The midsize Honda Prologue EV gets a new and more powerful and efficient front motor and upgraded power inverters for 2025 to boost range and horsepower in both front- and all-wheel drive versions. Despite the power and range boosts there’s only a slight price increase – $55 – due to a hike in Honda’s mandatory delivery and destination fee. There are no design or feature updates for the new model year.
Honda engineers had hoped to be able to boast of a 300-mile range estimate when the Prologue debuted as a 2024 model, but they weren’t in complete control because the EV was co-developed with General Motors and uses a GM platform and battery shared with the Chevrolet Blazer EV. The official EPA range estimate for the single-motor, front-drive version missed the desired mark by a scant 4 miles.
For the 2025 model, though, new power inverters and front motors enabled a bump to 308 miles for the front-drive Prologue, an increase of 12 miles. Range for dual motor all-wheel drive versions rises to 294 miles, up 13, for the EX and Touring trims, and to 283 miles, up 10, for the Elite.
The hardware boosts power output for front-drive models to 220 hp and 243 lb-ft of torque, up from 212 ponies and 236 lb-ft. For all-wheel drive models, output increases to 300 hp and 335 lb-ft, up 12 and 25, respectively.
Because the basic vehicle doesn’t change, the Prologue retains a CCS charging port for 2025, meaning that on road trips its default fast charging is at non-Tesla stations. It will require an adapter to hook up to a Tesla Supercharger once Tesla adds Honda EVs to its list of approved Supercharger users this spring.
On non-Tesla DC fast charges, the Prologue can take on juice up to a maximum of 150 kW per hour. Its 85 kWh battery needs about 35 minutes to recharge from 80 percent depleted to 80 percent full. For 240-volt Level 2 home charging, the Prologue has an 11.5 kW (maximum) on-board charger, good for overnight replenishment of a fully depleted battery.
For as long as the federal clean vehicles tax credit remains available, all versions of the 2025 Prologue qualify for the full $7,500 credit and this can be applied at the dealership as an immediate discount if a buyer meets federal eligibility requirements. Those who lease will see the credit applied as a buy-down, resulting in reduced monthly payments.
Before any federal, state, or local incentives, pricing for the 2025 Prologue starts with the base front-drive EX at $48,850 including Honda’s $1,450 destination fee (up from $1,395 for 2024). All-wheel drive adds $3,000 for a pre-incentive price of $51,850.
Standard equipment for the EX includes 19-inch aluminum alloys, power-adjustable driver’s seat, heated front seats, dual-zone climate control, wireless phone charger, wireless Apple CarPlay and Android Auto compatibility, and a Google built-in operating system. All Prologue EV trims also get the Honda Sensing suite of advanced safety and driver assistance technologies, including Honda’s first applications of automated rear cross traffic emergency braking, rear pedestrian alert, and blind zone steering assist. Other features include front collision and road departure mitigation, lane departure warning and lane keeping assist, and adaptive cruise control. Like all Prologue trim levels, the base model comes in Mercury Silver Metallic with other exterior color choices available at a $455 upcharge.
Including delivery fee, the mid-level Touring trim jumps to $53,150 with front-drive and $56,150 with dual motor all-wheel drive. It adds to the base standard features package with a 12-speaker Bose premium sound system, leather upholstery, a driver seat memory system, auto dimming rear view mirror, panoramic sunroof, hands-free powered tailgate, and front and rear parking assist. At the top of the Prologue lineup, the Elite is available only with all-wheel drive and starts at $59,350 including destination. It adds to the Touring’s standard equipment with a number of upscale features including 21-inch wheels, ventilated front seats, a heated steering wheel, a Sport driving mode, and a color head-up display.
Honda is carrying over its charging bonus for 2025. Prologue buyers get 60 kWh of free public charging at Electrify America stations. Plus, buyers can opt for an additional valuable charging incentive.
Those choices include an additional $750 public charging credit, or alternatively, an 11.5-kilowatt Level 2 home charging station, a $500 installation credit, and a $100 public charging credit through Honda Home Electrification (HHE). The third option is a 7.6 kW portable Level 2 charging kit, a $250 installation credit (in case a new circuit is needed for the portable unit), and a $300 public charging credit, also via HHE.
This was originally published on thegreencarguy.com. Author John O'Dell is a distinguished career journalist and has a been an automotive writer, editor, and analyst specializing in alternative vehicles and fuels for over two decades.
There’s no doubt that plug-in hybrids loom large on the minds of drivers today. One might assume this is a recent phenomenon given the constant media attention today. But really, this has been an ongoing area of interest for quite some time. In fact, some 17 years ago, Green Car Journal technical editor Bill Siuru penned a feature offering an overview of this interest. This article from our archives is worth sharing today since it not only indicates the reasons why plugging in is such a positive thing, but considering the interest at the time, it also illustrates the surprisingly long time it has taken to reach where we are today. Other revelations are included here, like the potential for vehicle batteries to be used for V2G (vehicle-to-grid) and V2H (vehicle-to-home) energy, and of course Volvo’s growing commitment to its electrified future. Here, we present this article from Green Car Journal’s fall 2007 issue.
Excerpted from Fall 2007 Issue: The tremendous interest in plug-in hybrid vehicles (PHEVs) is driven by many things, from a desire for greater fuel efficiency to decreasing emissions, achieving long-term reductions in fuel cost, and promoting energy diversity so we’re much less dependent on imported oil. Each of these is important to our future. Together, they make a compelling case for the PHEV that bears further exploration.
Plug-in hybrids could provide most of the environmental and fossil fuel-savings benefits long promised by battery electric vehicles (BEVs), but not yet delivered. Also called grid-connected hybrids, PHEVs overcome the biggest challenge of BEVs – insufficient range. With all-electric range of up to 60 miles, under most driving scenarios a PHEV can be a true zero-emission vehicle (ZEV), just like a BEV. In reality, however, plug-in hybrids offer much more since gasoline-electric hybrid power is ready to take over from all-electric drive once battery energy is depleted.
Initially, aftermarket suppliers like EnergyCS in California and Hymotion in Canada developed PHEV retrofit kits for popular hybrids like the Toyota Prius, Ford Escape Hybrid, and Mercury Mariner Hybrid. These have been quite expensive and aimed exclusively at fleets because of cost. Major automakers have now joined in. General Motors’ much-publicized Chevy Volt will be a PHEV with an all-electric range of 40 miles. According to GM, 75 percent of all commuters drive 40 miles or less to and from work. A plug-in Saturn Vue hybrid, in the works and possibly available in advance of the Volt, could double the fuel economy of any current SUV and provide some 10 miles of electric-only propulsion. Toyota, Nissan, Ford, and several other manufacturers have PHEVs in the works, as well.
While most hybrid cars, SUVs, light trucks, and PHEVs unveiled to date are parallel hybrids, several have followed a different approach with a series hybrid configuration. One of the latest is the Volvo ReCharge Concept. The ReCharge series hybrid uses an internal combustion engine solely to drive a generator for producing electricity that powers the vehicle’s electric motors. Essentially, the ReCharge is a battery electric vehicle with an internal combustion engine for range extension. This drive configuration allows the 1.6-liter, four-cylinder Volvo Flexifuel engine to operate in its optimum rpm range for best fuel economy and minimum emissions. An added advantage when not directly connecting an internal combustion engine to the wheels is much more design flexibility.
In this instance, the ReCharge uses four individually controlled electric drive motors for all-wheel drive. Individual wheel motors also allow optimum weight distribution and maximizing both traction and mechanical efficiency. Since a transmission is no longer needed, mechanical gear friction is reduced substantially. The ReCharge can run on battery power alone for just over 60 miles and also operate its engine on biofuels like E85 ethanol, all the while retaining the sporty performance of the Volvo C30 sport coupe on which it is based. For a 93 mile (150 km) drive starting with a full charge via an ordinary electric outlet, it will use less than three-quarters of a gallon of fuel, which equates to almost 125 mpg. A driver would rarely need to fill up the tank if driven less than 60 miles daily.
PHEVs offer us more than just emissions reduction and increased efficiencies. They also have the unique ability to supply large amounts of electrical power for uses other than just propulsion. This feature is being exploited in the plug-in hybrid Trouble Truck Project by a consortium consisting of the Electric Power Research Institute, Eaton, Ford Motor Co., and California’s South Coast Air Quality Management District. Trouble trucks, used by utility repair crews, are typically operated in residential neighborhoods. Since their internal combustion engines are left idling to power buckets, power tools, lights, and accessories, emissions and noise occur at job sites as a matter of course. Providing power through a PHEV’s battery and electrical system means continuous engine operation is no longer needed.
