on the way, but many worry that we don’t have time to wait, unsure of what happens if oil supplies drop off and we’re caught without a safety net. A growing chorus is clamoring for a near-term solution, something that can be implemented now to significantly reduce oil consumption. The stage has been set for plug-in hybrids.
The plug-in hybrid is an evolution of the ‘conventional’ hybrid vehicle. Plug-in hybrids function the same way, assisting the engine with battery power or electric energy captured during deceleration, but take the idea a step further. Increased battery capacity allows plug-ins to rely more on electricity and less on gasoline, extending electric-only driving range and delivering even better fuel economy. The extra electric power is drawn from the electrical grid by plugging into power outlets while a vehicle isn’t being driven.
The virtue of the plug-in hybrid comes to light with some statistics. A majority of Americans live within 20 miles of their jobs and most trips are less than 20 miles long. With an electric-only range of up to 60 miles, daily drives to work in a plug-in hybrid might not require any gasoline at all as long as the battery is recharged each night. For longer trips, the vehicle reverts back to conventional hybrid operation. If plug-in hybrids are ever designed and built from the ground up, rather than being converted from existing models like we’re seeing today, an even smaller engine could improve fuel economy at every stage.
Though the Toyota Prius is not a plug-in hybrid, it serves as a good platform for a conversion. The California Cars Initiative, a non-profit organization, first built one to show it could be done. The conversion turned out to be so promising that some companies are looking to make a for-profit business out of it.
Engineering firms EnergyCS and Clean-Tech have joined forces to form EDrive Systems, which is developing a conversion kit for the second-generation Toyota Prius. The kit removes the stock Panasonic nickel-metal-hydride (NiMH) battery and replaces it with a Saphion lithium-ion battery from Valence. The new battery adds 170 pounds to the Prius, but also makes about 9 kWh instead of the original's 1.3 kWh. That means there's much more electrical power available to drive the car.
Some careful software tweaks are made to handle the extra power of the hardware. The EDrive system takes advantage of a built-in ‘EV mode’ that forces the Prius to run purely on electric power until speeds reach 33 mph. This ensures that no precious fuel is sapped until the computer deems it absolutely necessary. According to EDrive, in a stock Prius, the batteries would only provide about one mile in this mode; the company’s converted plug-in Prius extends that range to as much as 35 miles.
To further hold off engine intervention, the computer is told the battery is full until the actual state of charge dips below 20 percent. This bit of misinformation forces Toyota’s Hybrid Synergy Drive to inject as much electric power as possible into the drive system. After the battery is about 80 percent depleted, the EDrive Prius carries on like a normal hybrid and maintains the charge of the battery as needed. Once the EDrive Prius is parked, it’s plugged into an external 110-volt charger that can replenish a fully depleted battery in about seven to nine hours.
An additional dash-mounted readout precisely meters fuel consumption and displays how far the throttle pedal can be depressed before prompting the engine to start up. It’s a useful tool because driving style matters. Aggressive driving and 75 mph cruising will yield 70-80 mpg, say the EDrive folks, while relatively mellow driving earns well over 100 mpg. Low speed city driving and cruising at 55 mph can reportedly push fuel economy closer to 200 mpg. And when the battery is depleted after 50-60 miles of driving, fuel economy reverts back to the roughly 45-50 mpg of the stock Prius.
EDrive Systems hopes to sell its conversion kit for $10,000 to $12,000 in early 2006. At this cost, EDrive’s market is limited to those with the bucks to support making such a statement, but it’s a start.
The Prius is not the only vehicle lending itself to plug-in conversion. DaimlerChrysler is working with the Electric Power Research Institute (EPRI) to build 40 plug-in hybrid versions of its Sprinter commercial van for use in demonstration fleets. Electric boost comes from a 70 kW motor positioned between the transmission and clutch, which is fed by a 14 kWh NiMH battery stowed beneath the cargo floor.
Drivers of the plug-in Sprinter hybrid can push a button to put the vehicle in electric-only mode, which is good for a range of about 19 miles. When not selected, the hybrid’s electronic controller alternates power between the vehicle’s diesel engine and electric motor to optimize fuel economy, or combines the two when power demands are high. This plug-in variant is designed for recharging on Europe’s 230 volt network, a task that takes about six hours for a fully depleted battery.
The stock Sprinter, with its small, 4- cylinder diesel engine, is already quite the efficient hauler with fuel economy as high as 30 mpg. Converted to a plug-in hybrid, DaimlerChrysler says fuel economy improves anywhere from 10 to 50 percent, depending on use. That means up to 45 mpg from a commercial delivery vehicle – simply unheard of in its class. So far, DaimlerChrysler is the only automobile manufacturer producing its own plug-in hybrids.
One of the most notable forces behind the rising profile of the plug-in is Felix Kramer and his Palo Alto-based California Cars Initiative. The group is mobilizing support from fleets, government agencies, and private buyers in an attempt to break the vicious cycle that plagues many new technologies: Motorists won’t buy plug-ins on a large scale unless the price is right, and the price won’t come down until automakers are convinced there will be buyers.
Not content to wait around for the manufacturers, Kramer is looking at other ways to put plug-in hybrids on the road. The plan is to utilize venture capital, set up a Qualified Vehicle Modifier company that could work with automakers in a fully certified capacity, and convert existing hybrid models without voiding original vehicle warranties. In Kramer’s mind, conversion possibilities include Ford’s Escape Hybrid and models using Toyota’s Hybrid Synergy Drive such as the Prius, Highlander Hybrid, Lexus RX400h, and other upcoming models.
The potential of the plug-in hybrid in reducing emissions and oil dependency has put environmentalists and conservative think-tanks in an unusual position: They’re on the same side. Set America Free, the Center for Security Policy, and others have joined electric vehicle die-hards in calling for mass production of plug-in hybrids. Support from former Secretary of State George Shultz and former CIA director James Woolsey lends considerable credibility to the cause.
Despite this clamoring, the U.S. government has yet to respond in a big way. An amendment to the massive energy bill recently approved by President Bush allocates a relatively tiny $40 million for hybrid vehicle development, some of which could go toward plug-in hybrids...but there’s no guarantee.
This leaves local government to take charge. The City of Austin, Texas, with help from its municipal utility Austin Energy, has become the first city to develop an incentive plan for plug-in hybrids. ‘Plug-In Austin’ is looking to raise $50-$100 million to provide rebates on plug-in hybrid purchases for public and private use, as well as for running an educational campaign to generate consumer interest. Austin is one of 10 cities that will begin testing DaimlerChrysler’s Sprinter plug-in hybrid next year.
The ‘Plug-In Austin’ campaign is designed to expand to other communities around the country. Representatives from Austin Energy are approaching the nation’s 50 largest cities in an effort to encourage them to replicate Austin’s program. Already, Seattle City Light in Washington state has shown interest in offering customers incentives to buy plug-in hybrid vehicles in the Puget Sound region. Across the country and across the political spectrum, the plug-in hybrid is winning fans.
Professor Andy Frank at the University of California, Davis is an ardent proponent of plug-in hybrids and, having built plug-in prototypes since 1972, is also one of the most experienced. Rather than an intermediary step to hydrogen, Professor Frank believes the plug-in hybrid could be an end in itself. A plug-in hybrid with a 60 mile electric range, like the ones Frank and his students build, reportedly uses only 10 percent gasoline and 90 percent electricity on an annual basis. “That 10 percent of gasoline could be replaced by biofuels,” says Frank, taking an interesting direction that could find gasoline use eliminated altogether.
The possibilities don’t end there. “We have the capability, for the first time, of integrating the electric grid with transportation,” explains Frank. The electrical grid right now has enough excess capacity to support half the nation’s vehicle fleet if they were converted to plug-in hybrids, says Frank. The energy is domestically produced, the infrastructure already exists, and, though much of our electricity today comes from coal-burning powerplants, renewable and non-polluting sources such as wind and solar power could play a larger role. “People don’t think of plug-ins as alternative fuel cars, but they are,” says Frank. “You could be running your car on solar or wind power.”
At less than a dollar per gallon during off-peak hours, when most plug-ins would be recharged, plug-in hybrid drivers would be paying a lot less in fuel costs. As for the extra up-front cost, Frank points to a UC Davis study that shows how automakers could build plug-in hybrids by adding only $7,000 to the price of a $20,000 car. So why isn’t this already happening? Some in the auto industry maintain that battery technology isn’t ready yet, a claim that Frank and others dismiss. More significantly, Frank asserts there’s a general reluctance to invest, with struggling giants in the industry unwilling to take risks unless convinced there’s a good chance that a sizeable return will result.
