Green Car Journal logo

Hybrid Flex-Fuel Vehicles Reduce C02

by Ron LambertyJanuary 2, 2024
Cleaner than EVs, hybrid flex-fuel vehicles provide a realistic approach to achieving carbon reduction goals. Why are they being ignored?
Ron Lamberty, CMO of the American Coalition for Ethanol.
Ron Lamberty, CMO of the American Coalition for Ethanol.

Just over three years ago, when California’s Governor announced an executive order allowing only zero-emissions vehicles (ZEVs) to be sold in the state, most media (and probably the governor, regulators, and supporters of the rule) understood “ZEV” to mean battery electric vehicles (BEVs) only.

Although the final rule included plug-in hybrids and hydrogen vehicles, we theorized a standard hybrid, with an internal combustion engine (ICE) powered by E85 could have emissions similar to BEVs. When total lifecycle greenhouse gas (GHG) emissions were tallied, as well as carbon intensity (CI) scoring correctly reflecting CI reductions being achieved by farmers and ethanol producers, a standard hybrid flex-fuel vehicle (FFV) can be a ZEV long before any EV.

The American Coalition for Ethanol (ACE) began testing our theory 10 months after the California executive order, using a hybrid vehicle the U.S. Department of Energy (DOE) identifies as midsized, to avoid naysayers dismissing the results as coming from a specialty vehicle or tiny clown car that would get good mileage on any fuel. We also wanted a vehicle similar in size to the best-selling BEV on the market, the Tesla Model 3 Long Range. We bought a 2019 Ford Fusion Hybrid in July 2021 for $30k to $50k less than the most popular new EVs of the day, and before converting it to the Hybrid Electric Flex-Fuel Vehicle we call “HEFF.”

We filled it with regular gasoline and drove 3,688 miles to establish a real-world regular gasoline use baseline, rather than having to compare our real-world results with fictional best case showroom sticker miles-per-gallon (mpg) and EPA’s emissions estimates based on that mileage. EPA pegged our car at 42 mpg on regular, with lifecycle GHG of 255 grams per mile (g/m). While that’s much better than the 25 mpg and 429 g/m of the non-hybrid Fusion, our pre-transition Fusion hybrid results were just over 34 mpg and around 310 g/m. We also adjusted the “regular gas” number we use for comparison using generally accepted mileage differentials for cold weather, and have periodically run tanks of regular gasoline to recalibrate for winter temps, vehicle age, and battery capacity changes during the demonstration project.

Clean-Running Hybrid Flex-Fuel Vehicle

Ford Fuxion hybrid flex-fuel vehicle.

Those results are used to estimate regular gasoline consumption and also when we record flex-fuel purchases, cost, and odometer reading with each fill. We record current regular gas price along with the baseline mileage to make a cost comparison. Although our goal is to demonstrate the low CI capability of a hybrid FFV and durability of a standard engine using flex-fuel, we track fuel expenditures because we know critics will always ask about mileage and cost.

Once we calculate real mileage and CI, we compare the results to the Tesla mentioned above, and depending on where you plug in, EPA estimates the 2019 Tesla 3 Long Range emits 80 to 200 g/m lifecycle GHGs, with a national average of 111, assuming a range of 310 miles per charge. However, unscientific anecdotal Tesla Uber driver estimates told us the actual range is from 225 to 240 miles, and Car and Driver’s more scientific 40,000-mile test confirmed the drivers’ reports, saying the 2019 Tesla 3 Long Range got 80 miles less than the expected 310 miles per charge. Changing Tesla’s range to 230 miles increases its real CO2 number to 110 to 270 g/m in different markets, and boosts the U.S. average to 150 g/m.

Test Methodology

Fueling a hybrid flex-fuel vehicle with ethanol E85.

Our baseline mpg-establishing journey ended in San Diego in August of 2021, where Pearson Fuels, the nation’s largest E85 distributor, arranged to transform the Fusion to HEFF with an eFlexFuel Plus conversion kit. The app that communicates with the flex-fuel converter provides actual ethanol content of the flex-fuel purchased, since flex-fuel can have 51 to 85 percent ethanol. Since the amount of carbon in gasoline and ethanol is different, we need the breakdown to calculate how many grams of carbon are being burned, and we divide that number by miles traveled to get our CI. We also use the ethanol and gasoline content to calculate BTU content of whatever fuel is in the tank to compare the mileage one should expect given that energy content with actual mileage to judge the effectiveness of the conversion kit.

Recording price, miles and ethanol content of every fuel purchase, and calculating E10 use and cost, after two years and three months and almost 30,000 miles on flex-fuel averaging 72 percent ethanol, produced average lifecycle GHGs of 205 g/m CO2 at 26.2 miles per gallon – not much higher than real Tesla average numbers, and lower than a Tesla 3 in many parts of the country. We calculated regular gas mpg at 32.7, which would’ve emitted 375 g/m CO2. And HEFF (Hybrid Electric Flex-Fuel) chugged 1,135 gallons of E72 versus a calculated 906 gallons regular, but the E72 cost $2,942, compared to $3,183 for gas.

Lower Emissions Than a Tesla

We have been able to calculate some other interesting numbers based on our test results so far. Had we been able to use true E85 – 83 percent ethanol – throughout the test, our emissions number would drop to 181 g/m, and further to 113 g/m if the ethanol was CARB-approved low-CI corn fiber ethanol. Blending low-CI ethanol with renewable naphtha would provide a CI of 71 g/m in our converted Ford Fusion Hybrid – lower than the same size Tesla could achieve plugged in anywhere in the U.S. All the flex-fuel blends just mentioned are real; they have been or are being sold today.

And although the flex-fuel hybrid – even a converted flex-fuel hybrid – is capable of achieving such results, a fact recognized by Toyota and Volkswagen and being put into use in the 2024 model year in Brazil, fuel regulations being adopted in the U.S. simply refuse to acknowledge that reality. Ethanol has been responsible for nearly all the air quality improvements seen in the U.S. in the past 20 years, and its ability to reduce carbon intensity is a proven fact. But people who claim to be interested in reducing carbon pollution are enacting regulations that increase the use of electricity that is still 60 percent fossil fuel generated, over plant-based fuels like ethanol, based on what they hope and believe will be done to make electricity cleaner over the next few decades. They use buzz-phrases like “extending the life of petroleum fuels” and “false climate solution” to avoid dealing with real numbers. Projections of cleaner electricity are assumed to be facts, and scientific facts of cleaner ethanol production are ignored.

The inclusion of plug-in hybrids and hydrogen vehicles in CARB’s final Advanced Clean Cars II rule provides a sliver of hope that regulators will eventually be as concerned about actually reducing CO2 emissions as they are enforcing the electric car solution they prefer and believe in. If environmentalists and regulators are truly interested in reducing carbon emissions, solutions are available today. HEFF is proof. But if you can’t trust HEFF, ask Brazil. Or Toyota. Or Volkswagen.

Ron Lamberty is the chief marketing officer of the American Coalition for Ethanol.