Green Car Journal logo
Rear view of Volkswagen ID.7 electric car driving on highway.

VW unveiled its ID.7 electric car concept in January of this year, sporting a vivid QR code-themed electro-luminescent paint job that caused quite a stir in the automotive world. Back then, we couldn’t make much of the styling due to that vibrant QR camouflage. Now though, the production ID.7 has been revealed.

The ID.7 shares its roots with the growing Volkswagen ID line that was introduced in 2019 with the release of the small Volkswagen ID.3 electric car, followed by other ID models sold in offshore markets and the ID.4 sold here in the States. The ID.7, along with the rest of the ID line, utilizes the Volkswagen Group’s MEB platform designed specifically for electric vehicles.

Side view of the Volkswagen ID.7 electric car.

ID.7 Electric Car Has Style

One word comes to mind when looking at the Volkswagen ID.7: sleek. There’s a definite flow to the exterior design, starting with the subtle sportiness of the front end and front fascia that’s accented by an angular low-mounted black grille. Discrete LED running lights visually connect the ID.7’s LED headlights together, separated only by a VW badge at the center.

Along the sides of the ID.7, one notices an angular and flowing design with a crisp body line cutting across the lower quarter of the car, accented by a smooth, curved body line through the center of both doors and another finishing at the top of the doors, just under the windows. A slim, white color accent runs the length of the roofline above the windows and comes to an end near the rear deck. Adding to the car’s subtle sportiness is a black roof and black under-trimming that runs the entirety of the car. A large and angular wheel design with a dash of black on the inner spokes is standard on the ID.7.

Overhead view of Volkswagen ID.7 electric car.

A Pair of Powertrain Choices

At the rear is a black honeycomb-inspired rear light bar that spans the width of the trunk. A slim, continuous red reflector strip is present near the bottom of the rear end, nestled in the black under-trimming. The sedan-like ID.7 is technically a hatchback, but it’s hard to notice upon close inspection. The rear window meets the trunk lid almost instantly and a small integrated trunk lid spoiler adds to the sweeping design. 

Two power choices will be available with early models featuring single motor rear-wheel drive and dual motor AWD coming later. The base power option will deliver 286 horsepower and 402 lb-ft torque with energy from a 77.0 kWh battery pack. A larger 86.0 kWh battery option will also be offered, though VW doesn’t yet specify horsepower and torque numbers for this. Volkswagen identifies the ID.7’s range at 382 miles on the more optimistic European WLTP testing cycle, so expect something more like 300 miles of range here with the smaller battery, and up to 350 miles with the larger battery, once EPA testing takes place. The ID.7 is fast charge-capable and drivers should expect the ID.7 to charge its battery from 10 to 80 percent in about 25 minutes using a public fast charge station.

Chargeport on the Volkswagen ID.7 electric car.

Driver-Centric Experience

Inside the ID.7 is an attractive and contemporary interior. Volkswagen’s usual formula for its interior design is minimalist yet fully functional, and the ID.7 is no exception. Taking center stage is a 15-inch infotainment screen designed to appear as if it's floating. Ahead of the driver sits a small, horizontally-oriented display indicating vehicle speed, charge level, and range.

Synthetic leather and recycled materials are used throughout the interior. Front seats feature generous side and back bolstering. Optional for the ID.7 are adaptive Climatronic ‘wellness seats’ that are heated and cooled, massage capable, and feature a drying function, the latter something we haven’t seen in an EV to date. A large center console with ample storage separates the front passengers. Climate vents are plentiful and seamlessly integrated into the dash architecture. Another hallmark of the ID.7’s interior is the optional panoramic SmartGlass roof, which has the ability to turn from transparent to opaque using an electrochromic charge, controlled by touch or voice control.

Instrument panel in the Volkswagen ID.7 electric car.

Tech Rich ID.7 Electric Car

Tech is in abundant supply in the ID.7. The 15-inch infotainment screen handles nearly all functions and features an aesthetically pleasing backlit touch slider at the bottom for navigating between selections. ID.7 also incorporates Volkswagen’s IDA voice assistant. Most operations can be handled by using the IDA, including panoramic roof operation and navigation, among others. An array of driver assist functions are offered including Travel Assist, a semi-autonomous driving feature supporting lane changing at speeds above 55 mph, keeping a preset distance from the vehicle ahead, and maintaining a set speed. The car can also park itself using VW’s We Connect ID smartphone app. An available Harman Kardon option to the standard sound system showcases 14 speakers, along with a centrally-located speaker in the dashboard and a 12-inch subwoofer in the rear cargo area. 

The Volkswagen ID.7 is entering the EV world at a time when Tesla dominates the all-electric sedan market, so Tesla is clearly in this model’s sights. While pricing for the ID.7 won’t be disclosed until closer to the model’s on sale date, expect it to be at a competitive level that makes the ID.7 an attractive and feature rich option to Tesla’s Model 3.

In the company’s words, the $129,990 Tesla Model S Plaid is ‘beyond ludicrous,’ with a new, three-motor powertrain producing a combined 1,020 horsepower, 0 to 60 times of 1.99 seconds, and 9-second quarter-mile sprints. It’s rated as delivering a 398 mile driving range, though that’s figured in a typical EPA test regimen. Given that buyers of the Model S Plaid are likely in it for the car’s performance potential, driving this car to its potential will certainly mean commensurately less range. Other models like the even more range conscious Model S Long Range can go an estimated 405 miles using dual motors producing 670 horsepower.

Recently, a Model S Plaid was dragstrip tested by Motor Trend in an attempt to independently verify Tesla’s claimed sub-2-second 0 to 60 time. They were successful in doing so on a surface fully-prepped with VHT, a resin-based compound typically used at dragstrips. On asphalt without a sticky coating of VHT, the Plaid took 2.07 seconds, making it the quickest production car that publication ever tested.

The Model S has been facelifted for 2022 with new front and rear fascia and fender bulges to fit wider wheels and tires. The new look continues inside with a more spacious cabin and an all-new interior design, featuring an aircraft-style yoke to replace the conventional steering wheel. ‘No stalks, no shifting’ to distract from the pure driving experience, says Tesla.

In the center of the dashboard is a 17-inch, landscape-oriented cinematic display that controls the navigation, infotainment, and tri-zone climate controls. The rear seat has been redesigned with extra head- and legroom for three passengers, and a stowable center armrest has storage compartments and wireless charging. The rear seat also folds flat to accommodate lengthy cargo. There’s a video monitor in the rear of the front armrest; Tesla says the Model S has up to 10 teraflops of processing power, enabling console-like in-car gaming. Wireless controller capability allows game play from any seat.

Tesla owners can take advantage of more than 25,000 Supercharger stations globally. On a Supercharger, the Plaid can charge at up to 250 kW, which has the capability to 200 miles of range in just 15 minutes.

The Model S is equipped with front-, side-, and rear-facing cameras to provide a 360-degree view around the car. In addition there are 12 ultrasonic sensors to assist in the car’s self-driving features, which include Autopilot, Auto Lane Change, Summon, and AutoPark. Over-the-air software updates enable instantaneous upgrades as they become available.

While performance is a given at any level, it’s been Tesla’s highest-end, dual-motor models that really set the bar for the ultimate in electric drive thrill seekers. While Tesla has pretty much had a lock on this for some time, serious competition has been in the pipeline. Audi’s new-for-2022 e-tron GT not only considerably extends the reach of Audi’s unfolding all-electric e-tron lineup, it presents a compelling option to those who would otherwise consider a Tesla.

