Green Car Journal logo
Green Car Time Machine.

An array of automakers have championed alternative fuels over the years. One of the most notable examples was Honda with its Civic GX, later renamed the Honda Civic Natural Gas, the cleanest-running internal combustion vehicle on the market. Debuting 24 years ago, the compressed natural gas-powered Civic was with us through the 2015 model year and then disappeared from the lineup. GCJ editors had the opportunity to test drive multiple generations of the natural gas Civic over the years including living with one daily over the course of a one-year test. This report, focused on the eighth generation Civic GX that GCJ customized with a smart graphics design and Honda-available accessory parts, is drawn from our archives and appears just as it ran in our Summer 2005 issue.

Excerpted from Summer 2005 issue: Honda’s Civic has proved a formidable force on the market for many years, providing drivers a popular sedan or coupe at an attractive price. This has only improved in recent times as the model has evolved. The latest iteration, all-new for the 2006 model year, offers the most stylish, safest, and most comfortable Civic in the model’s history.

2006 Honda Civic natural gas vehicle driving on road.

Civic Natural Gas Built in Ohio

As is customary in the auto industry, the alternative fuel version of this latest Civic was destined to emerge many months after the standard model. We’ve waited for the natural gas-powered 2006 Civic GX patiently, and now it is available to fleets nationwide and, for the first time, to consumers in California and New York. We were able to get some seat time recently and were not disappointed.

GCJ editors have many thousands of miles behind the wheel of Civic GX sedans since the model’s introduction as an assembly-line produced fleet vehicle in 1998. Built at Honda’s manufacturing facility in East Liberty, Ohio, the Civic GX today goes for $24,590, qualifying as the top dog in the Civic lineup. That's about $2,000 above the price of a Civic Hybrid and some $5,900 more than an EX sedan.

Hood detail of Honda Civic natural gas sedan.

Fill Up with CNG at Home

Is it worth the difference? It depends on your perspective, but keep this in mind: Natural gas goes for an average of 30 percent less than gasoline at public fueling stations, substantial savings on a gallon of gasoline equivalency basis.

It gets even better for those who opt for Honda’s home refueling appliance, called Phill, that’s made by the automaker’s strategic Canadian partner, FuelMaker. At favorable home natural gas rates, Honda Civics typically drive around at about $1.25 to $1.50 per gallon, offering the cheapest per-mile cost of any production vehicle. Plus, a federal tax credit of $4,000 is available to offset the car’s higher purchase price, with up to $1,000 in incentives also available for the purchase and installation of Phill.

Honda Civic natural gas engine.

Driving on CNG Nets 39 MPG

The Civic GX drives like its conventionally-fueled counterparts, with just a slight decrease in horsepower due to its use of natural gas fuel. Realistically, a driver just won’t tell the difference. Fuel economy offered by this 1.8-liter, 113 horsepower 4-cylinder engine is about the same as its gasoline counterparts at an EPA estimated 28 mpg in the city and 39 mpg on the highway. The Civic GX remains the cleanest internal combustion engine vehicle, anywhere.

As you may have guessed, the Civic GX shown here is not exactly the model you’ll see on the showroom floor, but you can duplicate most of the look. It uses readily-available Honda Performance Accessory items including a rear lip spoiler, full aerodynamic body kit, 17 x 6.5” alloy wheels, and 215/45ZR-17 tires. The graphics are one-off custom, so you’re on your own here.

Honda Civic natural gas vehicle on the highway.

Jim Bardia, CEO of Change Wind Corp.
Jim Bardia, CEO of Change Wind Corp.

As of 2020, the greatest contributor to U.S. greenhouse gas emissions was the transportation sector, at 27 percent. Of that pollution total, 22.4 percent was generated by passenger cars and light-duty, medium-duty and heavy-duty trucks. The remaining 4.59 percent was attributable to aircraft, rail, ships, and other emitters. 

To avert global warming, the U.S. needs to transition from the ubiquitous fossil-fuel-burning internal combustion engine to electric and/or other earth-friendly propulsion sources. The vision of zero-emission vehicles is absolute nirvana, a clear pathway to clean skies, improved health and a bright future for our planet. But there is an inconvenient reality: The U.S. generates 60.8 percent of its electricity by burning fossil fuels. Much like our air conditioners, refrigerators, televisions, and computers, EVs can only be as clean as the electricity powering them.

During 2019, California experienced 25,281 electric power outages, a 23 percent increase over 2018. Those outages victimized 28.4 million customers, a 50 percent increase over the 19 million Californians affected in 2018. Recently, electric grid operators’ groups such as the North American Electric Reliability Corp. (NERC) and the Midwest Independent System Operators (MISO) forecasted an increased frequency of blackouts and brownouts during the summer of 2022.

By 2030, 8.7 million EV passenger vehicles and 10.4 million last-mile delivery trucks are expected to occupy U.S. roadways. Assuming annual passenger car usage rates of 13,474, and 12,435 miles for last-mile delivery trucks, at an average of 3.46 miles per kW, that will consume as much electricity as 2.7 million single-family U.S. homes.  

Legislation like New York’s Electric Building Act guarantees increased electricity consumption. Also, ever increasing fossil-fuel prices (required to make demand electricity) will increase production costs that will ultimately trickle down to consumers. Boston Consulting Group predicts that increased EV demand will require utilities to invest $1,700 to $5,800 per electric vehicle in grid upgrades through 2030. That $178.7 billion investment will assuredly increase consumer prices.  

The Need for Practicality

For EVs to become ubiquitous, numerous hurdles preventing the masses from adopting EVs as their sole source of transportation must be overcome.

Charging at home is both convenient and cost effective for the 67 percent of Americans who live in single family homes. But will multi-car families be willing to interrupt their evenings to plug in a second EV or will they incur the cost of adding another Level-2 charger, or the exorbitant cost of acquiring and installing a Level-3 charger? Moreover, in an emergency, a person’s ability to respond will be limited by the number of EV chargers available along the route, their charging speed, and functionality.

Freedom to Travel Coast-to-Coast

Without millions of fast, reliable, and safe EV chargers throughout the U.S., many consumers will resist EV adoption. For example, in 2021 the California Energy Commission’s Electric Vehicle Charging Infrastructure Assessment warned that the state will need 1.2 million EV chargers by 2030.

The U.S. has over 1.1 million fuel nozzles and a fill-up takes about three minutes. When contrasted against a 150kW DC fast-charger, three minutes provides less than 30 miles of range. Subsequently, to satisfy the motoring public’s needs and to provide peace of mind, the U.S. will require many millions of ultra-fast-output public EV chargers.

Zero-emissions electric vehicle charging by Change Wind Corp.

True Zero-Emissions Vehicles

In an effort to provide EV drivers with blackout and brownout immunity, offset power plant CO2 emissions, and to provide ultra-fast charging speeds, I created the Wind & Solar Tower (WST). This charger, the only one in the world powered by both wind and sun, is capable of simultaneously charging six EVs at Level-4 DC 380kW 1000-volt speeds that provide about 328 miles of range in just fifteen minutes. With up to a megawatt of battery storage capacity, each tower provides 797,900 miles of pollution-free driving per year and offsets 340.91 tons of atmospheric CO2 emissions.

My wind-and-sun-powered generating plant makes electricity on site for less than half the cost of utility-supplied power. Factoring in certain government programs, kWh costs can be reduced to nearly zero.

Reliability and ease of service are paramount with the WST. My team’s vast engineering and automotive capabilities means self-diagnostic capabilities and a 40-year service life. The WST features the lowest acquisition cost per EV charging outlet and generates – at virtually zero cost – 11,520 20kW charges with 100-percent-renewable energy that supplants electric grid load, which in turn reduce CO2 emissions and averts global warming.

Rear of an Audi e-tron S Sportback.

We’ve driven a great many Audi models over the years, and to a one they have met and often far exceeded our expectations. That’s saying a lot since Audi is a premium brand and those expectations are set pretty high. Thus was our mindset as we did an initial walk-around of our Audi e-tron S Sportback test car before heading out on the road.

Stylish in its Navarra Blue metallic finish, this e-tron sports a subtly aggressive crossover profile that flows rearward in a sleek sportback design. This softens the expected SUV roofline while lending the influences of a coupe, with the rear finishing into an integrated spoiler. Up front is a stylized closed grille as one might expect of an electric vehicle, flanked by air ducts on either side and an aggressive headlamp design with distinctive running lights. Nicely sculpted sides with pronounced rocker panels complete the package. Charge ports are provided on either side of the car below the e-tron badging on the front fenders. An electronic pushbutton releases the panel, which swings down.

Audi e-tron S Sportback cabin.

