Green Car Journal logo

Toyota's Hydrogen Development Milestone

by John O'DellMay 14, 2024
Toyota has been working on hydrogen development for more than 30 years and is a strong proponent of fuel cell electric vehicles.

Toyota, a firm believer in the power of hydrogen to help remake the world of transportation, has turned its longtime R&D center in Southern California into its North American hydrogen development headquarters. Christened H2HQ, the small complex in Gardena is being repurposed to bring all of Toyota Motor North America’s hydrogen propulsion and stationary powerplant development activities under one roof. Toyota also has hydrogen research and development centers in Japan and Europe.

The new North American hydrogen facility initially will concentrate on hydrogen technology for heavy trucks and stationary power plants but will also continue working on the automaker’s fuel cell system for passenger vehicles. Toyota’s Mirai sporty sedan is one of only three fuel-cell electric passenger vehicles marketed in the U.S., alongside the Hyundai Nexo SUV and the new Honda CR-V e:FCEV plug-in hybrid. All are available only in California, which has all but two of the nation’s publicly available hydrogen fuel stations.

Already at Work

While such vehicles still serve only a tiny niche market, their fuel cell technology is exportable. Toyota uses the same fuel cell stacks developed for the Mirai in its heavy-duty truck and stationary power generation systems as well. On the heavy truck side, the automaker already has developed a hydrogen fuel cell powerplant ‘kit’ it will market to commercial truck manufacturers to offer their customers as an alternative to diesel engines.

The company believes, as do Hyundai and Honda, that hydrogen fuel cells have a robust future as the basis for clean power for transport and that right now, heavy-duty trucking – under tremendous pressure to clean up the air pollution caused by diesel engines – is where a lot of effort needs to be applied.

Expansive Hydrogen Development

Hydrogen development at Toyota.

Work at H2HQ will enable Toyota to localize its global hydrogen work on both light and heavy-duty fuel cells and fuel cell vehicles, on hydrogen fueling, and on stationary fuel cell power plants, thus “creating real-world products to help reduce carbon emissions,” said Ted Ogawa, TMNA president and chief executive. Meaningful carbon reduction requires hydrogen made using renewable energy, and Toyota is working with various regulators and the power industry to promote increased use of renewables.

The H2HQ campus already includes a scalable test bench for working on stationary power plant applications, a hydrogen fueling station for light- and heavy-duty vehicles, and Toyota’s largest dynamometer, a 1.2 megawatt giant capable of testing electric drive systems for the largest heavy duty vehicles.

Other Hydrogen Applications

On the non-automotive side, Toyota recently developed a one megawatt fuel-cell generator for the National Renewable Energy Laboratory in Colorado and, in collaboration with Kohler Energy, a prototype backup power generator – hydrogen fueled – for a medical facility in Washington.

Toyota also aims to be able to make its new hydrogen research and development facility self-contained. To that end, it is installing a flex-fuel micro grid that combines a 230-kilowatt solar system, a one-megawatt stationary proton exchange membrane fuel cell generator, a 325-kW solid oxide fuel cell, and a 500-kWh battery storage system. It is expected to be able to take the facility off-grid, when needed, by 2026. The company said it also plans to operate a sustainable energy information center at the Gardena facility.

Tri-Gen Station a First

Toyota and FuelCell Energy Tri-Gen hydrogen facility at the Port of Long Beach.

In tandem with the announcement earlier this month of the new H2HQ, Toyota Motor North America (TMNA) also unveiled the world’s first ‘tri-gen’ hydrogen fuel cell power plant at its Port of Long Beach vehicle prep facility. The plant, operated by Toyota partner FC Energy, produces hydrogen, electricity, and water from piped-in natural gas. And to offset its carbon footprint, FC pays for an equivalent amount of biogas from a waste facility near the California high desert town of Victorville.

About a third of the Tri-gen plant’s hydrogen – 1.6 tons a day – is sent to a nearby hydrogen fueling station used by Toyota for its fuel-cell passenger car, the Mirai, as well as by heavy duty fuel-cell electric trucks serving the port. The rest is passed through a pair of fuel cell stacks to produce 2.8 megawatts of electricity and about 1,400 gallons of water, a byproduct of combining hydrogen and oxygen in the fuel cell stacks. The water is used at a car wash at Toyota’s vehicle prep facility. Most of the electricity – 2.3 megawatts – is used at Toyota’s port facility. The remaining 500 kilowatts is used to power the Tri-gen station.