Sleek and sinewy, the e-tron GT is what electric performance should be about. If Audi’s 610 horsepower, V-10 powered R8 supercar screams performance, then the more luxury-oriented electric e-tron GT simply exudes it in a refined and luxurious sort of way, without making a fuss. The e-tron GT is beautifully designed with a sloping roofline, a long wheelbase, wide stance, and large 20-inch alloy wheels as standard fare, with the uplevel RS variant offering available 21-inch alloys.

And performance? As expected. Front and rear permanently excited synchronous motors in the GT – 235 horsepower at the front and 429 at the rear – offer a net combined output of 469 horsepower for exhilarating acceleration. A greater 522 horsepower with overboost and launch control is delivered for a brief 2 1/2 seconds as needed. This delivers a 3.9 second 0-60 mph sprint and a top speed of 152 mph. The RS e-tron GT uses the same front motor but integrates a more powerful 450 horsepower motor at the rear, offering 590 horsepower overall and 637 horsepower with overboost. It reaches 0-60 mph in just 3.1 seconds, matching the breathtaking performance of Audi’s V-10 R8.

Power in both versions is delivered to the road via a two-speed transmission that accentuates quick acceleration while providing a second taller gear for extended highway driving. All-wheel steering, available in GT models and standard in the RS e-tron, provides a maximum of 2.8 degrees of opposite direction in the rear to increase low-speed agility at speeds up to 30 mph, and in the same direction at higher speeds to aid stability. Three-chamber air suspension is standard to enable tuning for comfort or performance.

Energy is delivered to the motors by a 93.4 kWh lithium-ion battery pack housed within an aluminum frame. Audi estimates a 238 mile range for the GT and 232 miles for the RS GT based on its own testing approximating EPA test cycles. Both are standard and fast charge capable, with the latter bringing the e-tron’s battery from 5 to 80-percent charge is just over 22 minutes.

Arriving this year, the Audi e-tron GT quattro Premium Plus carries an MSRP of $99,900, with the GT quattro Prestige upping the ante to $107,100 and the RS e-tron GT to $139,900.

BMW i3 at EVgo charging station.

It’s well understood that driving electric is more efficient with a lower cost-per-mile than driving internal combustion vehicles. That’s especially true if you're charging an EV up at home. But what if you need to use public chargers on the road or live in an apartment where a commercial pay-per-use charger is your only option?

The cost can vary significantly since commercial chargers use different methods of payment. For example, many providers charge for the time it takes to charge a battery rather than the kWh of electricity delivered. This would be like gasoline stations charging for the length of time a nozzle dispenses gas in the fuel tank, not by the number of gallons of gas pumped. A few providers charge a per-session fee or require a monthly or annual charging subscription. While many public chargers at businesses and parking lots remain free of cost to EV drivers, that is changing over time.

The Weird Science of Electrons

When you pay by the minute, charging cost is influenced by an EV battery’s state of charge, ambient temperature, and the size of the EV’s on board charger. Different size chargers can mean a big difference in the cost of a charge even though the same number of kW hours are delivered. For example, earlier Nissan LEAFs had a 3.6 kW (3.3 kW actual output) on board charger while later ones had an updated 6.6 kW (6.0 kW output) version. Thus, it takes almost twice as long to charge an earlier LEAF at double the expense than later ones, even though both have the same 30 kWh battery. Many EVs now come standard with a 6.6 or 7.2 kW charger. When considering buying or leasing an electric model, keep in mind that a more powerful on-board charger means quicker and potentially more cost-efficient charging.

It’s an interesting bit of science that while charging an electric vehicle, the rate of charge isn’t linear but rather decreases as a battery approaches full capacity. If an EV has a lower state of charge (SOC) at the beginning of a charging session, charging occurs at its maximum rate, such as 3.3 kW, 6.6 kW, 7.2 kW, and so on. As the battery approaches 100 percent SOC, charging can slow to a trickle. The last 20 percent of charge can sometimes take as long as the initial 80 percent. To be most cost efficient, it’s recommended to only charge to 80 percent full capacity when using a public charger, especially one that includes time-based pricing.

For a charging cost comparison, let’s look at charging an EV with a 40 kWh/100 mile rating and a 50 kW on board charger. At a Level 3 charging station it would take about 48 minutes to get an additional 100 miles of range and cost between $6.24 to $16.80, depending where you did the charging. With a 350 kW fast charger this would take about 7 minutes and cost between $1.82-$6.93 to add 100 miles. This compares to $10.00-$13.33 for a gasoline vehicle that gets 30 mpg and fuels up at $3.00 to $4.00 per gallon. This shows the need for fast charging when away from home and charging with time of use chargers, and more importantly, the need for pricing solely on a per kWh basis.

Time-Based vs. kWh

While kWh charging is fairer to the consumer, some companies prefer time-based charging because the longer customers are connected, the more profit is made. However, public charging could be moving from time-to-charge to the kWh charge model. This will put the energy cost of EV operation in line with that of gasoline vehicles where fueling cost is determined by the cost of a gallon of gasoline, not the time it takes to refuel. Clearly, this change is needed.

New rules in California will eventually ban public charging operators from billing by the minute and require the fairer billing by kWh. The ban will apply to new Level 2 chargers beginning in 2021, and to new DC fast chargers beginning in 2023. Chargers installed before 2021 can continue time-based billing until 2031 for Level 2 chargers or 2033 for DC fast chargers.

The new rules do not prohibit operators from charging overtime, connection, or parking fees, or fees for staying connected after reaching 100 percent SOC, providing they are disclosed. Electrify America already charges 40 cents per minute if your vehicle is not moved within the 10 minute grace period after your charging session is complete. It remains to be seen whether more states will follow California’s lead. Laws will have to be changed in about 20 states where only regulated utilities can presently sell electricity by the kWh.

Other Charging Considerations

Charging providers like Tesla and Brink presently charge by the kWh in states where it’s allowed. For example, Tesla charges $0.28 per kWh while Blink charges $0.39 to 0.79 per kWh, depending on location and user status. California regulations require Tesla and others to show the price per kWh and a running total of the energy delivered, just like a gas pump.

Other charging considerations can affect the actual long-term cost of operating an EV. These include lower charge pricing and discounts that come with subscriptions, free charging incentives that accompany a vehicle purchase (like the first 1000 kWh provided free or 100 kWh of free charging per month), or if a charger is shared with another user. For Teslas, free unlimited Supercharger access has often come with the purchase or lease of a new Tesla model.

While EV technology is now relatively mature, pricing electric vehicle use is evolving. Hopefully, competition and a bit of government regulation should ultimately make it as understandable as it is now for gasoline vehicles.

The driving range of electric vehicles is becoming less of an issue as they surpass 200 miles or greater, approaching the distance between fill-ups of some internal combustion engine vehicles…or maybe the bladder capacity of their drivers. However, the time it takes to recharge an EV is still a negative attribute.

Generally, EVs charge at a fairly slow rate. A 240-volt Level 2 home or public charger will charge a Chevy Bolt from depleted to full in about 4 1/2 hours, providing a range of about 238 miles. That’s a far cry from 5 minutes to fill a gas tank. It’s significantly slower when charging a Bolt with a Level 1 charger using a household’s standard 120-volt power since this adds only about 4 miles an hour!

Of course, charging companies and automakers are working together to expand the small-but-growing network of fast chargers in key areas of the country, allowing EVs to gain up to 90 miles of charge in around 30 minutes. Tesla claims that its Supercharger stations being upgraded to Version 3 can charge a Tesla Model 3 Long Range at the rate of about 15 miles a minute, or 225 miles in just over 15 minutes under best conditions.