These PHEV trouble trucks use Eaton’s parallel pre-transmission hybrid system with either a Ford 6.8-liter V-10 gasoline engine or 6.0-liter V-8 diesel engine. Along with reducing consumption and emissions while traveling to and from worksites, the PHEV trouble trucks provide engine-off cab air conditioning and standby AC electrical generating capacity, including 5 kW of exportable power for at least six hours to power equipment. PHEV trouble trucks based on Ford’s F-550 truck chassis are used by Southern California Edison, Los Angeles Department of Water and Power, and Pacific Gas & Electric. This project will later expand to 50 Ford F-550-based trucks and E-450-based vans for utility and public fleets. Since the F-550 and E-440 chassis are widely used as shuttle buses, urban delivery trucks, cable service trucks, and even motorhomes, there’s every potential that volume production could reduce per-vehicle cost. In fact, PHEV technology could find a home in high-end motorhomes where, perhaps in conjunction with solar panels, it could replace noisy and polluting generators typically used to power on-board electrical components while parked.
PHEVs can produce so much electricity that excess energy could be supplied to the electrical grid using vehicle-to-grid (V2G) technology. V2G allows two-way sharing of electricity between PHEVs, BEVs, and the electric power grid. With V2G, an electric or plug-in hybrid vehicle not only could be plugged in for battery recharging, but under certain conditions could also send electricity back from the batteries to the grid. For instance, vehicles could store electrical energy generated during off hours for use during peak power demands. This would eliminate the need for utilities to buy expensive overcapacity electricity on the spot market or fire up older, and high-polluting, fossil fuel ‘peaker’ generating plants. To encourage consumers to participate in a V2G program, utilities could pay motorists for the use of their PHEV or BEV, or owners could sell back energy to the utility when demand is highest.
In what’s called V2H – or emergency home backup – a PHEV could be used for emergency power. For instance, the PG&E demonstrator supplies 9 kW hours of electricity and the average home uses about 2.5 kW of electricity an hour, which means that hours worth of backup power is available if needed. Volvo says the ReCharge Concept’s efficient generator, essentially an Auxiliary Power Unit (APU), is powerful enough to supply an entire house with electricity. Thus, with minor modifications it could be used in case of a power failure.
Like the BEV, the practicability and affordability of the PHEV is governed by battery technology and cost. Its greater all-electric range capability requires larger, heavier, and much more expensive battery systems to store additional electric energy. Plug-in hybrid Dodge Sprinter vans have a 14 kW-hour nickel-metal-hydride or lithium-ion battery system that provides 20 miles of electric-only power. In contrast, the Prius uses a 1.5 kW-hour battery pack for normal gasoline-electric hybrid operation. Ordinary hybrids require batteries that supply short bursts of electrical boost with a nearly constant state-of-charge to ensure battery longevity. PHEV batteries must provide this high power burst while additionally handling full charge to deep discharges like a BEV. Another concern focuses on whether enough electric power will be available should PHEVs become extraordinarily popular. However, a study by the Department of Energy’s Pacific Northwest National Laboratory says the nation’s existing electric power grid could support up to 180 million PHEVs.
All this is unfolding, now. Technology marches on, costs diminish through efficiencies, and interest drives further development...all good things that should bring the plug-in hybrids we desire to our highways sooner than later.
There’s a continued disconnect between what the broader automotive industry sees from growing, albeit slowly, EV sales and how U.S. dealers view this class of vehicles. At CDK, we wanted to uncover if anecdotes about a lack of enthusiasm on the retail level were real and to test our own hypothesis that it could be largely driven by where the dealers were located.
Why is geography so important? One word, or place: California.
More EVs are sold in California than anywhere else in the country. Nearly one-third of all battery electric vehicles (BEVS) in the first half of 2024 were sold in the Golden State. And the state of Washington is a major player too. That means dealers in those states likely view the technology much differently than clearly those in more rural areas but also populous areas in states from Michigan and Ohio to Tennessee and South Carolina.
In CDK’s Dealers Face the EV Transition white paper, the map is broken down not just regionally but at a subregional level. That allowed us to look at what’s happening on the ground for dealers, their sales teams, and what store leadership sees as the impact on their bottom line.
It was plain to see that Pacific shoppers were the most interested in EVs at 55 percent while the mid-Atlantic states of Pennsylvania, New York, and New Jersey saw far, far less interest at just 10 percent. That might seem counter to popular thinking, but dealers sell cars in every town, and from the suburbs on out, cars are a way of life that’s hard to change. The least interest came from West South Central – Arkansas, Oklahoma, Louisiana, and Texas at 3 percent. Yes, even though a lot of EV sales happen in Texas, dealers across the state and surrounding states aren’t feeling electric love from customers.
These results came before recent retreats from automakers on their EV plans. Dealer networks are the frontlines when it comes to sales and service, and leadership wasn’t rosy on how EVs would impact their bottom line.
Nearly three-quarters (73 percent) of dealers think EVs will have some negative impact on their bottom line with 53 percent saying they’ll have a negative impact on both their front and back end gross. Only 7 percent see EVs as having a positive financial impact.
Despite this pessimism, nearly three out of five dealers (59 percent) have already started transitioning their stores to sell and service EVs. Only 11 percent remain steadfast against EVs in the near future, saying they don’t plan any changes to adjust for selling and servicing EVs. But as we noted in our white paper: “Most of these EV-resistant dealers are generally smaller operators, with 75 percent saying they own one to two rooftops, and 89 percent are located in rural areas.”
With all these fluctuating conditions, the key stat of the white paper may actually not be as negative as it seems at first glance. When asked if they were optimistic or pessimistic about the EV transition, most (65 percent) fell into the pessimism camp with 19 percent being optimistic and the rest (16 percent) being neutral. The fact that the pessimism number comes below the number of dealers forecasting lower profits is a tiny sliver of a silver lining.
The thing to remember is that we’re indeed in a transitional period, shifting an entire national fleet of cars from something familiar (and often nostalgic) to an electric future that hasn’t made its case in every corner of the country. The nation’s car dealers are pragmatists and offer an unvarnished view of what they see in showrooms every day.
David Thomas is Director of Content Marketing at CDK Global, a leading provider of cloud-based software to dealerships and original equipment manufacturers across automotive and related industries.
The automotive field is at a crossroads. It’s clear that buyers want more environmentally positive choices and this has driven enormous interest in electric vehicles on the part of consumers, government, and the auto industry. Some drivers are ready to go all-in with battery electric vehicles. Others prefer to ease into electrification with a hybrid or plug-in hybrid. It’s all good because that means we’re heading in the right direction. Green Car Journal’s annual Green Car Awards™ honor new, or nearly new, models that stand out as champions of environmental achievement and lead us in that more positive direction.
Honoring the best and the brightest of these vehicles, Green Car Journal has awarded nine prestigious 2025 Green Car Awards™ to environmentally positive models from Chevrolet, Dodge, Fiat, Ford, Mitsubishi, Toyota, Volvo, and Volkswagen. Six award winners are powered exclusively by batteries, two are gas-electric hybrids, and another champions plug-in hybrid power, illustrating the outstanding diversity of electrified choices available to new car buyers today.
Rising to the top to claim the coveted title of 2025 Green Car of the Year®, Toyota’s all-new generation Camry sedan is a stylish, highly efficient, and tech-rich evolution of Toyota’s popular mid-size sedan. The new Camry is available in front- or all-wheel drive and exclusively powered by Toyota’s fifth-generation Toyota Hybrid System, which delivers up to a combined 51 mpg and a driving range of 663 miles. Finalists and recipients of the 2025 Green Car Product of Excellence award are the Honda Civic Hybrid, Honda CR-V e:FCEV, Tesla Model 3, and Volkswagen ID. Buzz.
The iconic VW ID. Buzz, Volkswagen’s battery electric homage to the storied VW Microbus of an earlier era, is honored with Green Car Journal’s 2025 Green Van of the Year award, capping off its yearslong journey to VW showrooms. The ID. Buzz is powered by single or dual motors with 282-330 horsepower, seats up to seven, and features a driving range up to 234 miles. Finalists and recipients of the 2025 Green Car Product of Excellence award are the Chrysler Pacifica Hybrid, Kia Carnival, Mercedes-Benz Sprinter EV, and Toyota Sienna.