A Well-Appointed Cabin

Inside the e-tron S Sportback is a well-designed and comfortable interior featuring grey Valcona leather with contrast stitching, nicely bolstered front seats, and elegant instrument panel accents. Driver information is presented in a fully-digital LCD instrument cluster featuring selectable Classic, Sport, and e-tron modes. A pair of flush, center-mounted touchscreens feature infotainment functions and controls. Below the lower screen is the start button and a cleverly-designed gear selector with a grip and thumb control.

This midsize SUV features plenty of interior space with welcome legroom and headroom, plus comfortable seating for rear passengers. Among the many conveniences afforded those in the rear are air conditioning and heating registers, plus a digital display at the rear of the center console that allows setting the desired temperature. Controls are also provided for rear seat heaters. Other niceties include pull-up window shades at each rear door window, a pair of rear map lights, and the functionality of 60/40 split folding rear seat backs for expanding cargo capacity.

Audi e-tron S Sportback rear seat.

Driving the Audi E-tron S Sportback

Driving the stylish and well-appointed electric e-tron S Sportback is satisfying and fun, with its three electric motors delivering great acceleration and bursts of speed on demand. These motors produce a combined 429 horsepower and 596 lb-ft torque, with a greater 496 horsepower and 718 lb-ft torque on tap during an available 8 second boost mode. This ups the ante considerably from the standard but still compelling two-motor e-tron Sportback, which features 402 horsepower/490 lb-ft torque in boost mode.

The e-tron’s ride is smooth and cornering responsive, with the car feeling well-planted as we powered through the curves on canyon roads. The cabin is quiet and well isolated from the road. If you’re inclined, as we were, you can adjust the degree of regenerative braking with paddles at either side of the steering wheel. This enables introducing greater levels of drag during coast-down while the motors generate increased electricity to feed back to the batteries. We appreciated the car’s head-up display that presents speed and posted speed limit information so eyes can remain on the road ahead. The e-tron S Sportback lends additional driving confidence since it’s also equipped with an array of the latest advanced safety and driver-assist systems.

Front detail of an Audi e-tron S Sportback electric car.

This Audi e-tron S is Fast

Performance is impressive. The e-tron S Sportback rockets to 60 mph from a standstill in a quick 4.3 seconds with boost mode selected. Its 95 kWh lithium-ion battery delivers an estimated 212 mile driving range, with EPA fuel efficiency estimates rating this electric car at 75 MPGe (miles-per-gallon equivalent). A full charge is achieved with a 240-volt Level 2 charger in about 10 hours, while charging from 0 to 80 percent capacity takes just 30 minutes when charging at a public 150 kW DC fast charger.

Those in the market for Audi’s more performance-oriented e-tron S Sportback will find it coming in at an MSRP of $87,400, a $18,700 premium over the standard e-tron Sportback.

Dimitris Psillakis, CEO of Mercedes-Benz USA

As the global automotive industry transitions to an electric future, Mercedes-Benz aims to become the most desired electric brand in the world. From 2025 onwards, all newly launched vehicle architectures will be electric-first, demonstrating Mercedes’ commitment to electrification and efforts to provide a variety of options to consumers. To refine this strategy, Mercedes recently announced ambitions to expand its luxury purchasing experience in addition to focusing on luxury automobiles.

We’re in a steady race to decarbonization. With that, we realize that there cannot be luxury in the future without sustainability. Now that we’ve made a full commitment to electric, surpassing milestones along the way, we are shifting capital allocation and engineering resources to the luxury segment because the demand is there. We are focused on bringing real value to our customers, dealer partners, and shareholders worldwide.

Mercedes-Benz will rebalance its product portfolio, allocating more than 75 percent of its investments to the most profitable market segments. Mercedes is transitioning from one electric vehicle line to a full lineup of vehicles focusing on three key product categories:high-end luxury, core luxury, and entry-level luxury. This increased focus on luxury products is reflective of our rising customer demand in these segments.

Our goal to go totally electric by 2030 – where market conditions permit – and become CO2-neutral by 2039 are key components in strengthening the link between luxury and sustainability. With a higher concentration on the top end of the market, Mercedes will generate a strong financial performance even under increasingly adverse market conditions. By the end of this decade, Mercedes aims to have reduced CO2 emissions per passenger car by half from 2020 levels. Electrifying the car fleet, charging with green energy, increasing battery technology, and a large use of recyclable materials and renewable energy in manufacturing are all important components in the overall electrification strategy.

The Customer is the Focal Point

Xray view of Mercedes-Benz EQS electric car.

Success in the future requires changes today. In order for this new portfolio approach to work, we recognize that the number-one component driving demand in luxurious mobility is digital and sustainable luxury. This is being defined by values and benefits that go beyond physical experiences. Customers seek and demand valuable resources such as time. As a result, everything is being viewed through the lens of innovation, addressing this urgent need of customer convenience. We’re making incredible progress on all fronts. And we’re doing it as a team.

We are committed to providing a superior customer experience that extends beyond traditional channels and senses. Mercedes-Benz has launched a brand-new effort as a result of this: "Customer First" – an all-new initiative designed to address overall brand perception issues, improve customer satisfaction, and drive loyalty by. Customer First will channel customer issues directly to an HQ Central Team for quick answers to questions and swift resolution of potential issues. This initiative is part of our commitment to deliver the best white-glove service possible.

Evolving for an Electric Future

Mercedes-Benz Vision AMG illustrates the company's electric future.

We’re also hard at work establishing new marketing and sales channels, both online and offline, to ensure a seamless consumer experience. The world is changing because of technology and we have to utilize its full potential to provide meaningful added value to our consumers. At every touchpoint, beginning with digital communication, the greatest user software offers high usability and an immersive customer experience. Additionally, Mercedes will begin combining equipment packages in an effort to simplify configuration and meet customer needs. The packages will be tailored to the tastes of customers and geographical demand, allowing for faster delivery.

For 130 years, Mercedes has placed emphasis on creating unforgettable brand experiences across all customer touch points inside and outside of the car. It’s important to us that customers are able to view a new vehicle in person, experience it with all of their senses, and drive it. We're excited to continue this good work, focusing on giving customers the unique Mercedes-Benz brand experience they demand and deserve.

Dimitris Psillakis is Head of Marketing and Sales at Mercedes-Benz Cars North America and CEO of MBUSA

Green Car Time Machine.

In the early 1990s, California took yet another leadership position in battling motor vehicle-related air pollution and mitigating fossil fuel use with its forward-thinking 1998 Zero Emission Vehicle Mandate. This mandate would require two percent of the new models for sale in California by the largest auto manufacturers to offer zero emissions in 1998, with larger percentages in future years. While this could potentially be achieved through any available means, it essentially meant the production and sale of battery electric vehicles. Environmentalists and many others were thrilled, while the auto industry in general was not. The result was an increasingly contentious fight to kill, preserve, or modify the mandate. Below is our special report detailing the siege of the state’s ZEV Mandate and an overview of the wave of activities taking place at the time. This report is presented just as it originally appeared in Green Car Journal’s April 1994 issue.

Excerpted from April 1994 Issue: Even as the U.S. Big Three automakers are lining up against the zero emission vehicle mandate, others within the automaking community are showing their support. An increasing number of noted automotive personalities are also becoming involved with electric cars as the pace of development picks up.

For example, Carroll Shelby, developer of the 1960s-era Shelby Cobras and former board member at EV powertrain company Unique Mobility, has shown an active interest in producing a hybrid electric vehicle. Other notables abound. Among them: Former General Motors chairman and CEO Robert Stempel, GM Hughes Aircraft chairman emeritus Malcolm Currie, and Malcolm Bricklin, importer of the Yugo subcompact and developer of the gull-wing exotic car that bore his name in the 1970s, among others.

Electric Vehicles on the Track

Former Indy, Can-Am, and Formula Atlantic drivers are taking their turn at the wheel of electrically-propelled race cars. Example: 1983 Indy 500 winner Tom Sneva raced at Arizona Public Service’s Electric 500 in Phoenix again this year, this time in an electrified 1993 Ford Probe. Auto magazine writers/race drivers like Motor Trend’s road test editor Mac DeMere have taken to the track in Formula Lightning electric race cars, bringing the potential of sharing their positive EV experience with millions of auto enthusiast readers.

Exercises in range and speed abound as performance benchmarks are sought for modern electric vehicles. One of the most significant to date was set just last month by GM’s Impact at the Fort Stockton Test Center’s 7.7 mile oval track in Texas. Running modified power electronics and high-speed Michelin tires, the Impact weighed in at 3,250 pounds once stripped of interior trim and fitted with a roll cage. It ran a United States Auto Club-sanctioned 183.075 mph over a timed mile to establish a record for EVs in the 2,205 pound and above category. Its unofficial international land-speed record remains subject to confirmation by the Federation Internationale de l’Automobile.