“What I’m trying to demonstrate is that if a bunch of students can do it, the car companies should be able to do even better.” Andy Frank, the California Cars Initiative, the City of Austin, and many others feel it’s up to them to take the lead in getting the word out and generating demand. With the success they’ve met, and the wide-ranging benefits that plug-ins put within reach, there’s every reason to believe that at least some in the auto industry are paying very close attention.
Carroll Shelby was one of the auto scene’s most beloved icons. During his storied career he achieved racing wins around the world including the 24 Hours of Le Mans. Sports Illustrated named him “Driver of the Year.” He was inducted into the Automotive Hall of Fame and the International Motorsports Hall of Fame. Shelby worked with Ford on such legendary vehicles as the GT40 and the Shelby GT350/GT500 Mustangs. Perhaps most importantly, Shelby exemplified American ingenuity when he took an underpowered English AC Cars sports car, stuffed in a high-power Ford V-8, and debuted his legendary Cobra, a car that went on to achieve legendary status in the automotive world. While racing and performance were in his blood, Shelby also had a great interest in cars and the environment later in life, and served as a juror for Green Car Journal’s Green Car of the Year award program until his passing in 2012 at the age of 89. In this piece from our archives, Shelby shared his thoughts with publisher Ron Cogan on hybrids, alternative fuels, and the roles of government and the auto industry in dealing with advanced vehicles and environmental performance..
This article shares an archive interview of Carroll Shelby conducted by editor/publisher Ron Cogan and is presented as it originally ran in Green Car Journal’s 2003 Special Edition.
Ron Cogan: How would you define performance these days, Carroll? You see a lot of advanced technology engines out there, and we’re doing a lot more with a lot less …
Carroll Shelby: “A lot more with a lot less what? Hell, no. Everybody is going for these bigger and bigger engines, six and seven liters with superchargers and turbochargers and 16 cylinders. And that’s fine. But at what cost?
“What’s going to happen is the same thing that happened in 1965. Then, the federal government and public opinion saw that seven liters in a 6,000-pound car hauling one person to work was pretty foolish. So, what happened? They decided to emissionize the cars and get into the safety aspects, which I think was a wonderful thing, although bureaucrats didn’t know very much about safety then. The automobile companies tried to explain to them what safety should be, and when the automobile companies try to explain anything, they explain it from their pocketbooks and not from what they really believe should be put into a safe car. They do as little as they have to…to interfere with their profits to the least extent.
“Instead of doing the things they did back in 1965 – choking engines up with all that (emissions controls) crap they put on them – they could have gone to compressed natural gas. They could have set up the entire infrastructure system at the time for what they spent over the next three or four years with all those regulations they put into effect. And we all know that it’s taken 20 years to get the Otto cycle (internal combustion) engine back so it performs decently.”
RC: So natural gas is the way to go?
Shelby: “Well, our big problem is imported oil. It’s causing so many financial problems … problems of us depending on antagonistic countries for our oil. It would seem to me that we’re not taking advantage of the two most obvious answers to this, which is compressed natural gas and hydrogen. Hydrogen works just fine in the engines we have now. It doesn’t give as much horsepower, but there are many ways to overcome that. Most of the cars would run on compressed natural gas – we flare off enough in Texas alone to power every car and truck in the United States – and we have hydrogen available to run in the same engines. Rather than depend on imported oil, why don’t we take advantage of these two energy sources that are here?”
RC: Where do hybrids fit in all this?
Shelby: “For 20 years we’ve had the potential for hybrid vehicles. All the technology is there, but why haven’t we gotten to that? It’s for the simple reason that they couldn’t make a profit building those things. Here we are now, finally, 20 years later just inching into the hybrid systems. Automobile companies are squealing and screaming all the way and building what I think are pretty stupid systems on these big SUVs that are picking up two or three miles to the gallon and spending hundreds of millions of dollars on it. And the Japanese have seen that this is what’s going to happen, so we’d better get with the system. That’s the reason, I think, that Toyota and Honda are leading the world right now in hybrids, which will lead us into fuel cells somewhere down the road ... but it looks to me like we’re still a lot of years away from that.”
RC: So what’s next?
Shelby: “We’re going to have all these federal mandates. One of the options that should have been looked at was, let’s form an automobile company that uses the technology of the future the same way that the federal government has gotten us into all these super, super airplanes. That’s the defense department spending the money to see that all this R&D is done, but we’ve never done that in the automobile industry. We’ve depended on the automobile companies to tell the politicians what they can and can’t do, which seems a lot of bull to me. If we had a small automobile company that would be government funded and would hire the people to use the technology we know is already out there, we could build something to show the automobile companies that it is possible, and then move into the mainstream much quicker than the way they’ve done it.”
RC: The government should develop advanced vehicles and then turn these over to the automakers to build?
Shelby: “Well, I’m saying that we’re never going to get there in the automobile industry as far as the environment is concerned with the system we have now. I don’t have all the answers, and anything I come up with is going to be very controversial anyway. Nobody wants to talk about it because the automobile companies, with their huge political impact in Washington, don’t want things like this to happen. They want things to go along just like they are.
“I’m not really criticizing them because in a capitalist system, profits are the only thing that the people who put the money up – the investors – care about. And that’s the motivating factor for them to invest their money. There has to be a better system in place to see that the environment is better looked after than it is in our political system.”
RC: Like what?
Shelby: “Let’s take racing. Let’s take performance. There’s no reason to think that if we wanted to have a racing program, like CART or drag racing, it couldn’t be done just as competitively with smaller engines and cars racing against each other in certain classes. If they were all hybrids now, you’d be improving the quality of the hybrids out there, and they’d be coming out a lot quicker than if the automobile companies weren’t fighting it. You could have all of these little Hondas that go out to the drag strip and all of these wonderfully intelligent young kids, 18 to 30 years old, who have all these Hondas and Focuses and all that going to the drag strip. What if they had to do it with hybrids? Would it be just as competitive?
“That’s the reason I get so frustrated. It’s my business. I’m building a Cobra now with 900 horsepower. You’ve got to do it to be competitive in the world as it is – profit centered – but I’d much rather be building something that I know is much friendlier to the environment, has rules and regulations that we all have to go by, and competes with the other competitors in something that is much more friendly to the environment. I don’t know … I’m frustrated about the whole thing, but at 80 years old, I know that I’m not going to change anything.
“It will be just like it was in 1966 if we don’t wake up in this country and see what it takes to build automobiles – to build a transportation system – that’s friendly to the environment. It has to be done, but it’s going to take a long time under the present system because the present system isn’t working … on a timely basis.
“I’m not trying to say I have any of the answers, I just know from living 80 years and watching the automobile industry that it has a long way to go environmentally. So many Americans, so many people all over the world – not half the number that are going to be using the automobile 20 years from now – and it seems so slow.”
RC: So after 80 years, Carroll, what’s next for you?
Shelby: “The things I’ll probably spend the rest of my life doing will be the things that are the least profitable, because I really feel that the environment is something that needs to be taken care of and it has to blend in with the automobile industry. That’s where the most fun is for me.”
Mitsubishi Motors’ electrification research and development dates back to the 1970s, Still, electrification didn’t represent a noticeable focus at Mitsubishi until the 2009 debut of its i-MiEV (Mitsubishi Innovative Electric Vehicle) in Japan and entry in the U.S. market two years later. The most notable example of Mitsubishi’s electrification effort is now the Outlander PHEV, a popular and award-winning plug-in hybrid variant of the marque’s Outlander SUV that first appeared abroad in 2013 and in the States in 2017. Like most automakers, Mitsubishi fielded interesting concepts over the years to share what might come to be. One that caught our eye was the Eclipse Concept-E, a sleek and artistic rolling rendition of what the next generation Eclipse of the era could become. As much as its styling grabbed our attention, it was the beefy hybrid powertrain that made the concept so compelling. Here’s our report on the innovative Eclipse Concept-E, just as it appeared 19 years ago in Green Car Journal’s Summer 2004 issue.
Excerpted from Summer 2004 Issue: It’s no secret that the sporty compact car craze, born in the shadows of the Southern California street racing underground and now spreading across the nation’s youth like wildfire, has arrived on the automotive scene. Exemplified, and perhaps proliferated, by the movie The Fast and the Furious and its sequel, this new generation of hot rodders has definitely captured the attention of automakers.