Capturing the 2025 Urban Green Car of the Year award is the fashionable and oh-so-cool Fiat 500e, marking back-to-back 2004/2005 wins for this diminutive electric vehicle. Fiat's 500e is unique among its peers as the ultimate right-sized electric city car that's Italian-chic, nimble, fun, and highly maneuverable in urban environs and elsewhere due to its modest footprint. Finalists and recipients of the 2025 Green Car Product of Excellence award are the Hyundai Kona, MINI Countryman SE ALL4, and Nissan Kicks.
The Ford Maverick compact pickup is the magazine’s 2025 Commercial Green Truck of the Year. Maverick makes for a compelling work truck with its efficiency, reasonable price of entry, and welcome functionality like a 1500 pound payload rating, FlexBed storage system, and 110-volt outlets. Its hybrid engine option gets up to 42 city mpg, which makes it ideal for tradesmen and municipalities. Finalists and recipients of the 2025 Green Car Product of Excellence award are the Bollinger B4, Chevrolet Silverado EV Work Truck, Ford F-150 Lightning, and Isuzu NRR EV.
The all-new Dodge Charger Daytona powers its way to recognition as Green Car Journal’s 2025 Performance Green Car of the Year. This brand’s first ell-electric model features an appealing muscular design, zero-emission electric drive with up to 670 horsepower, and the kind of image and muscle car performance that has long been a signature of the brand. Finalists and recipients of the 2025 Green Car Product of Excellence award are the Ford Mustang Mach-E Rally, Hyundai Ioniq 5 N, Porsche Macan EV, and Tesla Model 3 Performance.
Taking 2025 Luxury Green Car of the Year honors is Volvo’s EX90, this automaker’s new electric flagship SUV. Along with its captivating design and all-electric operation, the U.S.-built EX90 features a high-tech cabin, a premium interior, three row seating, and a pair of twin-motor options delivering 402 to 510 horsepower. It features an electric driving range of 308 miles. Finalists and recipients of the 2025 Green Car Product of Excellence award are the Acura ZDX, Cadillac Optiq, Genesis Electrified GV70, and Polestar 3.
Honored as the 2025 Green SUV of the Year is the Chevrolet Equinox EV, a mainstream electric SUV offering a sporty design, a fun-to-drive nature, and an affordable point of entry for a great many buyers interested in going electric. It offers up to 319 miles of battery electric driving range in its standard front-wheel drive configuration. Dual motor all-wheel drive is also available. Finalists and recipients of the 2025 Green Car Product of Excellence award are the Dodge Hornet, Honda Prologue, Hyundai Santa Fe, and Kia EV9.
Mitsubishi’s Outlander PHEV takes the magazine’s 2025 Family Green Car of the Year honor, the third time this automaker’s flagship plug-in hybrid model has been distinguished with this award. Its combination of attractive style, three row seating, Super All-Wheel Control for navigating all driving conditions, and PHEV operation make it ideal for family-friendly use as an EV around town or a hybrid on longer drives. Finalists and recipients of the 2025 Green Car Product of Excellence award are the Kia Carnival, Lexus TX 550h+, Mazda CX-90 PHEV, and Toyota Grand Highlander Hybrid.
Chevrolet BrightDrop earns the magazine’s 2025 Commercial Green Car of the Year award with its battery-powered BrightDrop 400 and 600 commercial vans. Now a Chevrolet product sold and serviced through Chevrolet’s commercial vehicle network, these electric vans aim at zero-emission delivery and feature a 159 to 272 mile electric driving range, depending on model and battery configuration. Finalists and recipients of the 2025 Green Car Product of Excellence award are the Ford E-Transit, RAM ProMaster EV, Mercedes-Benz Sprinter EV, and Rivian Delivery Van.
VW’s iconic Beetle and Transporter were signature vehicles on the roads of America because, for a time some six or seven decades back, they were virtually everywhere. They were also underpowered and pretty utilitarian, though that didn’t stop them from getting the love from adoring fans. That same love is soon to befall the all-new VW ID. Buzz.
The Transporter of old – known by many here as the VW Microbus, or just the VW Bus – never achieved the sheer volume of its cousin the Beetle (aka Bug). Still, it has an enduring place in the hearts of Americans who see the occasional restored VW Bus on the road or at the beach, harkening back to a simpler time when affordable and adorable vehicles were available to everyone.
When VW debuted its ID. Buzz electric microbus concept in the States seven years back, an instant cult following emerged. People wanted this, and they wanted it bad. We could see why after experiencing an up-close-and-personal tour of the production model last year in Southern California. We have to say…we liked what we saw.
Comparable in size to VW’s Atlas Cross Sport, the ID. Buzz is visually stunning and showcases modern stylings with futuristic elements, but doesn't lose that vintage essence shared by the VW Buses of old. One such homage to its ancestry is the model’s vibrant color palette that optionally contrasts with white splashes on both the interior and exterior. Keeping things modern is standard IQ.Drive with adaptive cruise control, a digital dash with a 12.9 inch infotainment center, plus USB and wireless charging options for all your electronic devices.
Inside is an inviting cabin with three rows of seats that can accommodate up to seven. Front seats feature standard heating, cooling, and massage features, while the second row comes with heated seats. Both rear rows are fully foldable, with the rearmost row entirely removable to create additional space for adventures. The ID. Buzz features a pair of power sliding side doors, sliding windows in the cabin, an optional sunroof that can be darkened, and a spacious rear hatch. Three interior color ‘worlds’ are available including mid-century modern-vibed Copper, moody dark themed Moonlight, and coastal-themed Dune.
Two power choices are available for the ID. Buzz, with a rear-mounted electric motor offering 282 horsepower or dual motors producing 330 horsepower. A 91 kWh lithium-ion battery energizes both versions. The rear-drive ID. Buzz features an EPA estimated 234 mile driving range with the all-wheel drive two-motor variant delivering a 231 mile range. It’s worth noting that the ID. Buzz comes with the ability to tow via a manually-retractable tow hitch that’s cleverly hidden behind the rear bumper when not in use.
Three versions of the ID. Buzz will be offered at launch including the entry-level Pro S at $59,995; the Pro S Plus at $63,495 to $67,995; and the 1st Edition at $65,495 to $69,995. The higher figure for the latter pair comes with dual motor all-wheel drive. Fans of this iconic electric microbus/van will find the ID. Buzz hitting North American highways later this year.
Today’s developments surrounding EVs are not a surprise. They were predictable, an awakening of sorts, to the realities of personal mobility needs and the true desires of a driving public amid a significant and sustained push toward electrification.
Unsold inventories of battery EVs at dealer lots, significant price cuts to move metal, and a rethinking of strategies are just part of today’s electric vehicle universe. We are seeing this new reality across the automotive spectrum as companies previously committed to being “all-in” for EVs – from Ford and GM to Volkswagen and Volvo – reassess the way forward.
Yes, interest in battery electric vehicles has grown substantially in recent years. EV sales have captured a larger slice of the new car market than might have been imagined in just the recent past and that percentage has been growing faster than before. This should rightfully be celebrated by EV enthusiasts. An impressive expansion of the zero-emission EV market should also be celebrated because of the considerable impact this has on decreasing carbon emissions, though it’s becoming increasingly clear that the hoped-for wholesale move toward battery EVs will not resolve our carbon challenges.
After more than three decades of documenting the commercialization of electric vehicles, I feel compelled to point out that EVs still represent a fraction of the overall automotive market and there remains great interest in more familiar options. Battery electric vehicles simply do not meet everyone's needs at this time. Barring significant breakthroughs in technology, cost, and convenience – the latter bolstered by an expansive and reliable national charging network and a resilient electrical grid to support it – there’s a possibility they may not meet all motorists’ needs for some years in the future. To our collective detriment, that has not stopped the powers-that-be from forcing an EV-first agenda.
The assumption that government can severely restrict consumer vehicle choices without alienating huge numbers of car buyers, creating financial havoc and uncertainties within the auto industry, and bringing an array of unintended consequences in coming years is simply an act of hubris. I've witnessed other examples of this over the years. Ultimately, the outcomes have not favored those in power who overstep and assume they know more about the needs and desires of car buyers than buyers themselves.
There are many reasons for this, but fundamentally let’s remember that a motor vehicle – beyond serving as a social conveyance for projecting image, status, values, or nuances of all sorts – is a crucial tool to get folks safely and reliably to work, school, the market, or wherever they need to be, regardless of distance or driving conditions. And lest we forget, a new car typically represents the second largest consumer purchase after a home. That makes buying a car an important financial decision beyond just being a very personal choice.
The battery EV’s rather eye-opening depreciation, identified by car search engine and research firm iSeeCars as averaging 49.1 percent over the first five years, isn’t very comforting from the standpoint of a financial strategy. It’s worth noting that iSeeCars doesn't see this same kind of depreciation across the board for electrification, identifying hybrids as having a nearly 12 percentage point advantage over EVs in value retention over a five year period, slightly better than the depreciation rate for all types of cars.