If current technology EVs become popular for mid- to long-range travel, gasoline stations, truck stops, and public charging stations equipped with Level 2 and even somewhat faster chargers run the very real risk of becoming parking lots.

Photo: EVgo

When it comes to charging EVs, charging times come down to kilowatts available. The best Tesla V3 charger is rated at 250 kilowatts peak charge rate. Now, much research is being done here and in other countries on what is called Extreme Fast Charging (XFC) involving charge rates of 350-400 kilowatts or more. The U.S. Department of Energy is sponsoring several projects aimed at reducing battery pack costs, increasing range, and reducing charging times.

There are several challenges for XFCs. First, when lithium-ion (Li-ion) batteries are fast charged, they can deteriorate and overheat. Tesla already limits the number of fast charges by its standard Superchargers because of battery degradation, and that’s only at 120-150 kilowatts. Also, when kilowatt charging rates increase voltage and/or amperage increases, which can have a detrimental effect on cables and electronics.

This begs the question: Is the current electrical infrastructure capable of supporting widespread use of EVs? Then, the larger question is whether the infrastructure is capable of handling XFC with charging rates of 350 kilowatts or more. This is most critical in urban areas with large numbers of EVs and in rural areas with limited electric infrastructure.

The answer is no. Modern grid infrastructures are not designed to supply electricity at a 350+ kilowatt rate, so costly grid upgrades would be required. Additionally, communities would be disrupted when new cables and substations have to be installed. There would be a need for costly and time-consuming environmental studies.

One approach being is XFC technology being developed by Zap&Go in the UK and Charlotte, North Carolina. The heart of Zap&Go's XFC is carbon-ion (C-Ion) energy storage cells using nanostructured carbons and ionic liquid-based electrolytes. C-Ion cells provide higher energy densities than conventional supercapacitors with charging rates 10 times faster than current superchargers. Supercapacitors and superchargers are several technologies being considered for XFCs.

According to Zap&Go, the C-Ion cells do not overheat and since they do not use lithium, cobalt, or any materials that can catch fire, there is no fire danger. Plus, they can be recycled at the end of their life, which is about 30 years. Zap&Go's business model would use its chargers to store electric energy at night and at off-peak times, so the current grid could still be used. Electrical energy would be stored in underground reservoirs similar to how gasoline and diesel fuels are now stored at filling stations. EVs would then be charged from the stored energy, not directly from the grid, in about the same time it takes to refuel with gasoline.

The fastest charging would work best if C-Ion cell batteries are installed in an EV, replacing Li-ion batteries. EVs with Li-ion batteries could also be charged, but not as quickly. Alternatively, on-board XFC cells could be charged in about five minutes, then they would charge an EV’s Li-ion batteries at a slower rate while the vehicle is driven, thereby preserving the life of the Li-ion battery. The downside is that this would add weight, consume more room, and add complexity. Zap&Go plans to set up a network of 500 ultrafast-charge charging points at filling stations across the UK.

General Motors is partnering with Delta Electronics, DOE, and others to develop XFSs using solid-state transformer technology. Providing up to 400 kilowatts of power, the system would let properly equipped electric vehicles add 180 miles of range in about 10 minutes. Since the average American drives less than 30 miles a day, a single charge could provide a week’s worth of driving.

The extreme charging time issue might be partly solved by something already available: Plug-in hybrid electric vehicles (PHEVs). As governments around the world consider banning or restricting new gasoline vehicles in favor of electric vehicles, they should not exclude PHEVs. Perhaps PHEVs could be designed so their internal combustion engines could not operate until their batteries were depleted, or their navigation system determines where they could legally operate on electric or combustion power.

Porsche Taycan electric car.

Along with models like the 2019 Jaguar I-PACE, Audi e-tron, and upcoming Porsche Taycan, we're seeing a new generation of high-tech battery-powered vehicles that bring an exciting new direction to legacy automakers. These models also have something important in common: They aim to disrupt Tesla, the industry’s de-facto electric car leader.

Disruption is a word thrown about with abandon these days as veritable institutions of business and commerce fall from grace, or at least profitability, at the hands of an ever-changing and disruptive world. Think Sears, Borders, and Kodak. The list of major companies disrupted – either gone, a shadow of their former self, or on the ropes – continues to grow. While the auto industry has largely escaped this same fate, change is definitely in the wind. And its bogeyman in recent years has clearly been Tesla.

Tesla Model X on highway.

Disruption Long Before Tesla

We’ve seen the auto industry disrupted before, not by innovators but rather by geo-politics, circumstance, and a lack of long-term vision. The Arab Oil Embargo of 1973 and the 1979 Oil Crisis that brought serious gas shortages were a result of political disruption. It was a time when stations ran out of gas, lines of cars snaked for blocks as drivers tried desperately to keep their tanks full and their car-dependent lives on track, and consumers looked for more fuel-efficient vehicles to ease their pain. The problem, however, was there were few fuel-efficient models being produced since there had been no particular demand for them. The auto industry had to adapt, but with typically long product cycles it would take years to adequately fill this need.

Segue to 2003 and the launch of Tesla Motors, an occurrence that seemed interesting but hardly a threat to legacy automakers. Its high-tech Tesla Roadster introduced in 2008 – based on engineless ‘gliders’ produced by Lotus – proved that electric cars could be sporty, fun, and go the distance in ways that all other electrics before it could not, to the tune of 250 miles of battery electric driving on a single charge. Then came the Tesla designed-and-built Model S, Model X, and the new-to-the-scene Model 3. Clearly, the battle for leadership in electric cars was underway.

Jaguar I-PACE rolling chassis.

A History of Innovation

The auto industry’s penchant for innovation has always characterized its giants. Over its long history, this is an industry that brought us the three-point safety belt, airbags, anti-lock braking, cruise control, direct fuel injection, electronic ignition, and near-zero emission gasoline engines. And let us not forget Kettering’s invention of the electric starter that first saw use in 1912 Cadillacs, an innovation that tipped the scales – and history – in favor of internal combustion over electric cars of the era and helped lead to the combustion engine’s dominance to this day.

While Tesla may have established its role as the industry’s electric car innovator, that’s not to say that legacy automakers haven’t made tremendous progress. GM’s short-lived EV1 electric car of the 1990s proved that exciting and fun electric cars were possible, but not necessarily affordable to make at the time. The technologies developed by GM through the EV1 program live on to this day with evolutionary electric-drive technology found in its acclaimed Chevrolet Bolt EV and other electrified models. Advanced battery electric production vehicles have also been a focus at Audi, BMW, Ford, Honda, Hyundai, Jaguar, Kia, Mercedes-Benz, Nissan, Smart, and VW, with others like Porsche set to enter the market with long-range battery EVs.

Jaguar I-PACE racing Tesla Model X.

The Age of Electrification

So here’s the lesson of the day: If a business model no longer works, as was the case with General Motors and Chrysler during the financial meltdown in the late 1990s, you restructure. A brand no longer resonates with consumers? You drop it, like GM did with Oldsmobile. And if a class of vehicles is falling out of favor in lieu of more desired ones, you move on, as Ford is doing by phasing out almost all of its passenger cars in coming years in favor of more desired crossover/SUVs and pickups.

A paradigm shift is also occurring as automakers grapple with changing consumer preferences, regulatory requirements, and the projected demand for future vehicles and technologies. Enter the age of electrification. Over the past decade, Tesla has set the bar for innovative battery electric propulsion, advancements in near-autonomous driving technology, over-the-air vehicle software updates, and more. It has achieved a real or perceived leadership position in these areas and that’s a threat to legacy automakers. Now automakers are responding in a serious way and Tesla itself is under siege.