As Mitsubishi’s most visible entry into this new automotive sub-genre, the next Eclipse model is crucial to both the company’s image and its appeal to a younger demographic. So imagine our surprise when Mitsubishi's glimpse into the future, the Eclipse Concept-E, showcased a hybrid electric powertrain.
The Concept-E’s front wheels are driven by a parallel hybrid system integrating an electric motor with a 3.8-liter V-6, for a combined 270 horsepower. This is where it gets interesting: Mitsubishi’s innovative E-Boost system channels an additional 200 hp to the rear wheels from a 150 kW electric motor located behind the cabin, powered by lithium ion batteries secreted along the center of the vehicle. E-Boost is activated by aggressive throttle to provide an immediate boost in acceleration, much like a conventional turbo or supercharger, transforming the car into a 470 hp, all-wheel drive terror that raises the hybrid performance bar to new levels.
A look inside reveals further emphasis on the car's hybrid technology, with a decidedly futuristic twist. Centrally placed is a complex, 3D video imaging display that offers simulated gauges, diagnostic information, and interactive displays. The gearshift, looking as much the part of a fighter jet’s sidestick controller as a shifter, connects to a 6- speed transmission that allows for both manual and automated shifting.
The familiar corporate grill sits atop a gaping air intake and between large headlight assemblies featuring unique plasma lamps. The car’s tear drop shaped details, including side glass, door-handle cutouts, and roof profile, pay homage to the second-generation Eclipse that was cherished by the street tuner crowd. But the overall look of this iteration is thoroughly modern and striking. The muscular fender bulges speak of immense power and purpose, not inconsequentially housing wild nine-spoke, 20-inch wheels wrapped by 245/40R20 performance tires up front and 275/35R20 tires at the rear, suspended by independent multi-links at all four corners. It’s a theme well-integrated with the car’s ground hugging lower styling and aggressive stance.
With the Eclipse Concept-E, Mitsubishi has fused the disparate perceptions surrounding high-power, speed, and hybrid technology into a single package. In a youth-driven market that embraces innovation and technology – and times that demand higher efficiency – we hope that Mitsubishi is willing to bring this concept to the showroom and really find out if there’s such a thing as a supercar that’s too fast… and too clean.
Hydrogen has been on the minds of automakers for decades. Ever since GCJ editors experienced the hydrogen fuel cell Mercedes-Benz NECAR 2 (New Electric Car) on the streets of Berlin back in the mid-1990s, we’ve been believers that hydrogen could prove to be an important part of our zero-emission driving future. Over the years, concept, demonstration, and production hydrogen vehicles have been fielded by many automakers, from Chrysler, Ford and Nissan to Honda, Hyundai, and Toyota. One of the most notable was GM’s Sequel unveiled some 18 years ago, which followed in the footsteps of the automaker's Hi-wire hydrogen fuel cell concept Green Car Journal editors drove in 2003. The Sequel hydrogen fuel cell electric vehicle (FCEV) was decidedly ahead of its time with its skateboard platform, sandwich-style floor, steer-by-wire technology, lithium-ion batteries, and 10,000 psi fuel tanks. Read our take on GM’s groundbreaking Sequel, pulled from our archives just as it appeared in the magazine's Spring 2005 issue.
Excerpted from Spring 2005 Issue: Reality check time. When General Motors debuted the AUTOnomy and Hy-wire advanced technology concept cars at the Detroit and Paris auto shows three years ago, the vision of real-world hydrogen powered fuel cell cars still seemed very far away. Sequel brings those concepts home in a ‘do-able’ vehicle that is suddenly a lot less like science fiction and more like Main Street.
Clearly, GM hasn’t lost sight of what seemed to many a lofty goal when the company announced its intention to design and validate a fuel cell propulsion system that could be manufactured and sold by 2010. While this date certainly won’t see mass commercialization of fuel cell vehicles at GM’s new car showrooms, the General is surely aiming at reaching that milestone with technology and vehicles that can be sold – at a cost far lower than today’s fuel cell vehicles – to fleets and others willing to pay the price to be early adopters.
Sequel utilizes GM’s concept of a separate, low-profile skateboard chassis that completely houses the fuel cell propulsion system. By decoupling the rolling chassis from the bodyshell and utilizing bi-wire control technology, Sequel’s architecture offers incredible flexibility for future models. That flexibility could provide a significant advantage as merging technologies bring fuel cells closer to the showroom.
While a concept, Sequel aims to create fuel cell performance that meshes well with the kind of driving experience expected of modern vehicles. By utilizing three lightweight, high-pressure carbon composite hydrogen storage tanks, completely housed in the 11-inch thick chassis, Sequel boasts a driving range of about 300 miles. Combining electric motor front-wheel-drive with separate electric wheel hub motors at each rear wheel, Sequel is able to deliver all-wheel-drive traction and a noticeable increase in acceleration. According to GM, Sequel will scoot from 0-30 mph in three seconds and reach 60 mph in just over nine seconds. Top speed is said to be 90 mph.
That performance is made possible by a transversely mounted, three phase 80 horsepower (60 kW) electric motor at the front of the chassis and two 34 hp (25 kW) three phase electric wheel hub motors at the rear, which together deliver a total torque output of 2,506 lb-ft at the wheels.
GM’s skateboard chassis design holds several key advantages. Most significant is its inherent low center of gravity, which dramatically increases vehicle stability. With Sequel, GM engineers were able to deliver an ideal 50-50 weight distribution by placing the lithium-ion battery pack at the rear of the chassis, offsetting the motor mass up front. The hydrogen fuel cell stack is placed directly behind the front wheels beneath the driver/passenger compartment.
Midship, you’ll find the three high-pressure hydrogen storage tanks mounted in the sandwich style chassis, a location that provides the best protection from crash intrusion. These tanks have a service pressure of 10,000 psi, allowing them to carry much greater amounts of hydrogen than the 5,000 psi tanks used in the Hy-wire concept.
A high-power 65 kW lithium ion battery is employed for the power demands of launch and acceleration, but once up to speed, Sequel can cruise solely on the fuel cell. Auxiliary power generated by the fuel cell at cruising speed is combined with regenerative braking to top off the battery charge. Sequel utilizes aluminum substructures in the chassis design and extensive use of aluminum in the body panels and structure to minimize weight.
Sequel is also the showcase for GM’s next-generation fuel cell technology. The fuel cell stack delivers 25 percent more power than previous models. GM’s Fuel Cell Product Engineering facility in Honeoye Falls, New York, is working to simplify and better integrate the overall fuel cell stack and power module system design, which will ultimately drive down the cost of production.
”A fuel cell system is more efficient than an internal combustion engine, but its energy conversion is totally different and requires much more heat to be removed via the coolant,” points out Lothar Matejcek, project manager of GM Fuel Cell Activities in Mainz-Kastel, Germany. To extract the heat, Sequel uses multiple radiators with three large openings in the front of the vehicle and two additional openings in the rear. These openings are well integrated into the overall vehicle design and lend a very aggressive look to the body profile. This attention to cooling demands are said to allow the Sequel to operate at maximum power with full air conditioning even on 100 degree F days.
By-wire controls are utilized for all Sequel systems. Steering, braking, and acceleration are all free of mechanical and hydraulic control linkages. Pushing a pedal or turning the steering wheel sends an electronic signal from the vehicle controller to modulate power output, apply braking, and precisely control steering. Steer-by-wire on the Sequel processes steering inputs through a computer, actuating the front steering rack and two rear wheel steering actuators based on vehicle speed and driving conditions.
A major advantage to the separate low-profile chassis design is incredible flexibility in body and interior design, configuration, and packaging. Sequel is addressing a hot spot in the current vehicle market – the sport/luxury crossover SUV. In fact, GM compares Sequel’s size to the current Cadillac SRX crossover, with its measurements of 196.6 inches in overall length, 66.8 inches in height, and its 119.7 inch wheelbase.
Styling is contemporary, with a broad shouldered and aggressive stance enhanced by crisp lines that blend hard edges with flowing curves. The chassis design delivers wheels pushed to far corners of the body structure with little intrusion into the cabin area. GM stylists were careful not to push the design envelope too far with this concept, though, to deliver the notion that this is a real-world vehicle.
The five passenger interior is accessed through a pair of conventional doors up front with rear suicide-style door on either side of the cabin. There is no obstruction to the spacious interior with both doors open. Innovations inside are tempered by practicality. While this is a concept, the message is clear that Sequel is credible transport. One of the more striking design elements is the unique center glass sunroof that runs the length of the top. It is actually a series of individual glass panels that slide rearward and pivot up to provide a very airy cockpit.