How much has changed for electric cars over the years? A lot…and too little. To share some perspective, I’d like to offer up a Green Car Journal editorial I wrote in 2012, Curb Your (EV) Enthusiasm. It seems prescient today. In it, a dozen years ago, I pointed out that:
– After decades of battery development, the expectation that battery breakthroughs would come to make EVs cost competitive with internal combustion vehicles had not materialized.
– Battery electric cars still required significant federal subsidies to encourage sales because of their high battery cost and retail price.
– In a normal world, a compact electric SUV should not cost $50,000, a four-door electric sedan $40,000, or a small electric hatchback over $30,000.
– A small number of electric vehicles might be available under $30,000, but comparable internal combustion models would typically be priced many thousands of dollars less while offering greater functionality.
– Government agencies viewed EVs as a panacea for decreasing CO2 emissions, improving air pollution, and enhancing energy security.
- States embraced electric vehicles in their State Implementation Plans as a strategy for showing how they would meet air quality standards mandated by the Clean Air Act.
– Automakers recognized electric propulsion as a strategy for meeting increasingly higher fleet fuel economy targets.
– Electric utilities viewed EVs as a pathway to selling electricity as a motor fuel.
The conclusion about the way forward a dozen years ago? Battery electric vehicles are one part of the solution along with advanced combustion vehicles, hybrids, plug-in hybrids, and extended-range electric vehicles that create on-board electricity to provide full functionality.
It appears there’s a growing consensus today that we’ve come full circle to this way of thinking. As electric vehicle sales cool, multiple automakers have shared they are backing off from previously-announced timelines for EV model introductions, new EV assembly lines, and greenfield battery plants. There’s also a new emphasis on producing an expanding lineup of hybrid and plug-in hybrid models that consumers increasingly desire, even on the part of major automakers that have previously announced plans to exclusively build battery electric vehicles and have shown little interest in hybrid power.
All this underscores that as much as we’re enamored with modern battery electric vehicles and their ability to address carbon emissions, they are not the singular answer to future mobility. They are a choice among other vehicles and technologies that also speak to individual needs, desires, and environmental sensibilities. And that’s the way it should be.
We’ve spent hundreds of thousands of miles behind the wheel of a great many electric vehicles, hybrids, and plug-in hybrid models over the years. They all have their advantages and appeal…and each speaks to the very specific needs of different types of drivers and their daily rhythms. If you’re inclined to go electric as a way of addressing efficiency and environmental concerns – but hesitant to rely exclusively on battery power for reasons compelling to you and your situation – then you’re an excellent candidate for a plug-in hybrid.
Beyond its advanced technology and user friendliness, there’s an elegant beauty inherent in a PHEV. Within the capabilities of its battery powered range, a plug-in hybrid allows driving on electric power, internal combustion power, or a combination of the two. You are effectively in an electric vehicle with options and the transition from electrons to gas is essentially seamless.
Plug-in hybrids present a logical choice because they present no limitations. These days, chief among these limitations with battery electric vehicles is range anxiety, whether imagined or real. When driving an electric vehicle, remaining battery power is always top of mind to ensure there’s adequate on board energy to get you to where you need to be. This is less of an issue today with popular electric models offering much longer range in the many hundreds of miles, but the concern persists.
Not so with plug-in hybrids. With PHEVs, you get the benefits of an electric vehicle while driving on batteries like zero emissions, near-silent operation, and improved performance. When battery energy in a PHEV is depleted you keep on going with combustion or hybrid power as long as there’s gas in the tank.
Like hybrids, plug-in hybrids take several forms. The most common of these is the parallel plug-in hybrid, which uses an internal combustion engine and one or more battery powered electric motors to directly drive the wheels. A series plug-in hybrid, also known as an extended range electric vehicle (EREV), delivers power to the wheels through its electric motor, or motors, with the combustion engine and batteries providing electricity to power the motors. In this configuration the engine operates exclusively as a generator with no mechanical connection to the road. An example of this is Karma’s GS-6. Some models, like the Toyota Prius Prime and Mitsubishi Outlander PHEV, are series-parallel hybrids that use both power strategies for motive power, along with the zero-emission electric driving for which plug-in hybrids are known.
Both plug-in hybrids and conventional gas-electric hybrids achieve their higher efficiency through an intricate computer-controlled dance that blends electric and combustion power in response to real-time driving conditions. While each benefits from the efficiencies that gas-electric hybrid power delivers, at best a hybrid may drive exclusively on battery power for very short distances with a light touch on the accelerator pedal.
Plug-in hybrids are different. They’re equipped with larger battery packs than hybrids, though these packs are still quite smaller than full electric vehicles. These larger batteries, and the ability to plug in and charge up, allows a PHEV to drive greater distances on battery power alone. The Volvo S60 T8 Recharge plug-in hybrid sedan, for example, features 40 miles of electric driving and an overall 530 mile range, while the Kia Sportage PHEV delivers 34 miles on battery power with a total 430 mile driving range.
Determining your needs is an important step in deciding whether a plug-in hybrid is the right choice. For example, if your daily drives average 30 miles or so, then either of the above examples – and quite a few other PHEV models – will allow driving electric without the need for hybrid power to kick in. Just charge your PHEV’s battery overnight and you’re ready to go again the next day, with no need for a trip to the gas station. Even plug-in models with shorter electric driving range will still do for your commute if there’s charging available at your workplace, since a workplace charge opportunity can effectively double a PHEV's round-trip battery electric range.
Here’s the underlying advantage of a plug-in hybrid vehicle: If you do need to drive farther than a PHEV’s electric range, then you’ll take advantage of the zero-emission efficiencies of battery power with gas-electric hybrid drive handling the rest of your miles. The same holds true for those longer drives, such as visits with far-away friends or longer vacations and road trips. Easy.
So is a plug-in hybrid right for you? It’s a personal decision based on preferences and the degree to which you want to go electric. For those who want to ease into an electric future without limitations, then a plug-in hybrid may well be the best choice for you.
There’s an all-new Dodge Charger Daytona hitting the streets of America. This storied name channels echoes of of the past with the mind’s eye visualizing the rare, wildly-winged 1969 Dodge Charger Daytona of the muscle car era, a model that raced in NASCAR and was available only in small numbers to well-monied car enthusiasts. While the 2024 Charger Daytona is a bit more civilized than its namesake of 55 years ago, it is equally dramatic in its own way.
Back in the day, muscle cars were a dominating force on dragstrips and, more importantly, on the highways of America. These go-fast models delivered the whole package for car enthusiasts – exciting looks with stripes, scoops, and a stance with attitude, their mere presence tantalizing the senses with a low engine rumble at idle, a throaty roar at speed, and if you were the one behind the wheel, an adrenaline rush like no other.
They also sucked gas on an epic scale with their four-barrel, six-pack, and sometimes dual-quad carburetors. High horsepower small- and big-block engines were high-compression to eke the most power from the air-fuel mixture fed to combustion chambers, which meant more expensive high-octane premium fuel. Muscle cars, and really most cars of the era, had tailpipe emissions that were nothing to brag about. Still, these were iconic hot rods that defined an era.
While the performance-infused Daytona designation has been used sporadically by Dodge since, this is different. Stellantis has read the tea leaves well and the all-new Dodge Charger is not only fast and formidable, but also headlined by two fully electric variants, the Daytona R/T and Daytona Scat Pack. This move ensures the Charger’s claim as the world’s quickest muscle car, and the most powerful.
That doesn’t mean the automaker has abandoned the high horsepower gas engines that have powered this model over the years. Car enthusiasts who wish that familiar experience can opt for the Charger SIXPACK 3.0-liter twin turbo Hurricane engine in either Standard Output or High Output versions.
Specs for the electric Charger Daytona models surpass those of the gas versions, with the electric Daytona R/T besting the SIXPACK S.O. with 496 horsepower vs. the gas version’s 420. The Daytona Scat Pack does even better by delivering an electrified 670 horsepower vs. the gas high output engine’s 550, a bump of 120 ponies overall. The Daytona R/T is expected to deliver 317 miles of driving range with the more powerful Scat Pack a shorter, but still substantial, 260 miles.