Far from being just an exercise in speed, this effort also helps further electric vehicle state-of-the-art, as is always the case in racing. “We wanted to find the vehicle’s top speed because we new it would provide us with real-world data on the car’s aerodynamics, the efficiency and durability of the propulsion system, and it would help us fine-tune the suspension,” offers Kenneth R. Baker, vice president of GM’s Research and Development Center.

ZEV Mandate Spurs Worldwide Effort

Performance milestones achieved since the California Air Resources Board announced its zero emission vehicle mandate in 1990 have been impressive. In 1991, an electric car called the IZA fielded by Tokyo Electric Power Co., Meidensha, and Tokyo R&D claimed a single-charge distance of 343 miles in Japan. This was achieved on a chassis dynamometer at a constant speed of 25 mph. In 1992, a Horlacher Sport EV powered by sodium-sulfur batteries ran 340 miles nonstop at an average of 74 mph in Switzerland. Also in 1992, a retrofitted Geo Metro powered by BAT Technology-prepared batteries and an Advanced D.C. Motors powertrain reportedly achieved a single-charge driving distance of 405 highway miles at an average of 43 mph in Utah.

This same year saw Dr. John Dunning and three associates at Delco Remy drive 631 miles in a 24 hour period behind the wheel of an electric Geo Storm in California. The car, outfitted with a GM Impact battery pack and electric drive system, achieved this milestone by alternating one-hour drives at better than 50 mph with one-hour charging sessions using a 7 kilowatt charger.

In early 1993, Chrysler made news with a 158 hour, 2,604 mile Detroit-to-Los Angeles trip in an electric TEVan while showcasing Chrysler/Norvik quick-charge technology. During this same time frame, Bill Roe set a new national closed-course one-mile oval speed record by breaking the 100 mph barrier in a Brawner Motorsport-prepared electric Lola Indy Car at the Solar & Electric 500 in Phoenix.

Battery Swaps and Fast Charging

The progression has continued in 1994. Roe eclipsed his own closed-course EV record recently at the APS Electric 500, piloting his Exide EX 11 electric IndyCar to a new national one lap record speed of 107.162 mph. And Diversified Technical Services’ Dan Parmley completed a record-breaking endurance run on Phoenix International Raceway’s one mile oval, driving 1,048.8 miles in 24 hours courtesy of 23 battery changeovers.

Battery swap at electric vehicle race.

Parmley’s effort supplanted an electric vehicle endurance record recently established by Solectria’s James Worden. Worden drove 831.8 miles on the 1,477 mile oval at Atlanta Motor Speedway to set a new 24 hour distance driving record in a lead-acid battery powered Chevy S-10 pickup. Sponsored by the Southern Coalition for Advanced Transportation, the truck’s batteries were recharged 13 times at 16 kWh by a fast-acting Electronic Power Technology charger, taking less than 20 minutes each time. It was driven an average of 59 miles between charges.

These efforts do prove what’s possible, but not necessarily what’s realistic for everyday drivers. It’s true that electric vehicles can be made to go very fast. They can accelerate just as quickly as most internal combustion engine cars. With a steady accelerator, a series of battery exchanges, or a healthy dose of quick charges, they can also travel very respectable distances. But at present they can’t do all of these at the same time.

ZEV Mandate Encourages Innovation

That’s sobering news, to be sure. But there are plenty of positives to recognize. Note the significant technology advancements made in just four short years of extensive EV development: Battery exchanges, an obscure concept when first voiced by industry experts, has proven viable in racing. Rapid recharging, which holds promise for overcoming the electric vehicle’s dependence on lengthy recharging sessions and unnecessary downtime, has also shown its promise in the lab, during demonstrations, and on the track. New battery technologies, most notably nickel-metal-hydride, are starting to prove their worth in real-world trials.

Perhaps most important is the promise shown by the advanced electric vehicles being fielded by U.S. automakers in limited numbers. Both the Ford Ecostar and Chrysler TEVan have demonstrated their viability as utility vehicles during test drives at the hands of Green Car Journal editors.

GM's Impressive Impact EV

But as an all-around technology statement, there’s nothing like GM’s Impact. GCJ editors have driven the Impact hard on highways in Michigan, finding it superb in every regard. It distinguishes itself not only as an excellent electric vehicle, but as a rather amazing automobile even when stacked up against its gasoline-powered peers.

The Impact’s technological innovations are many, ranging from an ultra-lightweight aluminum space frame with composite body panels to an innovative heat pump climate control system and blended regenerative anti-lock braking. Like GCJ editors, testers from publications like Motor Trend, Popular Science, and Popular Mechanics also found the Impact a testament to the viability of the electric car.

Public perception is also favorable. In fact, GM has had a substantially greater number of requests to participate in its Impact PrEView Drive than ever anticipated. In response to an announcement sent with utility bills in New York and Los Angeles, the automaker reportedly expected about 5,000 replies in each market. Instead, New York generated a list of 14,000 volunteers, and Los Angeles about 10,000 – far too many for the program.

Tech Advances Via ZEV Mandate

To be sure, the Big Three’s developmental EVs are just that: Examples of electric vehicle development…an engineering ‘snapshot’ of where ewe are now. Anyone who describes them otherwise is exploiting  these vehicles for their own aims, either pro or con. Their cost is very high due to their hand-built assembly and the exotic technologies employed. But they are functioning examples of what automakers can come up with when ‘encouraged’ by regulatory fiat. To think we would have done this far without a mandate in place is folly.

Many experts believe that California’s ZEV mandate has served not only as a motivator for the world’s automakers, but as a wake-up call for industry. Most of the players are involved not because they have to be, but because the electric vehicle field is perceived as being good business. That’s been the impetus for electric vehicle consortia like Calstart, Electricore, Southern Coalition for Advanced Transportation, Northeast Alternative Vehicle Consortium, Mid-America Electric Vehicle Consortium, and Hawaii’s Electric Vehicle Demonstration Project Consortium.

Electric vehicle drive system.

Emerging Opportunities for Suppliers

It's true that regulations now in place will require automakers to build and sell EVs. But that’s not the case with battery companies, electronics manufacturers, energy management specialists, tire manufacturers, engineering firms, composites manufacturers, aluminum companies, and many, many others. They’re on board because of emerging opportunities that will allow them to bring advanced transportation components to a new generation of energy efficient, more environmentally conscious automobiles. In their eyes, this will only take place if the California ZEV mandate survives the intensive automotive lobbying sure to take place in the months to come.

Momentum seems to be on the EV proponents’ side. The Ozone Transport Commission recently voted to adopt California’s low emission vehicle program in the Northeast, including requirements for zero-emission vehicles. On the heels of this decision came a California Assembly Transportation Committee hearing on Assembly Bill 2495, which would have prohibited the state from requiring ZEVs until battery technologies guaranteed arbitrary performance levels. This bill was heavily lobbied on both sides, then soundly defeated. The next round in this battle: Next month’s scheduled California Air Resources Board review of ZEV technologies and the feasibility of reaching the program’s goals. A full report to follow.

Bill Magavern, Coalition for Clean Air

Ever since the smog-choked days of the 1960s, the Golden State has led the way toward cleaner cars. The array of zippy zero-emission electric cars that drivers can choose from today owes a great deal to the standards set by California’s Air Resources Board (CARB). During this Summer, a season which experts say will threaten millions of Americans with drought, extreme heat. and wildfires, CARB will decide on the next step for green cars.

While Governor Gavin Newsom has ordered that all new cars sold in the state from 2035 on emit no pollution from their tailpipes, the actual rules will be written by CARB in its Zero-Emission Vehicle (ZEV) standard. The ZEV standard currently covers model years through 2025, so the next one will cover 2026 and beyond. Because 16 other states have chosen to follow California’s car standards, what happens in Sacramento will not stay in Sacramento.

CARB staff have proposed a package that would meet the Governor’s goal of 100% sales of ZEVs in 2035, along with further ratcheting down on tailpipe pollution from the internal combustion engines that will be sold before then. The proposed rule would add some important consumer protections to assure that buyers of ZEVs get the performance and durability that they are paying for.

But the Board Members should strengthen the measure in two major ways: timing and equity. Given the urgency of the twin crises of air pollution and climate chaos that are damaging our communities today, California should require that ZEV sales reach 75% – rather than the 68% in the proposal – by 2030, on the way to the 100% by 2035 finish line. Setting that pace will reduce emissions sooner, bringing needed relief to our lungs and health, while also putting more clean vehicles into the supply that buyers can choose from. The current proposal, if not strengthened, would saddle Californians with hundreds of thousands of more polluting cars on the road that cost them more money at the pump and will continue to spew climate altering and lung damaging pollution.