Chevrolet Bolt EV near building.

Chevy Bolt EV First

GM fired the first volley with its 2017 Bolt EV, beating Tesla’s long-touted Model 3 to market with an affordable long-range EV capable of traveling 238 miles on battery power. While Tesla is now delivering its well-received Model 3 in increasing numbers after a series of production challenges, the race with GM to produce an ‘affordable’ mainstream EV with 200-plus mile range was not much of a race to affordability at all. GM won that one handily, holding the line with a $37,500 price (after destination charges), while Tesla’s $35,000 Model 3 has yet to materialize. As Tesla did with its earlier model launches, the automaker is delivering uplevel, high-content, and higher-performance versions first, in the case of the Model 3 from a recently-lowered base price of $42,900 to $60,900, depending on configuration. The Bolt EV’s MSRP has moved in the other direction, dropping slightly to $36,620 for the 2019 model.

Nissan’s all-new, next-generation LEAF that debuted in 2018 improved its range to 150 miles, with a recently-announced LEAF PLUS model joining the lineup with a bigger battery and a range of 226 miles. Hyundai’s 2019 Kona Electric and Kia’s 2019 Niro Electric offer a battery range of about 250 miles, although these offer availability only in California and perhaps a few other ‘green’ states.

Nissan LEAF electric car.

Exciting New EV Entries

Jaguar’s 2019 I-PACE, a fast and sporty crossover with a 234 mile battery electric range, is now available and priced to compete with Tesla’s Model S and X. We'll soon be seeing Audi e-tron and Porsche Taycan long-range electrics on U.S. highways, with others like Aston Martin and Maserati developing high-end electric models as well.

It will be interesting to see how this all plays out over the coming months and years. To be sure, legacy automakers will not cede their leadership positions and market share without a terrific fight… and that fight is intensifying. Tesla doesn’t fear risk and has shown it will go in new directions that others will not, unless they must.

Audi e-tron electric car.

Tesla Does Things Differently

But Tesla doesn’t operate like legacy automakers that have been around for a long time, some more than a century. Those companies have mastered mass production, fielded extensive model lineups, developed widespread and convenient service networks, and have a history of successful worldwide distribution. Tesla is still learning this game, although it is making headway with its intense and successful efforts to deliver increasing numbers of its Model 3 to customers.

Importantly, legacy automakers are immensely profitable, while Tesla has had but a few profitable quarters since its launch and its losses have been in the billions. Tesla’s well-documented difficulties in ramping up mass production of the company’s 'entry-level' Model 3 – and its initial deliveries of only up-level Model 3 examples at significantly higher cost than its widely-publicized $35,000 base price – have added to its challenges.

Tesla Model 3 electric car.

That said, it would be a mistake to count Tesla out for the long haul based on its current and historic challenges including missed financial and vehicle delivery targets, serious Model 3 production challenges, and a number of high-profile Tesla crashes while driving on its much-touted Autopilot. Regardless of all this, in 2018 Tesla’s Model 3 was the best-selling luxury model in the U.S.

Legacy automakers will have Tesla directly in their sights and Tesla will continue to innovate. A veritable race-to-the-finish!

Tesla Model X driving on road.

Crossover SUV buyers looking to drive exclusively on electric power have a single choice today, and that’s Tesla’s Model X. Following in the footsteps of the Tesla Roadster and Tesla Model S, and ahead of the just-debuted Model 3, the Model X provides a unique driving experience for high-end buyers with its attractive design, advanced tech features, and zero-emission operation. While the model’s price tag means it’s not for everyone, Tesla fans will appreciate that the price of entry for the base Model X 75D has recently dropped by $3,000, to an MSRP of $79,500.

Beyond this full-size luxury crossover’s all-electric range of 238 to 289 miles, the model’s most distinctive features are its ‘falcon wing‘ doors and the largest panoramic windshield in production today. Model X doors articulate upward to enable easy access to second and third row seats, with the third row seats folding flush for more cargo capacity. The interior is designed to accommodate seven passengers with luggage carried in a front trunk or behind the seats. A recent $3,000 option enables both second and third row seats to fold flat to provide an expansive load floor.

Tesla Model X falcon wing doors.

Powering the Model X is an all-wheel drive system using two electric motors, one up front and another at the rear. The three models offered include the 75D, 100D, and P100D, with the number referring to their battery capacity in kilowatt-hours. The P in P100D stands for ‘Performance,’ with the $145,000 top version’s Ludicrous mode enabling acceleration from 0 to 60 mph in 2.9 seconds and a top speed of 155 mph.

Like Tesla’s Model S, the Model X uses AT&T to provide 3G and LTE Internet access to its onboard navigation and music services via Slacker. It also provides connectivity to the vehicle through Tesla’s iOS and the Android app, allowing remote adjustment of climate control settings along with other control features. Regular over-the-air updates add safety and navigation features, enhance performance, and improve the driving experience. Like other Teslas, the Model X can also be quick-charged at several hundred Supercharger locations along key transportation corridors in the U.S., which allows capturing an 80 percent charge in about 30 minutes.

Tesla Model X cabin.

Driver information is presented in a digital display in front of the steering wheel and a center-mounted, 17-inch touchscreen. Active safety technologies include side collision avoidance, parking sensors, and blind spot warning. Model X camera, radar, and sonar systems continually scan the surrounding roadway, providing the driver with real-time feedback to help avoid collisions. Model X is designed to automatically apply brakes in an emergency.

A sophisticated Autopilot system allows the Model X to match its speed to traffic conditions, stay within its lane, and steer around curves within a lane. It also enables automatically changing lanes with a tap of the turn signal. Our time behind the wheel of a Model X has shown Autopilot to provide a seamless, near-autonomous driving experience. For safety reasons and because this system is still 'learning,' Autopilot requires a driver's attention and hands are required on the steering wheel at set intervals. A ‘Summon’ feature allows the Model X to automatically park and unpark itself, plus open and close a garage door automatically. It can scan for parking spaces, alert a driver when one is available, and parallel park on command.

Tesla Model X charging.

An available towing package with a high strength tow bar and two-inch hitch receiver allows the Model X to tow up to 5,000 pounds, although driving range will be diminished with the additional load. Software actively monitors trailer sway and applies braking as needed.

Tesla’s plug-in crossover aspirations don’t end with the Model X. In fact, the company has announced plans to produce the Model Y – a compact crossover – by 2020. The new model is expected to make use of much of the technology and architecture of the Model 3 and come at a more approachable price point than the Model X.

Among owners and fans, it’s a foregone conclusion that Tesla will remain the dominant producer of electric vehicles (EVs) as the automotive world increasingly adopts this technology. And why shouldn’t it? Tesla produces the best EVs, and perhaps the best cars made, has developed an incredible brand, and fills waitlists years before a new car is delivered. This all seems to indicate that Tesla has developed a world-beating business model, but is it actually a signal of future trouble?

thomas-bartmanTesla’s strategy has always been to build EVs that are better than their internal combustion competitors and sell them for premium prices. In the language of innovation theory, strategies that offer existing consumers better products at higher prices are called sustaining innovations. Sustaining strategies tempt entrepreneurs because they appear so logical: build a better product and customers will come. But research shows that it is a losing strategy for new businesses. In sustaining competition, the industry incumbents nearly always win.