Acceleration is impressive, with the Daytona Scat Pack expected to close a 0-60 mph sprint in just 3.3 seconds while earning a quarter-mile elapsed time of 11.5 seconds. Performance is enhanced in Daytona models with a PowerShot feature that provides an additional 40 horsepower boost for up to 15 seconds when needed. Stopping power is bolstered with 16-inch Brembo vented rotors and distinctive red six-piston calipers up front and eight-piston calipers at the rear. All Charger models are four-wheel drive. Driver-selectable Auto, Eco, Sport, and Wet/Snow drive modes allow tailoring the driving experience, with the Scat Pack adding Track and Drag modes for good measure.
Serene silence is not the hallmark of the new Daytona as it is in other electrics. Rather, Daytona R/T and Scat Pack sound the part of earth-pounding muscle cars with their all-new Fratzonic Chambered Exhaust that replicates a Dodge Hellcat exhaust profile, with sound intensity tied to performance. Drivers can alternatively select a ‘stealth’ sound mode if that’s more to their liking…but what’s the fun in that?
All this power and performance would be academic if not packaged in an athletic form, and the new Dodge Charger does pull that off with a pure uninhibited muscle car presence. Its lines are sharp, evolved, and definitively true to the breed, featuring an appealing profile and a powerful widebody stance. This muscle car’s appealing ‘hidden hatch’ design is accentuated by a black painted flowing roofline that can be made more dramatic with an optionally available full-length glass roof. We particularly like that the front end is not closed off in a snout like so many electric cars, but rather features stylishly understated openings above and below the bumper fascia.
Inside is a driver-centric cabin featuring an instrument cluster with either a 10.25- or optional 16-inch screen, along with a center 12.3-inch touch screen angled toward the driver. A forward-looking flat top/flat bottom steering wheel design features an array of controls for popular functions and also includes paddle shifters for rapidly adjusting regenerative braking settings on the fly. The center console features a pistol-grip shifter and start button. Standard seating is cloth and vinyl with either black or red Nappa leather available as an upgrade. Rear seats can be folded flat for additional cargo capacity. As expected, a full suite of advanced safety and driver assist systems are standard or available.
Two-door coupe versions of the 2024 Charger Daytona R/T and Scat Pack feature an MSRP of $59,595 and $73,190, respectively, and begin production this summer. Four-door variants of the electric models will start production in the first half of 2025 with two- and four-door gas Charger SIXPACK models coming later that year. Pricing for these will be disclosed closer to their release.
Green Car Journal editor/publisher Ron Cogan was editor of Hot Rod’s Musclecar Classics in the mid-1980s.
Green Car Journal has closely followed the evolution of the Toyota Prius since our early hands-on experience at Toyota’s Arizona Proving Grounds in mid-1997. Here, we piloted a Toyota Corona test mule powered by an exotic gas-electric powerplant concept that was unlike anything we had driven before. Little did we know that this test car’s Toyota Hybrid System would make its way in production form to the automaker’s all-new Prius, a model that debuted later that year at COP 3, the third United Nations climate conference. This is where the landmark Kyoto Protocol international treaty was adopted to mitigate greenhouse gases and climate change.
The Prius was there to make a statement that Toyota recognized the environmental challenges ahead and was prepared to lead. Prius sales began in Japan in 1997 and expanded worldwide in 2000. The rest is history. In the 27 years since the Prius was introduced, this hybrid has stayed true to its original mission as a model of high efficiency and low carbon emissions. It has shape-shifted over time, starting out as a quirky subcompact sedan and then morphing into a hatchback with a distinctive and easily-recognizable profile.
Now in its all-new fifth generation, Toyota’s Prius is a true game changer presenting as a wondrous liftback with a whole new outlook that far transcends eco consciousness, though that is still the core of its being. Today’s Prius is now sleek and visually compelling, extraordinarily fuel efficient at up to 57 combined mpg, and delivers surprising levels of performance for an eco-champion priced at just $27,950.
For an additional five grand the model’s plug-in hybrid variant, Prius Prime, features all this along with a more powerful 13 kWh lithium-ion battery that brings an EPA estimated 45 miles of electric driving and up to 600 miles of overall range. Along with its admirable EPA estimated 52 combined mpg as a hybrid, Prime achieves up to 127 MPGe when running on its batteries.
Prius Prime’s considerable battery electric range makes it the ideal electric vehicle for a great many who wish to drive zero emission every day, but also want the ability to tackle longer trips seamlessly. This characteristic, and so many others that elevate the model above its peers, distinguished Toyota’s Prius Prime as Green Car Journal’s 2024 Green Car of the Year®.
Performance in a traditional sense, like quick acceleration and impressive driving dynamics, has never been expected of a Prius. That wasn’t its mission. This changes in a big way with the new Prius presenting as a driver’s car, a model that speaks to car enthusiasts who value appealing style and a fun-to-drive nature alongside environmental performance. The new Prius Prime’s 220 system horsepower, delivered by a 2.0-liter engine and 161 hp electric motor-generator, changes the performance equation with nearly 100 more horsepower and a third greater torque than the previous generation Prime. That extra power is a big deal and drivers will appreciate Prius Prime’s surprising ability to sprint from 0-60 mph in just 6.6 seconds.
Greater performance aside, the most noticeable change in the new Prius is clearly its attention-grabbing, smoothly sculpted design. We know this first-hand. Over the past few months, we’ve spent significant time behind the wheel of an uplevel ($39,670) Prius Prime XSE long-term test vehicle equipped with this model’s full complement of advanced electronics and a cabin smartly upholstered in leatherlike SofTex. Inevitably, we get looks, questions, and overt signs of appreciation from a great diversity of people during our drives, many of them drivers of earlier Prius models and others who simply love the car’s forward-leaning and distinctive look.
We get it. The new Prius exudes a sporty appearance with its low roofline and sweeping aerodynamic profile, lending homage to the Prius of old while transforming its look into something more compelling. Once attention moves beyond the car’s most noticeable and eye-catching feature, there’s plenty inside to appreciate as well. Here, one finds a comfortable and functional cabin featuring a pleasing balance of tech, comfort, and style, with a distinctive instrument panel design that takes its cues from Toyota’s bZ4X electric car.
We’ll be sharing our experiences of daily life with the Prius Prime in the months ahead, and no doubt, more stories of interactions with others who find the all-new Prius as compelling as we do.
A growing number of car buyers are showing a keen interest in hybrids, those super-efficient cars, trucks, and SUVs that combine the benefits of both electric and internal combustion power. For some, it’s all about stellar fuel economy. Others see a hybrid as an easy entry into electrified vehicles without taking the more unfamiliar leap to a plug-in model, or paying the extra cost.
Whatever the motivation, we’re huge believers in hybrids because of their many obvious benefits. Ready to bust a move? Here are 10 fuel efficient hybrids from five automakers that deliver 37 to 57 combined mpg, available with a reasonable manufacturer’s suggested retail price (MSRP) of $25,000 to $34,000. Yeah, we realize that some models could be in short supply at times and others may be so popular dealers are tempted to add on a mark-up over and above the MSRP. It that’s the case then keep looking since cross-shopping dealers online is pretty straightforward these days and you may find a better deal just a short drive away.
We’ve driven plenty of Mustangs over the years and have owned several, including a 1966 Mustang back in the day and a pristine 2005 Grand Am Cup-themed Mustang GT that resides in the garage now. The latter combustion pony car shares garage space with a charging electric car most of the time, representing a scenario that’s likely to become a fixture of life for many multi-car households in our unfolding mobility future – an EV for most daily driving and a combustion car or hybrid available for good measure.
Playing to this, electrification strategies have varied among the world’s major automakers, from a bit of dabbling with EVs to going all-in with battery electric models. Time will tell which strategy works out best in an era where electrification’s benefits and challenges are often still weighed intently before buyers make their move to go electric, though buyers in growing numbers are doing so these days.
Ford is solidly positioned in the ‘all-in’ category. Along with its electric F-150 Lightning pickup and E-Transit commercial van, perhaps its most high-profile move has been its evolutionary – or perhaps revolutionary – Mustang Mach-E that debuted in late 2020, the electrified stable mate of the legendary gas-powered Mustang.
The Mach-E successfully trades on the Mustang nameplate and carries on distinct Mustang design cues like a long hood and tri-bar taillights, though it is decidedly different with a unique sweeping roofline and coupe/liftback design. While some Mustang afficionados might take issue with the nameplate being applied to a crossover model, it’s really a moot point. The fun factor is there and it’s a Mustang in spirit if not in silhouette.
As expected, the Mach-E continues to evolve with an expanding number of model choices and battery options, including the new dual motor Mach-E GT that we recently drove in the Pacific Northwest. What really got our attention, though, was Ford’s Mustang Mach-E Rally we piloted around the track at the Dirtfish Rally School in Snoqualmie, Washington, just outside of Seattle.