Clean Mobility for Everyone

Electric car plugged in at charging station.

Furthermore, we need to make sure that the clean transportation revolution benefits everyone, especially those who have benefitted the least from new technologies while suffering the worst impacts of air pollution and global warming. Coalition for Clean Air works with our partners in the Charge Ahead California campaign to democratize the electric car, and CARB should assure that residents of disadvantaged and low-income communities have access to clean mobility, whether through car ownership or other affordable options like car-sharing.

California has led the nation – and often the world – in improving motor vehicles through smart regulation and enforcement. It was CARB that required catalytic converters to reduce smog in the 1970s, set the first standards for vehicle greenhouse gas emissions in the 2000s, and spurred the development of what is now a robust electrical vehicle  (EV) market through the ZEV standard over the last 10 years. California’s leadership has also benefited its economy, as EVs are now the state’s #1 export.

California's Zero-Emission Leadership

But other countries have caught and passed us when it comes to EV deployment. China and many European countries now have higher percentages of EV sales than the U.S. does. With global demand burgeoning, automakers have introduced more than twice as many EV models in Europe and more than five times as many models in China as they have in the U.S. In order to avoid being at the back of the line for the best clean vehicles, California needs to raise the bar and require manufacturers to sell their best – and most affordable – EVs here.

As soaring gas prices, choking smog, and extreme heat make clean electric transportation more urgent than ever, CARB should lead the way toward a zero-emission future.

Bill Magavern is Policy Director for the Coalition for Clean Air, a California non-profit working to protect public health, improve air quality and prevent climate change.

There was a lot happening in the electric vehicle field during the early years of California’s new low-emission vehicle (LEV) program in the 1990s. This program, which required automakers to offer new model vehicles with increasingly lower emissions in successive years, was initially focused on internal combustion models. That is, until GM announced it would offer a production electric vehicle based on the Impact electric car prototype shown at the 1990 L.A. Auto Show. The realization that auto manufacturers could actually make production vehicles with ‘zero’ localized emissions set in motion a series of events. The most important of these was the addition of the ZEV – or zero emission vehicle – classification to California’s emissions program.

This didn’t apply only to GM, but seven of the largest marketers of vehicles in California. Required numbers were set based on a percentage of each automaker’s sales in the state, with financial penalties to be imposed if these numbers were not met. Understandably, there was a new urgency to electric vehicle development programs on the part of the affected auto manufacturers.

Honda EV Plus Innovations

The 1997 Honda EV Plus offered smart underhood packaging.

Prototypes were created, electric drive technologies explored, and electric demonstration vehicles were fielded to gain understanding of how best to meet consumers’ needs. One of the many early limited production electric vehicle models was Honda’s EV Plus, a study in innovative design. It's not that the stylish vehicle offered cutting-edge style – its evolutionary ties to the Civic hatchback were evident at the time, and Green Car Journal editors were reminded of BMW's circa-1991/1992 E1 and E2 electric concept vehicles. Rather, it was Honda’s overall approach with the EV Plus and its smart packaging from corner to corner that netted this automaker high grades in EV market savvy. That kind of achievement was not easy at a time when endless focus groups and gut hunches seemed to rule the EV development world.

Since the electric powertrain, large battery pack volume, and mass presented unique packaging requirements, the frame of the Honda EV was designed differently than that of a conventional vehicle, shared Ben Knight, then-vice president of Honda R&D at the time. The passenger cabin, with its raised flat floor, was above and completely separated from the single under-floor battery pack. While that’s a signature feature in most electric vehicles today, it was a notable innovation in the mid-1990s. Along with a roomy interior devoid of battery placement, this configuration provided the side benefit of a low center of gravity.

The Honda EV Plus used a liquid crystal instrument dispay shown.

An Electric That's Typically Honda

This EV's clever ground-up design offered a roomy and well-thought-out interior that typical of Honda models of the day. Standard equipment included dual airbags, automatic climate control, electric power-assist steering, a two-way remote communicator, and power windows, locks, and mirrors. It also featured a unique liquid crystal display instrument cluster with state-of-charge and miles-to-discharge shown in bars, and speed in large numerals.

The two-door, four-passenger hatchback had nearly identical height, length, and width dimensions as the Kia Sportage at the time, weighing in only about 300 pounds heavier than the Kia SUV even with the electric Honda’s sizable stash of batteries. Projector headlamps were used up front while high-mounted taillamps flanked the rear hatchback window of this Honda EV. A charger inlet was located on the passenger side fender ahead of the door.

EV Plus Range Was 125 Miles

Packaging beneath the hood was color-coordinated and top-notch. Knight pointed out that seven components were combined here including the electric car’s management ECU, motor ECU, power drive unit, DC to DC converter and inverter, and an onboard charger. The motor and batteries shared a liquid central cooling system.

Green Car Journal editors who road tested the Honda EV found it to offer reasonable performance for the era along with satisfying ride and handling. Its 49kW brushless DC motor, powered by 24 12-volt Ovonic nickel-metal-hydride battery modules, achieved 0-60 mph acceleration in about 18 seconds. While that kind of acceleration seems glacial by today’s standards, at the time it was pretty much standard fare for most early electric vehicles. Driving range was estimated at 125 miles based on the U.S. Federal Urban Driving Schedule, to full battery discharge and without air conditioning. Top speed was an electronically-governed 80 mph.

Ovonic nickel-metal-hydride battery packk used in the 1997 Honda EV Plus.

The 1997 Honda EV Plus represented the next logical step in electric vehicle market development for this automaker. Honda had been evaluating prototype CUV-4 electric vehicles with utility partners Southern California Edison and Pacific Gas & Electric for a year and a half prior to the EV Plus launch, and also evaluating the vehicle's use as an airport rental car with National Rental Car in Sacramento.

An EV for Consumers and Fleets

Knight told GCJ that very early in the program, Honda studied the potential size of the EV market and who potential customers might be, looking at both consumer and fleet markets. This brought about a stark reality: While fleets offered the best chance for early EV placement and were on the minds of all automakers developing electric vehicles at the time, the fleet market was too limited to guarantee a model's success. So Honda geared up for both, with a plan to lease the vehicles to both consumers and fleets in a turnkey program that was fairly inclusive, with roadside assistance and battery maintenance included.

Side view of 1997 Honda EV Plus electric car.

Honda's limited 1997 EV rollout of the EV Plus was more of an extensive demonstration program than an actual new model launch. The aim was to work toward meeting the requirements of California’s ZEV mandate while evaluating the vehicles' advanced NiMH batteries, infrastructure issues, and customer acceptance. Dealers initially leased and serviced Honda's EV Plus in Southern California and Sacramento. The EV Plus was delivered to initial lessees in spring 1997, with some 300 Honda EVs planned to be in service over the next several years. This early movement in the electric vehicle field set the stage for Honda’s focus on electrification in the years to come.

Frank Wolak, president and CEO of the Fuel Cell and Hydrogen Energy Association.
Frank Wolak, Fuel Cell and Hydrogen Energy Association

There is no denying the recent growth in the hydrogen and fuel cell industry – growth in interest and awareness; in public and private sector investment; in federal, state, and regional commitments; in the overall portfolio and scale of product offerings; and in the range of new players entering the marketplace.

As the national advocate for the industry, the Fuel Cell and Hydrogen Energy Association (FCHEA) has long been active on Capitol Hill in Washington, DC, and around the country, working with champions in Congress, key allies, and our diverse membership on key issues such as policies and programmatic funding, codes and standards development and harmonization, and education and outreach.

Over the past year, FCHEA has grown as well, expanding the association not just in size, but also in scope of market sectors, innovative technologies, and hydrogen generation pathways, representing the full spectrum of the industry from production to utilization, including mobility.

Around the world, hydrogen is increasingly recognized as a key tool in the decarbonization of society, specifically hard to abate sectors, including medium- and heavy-duty transportation, both on the road and off. Here in the U.S., there are already tens of thousands of fuel cell-powered cars, buses, and material handling vehicles deployed across the country, all running on hydrogen. In parallel, fuel cells are also providing resilient, reliant backup power to hybrid zero-emission EV charging solutions. Customers include major retailers such as Walmart and Amazon, as well as transit agencies and delivery companies.

Hydrogen’s potential to reduce emissions and fossil fuel use, and with the advantages of fast refueling, lighter weight, and long range, are opening pathways in logistics, aviation, and shipping. We are seeing more fuel cell trucks, utility vehicles, and even planes, trains, and ships enter operation and testing in the U.S. and around the world.

Hydrogen Hubs Across America

Hydrogen fueled mobile electric vehicle charging center.