The front passenger seat rotates 180 degrees to provide a conference-style seating configuration. Although it is drive-by-wire, all controls are familiar with a traditional steering wheel, accelerator, and brake pedals. The center console travels on a track that allows it to move from its normal location between the front seats to an aft position closer to rear seat passengers. Hinged at the front, the console’s lid pivots forward to reveal the Sequel’s audio, DVD, and navigation system. When in use as an entertainment center, the console is easily moved to the rear seat passengers for DVD movie viewing. The interior look and feel is contemporary and tasteful with metal and wood accents combined with a palette of plum, rice, and wasabi hue trim.
Sequel is the culmination of a global effort by General Motors to advance fuel cell vehicle design. Nearly 200 suppliers from around the world were sourced to fuse the latest technology into a vehicle that brings a clean, hydrogen fueled future a bit closer to home.
As GM was taking a high-profile with its Impact electric vehicle prototype in the U.S., Nissan was showcasing the marque’s FEV (Future Electric Vehicle) that GCJ editors saw in Japan. Over the next several years, Nissan continued its electric vehicle development and showed its FEV-II, a less sexy but more practical electric vehicle prototype. As its program evolved, the FEV series was dropped in favor of other electric and hybrid electric vehicle studies. Still, the design of the initial FEV in particular resonates as we look back at early electric vehicle programs. This article is reprinted just as it originally ran in Green Car Journal’s December 1995 issue to share perspective on Nissan’s early electric vehicle development efforts.
Excerpted from December 1995 Issue: The Nissan FEV, which debuted at the Tokyo Motor Show in late 1991, was a milestone electric vehicle concept for this automaker. It showed considerable thought as to what an electric vehicle could and should be, from its stylish exterior and handsome interior to an innovative powertrain and quick-charge system that garnered substantial world-wide attention.
As they say, that was then, and this is now. Nissan has now provided a follow-though by introducing its latest electric vehicle iteration, the FEV-II. This model is a bit less sporty than the original but definitely appropriate for the coming electric vehicle market. Somewhat in the vein of Volkswagen's Beetle-like Concept1, the FEV-II is handsome, rounded, and sure to be popular on the auto show circuit, and maybe even the highway.
The four-passenger (2+2) coupe's design is the handiwork of Nissan Design International, located in Southern California. It features a flat floor so batteries can be secreted beneath without infringing upon passenger comfort or space – a nice touch.
Nissan is once again credited with offering advanced thinking in its electric vehicle concepts. The FEV-II uses the advanced lithium-ion batteries this automaker is developing in conjunction with Sony. Top speed of the 3120-pound car is said to be 75 mph, while single-charge driving range is a claimed 125 miles. The EV can be charged from any standard electrical outlet via a detachable charging system.
Nissan is among many automakers who are actively working to develop viable electric vehicles to meet the 1998 ZEV mandate in California and other states. While GCJ editors have not yet road tested Nissan's new FEV-II, behind-the-wheel time has been spent in the automaker's Avenir demonstration EV. Not surprisingly, GCJ testers found it to be quite a capable electric vehicle with good acceleration and handling, indicating a great deal of sophistication in Nissan's EV development program. This electric station wagon also exhibited a high level of comfort – surprising from an electrically retrofitted production vehicle.
The automaker has been field testing 15 Avenir electric vehicles with Kyushu Electric Power Company, a Japanese utility which helped develop the electric variant. The station wagon is reportedly capable of a 50 to 100 mile single charge driving range with a top speed of 70 mph.
The world’s automakers have long pursued diverse alternative fuel technologies for good reason. Simply, the future of transportation may well unfold in surprising ways. Among the many advanced fuels explored has been hydrogen, and in fact, even amid today’s focus on battery electric power there continues to be significant interest in this zero-carbon fuel. Here’s a look at the amazing developmental work that BMW was conducting on hydrogen vehicles 18 years ago, as documented in Green Car Journal at the time. We lend perspective on the BMW H2R hydrogen vehicle’s evolutionary importance by presenting this article just as it ran in Green Car Journal’s Winter 2004 issue.
Excerpted from Winter 2004 Issue: In the quest for environmental leadership, there’s often a delicate balancing act as designers strive to create cars that are environmentally positive, yet offer the features drivers most desire. Clearly, core values must remain in focus during the process to retain the values and identity that distinguish carmakers from their peers.
This has been BMW’s mission over the past decade as it has pursued hydrogen cars and the performance to go with them. You can’t, after all, lay claim to the title “ultimate driving machine” if your zero-to-sixty times are glacial and you slog through corners, even if powered by clean-burning hydrogen.
For years, BMW has been refining the liquid hydrogen fueled sedans that it has placed in field trials on multiple continents, championing the use of hydrogen in conventional engines in lieu of the more popular fuel cell. These hydrogen vehicles have improved over the years, making the most of renewable hydrogen fuel in their internal combustion powerplants.
Now, this automaker is putting its stamp on the hydrogen record book with adaptations of this hydrogen engine technology, fielding a land speed record car that has passed the 185 mph mark and claimed an additional eight records as well. Along the way it has achieved recognition by the Federation Internationale de l’Automobile as the fastest hydrogen car in the world.
A distinction achieved at the high-speed Miramas Proving Grounds in France, BMW’s 285 horsepower H2R hydrogen car was propelled to 100 km/h in about 6 seconds, setting records in the flying-start kilometer; standing-start ½ kilometer, kilometer, and 10 kilometers; flying-start mile; and standing start 1/8 mile, ¼ mile, mile, and 10 miles. The record car was piloted by BMW works drivers Alfred Hilger, Jörg Weidinger, and Günther Weber, who took turns at the wheel of the H2R during their record-breaking session.
The sleek and imposing car was conceived, designed, and developed by the automaker’s subsidiary, BMW Forschung und Technik GmbH. Its carbon fiber exterior was designed by DesignworksUSA, the California-based strategic design consultancy owned by BMW Group. This is the same design house that worked on the BMW E1 and E2 electric car prototypes in the early 1990s.
This BMW is motivated by a 6.0-liter V-12 engine modified to run on hydrogen, a gasoline powerplant normally found in the automaker’s 760i model. Among the engine modifications is a fuel injection system adapted to handle hydrogen, which uses injection valves integrated into the intake manifolds. Special materials are also used for the combustion chambers. Liquid hydrogen is carried in a vacuum-insulated, double-wall tank that’s fitted next to the driver’s seat.
Is the H2R just a whimsical exercise? Nope, it’s part of a larger vision. In fact, BMW plans to launch a dual-fuel 7 Series that will run on hydrogen or gasoline, sometime during the production cycle of the present model, surely at a price far lower than that of a hydrogen fuel cell vehicle. Exercises like the H2R help pave the way.
One of the more interesting electric cars in the early 1990s was the German-designed BMW E1 and then the U.S.-designed E2, innovative yet mainstream looking vehicles that illustrated BMW electric vehicle aspirations. The E2 was slightly more compact than the futuristic-leaning BMW i3 ‘megacity’ electric car that was to come some 25 years later. It was 8 inches shorter, 6 inches narrower, and 5 inches lower than the i3, plus 700 pounds lighter. The E2’s ‘hot’ sodium-sulfur battery was projected to deliver a 161 mile driving range, about 8 miles farther than the i3. To enlighten readers on BMW’s early electric vehicle development efforts, we’re sharing the following article from the Green Car Journal archives as it originally appeared in the January 1992 issue.
Excerpted from January 1992 issue: BMW’s E1, an electric concept vehicle now undergoing road testing in Europe, has just been joined by a new U.S. variant. Introduced at the Greater Los Angeles Auto Show, BMW’s new E2 prototype appears mainstream enough to be a mid-‘90s model. Its appearance is somewhat reminiscent of both a downsized minivan and sedan, leaning toward the look of Mitsubishi’s new 1992 Expo and LRV, and the Mitsu-built Eagle Summit.
Is this the precursor of a production model? We asked Robert Mitchel, product information manager of BMW of North America. “It’s a concept car,” Mitchell shares, “although it is fairly close to what a production car could be. Rather than taking a current 3 Series and modifying it as we have in the past, we’ve built this solely with the intent of designing a car that would satisfy consumer needs and potential legislation.”