The Rally gets all the content and performance attributes of the GT with additional benefits and features added for its mission. This adventurous model is a departure from the norm for Mach-E, literally, with that departure focused on off-pavement action far from stoplights, traffic, and the hustle of daily life. Our experience test driving for 4 Wheel & Off-Road magazine many years ago means we have a deep appreciation for that kind of opportunity.
The all-wheel drive Mach-E Rally comes specially prepared for the job, with MagneRide suspension featuring an inch higher riding height than the standard Mach-E, RallyCross-tuned shocks and springs, and powertrain calibration and traction control tuned for the rugged and uneven surfaces of dirt-track and rallycross driving. Aluminum underbody shielding provides protection from the hazards and grime inherent in this kind of off-pavement driving.
Power is abundant with the Mach-E Rally’s 480 horsepower delivered by front and rear motors, with an available RallySport drive mode enhancing linear throttle response. Selecting this mode also sets more aggressive damping for improved handling and enables additional yaw for bigger slides, all important in dirt-track driving. Acceleration is impressive with the Rally’s 700 lb-ft torque enabling a 0-60 mph sprint is just 3.4 seconds. Its 91 kWh lithium-ion battery delivers an estimated 265 mile range.
Form follows function with the Mach-E Rally, as it is also distinguished with special body moldings, an aggressive rear liftback spoiler, rally-style fog lights, black painted roof, and eye catching graphics that add to its appeal. Power is delivered to the road via 19-inch gloss-white wheels equipped with Michelin CrossClimate 2 tires ideal for navigating loose surfaces. All this comes at a cost of $59,995, some $20,000 over the base model and six grand more than the Mach-E GT.
Driving the Mach-E Rally at Dirtfish was exhilarating. This specially equipped model exhibited exceptional capabilities and a seriously fun-to-drive nature at speed, which was expected given its rallycross nature. What’s really impressive is the degree to which the Mach-E Rally accomplishes this without sacrificing comfort or capabilities on the street, where most drivers will likely spend most of their time behind the wheel.
So, let’s just share a fundamental: There’s no circumstance in which either of our personal Mustangs would have ventured off-pavement, at least not willingly and not for an extended drive, unless we happened upon a washed-out road and it was our only way home. But the 2024 Mustang Mach-E Rally? Well, that’s another story…and it’s a really good one.
Now that we’ve been behind the wheel of a Mach-E Rally on Dirtfish Rally School’s dirt, gravel, and wet course, our Mustang horizons have expanded. We can say with confidence that heading off the beaten path in a Mach-E Rally is not only a reasonable option, it’s one likely to be calling out to Rally owners with some regularity. After all, while the road ahead may be straight and true, often enough there will be a new adventure awaiting on dirt roads less traveled just a turn of the wheel away.
California has banned the sale of new gas vehicles in the state by 2035. Eight other states have adopted its far-reaching rule and more are considering it. This is an environmental win but also a huge worry for many who feel their mobility way of life will be increasingly challenged as we head toward an electrified future. They have a right to be concerned.
It’s true that many assumptions are at work today as we head toward a world replete with electric cars, and these should be well considered. Perhaps the most controversial notion is that the nation’s electrical grid will support a massive influx of electric vehicles on our highways. If we accept that calculations supporting this conclusion were accurate at the time they were made, it’s apparent they didn’t take into account the challenges now posed by an increasingly contrary climate.
One example is Electric Vehicles at Scale – Phase 1 Analysis: High EV Adoption Impacts on the Western U.S. Power Grid, the first of a multi-part analysis by Pacific Northwest National Laboratory conducted on behalf of the Department of Energy. This comprehensive and well-documented report analyzed how the many millions of electric cars expected on the road by 2028 would affect the Western grid.
Without diminishing the considerable work and expertise that went into this report, it’s important to note that there’s an important caveat. In its words, the study’s outcomes “are predicated on normal grid conditions, absent of any grid contingencies, such as generator or transmission outages, extreme weather scenarios, extreme high loads, or fire conditions that require deactivation of major transmission lines.”
This is an eye-opening footnote. In recent years, the nation has experienced a greater incidence of extreme weather events like historic heat waves, deep freezes, high winds, hurricanes, and monsoon-like downpours. These have disrupted the electrical grid and caused blackouts in diverse parts of the country. This not only brings the misery of living in the dark without air conditioning, lights, or staying connected, but also an inability to charge an electric vehicle if one happens to be in your garage.
During yet another California heat wave in a recent summer, the state’s Independent System Operator issued 10 straight days of Flex Alerts asking consumers to cut energy use to avoid rolling blackouts. The ask was that thermostats be set higher and that consumers avoid using major appliances, including electric vehicle chargers, during specific times. Consumers rallied to the call and blackouts were averted. But this is not sustainable as an answer to an overloaded grid.
Overtaxing the grid isn’t exclusively a problem here. Heat waves and a severe drought impacting hydroelectric power affected a million electric vehicles in China, causing public charging stations to go offline. This underscores the challenge, illustrating the fragile balance of power generation and demand, and how unanticipated heat waves, droughts, and wildfires – and of course millions more electric cars – can potentially strain any electrical grid past its breaking point.
California has been successful in increasingly moving toward renewable wind and solar power, but phasing in renewables to displace the need for conventional power generation takes time. In anticipation of projected electricity shortfalls and the potential for blackouts in the years ahead, California extended operation of the state’s last operating nuclear powerplant, Diablo Canyon, which was scheduled to shut down in 2025. The powerplant supplies 9 percent of the state’s electricity and was deemed critical to California’s short-term electrical needs.
Over three decades ago when attention first turned to electric cars, the need for environmental improvement was real. It is, by all measures, now acute. Will a 2035 ban on gasoline cars in California and other ‘green’ states come to pass as planned, and will we be able to charge the millions of electric vehicles this will bring? A great many people hope so. But along the way, history shows us we need to be prepared with realistic options and contingency plans…just in case.
Green Car Journal editor Ron Cogan has focused on the intersection of automobiles, energy, and the environment for 35 years. He is an acknowledged electric vehicle expert and spent a year of daily travels behind the wheel of GM’s groundbreaking EV1 electric car.
Buyers of Acura ZDX models and all Honda Prologues built after Feb. 26, 2024, will qualify for the full federal $7,500 federal clean vehicles tax credit. Those who lease will also get the credit in the form of reduced monthly lease payments regardless of the vehicle’s production date. The 2024 Prologue EV will start at under $50,000 while Acura’s ZDX, an electric crossover built on the same platform, will start at just over $65,000.
Honda is offering the Prologue in three trims, two available with single-motor, front-drive or dual-motor, electric all-wheel drive (eAWD) powertrains, and one with dual-motor eAWD as the only powertrain. Acura’s ZDX will come in two trims, one with both rear-wheel drive and eAWD options, the other with eAWD only. The two EVs are the fruit of Honda’s short-lived EV co-development program with GM. They share their underpinnings and batteries with the Chevrolet Blazer and Cadillac Lyriq.
The base rear-drive Acura ZDX A-Spec trim will start at $65,745 including a $1,245 destination charge. The eAWD variant will start at $69,745. The eAWD Type S will start at $74,745 and there’s a sport edition with performance wheels and tires for $1,000 more. Acura said the base A-Spec can deliver up to 313 miles of range- slightly more than its Honda Prologue platform mate. The eAWD version comes close at 304 miles. Both Type S variants are rated at 278 miles.
Honda’s base front-drive 2024 Prologue EX will start at $48,795 including a mandatory $1,395 destination fee. The eAWD version, with two motors and more horsepower, jumps to $51,795. The front-drive Prologue Touring starts at $53,095, jumping to $56,095 with eAWD. Prologue Elite, available only with electric all-wheel drive, starts at $59, 295. EPA range estimates are 296 miles for the front-drive EX and Touring, 281 miles for the eAWD EX and Touring and 273 miles for the Elite.
This was originally published on thegreencarguy.com. Author John O'Dell is a distinguished career journalist and has a been an automotive writer, editor, and analyst specializing in alternative vehicles and fuels for over two decades.
Kia’s Carnival minivan, or MPV as it is officially referred to by the Korean automaker, has been part of the Kia lineup here since 2022. Kia’s previous minivan, the Sedona, was replaced by the Carnival after a 20-year run. Now, the 2025 Kia Carnival returns to the fold after receiving a mid-generation refresh and an efficient new hybrid powertrain.