At the federal level, hydrogen and fuel cell technologies received a well-deserved boost in funding and support through the bipartisan Infrastructure Investment and Jobs Act. The law, signed in November 2021, included $9.5 billion for clean hydrogen, with the bulk ($8 billion) allocated to developing ‘Hydrogen Hubs’ that will demonstrate diverse methods of production, processing, delivery, storage, and end-use of clean hydrogen across America.

While the hub funding has deservedly received a lot of attention from interested parties seeking to stake a claim in their respective region or state, the Infrastructure Act also contained numerous other provisions where hydrogen and fuel cells could make a significant impact in decarbonizing the nation’s transportation network. This includes programs focused on Congestion Mitigation and Air Quality Improvement; Alternative Fuel Infrastructure; Zero-Emission Ferries and Buses; Port Infrastructure; and more.

Increasing Hydrogen Production

Hydrogen fuel cell emblem on vehicle.

FCHEA’s membership includes automotive, trucking, and fuel cell original equipment manufacturers (OEMs) with products geared towards light, medium, and heavy-duty transportation applications. These companies are developing and deploying a range of zero-emission vehicles for land, sea, and air, as well as working with other members and partners on the necessary hydrogen infrastructure to support them. As these other sections of the Infrastructure Bill start to take shape, we expect more prospects for our members and the technologies they offer, especially in support of the Hydrogen Hubs once that funding is awarded, as well as initiatives to green the nation’s ports, airports, and highways.

Outside of federal funding, members are investing billions of dollars in new and expanded facilities to increase U.S. hydrogen generation capacity across the country, and into new states and areas. These investments will not only expand supply but will also create jobs and boost economic growth in and around those locations.

Decarbonizing Transportation

Fueling hydrogen fuel cell Toyota Mirai.

FCHEA is excited for these opportunities because we believe in hydrogen and fuel cells and see firsthand the tremendous benefits they already bring to a range of applications and customers.  With significant plans for scale-up of hydrogen production and utilization across the country, those benefits will be amplified, helping us reach the necessary environmental goals to decarbonize across industry sectors and stay competitive with the rest of the world down the road.

Frank Wolak is President and CEO of the Fuel Cell and Hydrogen Energy Association in Washington DC.

2023 Chevrolet Bolt EV charging.

Chevrolet’s Bolt EV, introduced as the industry’s first affordable long-range electric vehicle as a 2017 model, expanded its focus for the 2022 model year to include the Bolt EUV (electric utility vehicle). This was a strategic move for the automaker as it provided buyers an additional choice for its popular Bolt electric vehicle, even as it was developing new models based on GM’s Ultium electric vehicle platform. Then disaster hit.

There were Bolt battery fires and the potential for others, so GM halted production and recalled each and every Chevy Bolt and Bolt EUV sold to fix the problem. This was no easy thing and the process has taken time, a significant hit to GM’s electric vehicle program and, no doubt, its pride. The fact that the battery defect was the fault of the Bolt’s battery supplier and not Chevrolet was small comfort, no doubt. Now that some 50 percent of the recalled Bolt battery packs have been replaced with the balance underway, there’s positive news: the Bolt is back in production.

Red badging on the 2023 Chevrolet Bolt EUV Redline Edition.

New Redline Edition

Further good news is that with the 2023 model year, Chevy is stepping up the Bolt EUV’s sportiness with an available Redline Edition sport package. This Bolt EUV iteration is offered in black, white, and silver exterior choices accented with black and red Bolt EUV badging at the rear and red accents on the side mirrors. Gloss black 17-inch aluminum wheels with red accents complete the package. Those opting for the EUV with LT or Premier trims can also add black leather upholstery with red accent stitching.

While Chevy aimed to categorize its Bolt EV a crossover back at its launch five years ago, we said then that its dimensions and style really made it a five-door hatchback from our perspective. Strategically, the automaker ventured further into the crossover space with its bigger EUV sibling. The Bolt EUV features somewhat larger dimensions compared to the original Bolt with six inches greater length and three inches of additional legroom, in a package that remains easy to maneuver and park in crowded urban spaces.

2023 Chevrolet Bolt EV charge port.

Different than Bolt EV

While there is an extremely close family resemblance between the Bolt and Bolt EUV and they do share the same architecture, there are no sheetmetal panels common between the two. A close look shows Chevy SUV styling cues like a crease line running up the center of the front fascia and along the hood. Subtle but distinct design elements that differentiate the Bolt EUV from the Bolt EV include a larger opening below the closed grille area on the Bolt EUV along with more pronounced sculpting along the wheel well arches, plus angular lines and a slightly beefier look at the rear to support the EUV’s sport utility persona.

Power in both models is provided by a 200 horsepower electric motor driving the front wheels, which delivers 0-60 acceleration in an estimated 7.0 seconds. Energy comes from a 65 kWh lithium-ion battery pack with thermal management to keep it at optimum operating temperature. This combination allows the Bolt EUV to deliver an EPA estimated 247 miles of range. The EUV is fast-charge capable and can add 95 miles of range in a half-hour at a public fast charge station.

2023 Chevrolet Bolt EUV Redline Edition interior.

A More Refined Interior

The Bolt EUV’s interior, like that of the Bolt EV, is a bit more refined and high tech than that of the previous model year Bolt. Along with the 8-inch configurable gauge cluster at the driver’s position, there’s a 10.2-inch color infotainment touchscreen neatly integrated into the center of the instrument panel. Shifting is now done through electronic gearshift controls located at the lower left of the center console that use pushbuttons and pull toggles. The car’s Regen on Demand function, which controls the degree of energy regeneration and drag during coast-down, is literally at the driver’s fingertips with a convenient steering wheel paddle. Adjusting to a higher level of regen makes ‘one pedal driving’ possible, with little use of the brakes under certain driving conditions.

Bolt EUV features Chevy Safety Assist as standard equipment. Among the desired driver assist technologies included are Automatic Emergency Braking, Front Pedestrian Braking, Lane Keep Assist with Lane Departure Warning, and Front Pedestrian Braking. Other systems like Adaptive Cruise Control are also available. No doubt, the biggest news in the way of advanced electronics is the Bolt EUV’s availability of GM’s vaunted Super Cruise. Initially offered in GM’s luxury Cadillac brand, Bolt EUV features the first use of this highly-acclaimed, hands-free driving assistance technology in a Chevrolet model. Base price for the current year Bolt EV is $32,495 with the EUV coming in at $34,495. Pricing for 2023 models has not yet been announced.

Michael Berube, Deputy Assistant Secretary for Transportation for DOE’s Office of Energy Efficiency and Renewable Energy.
Michael Berube, U.S. Department of Energy

In the three decades the U.S. Department of Energy has sponsored Advanced Vehicle Technology Competitions (AVTC) more than 27,000 students have participated. The vehicles have looked quite different over the years – from methanol-powered Chevrolet Corsicas in 1988 to hydrogen-powered Ford Explorers in the early 2000s, and performance hybrid-electric Camaros just a few years back. Every transformative stage of technology drives the need to attract new talent to the field, including engineers who fully understand the emerging fields of automotive engineering.

Argonne National Laboratory (ANL) has managed DOE’s AVTC program in partnership with the auto industry for more than 34 years. The program has evolved alongside the global auto industry, adding complexities and nuances to prepare the next generation of leaders to enter the workforce. DOE and ANL recently announced the latest AVTC, along with our partners General Motors and MathWorks, the EcoCAR Electric Vehicle (EV) Challenge starting in fall 2022.

The EcoCAR EV Challenge will build upon the program’s rich history to provide a hands-on educational experience that is empowering students to address the toughest mobility challenges facing our nation. The EV Challenge reflects the changing vehicle market. We need more EVs to overcome the climate crises we face. Transportation makes up the largest share of emissions in the U.S., and over half of those emissions come from passenger vehicles. EVs give us the means to eliminate those emissions. Last year, President Biden set a national goal of getting zero-emissions vehicles to make up half of new car and truck sales by 2030. These budding energy leaders are heeding the call. This challenge will help us build a diverse clean mobility workforce around this soon-to-skyrocket EV market.

Creating an Electric Future

Cadillac LYRIQ luxury electric crossover.

The competition will challenge students to engineer a next-generation battery electric vehicle  that deploys connected and automated vehicle (CAV) features to implement energy efficient and customer-pleasing features, while meeting the decarbonization needs of the automotive industry. General Motors will donate a 2023 Cadillac LYRIQ to each team, challenging them to design, build, refine, and demonstrate the potential of their advanced propulsion systems and CAV technologies over four competition years. Teams will be tasked with complex, real-world technical challenges including enhancing the propulsion system of their LYRIQ to optimize energy efficiency while maintaining consumer expectations for performance and driving experience. As students work on the LYRIQ, they are developing real-world knowledge and skills that will help accelerate the transformation of the auto industry.