Incumbents are favored because sustaining strategies build on capabilities that they have developed over the course of their rise to dominance. Worse still, a sustaining strategy presents the entrant as a clear and direct threat to the incumbents. The combination of these two factors creates a response that often proves overwhelming for the entrant. Incumbents respond ferociously and deploy so many resources to the battle that the entrant is overcome.

Consider the situation for Tesla: It would be difficult enough for a company that sells 50,000 units per year to fight even one major automaker head-on. But Tesla has attacked not just the automakers but also every incumbent in the value network that produces automobiles, including the entire base of suppliers and dealers. The resources that these aligned interests can bring to bear are vast. Collectively, these firms spend more on R&D every year than Tesla has invested in its lifetime.

Many have argued that the move away from internal combustion is simply too technologically painful for automakers, but the technology underpinning EVs is largely a modular combination of standard components purchased from independent suppliers. The technology simply isn’t a constraining factor, and with every new auto show the automakers demonstrate this with new concept cars, such as the Porsche Mission E, squarely targeting Tesla. With its fantastic design and beloved product, Tesla might have written the playbook that the incumbent automakers will follow to dethrone it.

tesla-storeIf better products and technological barriers aren’t enough to defeat incumbents, is there any hope for entrepreneurs? We’re believers in disruptive innovation strategy, which allows entrants to beat even the most-powerful incumbents. Disruptive innovation begins at the bottom of existing markets or by creating new markets where people don’t currently consume. They target the least-attractive customers and produce worse products for less money with lower-cost business models than conventional offerings. In doing so, they create the phenomenon of asymmetric motivation, which causes incumbents to ignore or flee them. But disruptive strategies don’t remain at the bottom of the market – they possess a technological core that allows them to improve their performance over time, capturing more of the market and pushing incumbents into ever-smaller segments at the high-end.

Many observers say this approach could never work in EVs, but we’re seeing it happen today. It takes the form of low-speed EVs driven by security guards on college campuses, retirees in the Sunbelt, and middle class families in China. The manufacturers are largely unknown and that’s the point. Each year they grow bigger and improve their products without any resistance from incumbents. Soon they will be good enough to lure the least-demanding customers away from traditional automakers and the disruption will have begun. While these companies improve their performance to capture more customers, Tesla’s only option is to reduce its performance. Which position would you rather be in?

Thomas Bartman is a Senior Research Fellow at the Forum for Growth and Innovation at Harvard Business School

Volvo Car Group initiates world unique Swedish pilot project witWe are heading toward self-driving cars quicker than anyone could have imagined just a few years ago. While it will clearly be some time before our highways are packed with driverless cars making their way to work, home, and parts beyond, there are glimpses of the future driving alongside us now.

It may be the Honda Civic self-aligned in the fast lane beside you, or the Ford Fusion Energi in your rear view mirror that stopped without driver assistance as traffic ground to a halt, then automatically paced your car as your lane began moving again. Or maybe the driver of the nearby Subaru Crosstrek Hybrid who misjudged how quickly traffic would stop, but escaped incident because of on-board systems that sensed a collision and automatically initiated emergency braking. And what about that Tesla Model S ahead that signaled and changed lanes seemingly on its own as its driver focused on something else?

autopilotThese are real capabilities of vehicles on the road today. Not all models with autonomous technologies are ‘green’ cars, but assuredly many of them will be since there’s a natural convergence of autonomous driving technology and more efficient cars unfolding before us. This is only gathering momentum as a growing number of vehicles begin to feature systems like these.

Already, cars are increasingly equipped with an array of sensors, radar, and cameras to facilitate driver assistance systems that help deal with mundane chores like backing up safely and parallel parking. These same sensors and systems provide a foundation for even more sophisticated autonomous driving capabilities.

360° Surround viewSeveral automakers are striving mightily to lead the field. Tesla is one of these, not only with the ability for its Model S to autonomously stay in its lane and with traffic flow, but automatically and safely change lanes with the flick of a turn signal when Autosteer is engaged. Cadillac is another with its upcoming Super Cruise.

Volvo is also at the forefront of this race to an autonomous driving future, in part because autonomous cars are considered much safer ‘drivers’ than humans and this aligns well with Volvo’s ambitious goal to eliminate traffic fatalities in its vehicles by 2020. Its XC90 plug-in hybrid already features some of the most advanced autonomous systems out there including Sensus Connect, Intersection Auto Brake, and Pilot Assist. Volvo has also created its Concept 26 autonomous driving interior for the XC90, the first such autonomous-focused concept interior built on a vehicle platform sold today. Volvo is taking a lead role in the world’s first large-scale autonomous driving pilot project that will find 100 self-driving Volvos negotiating everyday driving tasks on 30 miles of public roads around Gothenburg, Sweden.

VOLVO CAR GROUP LANCE UN PROJET UNIQUE AU MONDE DE VOITURES A COThe specter of life with self-driving cars presents its challenges, not the least of which is consumer distrust of such systems and the concern we will lose the driving enjoyment and sense of freedom that automobiles have brought us since their invention. While we may be in a new era that finds technology impacting most facets of daily life – with this technology increasingly making its way to our cars – the love of driving remains a priority for many.

This is supported by a recent Volvo survey in which a vast majority of those asked said autonomous car technology should respect the love of driving and, in fact, autonomous cars should include a steering wheel even if they are capable of driving themselves. At the same time, most felt that technology in autonomous cars would make their travel time more productive. In other words, we want these worlds to coexist. There’s a lot to read into that …perhaps from the driver’s seat at 65 mph, no?

Concept 26

PrintFor a decade, Green Car Journal has been recognizing vehicles that significantly raise the bar in environmental performance. With automakers stepping up to offer ever-more efficient and ‘greener’ vehicles in all classes, the magazine’s awards program has naturally expanded to include a greater number of awards for recognizing deserving vehicles.

This prompted the recent suite of Green Car Awards presented during Policy Day at the Washington Auto Show in the nation’s capital – the 2015 Green SUV of the Year™, 2015 Green Car Technology Award™, and 2015 Luxury Green Car of the Year™.

bmw-i8-award-winner

BMW’s gull-wing i8 earned the distinction as the 2015 Luxury Green Car of the Year, outshining competitors Audi A8 L TDI, Cadillac ELR, Porsche Panamera S E-Hybrid, and Tesla Model S. Aimed at aspirational buyers who value superb styling and exceptional performance combined with the efficiency of plug-in hybrid drive, the i8 is unique among its peers with an advanced carbon fiber passenger body shell. It also features a lightweight aluminum drive module with a gasoline engine, lithium-ion batteries, and electric motor. The i8 can drive on battery power for 22 miles and up to 310 miles on hybrid power.

The Jeep Grand Cherokee EcoDiesel rose to the top as the magazine’s 2015 Green SUV of the Year, besting finalists Honda CR-V, Hyundai Tucson Fuel Cell, Lexus NX 300h, and Mazda CX-5. Offering excellent fuel efficiency for an SUV of its size, the Grand Cherokee EcoDiesel’s 3.0-liter EcoDiesel V-6 offers up to 30 highway mpg and is approved for B20 biodiesel use. An Eco Mode optimizes the 8-speed transmission’s shift schedule, cuts fuel feed while coasting, and directs the air suspension system to lower the vehicle at speed for aerodynamic efficiency.

jeep-grand-cherokee-ecodiesel-winnerThe Ford F-150 was honored with the 2015 Green Car Technology Award for its milestone use of an all-aluminum body. Competing for the award were advanced powertrains in the BMW i3, BMW i8, Chevrolet Impala Bi-Fuel, Ford F-150, Honda Fit, Kia Soul EV, Tesla Model S, VW e-Golf, and Volvo Drive-E models. The F-150’s aluminum body enables the all-new 2015 pickup model to shed up to 700 pounds for greater efficiency and performance.