The 2025 Kia Carnival HEV carries a good amount of optional equipment along with its new refresh. It’s built on a joint Hyundai-Kia N3 platform shared with other models like the Hyundai Santa Cruz and Kia Sorento. Four trim levels are available, ranging from the entry-level LSX trim, mid-range EX and SX trims, and the range-topping SX Prestige trim. All trims carry identical power, space, and fuel economy ratings.
Powering the 2025 Carnival HEV is Kia’s 1.6-liter turbocharged inline-four paired with a 54 kW electric motor, which utilizes a 1.49 kWh lithium-ion battery pack. Thanks to the aforementioned power sources, the Carnival HEV produces up to 242 horsepower and 271 lb-ft torque. A six-speed automatic transmission handles the Carnival HEV’s power, and front-wheel drive is the sole drivetrain option. For those not interested in a hybrid powertrain, the Carnival also comes with a 3.8-liter V-6 borrowed from the Kia Telluride that manages 290 horsepower and 262 lb-ft torque. Handy hybrid-exclusive driving aids include electrification-vehicle motion control that allows users to adjust the amount of regenerative braking and E-Ride, which helps smooth out bumps with the help of a specially-tuned suspension.
The new Carnival HEV’s styling takes inspiration from Kia’s ‘Opposites United’ design language that aims to combine the rugged looks of an SUV with the familiarity and comfort of an MPV (aka SUV). The front fascia embodies this motif best, with chiseled lines and a muscular radiator grille. A pair of crystal-like headlights sit above the grille and feature Kia’s Star Map daytime running lights. Down its flanks, the Kia MPV retains much more of a minivan look with typically large windows and doors. At its rear, the Carnival again takes up the SUV look and dons a pair of angular Star Map LED taillights along with a repositioned license plate mounting area, allowing for a cleaner rear hatch look. Those whose tastes run to the dark side will enjoy the optional Carnival Dark Edition appearance package that adds black exterior accents. Buyers have a choice of 17 or 19 inch wheels, the latter offered in two different styles.
Inside, the Carnival is just as novel and futuristic. Designers utilized simple shapes and three-dimensional effects through the use of optional ambient lighting. Seating for up to eight passengers is still a hallmark of the Carnival, along with a class-leading maximum cargo space of 145.1 cubic feet. Second-row seats can be removed and third-row seats can fold into the floor for uninterrupted cargo space.
An available twin-12.3-inch digital display takes center stage and does the job of both the infotainment and digital gauge cluster screens. A 12-inch infotainment screen and a 4.2-inch digital gauge cluster screen are standard. Other optional tech upgrades include a full-color head-up display and a Full Display Mirror, which replaces the standard rearview mirror with a camera and display. Seven USB-C ports are standard within the Carnival along with two handy 115-volt power inverters. Saying the phrase “Hey Kia” will activate the Carnival’s multi-zone voice control, allowing users to control or adjust systems like climate control or open and close windows. Brand-new for the Carnival is an available Connected Car Rear Cockpit system, which uses two 14.6-inch monitors and allows entertainment streaming from select platforms.
Carnival features a litany of standard and available advanced driver assistance features. Among these is standard Forward Collision Avoidance Assist, which detects imminent vehicle or pedestrian collisions and assists with steering and/or braking to avoid them. Other available safety features include Junction Crossing, Evasive Steering Assist, and Lane-Change Oncoming, among others.
The 2025 Kia Carnival is poised to make waves in today’s family mover field, though some competitors like the Chrysler Pacifica plug-in hybrid and Toyota Sienna hybrid won’t make it easy. Pricing for the 2025 Carnival will be released as the model gets closer to going on sale this summer.
The Volvo S60 model introduced in 2000 was positioned to compete with the popular BMW 3 Series and Mercedes-Benz C-Class of the time. Since then, it has been a popular staple for the Swedish automaker. Now well into its third generation, the S60 has evolved as part of Volvo’s promise to electrify its entire fleet and now is available exclusively in electrified form as a plug-in hybrid. Green Car Journal editors had the opportunity to spend time behind the wheel of this Volvo PHEV and came away impressed by its style and satisfied with its overall performance.
Volvo has borrowed from its subsidiary company Polestar for power. The S60 is equipped with a 312 horsepower 2.0-liter, turbocharged inline-four cylinder engine augmented with a 143 horsepower electric motor located at the rear. Energy for the motor is supplied by an 18.8 kWh battery. The combination ekes an impressive 455 horsepower and 523 lb-ft torque overall. Power is handled by an eight-speed Aisin automatic transmission and distributed via an all-wheel-drive system.
The S60 offers a combined EPA-rated range of 530 miles. If drivers choose to use the S60’s Pure driving mode using only the battery, they should expect an EPA range of about 41 miles. When using Pure mode, the S60 Recharge is rear-wheel-drive. The 14.9 kWh battery can be charged to full capacity in about five hours using a 220-volt charger.
The exterior of the Volvo S60 Recharge can be summed up in one word: refined. When looking over the front of the vehicle one notices Volvo’s familiar Thor’s Hammer LED-accented headlights, with the large Volvo badge front and center. Its hood slopes down toward the fenders at either end to lend a slightly muscular appearance. At its flanks, the S60’s roofline rakes gently to its rear haunches and ends abruptly at the rear end, again giving it an air of muscularity. A high trunk line is accented by a small rear diffuser and familiar Volvo taillights at the back.
Stepping into the S60’s interior presents another example of a refined experience. A sleek and functional design here finds Volvo’s nine-inch infotainment screen taking center stage. Large HVAC vents frame the screen with a brushed aluminum trim piece accenting the bottom of the dashboard. Adequate storage is present in the center console and doors pockets. Rear seat passengers get a good amount of legroom for two adults in the outboard positions but less so in the middle position. Two B-pillar-mounted HVAC vents provide heated or cooled air to passengers on both sides. Trunk space is adequate for a mid-size sedan, though depth and a spare tire is sacrificed to store more batteries beneath the floor.
Volvo employs a new Android OS for its infotainment system that integrates an array of features into its tech arsenal. Google Maps is incorporated, with the S60 utilizing GPS information to adjust efficiency parameters according to driving conditions encountered in city or highway driving. A 12.3-inch digital gauge cluster ahead of the driver is also capable of displaying Google Maps information. A handy heads-up display lends the ability to easily read current speed and other information without taking eyes off the road.
A proud hallmark of Volvo is safety, and the S60 Recharge is no exception. The car received a five out of five star crash test safety rating, along with receiving Volvo’s award winning safety tech. The S60 Recharge is equipped with 360-degree cameras, Blind Sport Warning, Cross-Traffic Alert, among other notable tech features. Four trim levels are offered including the base Core, mid-range Plus, and Ultimate trims, all available in an aptly named Black Edition that adds black accented wheels, grille, and badges.
The Volvo S60 Recharge T8 is a welcome blend of refinement and power offering an entry price of $51,950. It bears consideration as a great all-around car for anyone desiring the ability to get home quickly and in comfort while also stepping up to the environmental benefits of plug-in electric power.
Unveiled earlier this year, the Polestar 4 is the fourth model produced by the Swedish EV maker. The Polestar 4 takes on a unique coupe SUV design and is placed between the Polestar 2 and 3 in terms of size. Polestar has utilized the SEA1 platform for the 4 model that’s built by Geely Holding, a Chinese automotive giant. This luxurious EV boasts a 50-50 weight distribution and in its more powerful version delivers admirable performance with dual motors and a projected zero to 60 time of 3.6 seconds.
Polestar offers two powertrain options. The standard iteration consists of a single-motor, rear-wheel-drive configuration capable of producing 272 horsepower and 253 lb-ft torque. The second option, which is expected to go toe-to-toe with the Porsche Macan EV, is a dual-motor, all-wheel-drive arrangement sporting 544 horsepower and 506 lb-ft torque. This variant is able to disengage the front motor using a clutch system when under light throttle to save battery power.
All Polestar 4 configurations receive a 102 kWh lithium-ion battery. Fast charge times are not yet available; however Polestar has reported a maximum fast charge capability of 200 kW. The Polestar 4 also carries V2L, or vehicle-to-load ability, allowing users to power their gadgets or other electric items on the go.
The exterior design is a rather singular experience with futuristic style and cutting-edge lines. Precept headlights featuring a Thor’s Hammer design tells one right away that this is a Polestar. Split at the middle, the top half of the headlight travels up and shoots along the fender, while the bottom half turns downward toward the functional air scoop situated in front of both wheels. A long and sporty hood swoops up into a windshield that has been brought forward to allow more interior space.
Looking to the side, more evidence of the model’s subtle sportiness is on display. Wheel options for the Polestar 4 are all sharp and angular in design, matching the knife-edged bodyline at the bottom of the doors.