More than $6 million from the competition sponsors will be provided to the 15 competing universities, including five Minority Serving Institutions, for students to pursue advanced mobility research and experiential learning. This investment supports the recruitment and retention of underrepresented minority students and faculty to help build an EV talent pipeline that reflects the diversity of America and makes room for more domestic manufacturing to strengthen our energy independence.

15 Universities Participating

Department of Energy's EcoCAR EV Challenge graphic.

Teams will be challenged to identify and address specific equity and electrification issues in mobility through the application of innovative hardware and software solutions, conduct outreach to underserved communities and underrepresented youth to increase awareness about advanced mobility, and recruit underrepresented minorities into STEM fields.

At DOE, we are excited to see what these teams will accomplish in supporting the country’s transition to clean energy and electric vehicles. I encourage you to learn more about the 15 North American universities selected to join the EcoCAR EV Challenge by visiting ecocarevchallenge.org or discovering more about the rich history of AVTCs at avtcseries.org.

Michael Berube is the Deputy Assistant Secretary for Transportation for DOE’s Office of Energy Efficiency and Renewable Energy.

EcoCAR Challenge launch event.

Back when the modern electric vehicle was new, automakers explored different strategies for getting in the game while meeting California’s zero emission vehicle mandate. Costs were high so these efforts were limited, with the earliest electric vehicle offerings focused much more on fleets than consumers. One of the more interesting approaches came from Chrysler with its electric minivans. Among its highest-profile explorations was the battery electric Chrysler EPIC that followed the automaker’s first electric minivan, the TEVan, the first limited production electric vehicle sold to the U.S. fleet market back in 1992. Here’s our take on the automaker’s improved version of the EPIC as it was making its way to fleets, straight from the Green Car Journal archives as it originally appeared in the August 1998 issue.

Excerpted from August 1998 Issue: Chrysler, the first automaker to bring an electric vehicle to the fleet market in 1992, is set to begin leasing an advanced battery iteration of its electric minivan to fleet markets in California and New York later this year. This improved version of the automaker’s EPIC (Electric Powered Intra-urban Commuter) minivan, based on the popular Dodge Caravan/Plymouth Voyager platform, will begin rolling off Chrysler’s Canadian assembly line in Windsor, Ontario in October.

Charging the Chrysler EPIC electric minivan.

Electric Minivans for Fleets

The EPIC, which offers an 800 pound payload and seating for up to seven, will benefit from a SAFT nickel-metal-hydride (NiMH) battery pack that will enable the minivan to achieve a claimed 0-60  mph acceleration time of 16 seconds and travel up to 90 miles between charges under moderate driving conditions. The van was previously powered by less expensive lead-acid batteries which provided reduced performance and limited single-charge driving range of 68 miles. Chrysler plans to manufacture up to 2,000 EPICs for the 1999 model year. They will be offered under a three-year lease program with payments of $450 monthly with no down payment, or a one-time payment of $15,000.

It’s no surprise that Chrysler’s EPIC is now joining the ranks of advanced NiMH battery EVs like the Toyota RAV4 EV and Honda EV Plus. Even Ford’s Ranger EV and both electric GM products, the EV1 and S-10 electric, are now being offered with NiMH battery options, or will be shortly. Advanced battery power, with the enhanced performance it brings, is simply a requirement in an era where fleet managers have multiple electric models from which to choose.

Battery powered powerplant for Chrysler's electric minivans.

Simply put, the low-performance, lead-acid battery powered EPIC hasn’t been a particularly desirable option for fleets, as evidence by the less than 20 EPICs that Chrysler has leased to date. Under the terms of the Memoranda of Agreement it signed with the California Air Resources Board along with others like Ford, GM, Honda, Mazda, Nissan, and Toyota, Chrysler is required to field more than 250 EVs for demonstration through the year 2000. Upgrading to advanced battery power significantly decreases this number. In Windsor, EPIC production will take place on the same production line that handles assembly of Chrysler’s conventional gasoline-powered minivans.

Extended Life NiMH Batteries

Craig Love, Chrysler’s executive engineer for electric vehicles, points out that the addition of NiMH batteries also offers another tangible benefit by tripling the expected operating life of the traction battery pack. “Although considerable cost challenges remain, we believe the performance of this battery makes it the best for near-term ZEV (zero-emission vehicle) application among the several battery alternatives we’re investigating,” Love says.

Chrysler electric minivans were powered by advanced batteries.

Those battery alternatives include next-generation lithium-based batteries being developed cooperatively through the US. Advanced Battery Consortium, of which Chrysler is a member. While lithium batteries are popular in cell phones and laptop computers, increasing their size for use in automobiles offers design and cost challenges, Love notes. This is an important detail not lost on Nissan, points out GCJ editors, which pays a huge premium for the Sony lithium-ion batteries it uses in its Altra EV minivan. Chrysler plans to test its first vehicle-sized lithium-based battery in 1999.

“With EPIC, we’re combining our latest ZEV technology with our state-of-the-art entry into the electric vehicle segment. While there’s still a gap in cost and operating range between electric- and gasoline-powered vehicles, we’re working hard to close that gap.”

Chrysler EPIC, one of the first electric minivans.

Rear view of a Ford hydrogen hybrid SUV.

Plug-in electric vehicles. Hydrogen fuel cell cars. Hybrids. Plug-in hybrids. All have come to the fore over the years, and we’ve noted their unique impact on the automotive landscape. While these technologies share similarities in that they all employ different ways of managing electricity to power electric motors, it’s been pretty easy to draw lines between them. But what if those lines were blurred in the interest of creating a new and possibly better answer, like maybe…a plug-in hydrogen hybrid?

Actually, that question was on the minds of creative souls at Ford some 15 years ago. Back then, the automaker explored new paths with its Ford Edge HySeries, a drivable demonstration vehicle unveiled at the Washington, D.C. Auto Show.

Display showing operation of a hydrogen hybrid vehicle.

This Hydrogen SUV Plugs In

The HySeries combined power from the grid by plugging into an electrical outlet, just like an electric car or plug-in hybrid. It used a hydrogen-powered fuel cell to provide electricity, just like other fuel cell vehicles. And it managed its two power supplies via on-board battery storage, just like hybrid and plug-in hybrid cars do today.

Central to the HySeries Drive, both figuratively and physically, was a 336-volt lithium-ion battery pack that powered the electric motors at all times. Electricity from the grid and the fuel cell didn’t get to the wheels without first going through this battery pack. In this single-path flow of power, the power unit – the fuel cell – and the batteries were designed to act in series.

Illustration of a hydrogen hybrid drivetrain.

Series Versus Parallel Hybrid

With the notable exception of a few models like the Chevrolet Volt, in most hybrids the batteries and engine operate in parallel. That is, the engine can still directly send power to the wheels with the battery stepping in to provide boost or take over as necessary. These hybrids do periodically act like a series configuration by using the engine to charge the batteries back up, for instance. The difference is that the HySeries Drive runs exclusively in series mode…thus, the name.

What’s the advantage? In a word, simplicity, according to Ford at the HySeries’ auto show debut. Operating in series streamlined the process by eliminating the extra hardware – and complex management software – of two propulsion systems in favor of a single power flow. By the same token, this made the HySeries Drive remarkably versatile.

Hydrogen fueling inlet in a vehicle.

In the Ford Edge prototype presented here, the fuel cell acted as a range extender, providing electrical power when the batteries ran low on their grid-sourced charge. But that range extender could just as well have been an engine powered by gasoline or some other alternative fuel. The thinking was that any new fuel or propulsion technology could be swapped in as it became available, with the underlying architecture of the HySeries Drive the same in any case.

The Ford Edge with HySeries Drive was designed to demonstrate the logic of this approach. According to Ford, the size, weight, cost, and complexity of this particular drivetrain was reduced by more than 50 percent compared to conventional fuel cell systems at the time. By relying more on the battery pack and the grid-sourced electricity, the demands on the fuel cell system were reduced as well. This meant the Ballard-supplied fuel cell would last longer and less hydrogen would need to be stored on-board.

Ford Edge hydrogen hybrid SUV.

Hydrogen Hybrid Operation

Out on the road, the Edge was designed to drive 25 miles on battery power alone. When the battery pack was depleted to 40 percent charge, the fuel cell turned on and began generating electricity to replenish the batteries. The 4.5 kg of hydrogen stored in a 5,000 psi tank was enough to extend the range another 200 miles, for a total of 225 miles. Ford pointed out that range was highly dependent on driving conditions. In fact, it was also said that careful driving could potentially squeeze more than 400 miles from the fuel supply. Given that on-board hydrogen is now typically stored in 10,000 psi cylinders rather than the earlier 5,000 psi variants of the HySeries’ time, that driving range had the potential to be significantly greater.