While the Green Car Technology Award has a history at the Washington Auto Show, the first-time Green SUV of the Year and Luxury Green Car of the Year awards could not have existed just a short time ago. Simply, SUVs and luxury vehicles were seldom considered ‘green,’ and for good reason. An SUV/crossover’s mission was to provide family transport and recreational capabilities, while aspirational/luxury vehicles were expected to deliver the finest driving experience combined with high-end appointments and exceptional design. Both categories held few environmental champions and ‘green’ was hardly an afterthought.

ford-f-150-award-winner

The evolving nature of ‘green’ cars has brought about a fundamental shift in which environmental performance is now important in SUVs and luxury vehicles. Even so, not all models in these classes are created equal. The challenge has been finding the right balance – the ‘sweet spot’ – that finds SUVs and luxury vehicles delivering the efficiency and environmental qualities desired without sacrificing the conventional touchstones – quality, safety, luxury, value, performance and functionality – that consumers demand. This year’s winners of the 2015 Green Car Awards clearly achieve this balance.

Presenting these important awards at the Washington Auto Show is compelling considering its reputation as the ‘Policy Show,’ a result of the show’s proximity to Capitol Hill and the influence that Washington DC has in driving a more efficient generation of vehicles to market. The 2015 Washington Auto Show has also expanded in recent years, receiving accreditation from the Organisation Internationale des Constructeurs d'Automobiles (OICA) as one of the five top tier auto shows in America. This year’s Washington Auto Show featured more than 700 vehicles from over 42 domestic and import auto manufacturers, plus a Green Car Awards exhibit showcasing 15 finalist vehicles within the show’s Advanced Technology Superhighway exhibit area.

WANADA_AutoShow_Logo_NoTag

DC Fast ChargeExpanding the driving range capabilities of electric cars through fast charging is of growing interest. Tesla has keyed in on this with its high-profile Supercharger network of fast chargers along major transportation corridors. While this is great for Tesla owners, it’s not a comfort to drivers of other EVs since the SuperCharger network is not compatible with their cars.

Enter ChargePoint, VW, and BMW, which have joined together to offer similar capabilities for other electric vehicle models. The three are developing express electric vehicle charging corridors with fast charging stations that allow EV drivers to recapture up to an 80 percent charge in just 20 minutes. Fast charging sites will be strategically spaced no more than 50 miles apart to make longer trips possible for EVs that incorporate a DC fast charging capability.

Initial efforts will focus on heavily-traveled routes on the East and West Coasts, providing 100 DC fast chargers at existing ChargePoint sites. The aim is to expand fast charging capabilities to other sites within the ChargePoint network, which already offers more than 20,000 charging spots in North America. EV drivers can access the network with a ChargePoint or ChargeNow card or with the ChargePoint mobile app.

Electric drive vehicles of all types are increasingly in the news, often led by a near-nonstop focus on Tesla and its Model S, Model X, and planned Model 3 battery electric vehicles. People want electric cars. Some feel they need them, or more accurately, that we all need them. It has been so for quite some time.

I was one of those pushing hard for electric vehicles in the 1990s, driving prototypes on test tracks and limited production models on the highway as I shared their benefits on the pages of Green Car Journal and Motor Trend before that. It was an exciting time filled with hope that battery breakthroughs would come, bringing full-function EVs offering the same driving range as conventional vehicles.

Expectations were high that a public charging infrastructure would expand to make topping off batteries convenient. New ideas like 15-minute rapid charging and battery swap stations would allow drivers of all model EVs the ability to renew on-board energy in the time it takes to enjoy a cup of coffee, enabling them to head back on the road in short order with a full battery charge. Importantly, there was an expectation that EVs would be affordable, both to manufacture and to buy.

If only this unfolded as expected, automakers would commit to developing battery electric vehicles of all types to meet the needs of an emerging market. But things have not unfolded as expected.

California’s Zero Emission Vehicle mandate drove the electric car surge in the 1990s and it’s a huge influence today. While less refined than electric models we have now, electrics of the 1990s like the Toyota RAV4 EV, Nissan Altra minivan, and Honda EV Plus were quite well engineered. Then there was GM’s EV1. Sleek, sexy, and fun, it provided a daily driving experience unparalleled in the field, something I came to appreciate well during the year I drove an EV1.

The challenge then was the same as now: cost. The EV1 was so costly to build with such massive losses there was no business case for it to continue, and so it ended, as all other electric vehicle programs of the 1990s ended, for the same reason.

Volvo ECC powered by a turbine-hybrid powerplant.

Early on, Volvo had the foresight to challenge the status quo. While evaluating ways to meet California’s impending ZEV mandate, the automaker concluded there was no way to do this realistically with a vehicle powered exclusively by batteries. In 1993, I test drove Volvo’s answer – its high-tech Environmental Concept Car (ECC) that added a high-speed turbine-generator to an electric drivetrain, thus creating what we now call a range-extended electric vehicle (think Chevy Volt). Sadly, the ECC’s high cost turbine-generator meant this innovative car never saw production. But it was at the leading edge of a movement that brought us hybrids and range-extended electric cars. Today, even BMW – a high-profile champion of electrics with its innovative  i3 – understands the importance of offering a range-extended variant with a gas engine-generator for those who prefer the convenience of longer range.

In answer to the chorus of Tesla enthusiasts sure to raise their voices, I am aware that Tesla is committed to all-electric vehicles and the range of the $70,000-$95,000 Model S (before the addition of popular options) is substantially greater than its competitors. The coming Model X electric crossover is expected to be in the same aspirational category as the Model S with a price suitable for premium buyers. The company's planned Model 3, presumably a vehicle accessible to the masses at a price Tesla says will be about $35,000, is said to be three years away. That's a good thing since significant battery cost reductions will be required to make this Tesla-for-the-masses electric an affordable reality. Will three years be enough? Achieving battery cost reductions of the magnitude required is no sure bet and, as history has proved, battery technology advances move at their own pace.

One stock analyst recently quoted in a major newspaper article shared that Tesla has the ability to reduce battery costs by nearly half in the coming three to five years. Of course, the backstory is that this ‘ability’ is really but a ‘potential’ based on batteries that do not yet commercially exist. The past 25 years are replete with examples of major government and industry efforts aimed at developing energy-dense, safe, and affordable electric car batteries that deliver the range and cost expectations of auto manufacturers and consumers. Over these years there have been many incremental improvements in battery design and chemistry, a slew of failures, and pending ‘breakthroughs’ that have often been promoted only to have expectations and actual production sidelined for a plethora of  reasons du jour.

As just one recent example, Panasonic's 2009 announcement of a lithium-ion battery breakthrough using a silicon alloy cathode was accompanied with a claim it would be manufactured in 2012. Many positive reports on electric vehicles take into account this very ‘breakthrough’ and others like it, with the considerable cost reductions that would follow. Yet, Panasonic did not begin mass production of this battery technology in 2012. According to a Panasonic spokesman, the company’s work on developing high-capacity battery cells using a silicon-based negative electrode is ongoing. Hopefully,  developments like these will lead to the kind of mass production that could bring long-hoped-for battery performance and cost reductions. Perhaps this will come to pass with a mass effort by Tesla through its proposed $5 billion battery ‘Giga Factory,’ and perhaps not. But after 25 years of following battery development I have learned not to count on claims or development, but rather actual production and availability in the real world.