Among the important consumer needs to be served is a handsome package, and the E2 does provide that. Lower ground effects panels, distinctive BMW grillework, and an aero exterior are distinct design features. While the initial E1 was designed in Germany by BMW Technik GmbH, the automaker turned to California-based Designworks/USA (which is 50 percent owned by BMW AG) for the U.S. version.
According to Designworks/USA president Chuck Pelly, the studio’s intent was to give the E2 a formidable stance, with strong wheel flares and tires moved outboard as much as possible. A more substantial hood and bumper system were also integrated. “It’s a totally new body,” adds Pelly, “that’s more traditionally BMW styled, with less reversals” than the original E1. It’s also longer, wider, and lower with a smoother overall shape.
Inside the E2 variant is seating for four with storage behind the rear seat. A rounded dash integrates driver and passenger side airbags and a speedometer, range indicator, and clock. Forward/reverse controls and an electric handbrake are also provided. Designworks/USA is currently working on a completely new and more luxurious interior for the E2.
Both rear drive models use a new Unique Mobility [UQM Technologies] brushless DC motor mounted at the rear axle. The 45 hp, motor is efficient, offering very respectable power by EV standards. But the E2’s acceleration numbers point to fairly sedate performance when compared to internal combustion vehicles.
Bottom line: Could the E2 sell if it were produced as a mid-‘90s model? Green Car Journal editors believe so, with a few caveats. Acceleration is passable for an EV utilizing current state-of-the-art technology. But a projected 15.6 second 0-50 mpg (80 kph) time may not be acceptable to the mainstream BMW buyer who expects sporting performance from his driving machine – even if the E2 does exhibit a typically upscale BMW image.
BMW-style performance is possible by combining more potent electric propulsion with the E2’s advantageous curb weight. Perhaps integrating twin UQM motors would do the job (90 hp total), or using an advanced generation motor available closer to the time the E2 could make it to market. The LRV’s 1.8-liter engine supplies 113 hp total, 1 hp less than the GM Impact prototype’s twin electric motors … so electric propulsion can offer the level of highway performance driver’s have come to expect. It doesn’t seem such a stretch to conjure visions of contemporary BMW performance from an ideally configured E2.
Everyone is familiar with Tesla these days. In its early years, though, Tesla was just another aspiring automaker with big dreams and enormous challenges, and at times, seemingly insurmountable financial hurdles. That’s all changed and Tesla is now viewed as a serious competitor by the world’s legacy automakers. Today there’s the Tesla Model 3, Model S, Model X, Model Y, and Tesla Semi. Coming up will be a second-generation Tesla Roadster and Tesla's highly-anticipated Cybertruck. Sixteen years ago, Green Car Journal featured the company’s original electric Roadster and shared the emergence of Tesla as a potential competitor in the electric vehicle field. We present this article just as it ran in Green Car Journal’s Fall 2006 issue to lend context to the ever-unfolding Tesla story.
Excerpted from Fall 2006 issue: Only giant corporations have the resources to develop competent, competitive automobiles, and only internal combustion-powered cars offer the performance and practicality required by today’s drivers. The team at Tesla Motors is tasked with turning these conventions onto their respective heads…and they’re doing it.
From its founding in 2003, most of the company’s efforts have gone into developing the heart of the car, the Energy Storage System (ESS). Some 6,831 lithium-ion cells – each slightly larger than a typical AA battery – are contained inside a large enclosure that fits neatly behind the Roadster’s two seats. The batteries are liquid cooled and attached to an elaborate array of sensors and microprocessors that maintain charge balance between the cells. Tesla chose a commonly used lithium-ion cell so that battery development will continue to drive down the cost and improve performance.
Also developed internally is the motor, which features remarkably high output for its small size: 248 hp and 180 lbs-ft of torque. The motor acts as a generator whenever the driver lifts off the throttle, providing an ‘engine braking’ effect similar to conventional cars, while also recharging the batteries.
The Roadster’s chassis is based on that of the Lotus Elise sports car, but lengthened and beefed up to handle the Roadster’s roughly 350 pounds of extra weight, largely attributable to the battery pack. The body design was penned by the Lotus Design Studio, and final assembly is completed at the Lotus manufacturing facility in England.
Along with a top speed of 130 mph, the company claims a zero to 60 mph time of four seconds, on par with some of the world’s top supercars. But the real test for an electric car is range. Tesla says the batteries will last for 250 miles of pure highway driving, and can be recharged using Tesla’s home-based charging system in under four hours. The batteries are expected to last five years or 100,000 miles, after which time they’ll have 80 percent of their original capacity. In terms of real-world practicality, these are some of the most impressive numbers we’ve seen from an electric car.
There’s one more crucial number: price. The Tesla Roadster starts at $89,000 and tops out at $100,000. That’s steep, but not wholly unrealistic given the level of performance the car achieves.
Tesla Motors thinks there’s plenty of demand for their car, and early signs look good: the first 100 Roadsters were snapped up right away. It will be interesting to see if that kind of buying fervor continues as Tesla opens its direct sales and service centers, first in Northern and Southern California, followed by Chicago, New York, and Miami. The company begins the first production run of 600 to 800 cars next spring, maxing out at 2500 per year after three years if demand holds.
Plans are already in the works for the next model, a 4-door sedan in the vein of Toyota’s Prius. Tesla’s Mike Harrigan thinks that in five to six years, the cost of batteries will have been cut in half – the Roadster’s pack costs about $25,000 today – and will be capable of providing a family sedan with a range of 500 miles, double that of the Roadster.
The Tesla Roadster may be the perfect weapon to launch the Tesla brand. It’s eye-catching and fast and targeted at a segment that can realistically command high prices, thereby helping to absorb the high cost of the batteries and high-tech control system. The next step, and perhaps the greater challenge, is to drive this high concept down to the mainstream. We’ll be watching intently.
Toyota’s path to producing all-electric vehicles has been a long one, highlighted by the RAV4 EV model it fielded to fleets in response to the California Air Resources Board’s Zero Emission Mandate in the 1990s. Green Car Journal editors test drove variations of this small electric SUV during those early years of the modern electric vehicle’s development. We were impressed by Toyota’s exploration of the potential market for battery EVs at the time. To lend perspective on this automaker’s electric vehicle development, we present this article on the Toyota RAV4 EV pulled from our archives, just as it ran in our January 2002 issue.
Excerpted from January 2002 issue: Many thought the RAV4 EV – the electrically motivated compact sport utility vehicle from Toyota – was gone, the victim of a completed agreement with the State of California in the late 1990s. But it’s not. Toyota Motor Sales USA is bringing the sporty little EV back, this time making it available to retail customers in California, not just fleets. Sales are slated to begin in February 2002.
RAV4 EVs made their mark during the late-1990s as hundreds of these were leased and placed in fleet service. Some 700 of the 900 RAV4 EVs were in use in California. That occurred because of requirements imposed on automakers, including Toyota, by the California Air Resources Board, the result of the Memoranda of Agreement that accompanied postponement of the 1998 Zero Emission Vehicle Mandate.
That was then, this is now. No mandate exists this year, although all automakers are feeling the pressure of the impending 2003 ZEV rule that will require major automakers to sell large numbers of EVs to meet a 2 percent threshold. In retrospect, maybe Toyota’s move to bring the RAV4 EV back isn’t surprising after all.
The RAV4 EV is powered by a maintenance-free, permanent magnet motor that produces 67 horsepower (50kW) and 140 lb.-ft. torque, providing an electronically governed top speed of 79 mph. Front wheel drive is via a single speed transaxle, with reverse provided by backward motor rotation.
A sealed, 288 volt nickel-metal-hydride (NiMH) battery pack provides energy to the motor. This pack, comprised of 24 12-volt modules, is located beneath the SUV’s floor to minimize intrusion into the passenger compartment and optimize the vehicle’s center of gravity. Charging this pack requires five to six hours.
Stopping power is supplied by an anti-lock and regenerative braking system that utilizes solid aluminum front discs and steel rear drums. The regenerative system returns energy to the batteries whenever the RAV4 EV is coasting or braking.
Time spent behind the wheel of the RAV4 EV has shown this vehicle to be fun, dependable, and capable of fulfilling most daily missions with ease, so long as they fit within the vehicle’s range capabilities. Since an electric motor produces peak torque immediately, the RAV4 EV offers good off-the-line acceleration but a rather modest 0-60 mph elapsed time of about 18 seconds. Driving range is between 80 to 100 miles per charge.