Actual fuel economy would depend on the length of a trip. For those driving less than 50 miles a day, the Edge with HySeries Drive would be expected to return a miles-per-gallon equivalent of 80 mpg. Longer drives tapping further into the hydrogen supply would bring combined city/highway equivalent fuel economy down to 41 mpg, still respectable for a crossover SUV. Of course, while the fuel economy rating may have had a gasoline equivalent, the emissions did not. That is, there weren’t any emissions at all…at least not from the vehicle itself.

Ford Edge HySeries hydrogen hybrid.

As innovative as Ford’s HySeries Drive was, it was not totally unique. Also in 2007, Chevrolet showcased its Volta concept using GM’s E-Flex System, which later evolved into the Chevrolet Volt powertrain. Both Ford and GM approaches relied on a large lithium-ion battery pack operating in series with a separate power source that charged batteries when they ran low. Notably, both systems offered plug-in capability. While the HySeries incorporated advanced hydrogen fuel cell power, the Chevy Volta did not, though GM did share this was a future possibility. Rather, the Volta, like the production Chevrolet Volt to come, used a 1.0-liter gasoline engine as its range-extender,

Birth of the Plug-In Hybrid

What we saw in the Ford Edge with HySeries, the Chevrolet Volta, and other concepts to follow was the underlying development of a drivetrain showcasing a new propulsion category carving its place into the mainstream – the plug-in hybrid vehicle. At the same time, both GM and Ford seemed eager to link their conception of the plug-in hybrid to the trek toward hydrogen-based transportation, which at the time was the official long-term goal of these two major automakers and others. In this sense, the plug-in hybrid would conceptually follow the conventional hybrid as another intermediary step on the path to hydrogen power.

Rear view of the Ford HySeries hydrogen hybrid vehicle.

Of course, to expect such a simple, linear progression – gasoline, hybrid, plug-in hybrid, hydrogen – is, and was, naïve. But that’s the core challenge with predicting the future of any industry, or of life in general, for that matter. Emergent and divergent technologies, parallel paths, and new alternatives are guaranteed along the automobile’s evolutionary path. In particular, we have seen that in recent years with the breakout of all-electric vehicles into the automotive mainstream, in numbers that were not envisioned by most at the time the HySeries was revealed.

With the HySeries-equipped Edge, Ford presented a surprisingly realistic look at how HySeries Drive – or something like it – could one day take to the road. It sat on the cutting edge of a broad trend away from petroleum-burning internal combustion and toward electrically-powered transportation, a trend that is accelerating today.

Donnell Rehagen, CEO of Clean Fuels Alliance America
Donnell Rehagen, CEO of Clean Fuels Alliance America

A few years ago, my wife Shelly and I visited Greece. It filled me with wonder to think about how challenging life must have been, and yet the ancient Greeks built massive architectural structures without the modern tools and machines we have today.

When I think about the last 30 years of the biodiesel industry, I am reminded of the Greek God, Sisyphus. In Greek mythology, he pushed a giant boulder uphill for eternity. I’d say our industry, like other alternative fuels, has felt that way a number of times.

However, I’d say fuels like biodiesel, renewable diesel, and sustainable aviation fuel are better represented by Athena. She was known to represent wisdom and the virtues of justice, skill, and victory. We have never let the challenges overtake our spirits. Instead, we have held our heads high and strategized our next moves. At last, we’re reaching a point we had long dreamed of – perhaps even beyond what we initially envisioned. The tables have turned. Our fuels are in demand to help people meet their goals and help America reach a low-carbon future. We’re here and we’re making an impact now – not waiting until decades into the future.

As the biodiesel industry celebrates its 30th anniversary, I am reminded that the soybean farmers, the soybean checkoff, and leaders who founded our organization had great faith, foresight, and fortitude. These humble beginnings in 1992 and the small group of leaders and visionaries who started our industry are the reason our industry, even today, seems like a family – and now a growing family! In 1992, no biodiesel had been produced commercially yet, and today, we produce 3 billion gallons a year of biodiesel and renewable diesel.

Clean Fuels Strategy

The emphasis on carbon reduction across the globe has opened new doors. Net-zero commitments from governments and corporations have raised interest in low carbon fuels like never before. We are making great strides in markets like marine, rail, and aviation that previously had been, at best, neutral to us. Likewise, when considering options to help reduce carbon dioxide and other greenhouse gas emissions from their vehicles and equipment, Original Equipment Manufacturers and fleets are also taking a much deeper look at us.

While electric solutions are still under development, clean advanced biofuels such as biodiesel and renewable diesel are readily available now for use in existing diesel engines. Most OEMs, including Ford, General Motors, Stellantis, Cummins, and many others, currently support the use of 20 percent biodiesel blends in their diesel equipment. However, forward-looking fleets from coast to coast – including several in California, Chicago, Madison, Washington D.C., and New York City – are looking to higher blends of biodiesel, even up to B100, to lower their carbon footprint even more dramatically.

Clean Fuels Alliance America logo

Our vision statement says that “biodiesel, renewable diesel, and sustainable aviation fuel will be recognized as mainstream low carbon fuel options with superior performance and emission characteristics.” There is room for all these fuels at our industry’s family table. In that spirit, the National Biodiesel Board has added another leaf.

This January, we made it official: We are now Clean Fuels Alliance America.

This new brand will transform our image and position us as a proven, innovative part of America’s clean energy mix now and in the future. In the process, we’re inspiring America’s energy and transportation leaders to discover new sources of scalable, cleaner fuels.

Biodiesel remains a foundation of our association. Our country couldn’t be having real conversations about carbon reduction targets today if it weren’t for the work of those in biodiesel.

Athena was known as ‘one who fights in front.’ As Clean Fuels Alliance America, we move to the front, proudly blazing a new path forward in clean energy.

Donnell Rehagen serves as the CEO for Clean Fuels Alliance America, biomass-based diesel’s preeminent trade association. Clean Fuels Alliance America is funded in part by the United Soybean Board and state soybean board checkoff programs.

Steve Whaley of Propane Education and Research Council
Steve Whaley, Propane Education & Research Council (PERC)

Around the nation, fleets are facing more scrutiny than ever before to reduce emissions. Headlines in recent months shout that it’s ‘now or never’ if we want any chance at slowing climate change. If we really want to make a difference on the environment, solutions need to be implemented immediately to start replacing dirty diesel and gasoline vehicles from the road as quickly as possible.

While fleet owners I talk to understand the significance of operating a clean fleet, I also continue to hear the same line, “I can’t be environmentally sustainable if I’m not financially sustainable.” Mistakenly, many fleet owners think that going green has to be an expensive endeavor. While that is true of some alternative fuel options, it’s not the reality for every energy source. Propane autogas is an affordable, clean, and available fuel that’s used by thousands of fleets around the country every day.

As we think about the larger decarbonization effort, it will take a diverse mix of clean energy sources to achieve this goal. Propane autogas’ role in the movement is to ensure energy equity by offering a low-carbon solution to medium-duty (class 3-7) fleet owners without cost-prohibitive barriers. When you factor in the cost of a new vehicle and the costs for fuel, fluids, maintenance, and repairs, propane autogas provides the lowest costs for the lifetime of the vehicle, providing a short return on investment.

Let’s consider just the cost of the fuel itself. As oil prices fluctuate, propane autogas can beat diesel on price per gallon by as much as 50 percent. In most cases, propane autogas suppliers will work with fleet owners to create a mutually beneficial fuel contract that allows fleets to lock in a set price per gallon for a period of time. This is another layer of protection against fluctuating fuel prices and is especially helpful during times of high gasoline or diesel prices like much of the country has experienced in recent weeks.

Propane's Favorable Cost

Plus, propane autogas infrastructure is also affordable. In most cases, propane suppliers will provide the infrastructure equipment to a fleet at no cost in exchange for a mutually beneficial fuel contract. The refueling infrastructure is also designed to scale and can easily adapt to the varying needs of any size fleet.

So, how clean is propane autogas? Today’s engines are 90 percent cleaner than mandated EPA standards, with effectively zero particulate matter emissions and 96 percent fewer NOx emissions than clean diesel engines. The latest propane autogas engine technology is classified as near-zero and has moved the fuel even closer to achieving zero emissions levels.

Low Carbon Footprint

Not to mention, a recent study by the Propane Education & Research Council found propane-powered medium-duty vehicles provide a lower lifetime carbon footprint in the majority of U.S. states when compared to medium-duty EVs that are charged using those states’ electric grid. This is due to the amount of carbon that is produced from each state’s unique energy mix for electricity generation using coal, petroleum, or other primary sources.