Tesla continues to develop its Supercharger quick-charge network and has potential plans for a battery swap system, both exclusively compatible with its own vehicles. An innovative and expanding infrastructure for battery electrics will be required for their ultimate success and these are very positive moves, although only for those with a Tesla product and not electric vehicle owners as a whole.

Battery electric vehicles priced at levels accessible to everyday buyers will continue to grapple with cost and marketing challenges until a battery breakthrough comes. This is illustrated by Fiat Chrysler Automobiles CEO Sergio Marchionne's comment earlier this year that the company is losing $14,000 on every one of the Fiat 500e electric cars it sells. Is it so different for other automakers also selling EVs in limited numbers and in constrained geographic locations? Not inconsequentially, to bolster the market battery electric cars will also require continuing federal and state incentives that combined typically total $10,000 or more. Hopefully, innovative thinking and real technology and cost breakthroughs will emerge in the years ahead.

In the meantime, gasoline-electric hybrids and plug-in hybrid models, plus range-extended electric vehicles that combine all-electric drive with an on-board electric generator, are providing functionality for everyone even as battery-only electric cars fight hard to establish their place in the automotive market. Let's hope that mass-market, nationally-available models like BMW's innovative i3 electric car change this dynamic sooner than later.

What does Silicon Valley, California have in common with Leipzig, Germany?  They are both home to the most innovative, technically advanced, and possibly the most significant cars of the 21st century. The Tesla Model S and the BMW i3 are the cars that have defied experts who said they couldn't be built. While the key innovations for each of these cars are different, the innovative spirit is the same.

roland-hwang

With the Model S, Tesla created a breakout electric car out of mostly existing technology. What Tesla did better than other new entrant was put it together, what Silicon Valley calls ‘systems integration,’ into a remarkable package. With obsessive attention to detail and high standards for performance and styling, Elon Musk has emerged as the Steve Jobs of the auto industry and proven countless naysayers wrong.

With the i3, BMW created an affordable car out of an innovative material, carbon fiber, or technically speaking, ‘carbon fiber reinforced plastic.’ BMW has found a way to apply its manufacturing know-how to bring what was once an exotic material for supercars and fighter jets to an everyday car. Driven to not make just a ‘me too’ electric car, Ulrich Kranz, the father of the i3, has created a breakthrough car that, like the Model S, is receiving enthusiastic reviews from auto critics for its performance.

In the 20th century, the automobile shaped the world. In the 21st century, the world will shape the automobile. Today’s cars are a major source of urban air pollution, global warming emissions, and oil dependency.

Fortunately, there are those in the auto industry – like Mr. Musk and Dr. Kranz – who understand it doesn’t have to be this way. Technology innovation combined with visionary leadership can reinvent the automobile. Tesla’s Model S and BMW’s i3 prove that being more in balance with today’s global realities does not mean sacrificing what makes the auto industry great.

nrdc-logo-1

 

 

 

 

tesla-storeTesla, the upstart Silicon Valley company that’s proved an entrepreneurial automaker far from Detroit can make an exceptional and aspirational electric car, is embroiled in yet another fire controversy. Even as the National Highway Transportation Administration (NHTSA) continues its investigation into two crash-related Model S fires in the U.S. (but not a third fire in Mexico that’s out of its jurisdiction), this advanced electric car’s safety continues to raise questions.

The latest is the subject of media reports involving a fire in Toronto, Canada earlier this month, in which a Model S is involved while reportedly parked in a garage and unplugged. While conclusions have not yet been reached by Canadian authorities, a Tesla statement says the company has identified that the fire did not originate in the car’s battery or any components involved in charging.

Tesla maintains that the Model S has no battery issues and has an exceptional safety track record, and indeed the model achieved top five star crash testing scores across the board in NHTSA test protocols. However, what remains unexplained is whether there are specific issues that must be addressed to prevent further crash-related fires, thus NHTSA’s ongoing investigation.

This is a topic of sometimes passionate debate as Tesla proponents vigorously defend the model while others point to unintended consequences of battery power. It will be interesting to watch reactions and commentary once the NHTSA investigation is complete.

tesla-model-sSaleen Automotive’s offerings are traditionally gasoline-driven and they are fast. The company is well-known in automotive circles for its stylish and performance-oriented versions of noted sports cars like Ford Mustangs, Chevy Camaros, and Dodge Challengers. Now Saleen is turning attention to high-performance in the electrified world with a new effort involving Tesla’s Model S.

Company CEO Steve Saleen says this latest focus on the Tesla Model S is not a departure from Saleen Automotive’s own core values of elite power, style, and performance. Rather, he feels the Model S epitomizes the sports car of the electric vehicle field, which of course would make it a natural for the company. Saleen says they are working on renderings and engineers are preparing a spec sheet that will detail some of the enhancements and innovations that Saleen Automotive aims to add to the Saleen Tesla Model S.

In an era of high mpg, low emission cars where environmental performance is increasingly important, it’s easy to get focused on vehicle models without regard to the technologies that make their incredible achievements possible. This year, Green Car Journal and the Washington Auto Show are changing that dynamic with the inaugural Green Car Technology Award™. The winner will be announced at a press conference held during the show’s second Policy Day on Thursday, January 31.

Green Car Journal editors have identified 10 enabling technologies worthy of consideration for this recognition. These 10 finalists  – Green Car Journal's 'Top 10 Green Car Technologies for 2013' – represent diverse automotive technologies ranging from efficient powerplants and components to systems engineered to promote driving efficiency. Qualifying technologies must be in use by vehicle models today. Important ‘green’ technologies still under development or found only in models outside the U.S. will be  considered in future award years when used in vehicles driven on American highways.

The 2013 Green Car Technology Award nominees include:

Fiat MultiAir: This simple, low power requirement, and low-cost technology takes a unique approach to lowering engine emissions and fuel use while increasing horsepower.

Fisker Automotive EVer: A powerful extended range electric powertrain, EVer is well-suited to the needs of high-end sport sedan buyers who wish lower environmental impact.

Ford Auto Stop-Start:  Hybrids shut off when stopped and automatically restart to save fuel and emissions. Ford’s low-cost technology brings this function to average vehicles.

Ford EcoBoost: Direct injection and turbocharging enable EcoBoost technology to bring up to 20 percent better fuel economy to conventional gasoline engines.

Ford Energi: This technology evolves a conventional Ford hybrid into a plug-in hybrid, enabling electric and gas engines to work together or separately for maximum efficiency.

Honda Eco Assist: This system includes a driver-activated ECON feature that configures the engine and other energy-consuming systems to operate more efficiently to save fuel.

Mazda SkyACTIV: Focusing on more than just powerplants, Mazda’s SkyACTIV suite of technologies improves every part of a car to improve mpg while ensuring driving fun.

Nissan Easy-Fill Tire Alert: Low tire pressure robs mpg. This technology alerts a driver which tire is low and by how much. While a driver fills the tire, the horn chirps at proper inflation.

Tesla Powertrain: Fast and powerful, the all-electric propulsion system in Tesla’s Model S is a milestone for electric vehicles offering up to 265 miles of driving range.

Toyota RAV4 EV Powertrain: Developed with Tesla, the electric powerplant in Toyota’s new RAV4 EV provides this SUV a seamless and satisfying driving experience.

I recently climbed out from behind the wheel of a 2013 Lexus GS450h. Fully loaded, this very luxurious hybrid will easily top $70,000 MSRP. And that’s not the most expensive hybrid offered by Toyota’s luxury brand. The LS600h L starts at $119,910.