Seating for five and ample space for cargo is provided in this five-door compact SUV. The interior offers the high level of function and comfort expected of a Toyota product, featuring such standard amenities as split fold-down rear seats, heated driver and front-passenger seats, adjustable-height front seatbelt anchors, and dual front airbags. Convenience is well accommodated by a heated windshield, rear-window wiper and defogger, and power door mirrors, windows, and door locks. An AM/FM stereo system with CD provides the needed tunes. Rear seat heaters and traction control are available options for cold climate use.
One of the advantages of electric vehicles is their use of heat-pump type air conditioning, an innovation that allows climate control functions to operate while a vehicle is turned off and parked. RAV4 EV drivers have the ability to set a timer and adjust their vehicle’s pre-heat or pre-cool function so the SUV’s interior is at a desired comfort level regardless of outside temperatures.
Toyota says the RAV4 EV will have a rather lofty suggested retail price of $42,000, although a $9,000 California Air Resources Board incentive and $3,000 federal tax credit brings the price of entry down to $30,000. This includes an in-home charger. Three introductory lease options will be offered that also include the use of the charger.
Every major metro market in California will soon find a participating RAV4 EV dealer. While initial sales are aimed exclusively in California due to Toyota’s need to address this state’s 2003 ZEV mandate, success here would certainly find the RAV4 EV making its way to other markets soon enough, starting with those poised to follow California’s lead by adopting the state’s ZEV requirements.
Toyota aims to make it easy for buyers to connect with their new electric vehicle. Like the Prius gas/electric hybrid, customers will have the ability to order the RAV4 EV online and take delivery through a participating dealer, as is the case with the Prius currently.
A few decades back, it was no sure thing that electrification would take a firm hold on the performance world, let alone the automotive market as a whole. Yet here we are today with a great many of the fastest performance vehicles on the road powered by electric motors. Italdesign-Giugiaro and Toyota presented their take on the electric supercar some 18 years ago in the form of the Alessandro Volta concept shown here. This article from our archives is presented just as it appeared in Green Car Journal’s Fall 2004 issue.
Excerpted from Fall 2004 Issue: In an automaker’s portfolio, the flagship should be a car that sets the tone for the rest of its fleet, pushing brand identity and technology to the outermost limits. Shown here is just such a vehicle. Rolled out on the world stage at the Geneva Motor Show, this Toyota hybrid supercar concept is clearly designed to inspire and, not inconsequentially, underscore the very real potential that hybrid electric propulsion has throughout the Toyota brand.
Toyota’s Volta concept is named for the Italian physicist Alessandro Volta, inventor of the battery. One needn’t look too closely at this car to understand why. It uses a derivative of the high technology drivetrain found in the hybrid Toyota Highlander and Lexus RX 400h, but in this instance configured so there’s no direct link between the gasoline engine and the wheels. Instead, the 3.3-liter V-6 engine’s power is converted to electrical energy for charging the car’s batteries and powering electric motors at both front and rear axles. Drive-by-wire technology allows the combined 408 horsepower to be modulated without the need for a clutch or transmission.
This car puts all those volts to good use, taking advantage of the inherent instant torque provided by electric motors and launching the vehicle from 0 to 60 mph in just four seconds. Combined with a top speed of 155 mph, the Volta certainly has the performance to back up its supercar persona, although these numbers alone aren’t enough to stand out among today’s fastest machines. However, with a claimed 430 mile range and fuel economy around 31 mpg, the Volta would literally leave the rest of the fuel-guzzling pack behind. When was the last time you saw a supercar with those numbers?
The Alessandro Volta was developed collaboratively by the famous Italian design house Italdesign-Giugiaro and Toyota Motor Company, a fusion of car cultures as disparate as the concept’s nobly duplicitous pretensions. The hybrid drivetrain allowed Italdesign to take some packaging liberties with the lightweight carbon-fiber chassis, positioning the engine behind the rear axle without need of a driveshaft to connect the front wheels, thus allowing room in the cockpit for three passengers.
Dimensionally, Toyota’s Prius is three inches longer, over a foot taller, and 300 pounds heavier than the Volta. Of course, a 76-inch width, meaty tires, and wonderfully dramatic styling see that ‘economy’ is purged from the mind of any uninformed onlooker...as planned.
Perhaps this blatant contradiction is the real attraction of the Alessandro Volta. A hybrid electric car shouldn’t look this exotic or go this fast, and certainly an all-wheel drive supercar shouldn’t get this kind of gas mileage – and yet there it sits in all its paradoxical glory. Whether it becomes reality or not, the Alessandro Volta has charted a course of bold possibilities, and we can’t wait to see what surfaces in its wake.
An array of automakers have championed alternative fuels over the years. One of the most notable examples was Honda with its Civic GX, later renamed the Honda Civic Natural Gas, the cleanest-running internal combustion vehicle on the market. Debuting 24 years ago, the compressed natural gas-powered Civic was with us through the 2015 model year and then disappeared from the lineup. GCJ editors had the opportunity to test drive multiple generations of the natural gas Civic over the years including living with one daily over the course of a one-year test. This report, focused on the eighth generation Civic GX that GCJ customized with a smart graphics design and Honda-available accessory parts, is drawn from our archives and appears just as it ran in our Summer 2005 issue.
Excerpted from Summer 2005 issue: Honda’s Civic has proved a formidable force on the market for many years, providing drivers a popular sedan or coupe at an attractive price. This has only improved in recent times as the model has evolved. The latest iteration, all-new for the 2006 model year, offers the most stylish, safest, and most comfortable Civic in the model’s history.
As is customary in the auto industry, the alternative fuel version of this latest Civic was destined to emerge many months after the standard model. We’ve waited for the natural gas-powered 2006 Civic GX patiently, and now it is available to fleets nationwide and, for the first time, to consumers in California and New York. We were able to get some seat time recently and were not disappointed.
GCJ editors have many thousands of miles behind the wheel of Civic GX sedans since the model’s introduction as an assembly-line produced fleet vehicle in 1998. Built at Honda’s manufacturing facility in East Liberty, Ohio, the Civic GX today goes for $24,590, qualifying as the top dog in the Civic lineup. That's about $2,000 above the price of a Civic Hybrid and some $5,900 more than an EX sedan.
Is it worth the difference? It depends on your perspective, but keep this in mind: Natural gas goes for an average of 30 percent less than gasoline at public fueling stations, substantial savings on a gallon of gasoline equivalency basis.
It gets even better for those who opt for Honda’s home refueling appliance, called Phill, that’s made by the automaker’s strategic Canadian partner, FuelMaker. At favorable home natural gas rates, Honda Civics typically drive around at about $1.25 to $1.50 per gallon, offering the cheapest per-mile cost of any production vehicle. Plus, a federal tax credit of $4,000 is available to offset the car’s higher purchase price, with up to $1,000 in incentives also available for the purchase and installation of Phill.
The Civic GX drives like its conventionally-fueled counterparts, with just a slight decrease in horsepower due to its use of natural gas fuel. Realistically, a driver just won’t tell the difference. Fuel economy offered by this 1.8-liter, 113 horsepower 4-cylinder engine is about the same as its gasoline counterparts at an EPA estimated 28 mpg in the city and 39 mpg on the highway. The Civic GX remains the cleanest internal combustion engine vehicle, anywhere.
As you may have guessed, the Civic GX shown here is not exactly the model you’ll see on the showroom floor, but you can duplicate most of the look. It uses readily-available Honda Performance Accessory items including a rear lip spoiler, full aerodynamic body kit, 17 x 6.5” alloy wheels, and 215/45ZR-17 tires. The graphics are one-off custom, so you’re on your own here.
In the early 1990s, California took yet another leadership position in battling motor vehicle-related air pollution and mitigating fossil fuel use with its forward-thinking 1998 Zero Emission Vehicle Mandate. This mandate would require two percent of the new models for sale in California by the largest auto manufacturers to offer zero emissions in 1998, with larger percentages in future years. While this could potentially be achieved through any available means, it essentially meant the production and sale of battery electric vehicles. Environmentalists and many others were thrilled, while the auto industry in general was not. The result was an increasingly contentious fight to kill, preserve, or modify the mandate. Below is our special report detailing the siege of the state’s ZEV Mandate and an overview of the wave of activities taking place at the time. This report is presented just as it originally appeared in Green Car Journal’s April 1994 issue.
Excerpted from April 1994 Issue: Even as the U.S. Big Three automakers are lining up against the zero emission vehicle mandate, others within the automaking community are showing their support. An increasing number of noted automotive personalities are also becoming involved with electric cars as the pace of development picks up.