Polestar has included its LightBlade rear light design that spans the width of the rear end, with 90-degree downward angles at both ends. A notable feature for the Polestar 4 is the absence of a rear window. In its place is a pair of High-Definition cameras mounted at the back of the roof. These cameras are connected to a digital rear-view mirror that allows for a full view of the road already traveled.
Polestar has devoted a lot of attention to designing the interior of the 4. Here, one finds tons of unique options and design cues along with a panoramic roof that extends all the way past the heads of rear passengers. This glass can be fitted with an optional electrochromic feature that allows users to turn the glass from transparent to opaque. Several interior options are available, all of which utilize sustainable materials at every opportunity. Seats are upholstered with SoftTech, a 3D-printed material, and carpets and floor mats use PET. Several interior configurations take advantage of vegan materials, with one option using animal welfare-secured Nappa leather. Drivers can also set the mood using the infotainment system, with its settings taking inspiration from the solar system.
The Polestar 4 is packed with tech. A 10.2-inch digital gauge cluster is used along with a 15.4-inch infotainment screen that takes center stage, the latter employing the Snapdragon Cockpit Platform to control functions. Polestar also includes a 14.7-inch head-up display that can turn yellow for better visibility in snowy conditions. Android Automotive OS grants use of select Google apps, with Apple CarPlay and Android Auto standard fare. Polestar is partnered with Volvo so there’s naturally a myriad of safety features. Mobileye SuperVision is present, allowing drivers to take their hands off the wheel in select driving conditions, as long as eyes are focused on the road. A dozen cameras monitor the inside and outside of the vehicle along with ultrasonic sensors that monitor the driver to detect drowsiness or distraction.
This all-new Polestar model looks to be an all-around contender for the EV world. It’s got power, tech, and style on its side. This upscale coupe SUV has a lot going for it including a more manageable estimated price of $60,000, a significant twenty five grand less than the Polestar 3. Production has begun and the first deliveries are slated for China shortly, though buyers in the U.S. will have to wait patiently until later in 2024.
Though the amount of public charging stations across the country has grown sharply over the past year – increasing more in 2022 than in the prior three years combined – driver satisfaction with charging infrastructure has dropped significantly over the same time period. From long wait times to high costs, there are many hurdles that must be overcome to accelerate widespread EV adoption.
Specifically, as the EV market has grown, it’s become increasingly fragmented and, as a result, difficult to navigate. With its wide range of stakeholders with distinct business needs to the increasing variety of charging hardware that runs on differing software, a lack of compatibility across the ecosystem often leaves drivers unsure where they can reliably charge their vehicles – what has come to be known as “EV range anxiety” – or having to toggle between multiple applications just to refuel.
We can overcome much of these frustrations by improving interoperability and roaming capabilities throughout charging infrastructure. The concept of EV roaming, also referred to as eRoaming, opens customer access to an almost endless number of chargers. Similar to the use of roaming on a cellular network, eRoaming allows drivers to charge at another service provider’s charging station and have the charging transaction integrated with their normal method of payment. We’ve seen the success of eRoaming in supporting tremendous EV growth throughout Europe – where roaming has been the norm in countries like the Netherlands and Norway for the past decade – and it’s time we did the same in the U.S.
However, delivering EV roaming is an incredibly complex process, involving negotiated service and clearing agreements, comprehensive communications standards, various protocols, and support of multiple languages, currencies, tax rates, and regulations. Its successful deployment depends on eMobility providers (eMSPs) and charge point operators (CPOs) – traditionally separate players in the e-Mobility ecosystem – working together to share their capabilities through either a peer-to-peer Open Charge Point Interface (OCPI) protocol or leveraging a roaming hub, such as Hubject, GIREVE, or e-clearing.net.
What’s more, to enable true interoperability, EV charging management platforms must be compatible with all roaming hubs and support OCPI-based roaming, providing a scalable, live, and automated EV roaming setup between eMSPs and CPOs. At EVolve, a subsidiary of Vontier Corporation, our integrated smart energy management platform allows us to manage hundreds of thousands of EV chargers on roaming networks. From customer-facing tools that streamline the eRoaming experience for drivers to back-end technology that authorizes charging sessions, reconciles transitions between CPOs and eMSPs, and shares charge point data, our platform equips EV charging networks, OEMs, and other e-Mobility partners with a backward-compatible solution to easily deliver eRoaming and create a more reliable and convenient EV charging experience for customers.
Although a complicated landscape, what’s clear is that achieving widespread eRoaming will take the investment, collaboration, and cooperation of the entire industry. And despite differing business needs, this is an issue that all e-Mobility players stand to benefit from. Not only is improving roaming capabilities key to unleashing the true power of electrification – elevating outcomes for all corners of the ecosystem – but it will bring increased use to the charging points of CPOs and foster further brand recognition and loyalty for eMSPs, creating greater streams of revenue for both.
As we consider our goals for the years to come across the EV ecosystem, let’s all prioritize working together to enable eRoaming and increase interoperability to realize the full potential of the EV transformation.
Andrew Bennett is the CEO of EVolve, a Vontier company
Consumer demand for electric vehicles (EVs) is at an all-time high – in fact, EV sales saw a 50 percent increase in the first half of this year, compared to 10 percent growth for combustion engine vehicles. Analysts estimate the U.S. will reach one million EV sales this year, and roughly one-third of U.S. drivers say they are considering an EV for their next car purchase. The Tesla Model Y is the best-selling car in the country.
These are the facts, yet I keep hearing claims about sagging EV demand. But to claim this is just flimsy cover for automakers who want to argue that a rapid transition away from polluting gas-powered cars and trucks is too ambitious.
Cox Automotive recently reported that EVs sit longer on dealership lots than do combustion engine vehicles. Based on that report, many media outlets concluded that EV demand is weak. Unfortunately, most analyses of Cox’s report ignore critical data and context.
For starters, Tesla, the best-selling EV manufacturer on the planet, does not use dealerships – so there is no data on the company factored into Cox’s report. Given that Tesla accounts for roughly 60 percent of all EVs sold in the U.S., to conclude that EV demand is low because EVs are sitting on dealer lots is judging demand based on only 40 percent of the market – and the weaker 40 percent at that.
For the EVs that are sold through dealers, Cox’s report looks at wait times for all EVs instead of differentiating by type – compact SUVs, hatchbacks, luxury electric trucks, etc. Internal combustion engine data is analyzed at a detailed level, instead of lumped together, so why do the opposite for EVs?
It’s 2023, and electric vehicles come in all sizes, shapes, and at wide-ranging price points. A closer look reveals that the EVs flagged for slower sales are largely big, expensive luxury SUVs or foreign-made luxury EVs. This isn’t just true for EVs: the slowest-selling gas-powered models right now are luxury cars and SUVs priced similarly to the slowest-selling EVs.
Vehicles ineligible for federal tax credits are seeing higher lot wait times than others. If consumer demand for EVs was the problem, all EVs would be sitting on lots, not just the expensive ones.
Smaller, more affordable EVs like the Chevy Bolt and Tesla Models 3 and Y have set records and drove EV sales to all-time highs in the second quarter of 2023. That’s not a surprise, because the gas-powered cars with the tightest inventories in the U.S. are also smaller cars and compact SUVs.
The issue is not demand, it’s affordability, and it's affecting gas and electric cars alike. If the market for EVs appears weak overall, it’s only because automakers are making too many larger, pricier models and not enough smaller, less expensive ones.
Analysis of the car market cannot ignore the broader economy. High interest rates and a turbulent economy are changing consumer spending habits for all kinds of products, including cars. Earlier this year, analysts found new gas-powered cars are out of reach for many consumers as interest rates rise and the average price hit almost $50,000 (a 30 percent increase from three years ago). Manufacturers have reduced the number of affordable models, leading many people to put off buying a car or opt for a used vehicle.
Clearly there is enormous demand for affordable EVs. Luckily,automakers have more resources than ever from the federal government to make the transition to electric vehicles and to make more affordable EVs available now. With the Inflation Reduction Act signed into law, new tax credits for EVs make some models even more affordable than comparable combustion engine cars.
EVs are more popular than ever, and Americans want to buy them. We are moving from the early-adopter phase to the mass market, and car companies should adjust their production accordingly. Instead of producing bigger, more expensive electric trucks and SUVs, automakers must make more affordable EVs to meet booming demand.
East Peterson-Trujillo is a clean vehicles campaigner at Public Citizen, a nonprofit consumer advocacy organization that champions the public interest, https://www.citizen.org/