Back to the GS450h: It’s hard not to be impressed with the car’s performance – delivered via 338 combined horsepower and a 34 mpg EPA highway rating, wrapped in a very stylish sedan with luxury appointments.

That got me thinking about the difficulty of bringing advanced technologies to the automotive market. We sometimes hear complaints that a powertrain or technology breakthrough ‘shoulda’ been out years ago. Truth is, it takes considerable time and money to bring any new idea to market these days. Big breakthroughs take even longer and often require a major capital investment on the part of the automaker.

The Prius is a good example. Toyota bet on a forward-thinking, long-term approach with this iconic gasoline electric hybrid. You can bet that Prius isn’t a profitable platform for Toyota when viewed in traditional automotive parameters. But now with over a million Prius models on the road, ‘Prius’ is used as a generic term when talk turns to hybrids. It’s difficult to measure the green halo that the Prius casts across the entire Toyota brand, but it’s certainly a marketing home run. Toyota has the resources to make that kind of multi-year investment. Many companies, especially smaller startups, need to be profitable early in the game.

That’s why we often see green technology introduced in cars that are much more expensive than the Prius. Both Fisker and Tesla took this approach with their launches working the ledger with high-end models eclipsing six figures. In a blog some six years ago, Tesla founder Elon Musk pointed out that his company’s strategy was to “enter at the high end of the market, where customers are prepared to pay a premium, and then drive down market as fast as possible to higher unit volume and lower prices with each successive model.”

At the time of his blog, Musk’s plan was to follow through with a second model that would be roughly half the cost of the $89,000 Tesla Roadster. As recent history has shown, that $89,000 MSRP ultimately became $111,000, which meant the cost of a more affordable coming sedan would likely be higher as well. That sedan is the highly acclaimed and awarded Tesla Model S. Initially, Tesla is only delivering the limited edition Model S Signature Series at a cost of $95,000 to $105,000. The plan is to next roll out less expensive Model S variants with an MSRP starting at $59,900 with smaller battery packs and shorter, although still exemplary, electric range.

Though battery cost is a prime contributor, this economic reality is not limited to hybrids or electric vehicles. Even clean diesel feels the influence of advanced technology running up cost. A diesel is generally more expensive to produce than a gasoline engine. When you add the cost of federally mandated high-tech pollution controls and exhaust aftertreatment systems, it’s easier to merge clean diesel into higher-end luxury vehicles and more expensive three-quarter ton and larger pickup trucks.

Clearly, the path to vehicles using highly-advanced technology is not a quick or easy one, nor as it turns out, one without cost.

 

Todd Kaho is executive editor of Green Car Journal and CarsOfChange.com

This image has an empty alt attribute; its file name is RAV4-EV-Action-1-1024x576.jpgToyota is now selling its all-new RAV4 EV at select California dealerships. This all-electric SUV was jointly developed by Toyota and Tesla Motors, combining a Tesla designed and pro­duced battery and electric powertrain with Toyota’s most popular SUV model. No inte­rior space was lost due to EV components

Our editors who have driven the RAV4 EV have found it to be an excellent small SUV that performs seamlessly, with an intelligent approach to electric motoring. You’re not left wanting for power, comfort,  or the kind of driving experience expected of a Toyota product…it’s all there, but without the inherent drawbacks of burning gasoline. At nearly fifty grand, though, it’s likely not for everyone.This image has an empty alt attribute; its file name is RAV4-EV-Underhood-1-1024x576.jpgThe RAV4 EV’s 154-horsepower AC induc­tion motor drives the front wheels via a fixed-gear, open-differential transaxle. There are two drive modes, ‘Sport’ and ‘Normal.’ In the Sport mode with 273 lb-ft of peak torque brought to bear, the vehicle reaches 0-60 mph in 7.0 seconds and has a top speed of 100 mph. In the Normal mode with 218 lb-ft at the ready, acceleration to 60 mph takes 8.6 seconds and top speed is 85 mph.

Its liquid-cooled lithium-ion battery is a first for Toyota. Battery thermal management systems provide consistent performance in a variety of climates. The battery pack is mounted low and to the center of the vehicle, contributing to a more sedan-like ride. Two charge modes are available, with a Standard Mode charging up to 35 kilowatt-hours for an EPA-estimated range rating of 92 miles, optimizing battery life over range. An Extended Mode charges the battery to its full capacity of 41.8 kilowatt-hours to provide an anticipated range of 113 miles. The battery is warranted for eight years or 100,000 miles.This image has an empty alt attribute; its file name is RAV4-EV-Rear-1-1024x576.jpg

A drag coefficient of 0.30, the lowest of any SUV in the world, is an improvement over the conventional gas powered RAV4’s Cd of 0.35. To achieve this, Toyota restyled the front bumper, upper and lower grill, side mirrors, rear spoiler, and underbody design to optimize air flow. The Toyota/Tesla designed regenerative braking system increases driving range by up to 20 percent. A tire repair kit replaces the spare to reduce weight.

An innovative climate control system offers three modes. In the NORMAL mode, it operates just like that of a conventional vehicle for maximum comfort, drawing the most power and resulting in the least range. The ECO LO mode balances comfort with improved range through reduced power consumption by the blower, air condition­ing compressor, or electric heater. In cold weather, ECO LO automatically activates and controls seat heaters to optimal levels. ECO HI further reduces blower, compressor, and heater levels and also automatically activates the seat heaters as necessary. Efficiency achievements are notable. ECO LO can reduce power consumption by up to 18 percent compared with NORMAL, while ECO HI offers up to a 40 percent reduction. Remote Climate Control – set by a timer, by the navigation display, or by using a smart phone – pre-cools or pre-heats the interior while the vehicle is plugged into the grid to save on-board battery power.This image has an empty alt attribute; its file name is RAV4-EV-Instrumentation-1-1024x576.jpgDriving efficiently is assisted with an all-new instrument cluster that includes a power meter, driving range display, battery gauge, speedometer, shift indicator, and multi-information display. The latter has six screens that provide information on driving range, efficiency, trip efficiency, CO2 reduc­tion, and ECO coach and AUX power func­tions. Trip efficiency displays the average power consumption in intervals of five min­utes. Eco coach evaluates the level of eco-sensitive driving according to acceleration, speed, and braking and displays an overall score. CO2 reduction, displayed graphically via a growing tree, is compared to a conven­tional gasoline vehicle.

Premium Intellitouch Navigation features EV system screens that help maximize driv­ing range. The EV Charging schedule lets customers schedule when the vehicle will charge and activates pre-climate condition­ing based on departure time. A Range Map shows how far the car can travel on avail­able battery charge. A Charging Station app displays nearby charging stations.

 

This image has an empty alt attribute; its file name is RAV4-EV-Display-1-1024x576.jpgFor the shortest charge time of about six hours, Leviton offers a custom 240 volt, Level 2 charger with 40 amp / 9.6 kilowatt output. The RAV4 EV comes equipped with a 120 volt Level 1 charging cable operating at 12 amps for use when the recommended Level 2 charging is not available.

The RAV4 EV comes standard with the STAR Safety System that includes enhanced vehicle stability control, traction control, anti-lock brake system, electronic brake-force distribution, brake assist, and smart stop technology. While the RAV4 EV is pricy at $49,800, that price decreases a bit since it qualifies for a $2,500 rebate through California’s Clean Vehicle Rebate Program as well as a $7,500 federal tax credit. Toyota plans to sell about 2,600 units through 2014.