For example, Carroll Shelby, developer of the 1960s-era Shelby Cobras and former board member at EV powertrain company Unique Mobility, has shown an active interest in producing a hybrid electric vehicle. Other notables abound. Among them: Former General Motors chairman and CEO Robert Stempel, GM Hughes Aircraft chairman emeritus Malcolm Currie, and Malcolm Bricklin, importer of the Yugo subcompact and developer of the gull-wing exotic car that bore his name in the 1970s, among others.
Former Indy, Can-Am, and Formula Atlantic drivers are taking their turn at the wheel of electrically-propelled race cars. Example: 1983 Indy 500 winner Tom Sneva raced at Arizona Public Service’s Electric 500 in Phoenix again this year, this time in an electrified 1993 Ford Probe. Auto magazine writers/race drivers like Motor Trend’s road test editor Mac DeMere have taken to the track in Formula Lightning electric race cars, bringing the potential of sharing their positive EV experience with millions of auto enthusiast readers.
Exercises in range and speed abound as performance benchmarks are sought for modern electric vehicles. One of the most significant to date was set just last month by GM’s Impact at the Fort Stockton Test Center’s 7.7 mile oval track in Texas. Running modified power electronics and high-speed Michelin tires, the Impact weighed in at 3,250 pounds once stripped of interior trim and fitted with a roll cage. It ran a United States Auto Club-sanctioned 183.075 mph over a timed mile to establish a record for EVs in the 2,205 pound and above category. Its unofficial international land-speed record remains subject to confirmation by the Federation Internationale de l’Automobile.
Far from being just an exercise in speed, this effort also helps further electric vehicle state-of-the-art, as is always the case in racing. “We wanted to find the vehicle’s top speed because we new it would provide us with real-world data on the car’s aerodynamics, the efficiency and durability of the propulsion system, and it would help us fine-tune the suspension,” offers Kenneth R. Baker, vice president of GM’s Research and Development Center.
Performance milestones achieved since the California Air Resources Board announced its zero emission vehicle mandate in 1990 have been impressive. In 1991, an electric car called the IZA fielded by Tokyo Electric Power Co., Meidensha, and Tokyo R&D claimed a single-charge distance of 343 miles in Japan. This was achieved on a chassis dynamometer at a constant speed of 25 mph. In 1992, a Horlacher Sport EV powered by sodium-sulfur batteries ran 340 miles nonstop at an average of 74 mph in Switzerland. Also in 1992, a retrofitted Geo Metro powered by BAT Technology-prepared batteries and an Advanced D.C. Motors powertrain reportedly achieved a single-charge driving distance of 405 highway miles at an average of 43 mph in Utah.
This same year saw Dr. John Dunning and three associates at Delco Remy drive 631 miles in a 24 hour period behind the wheel of an electric Geo Storm in California. The car, outfitted with a GM Impact battery pack and electric drive system, achieved this milestone by alternating one-hour drives at better than 50 mph with one-hour charging sessions using a 7 kilowatt charger.
In early 1993, Chrysler made news with a 158 hour, 2,604 mile Detroit-to-Los Angeles trip in an electric TEVan while showcasing Chrysler/Norvik quick-charge technology. During this same time frame, Bill Roe set a new national closed-course one-mile oval speed record by breaking the 100 mph barrier in a Brawner Motorsport-prepared electric Lola Indy Car at the Solar & Electric 500 in Phoenix.
The progression has continued in 1994. Roe eclipsed his own closed-course EV record recently at the APS Electric 500, piloting his Exide EX 11 electric IndyCar to a new national one lap record speed of 107.162 mph. And Diversified Technical Services’ Dan Parmley completed a record-breaking endurance run on Phoenix International Raceway’s one mile oval, driving 1,048.8 miles in 24 hours courtesy of 23 battery changeovers.
Parmley’s effort supplanted an electric vehicle endurance record recently established by Solectria’s James Worden. Worden drove 831.8 miles on the 1,477 mile oval at Atlanta Motor Speedway to set a new 24 hour distance driving record in a lead-acid battery powered Chevy S-10 pickup. Sponsored by the Southern Coalition for Advanced Transportation, the truck’s batteries were recharged 13 times at 16 kWh by a fast-acting Electronic Power Technology charger, taking less than 20 minutes each time. It was driven an average of 59 miles between charges.
These efforts do prove what’s possible, but not necessarily what’s realistic for everyday drivers. It’s true that electric vehicles can be made to go very fast. They can accelerate just as quickly as most internal combustion engine cars. With a steady accelerator, a series of battery exchanges, or a healthy dose of quick charges, they can also travel very respectable distances. But at present they can’t do all of these at the same time.
That’s sobering news, to be sure. But there are plenty of positives to recognize. Note the significant technology advancements made in just four short years of extensive EV development: Battery exchanges, an obscure concept when first voiced by industry experts, has proven viable in racing. Rapid recharging, which holds promise for overcoming the electric vehicle’s dependence on lengthy recharging sessions and unnecessary downtime, has also shown its promise in the lab, during demonstrations, and on the track. New battery technologies, most notably nickel-metal-hydride, are starting to prove their worth in real-world trials.
Perhaps most important is the promise shown by the advanced electric vehicles being fielded by U.S. automakers in limited numbers. Both the Ford Ecostar and Chrysler TEVan have demonstrated their viability as utility vehicles during test drives at the hands of Green Car Journal editors.
But as an all-around technology statement, there’s nothing like GM’s Impact. GCJ editors have driven the Impact hard on highways in Michigan, finding it superb in every regard. It distinguishes itself not only as an excellent electric vehicle, but as a rather amazing automobile even when stacked up against its gasoline-powered peers.
The Impact’s technological innovations are many, ranging from an ultra-lightweight aluminum space frame with composite body panels to an innovative heat pump climate control system and blended regenerative anti-lock braking. Like GCJ editors, testers from publications like Motor Trend, Popular Science, and Popular Mechanics also found the Impact a testament to the viability of the electric car.
Public perception is also favorable. In fact, GM has had a substantially greater number of requests to participate in its Impact PrEView Drive than ever anticipated. In response to an announcement sent with utility bills in New York and Los Angeles, the automaker reportedly expected about 5,000 replies in each market. Instead, New York generated a list of 14,000 volunteers, and Los Angeles about 10,000 – far too many for the program.
To be sure, the Big Three’s developmental EVs are just that: Examples of electric vehicle development…an engineering ‘snapshot’ of where ewe are now. Anyone who describes them otherwise is exploiting these vehicles for their own aims, either pro or con. Their cost is very high due to their hand-built assembly and the exotic technologies employed. But they are functioning examples of what automakers can come up with when ‘encouraged’ by regulatory fiat. To think we would have done this far without a mandate in place is folly.
Many experts believe that California’s ZEV mandate has served not only as a motivator for the world’s automakers, but as a wake-up call for industry. Most of the players are involved not because they have to be, but because the electric vehicle field is perceived as being good business. That’s been the impetus for electric vehicle consortia like Calstart, Electricore, Southern Coalition for Advanced Transportation, Northeast Alternative Vehicle Consortium, Mid-America Electric Vehicle Consortium, and Hawaii’s Electric Vehicle Demonstration Project Consortium.
It's true that regulations now in place will require automakers to build and sell EVs. But that’s not the case with battery companies, electronics manufacturers, energy management specialists, tire manufacturers, engineering firms, composites manufacturers, aluminum companies, and many, many others. They’re on board because of emerging opportunities that will allow them to bring advanced transportation components to a new generation of energy efficient, more environmentally conscious automobiles. In their eyes, this will only take place if the California ZEV mandate survives the intensive automotive lobbying sure to take place in the months to come.
Momentum seems to be on the EV proponents’ side. The Ozone Transport Commission recently voted to adopt California’s low emission vehicle program in the Northeast, including requirements for zero-emission vehicles. On the heels of this decision came a California Assembly Transportation Committee hearing on Assembly Bill 2495, which would have prohibited the state from requiring ZEVs until battery technologies guaranteed arbitrary performance levels. This bill was heavily lobbied on both sides, then soundly defeated. The next round in this battle: Next month’s scheduled California Air Resources Board review of ZEV technologies and the feasibility of reaching the program’s goals. A full report to follow.
There was a lot happening in the electric vehicle field during the early years of California’s new low-emission vehicle (LEV) program in the 1990s. This program, which required automakers to offer new model vehicles with increasingly lower emissions in successive years, was initially focused on internal combustion models. That is, until GM announced it would offer a production electric vehicle based on the Impact electric car prototype shown at the 1990 L.A. Auto Show. The realization that auto manufacturers could actually make production vehicles with ‘zero’ localized emissions set in motion a series of events. The most important of these was the addition of the ZEV – or zero emission vehicle – classification to California’s emissions program.
This didn’t apply only to GM, but seven of the largest marketers of vehicles in California. Required numbers were set based on a percentage of each automaker’s sales in the state, with financial penalties to be imposed if these numbers were not met. Understandably, there was a new urgency to electric vehicle development programs on the part of the affected auto manufacturers.
Prototypes were created, electric drive technologies explored, and electric demonstration vehicles were fielded to gain understanding of how best to meet consumers’ needs. One of the many early limited production electric vehicle models was Honda’s EV Plus, a study in innovative design. It's not that the stylish vehicle offered cutting-edge style – its evolutionary ties to the Civic hatchback were evident at the time, and Green Car Journal editors were reminded of BMW's circa-1991/1992 E1 and E2 electric concept vehicles. Rather, it was Honda’s overall approach with the EV Plus and its smart packaging from corner to corner that netted this automaker high grades in EV market savvy. That kind of achievement was not easy at a time when endless focus groups and gut hunches seemed to rule the EV development world.
Since the electric powertrain, large battery pack volume, and mass presented unique packaging requirements, the frame of the Honda EV was designed differently than that of a conventional vehicle, shared Ben Knight, then-vice president of Honda R&D at the time. The passenger cabin, with its raised flat floor, was above and completely separated from the single under-floor battery pack. While that’s a signature feature in most electric vehicles today, it was a notable innovation in the mid-1990s. Along with a roomy interior devoid of battery placement, this configuration provided the side benefit of a low center of gravity.
This EV's clever ground-up design offered a roomy and well-thought-out interior that typical of Honda models of the day. Standard equipment included dual airbags, automatic climate control, electric power-assist steering, a two-way remote communicator, and power windows, locks, and mirrors. It also featured a unique liquid crystal display instrument cluster with state-of-charge and miles-to-discharge shown in bars, and speed in large numerals.
The two-door, four-passenger hatchback had nearly identical height, length, and width dimensions as the Kia Sportage at the time, weighing in only about 300 pounds heavier than the Kia SUV even with the electric Honda’s sizable stash of batteries. Projector headlamps were used up front while high-mounted taillamps flanked the rear hatchback window of this Honda EV. A charger inlet was located on the passenger side fender ahead of the door.
Packaging beneath the hood was color-coordinated and top-notch. Knight pointed out that seven components were combined here including the electric car’s management ECU, motor ECU, power drive unit, DC to DC converter and inverter, and an onboard charger. The motor and batteries shared a liquid central cooling system.
Green Car Journal editors who road tested the Honda EV found it to offer reasonable performance for the era along with satisfying ride and handling. Its 49kW brushless DC motor, powered by 24 12-volt Ovonic nickel-metal-hydride battery modules, achieved 0-60 mph acceleration in about 18 seconds. While that kind of acceleration seems glacial by today’s standards, at the time it was pretty much standard fare for most early electric vehicles. Driving range was estimated at 125 miles based on the U.S. Federal Urban Driving Schedule, to full battery discharge and without air conditioning. Top speed was an electronically-governed 80 mph.
The 1997 Honda EV Plus represented the next logical step in electric vehicle market development for this automaker. Honda had been evaluating prototype CUV-4 electric vehicles with utility partners Southern California Edison and Pacific Gas & Electric for a year and a half prior to the EV Plus launch, and also evaluating the vehicle's use as an airport rental car with National Rental Car in Sacramento.
Knight told GCJ that very early in the program, Honda studied the potential size of the EV market and who potential customers might be, looking at both consumer and fleet markets. This brought about a stark reality: While fleets offered the best chance for early EV placement and were on the minds of all automakers developing electric vehicles at the time, the fleet market was too limited to guarantee a model's success. So Honda geared up for both, with a plan to lease the vehicles to both consumers and fleets in a turnkey program that was fairly inclusive, with roadside assistance and battery maintenance included.
Honda's limited 1997 EV rollout of the EV Plus was more of an extensive demonstration program than an actual new model launch. The aim was to work toward meeting the requirements of California’s ZEV mandate while evaluating the vehicles' advanced NiMH batteries, infrastructure issues, and customer acceptance. Dealers initially leased and serviced Honda's EV Plus in Southern California and Sacramento. The EV Plus was delivered to initial lessees in spring 1997, with some 300 Honda EVs planned to be in service over the next several years. This early movement in the electric vehicle field set the stage for Honda’s focus on electrification in the years to come.
Back when the modern electric vehicle was new, automakers explored different strategies for getting in the game while meeting California’s zero emission vehicle mandate. Costs were high so these efforts were limited, with the earliest electric vehicle offerings focused much more on fleets than consumers. One of the more interesting approaches came from Chrysler with its electric minivans. Among its highest-profile explorations was the battery electric Chrysler EPIC that followed the automaker’s first electric minivan, the TEVan, the first limited production electric vehicle sold to the U.S. fleet market back in 1992. Here’s our take on the automaker’s improved version of the EPIC as it was making its way to fleets, straight from the Green Car Journal archives as it originally appeared in the August 1998 issue.
Excerpted from August 1998 Issue: Chrysler, the first automaker to bring an electric vehicle to the fleet market in 1992, is set to begin leasing an advanced battery iteration of its electric minivan to fleet markets in California and New York later this year. This improved version of the automaker’s EPIC (Electric Powered Intra-urban Commuter) minivan, based on the popular Dodge Caravan/Plymouth Voyager platform, will begin rolling off Chrysler’s Canadian assembly line in Windsor, Ontario in October.
The EPIC, which offers an 800 pound payload and seating for up to seven, will benefit from a SAFT nickel-metal-hydride (NiMH) battery pack that will enable the minivan to achieve a claimed 0-60 mph acceleration time of 16 seconds and travel up to 90 miles between charges under moderate driving conditions. The van was previously powered by less expensive lead-acid batteries which provided reduced performance and limited single-charge driving range of 68 miles. Chrysler plans to manufacture up to 2,000 EPICs for the 1999 model year. They will be offered under a three-year lease program with payments of $450 monthly with no down payment, or a one-time payment of $15,000.
It’s no surprise that Chrysler’s EPIC is now joining the ranks of advanced NiMH battery EVs like the Toyota RAV4 EV and Honda EV Plus. Even Ford’s Ranger EV and both electric GM products, the EV1 and S-10 electric, are now being offered with NiMH battery options, or will be shortly. Advanced battery power, with the enhanced performance it brings, is simply a requirement in an era where fleet managers have multiple electric models from which to choose.
Simply put, the low-performance, lead-acid battery powered EPIC hasn’t been a particularly desirable option for fleets, as evidence by the less than 20 EPICs that Chrysler has leased to date. Under the terms of the Memoranda of Agreement it signed with the California Air Resources Board along with others like Ford, GM, Honda, Mazda, Nissan, and Toyota, Chrysler is required to field more than 250 EVs for demonstration through the year 2000. Upgrading to advanced battery power significantly decreases this number. In Windsor, EPIC production will take place on the same production line that handles assembly of Chrysler’s conventional gasoline-powered minivans.
Craig Love, Chrysler’s executive engineer for electric vehicles, points out that the addition of NiMH batteries also offers another tangible benefit by tripling the expected operating life of the traction battery pack. “Although considerable cost challenges remain, we believe the performance of this battery makes it the best for near-term ZEV (zero-emission vehicle) application among the several battery alternatives we’re investigating,” Love says.
Those battery alternatives include next-generation lithium-based batteries being developed cooperatively through the US. Advanced Battery Consortium, of which Chrysler is a member. While lithium batteries are popular in cell phones and laptop computers, increasing their size for use in automobiles offers design and cost challenges, Love notes. This is an important detail not lost on Nissan, points out GCJ editors, which pays a huge premium for the Sony lithium-ion batteries it uses in its Altra EV minivan. Chrysler plans to test its first vehicle-sized lithium-based battery in 1999.
“With EPIC, we’re combining our latest ZEV technology with our state-of-the-art entry into the electric vehicle segment. While there’s still a gap in cost and operating range between electric- and gasoline-powered vehicles, we’re working hard to close that gap.”