While EVs may have zero tailpipe emissions, emissions are generated prior to the wheels turning on the road through the electric grid and the powertrain (chiefly battery manufacturing) production. When comparing the difference in lifecycle equivalent carbon dioxide (CO2eq) emissions of a single medium-duty vehicle, propane autogas on a national average emits 125 tons of CO2eq less than an electric medium-duty vehicle.

The study also reviewed the lifetime carbon emissions of a medium-duty vehicle operating on renewable propane – an energy source made from a mix of waste residues and sustainably sourced materials, including agricultural waste products, cooking oil, and meat fats. It has the same chemical structure and physical properties as conventional propane, but because it’s produced from renewable, raw materials, it has an even lower carbon intensity. As the study found, renewable propane medium-duty vehicles currently provide a lower carbon footprint solution than comparable EVs in every U.S. state except Vermont.

As we think about both the immediate need to start reducing emissions today and the long-term goal of providing a better environment for the next generation, propane autogas is a critical energy source that will help to move the needle in both situations. Decarbonization will not be solved overnight. But propane’s role as a clean energy source that can help fleets conquer their financial sustainability will set us on the path to one day reach better environmental sustainability.

Steve Whaley is the director of autogas business development for the Propane Education & Research Council, Propane.com/Fleet-Vehicles

Paying today’s crazy-high gas prices bring on some pretty serious reactions and a certain amount of denial. Many wonder when this will end. Some get angry. Others suck it up and just pay the price, figuring it will return to a reasonable cost at some point. Many are considering electric cars for the first time. But what can you do about it right now to cut your gas bill, in real time, with the car you’re driving?

The thought of boycotting your local gas stations is a pleasant thought but won’t work unless you’re already driving electric. You still need to get the kids to school, go grocery shopping, and get business done. You need some real options that make sense and can be done pretty easily.

Here are some strategies that come to mind. None involve dumping your car and getting a new one. We know that’s not always possible, especially today with unreasonably high car prices due to current conditions. You need to keep driving your everyday ride but just have to do something about the high gas costs that are wrecking your budget. So, consider giving these tips a shot.

YOUR ACTION PLAN

1. Start here: Don’t drive as much. Really, this isn’t as painful as it sounds. We’ve grown accustomed to our cars providing mobility on demand. That’s  a good thing when it isn’t hurting our wallets or contributing to growing oil dependency. It’s not so good today. So plan ahead. Combining your day’s errands into sequential trips one after another is a great strategy. This is an easy way to save fuel, cut your gas bill, and lessen your carbon footprint. It will also decrease tailpipe emissions by eliminating unnecessary cold-starts when your car’s emissions control system is least effective.

2. Ease off on the pedal. Okay, maybe you’re not really hot rodding your way down the street. But chances are good you’re not thinking about taking it easy from one traffic light to the next. Light accelerator pressure and a conscious effort to avoid quick starts and stops do make a difference in fuel economy, sometimes a pretty big one. Give it a try. While you’re at it, smooth out your pedal pressure at highway speeds as well by using your cruise control whenever appropriate.

3. Feeling the need for speed? Let it go. It’s easy to creep past posted speed limits without thinking about it. That’s especially on urban highways where traffic often tends to move well beyond 65 mph. We’ve found some freeways regularly flowing at 80 mph and sometimes more. The problem is that fuel efficiency diminishes rapidly above 60 mph. The EPA points out that each 5 mph driven above that speed has the net effect of costing you about 20 cents more per gallon.

Filling up with gasoline.

4. Do you need premium? If you’re filling up on mid-grade or premium fuel, check to see if you really need to do this. Some high-compression engines do require higher octane fuel to run properly. In fact, serious engine damage could result from using a lower grade fuel than is specified in your owner’s manual. But if you don’t need premium fuel you shouldn’t be filling up with it. Premium fuel costs about 20 to 40 cents more per gallon but doesn’t provide better performance in engines designed to run on regular. If you’re fueling up with premium and don’t need to, you’re essentially pumping cash out your tailpipe. Not a pleasant thought, is it?

MORE MONEY SAVING TIPS

5. Pressure can be a good thing. Check your tire pressure weekly and keep your tires aired up to the recommended psi. This is so simple you’d assume everyone does this regularly. Not so. And that’s too bad since tires with low pressure create greater rolling resistance that can cost you up to 3 percent in fuel efficiency. Tires heat up while you drive, so checking pressure while hot will give an artificially high reading. Make a habit of checking tire pressure before driving when your tires are cold. You might also consider buying more fuel efficient low rolling resistance tires the next time your car is ready for new treads.

Tire pressure is important for best mpg.

6. Cash or card? This is an obvious one. Gas stations typically have prices posted for regular, mid-grade, and premium fuel. Two sets of prices are often shown, one for cash and one for credit/debit cards. You’ll often note that the cash price is significantly lower, often 20 cents per gallon less than if you use a card. So, you know what to do.

7. Shop around. Like any business, gas stations have competition. It’s often the case that gas prices can vary by as much as 50 cents per gallon, maybe more in a geographical area. We’re not suggesting that you waste gas by trolling for the lowest price, but do pay attention to posted prices as you go about your daily drives. You’ll see which stations tend to offer the lowest gas prices. One of the best ways to price shop is with a free service like GasBuddy that allows you to search online for your area’s lowest gas prices. Make the process even easier by downloading the app so you can check on price fluctuations on your phone whenever it’s convenient during your travels.

Driving electric is becoming increasingly important to a growing number of new car buyers today. While efficiency and zero-emission driving are high priorities, so is performance, especially in the view of those accustomed to brands like BMW that have long been noted for delivering a spirited driving experience. It’s no surprise that this automaker’s new 2022 BMW iX xDrive50 continues the tradition.

Performance is achieved through a combination of lightweight construction and BMW’s fifth-generation eDrive technology. The iX body is made up of an aluminum spaceframe overlaid with a body shell that combines carbon fiber reinforced polymer (CFRP), thermoplastics, high-strength steel, and aluminum. Further weight reduction is found in the construction of the chassis, with extensive use of aluminum in suspension components and the front and rear axle subframes.

Two BMW iX Choices

An all-wheel-drive powertrain positions an electric synchronous motor at each axle, fed by a 111.5 kWh lithium-ion battery pack located low in the floor. EPA rates the iX at up to 86 combined MPGe with a driving range from 305 to 324 miles, with the best range achieved by the iX equipped with 20 inch wheels and tires. The 2023 iX M60 is not yet rated but BMW expects it to net up to 280 miles on a charge. Enhancing the iX’s range are several modes of regenerative braking selectable by the driver.

Power is impressive. The $83,200 iX features a combined 516 horsepower and electric all-wheel drive, plus exhilarating acceleration that delivers a 0-60 mph dash in 4.4 seconds. Performance is even better in the soon-to-come $105,100 iX M60, which combines 610 horsepower, a whopping 811 lb-ft torque, and launch control to compress the model’s 0-60 time to just 3.6 seconds.

The iX rides on suspension comprised of front control arms and a five-link rear, damped by lift-related shock absorbers that adjust firmness in relation to suspension travel. An optional adaptive suspension includes electronically controlled shocks and a two-axle air-suspension with automatic leveling that can be raised nearly an inch for extra ground clearance, or lowered almost a half-inch at higher speeds to improve aerodynamics and stability.

Tech-Rich BMW Cabin

Inside, the iX interior features a hexagonal steering wheel and BMW’s new Curved Display, which groups driver information and infotainment screens behind a single panel of glass angled around the driver. The Curved Display, and many other iX features and amenities, is controlled by the new iDrive 8 operating system, “designed with a focus on dialog-based interaction using natural language and touch operation,” says BMW. Both Apple CarPlay and Android Auto are integrated into the iX, as is 5G connectivity and the ability to receive over-the-air software updates.

The list of electronic amenities and advanced driver-assistance features aboard the BMW iX is extensive and ranges from cloud-based navigation to parking and back-up assist. Five cameras, five radar sensors, and 12 ultrasonic sensors provide data for the SAV’s safety systems, which include front collision warning, cross-traffic alert with braking, blind-spot detection, lane-departure warning, active cruise control, and lane keeping assistant.

Both AC and DC charging are available with the combined charging unit in the iX, which allows charging at 11 kW from an AC wall unit and up to 200 kW using a DC fast charger. Launched with the iX debut last month, BMW is offering 2022 BMW EV customers two years of free 30-minute charging sessions at 3,000 Electrify America public charging stations nationwide, a valuable addition to electric BMW ownership.

Green Car Journal has been documenting the evolution of light-duty, personal use transportation over the past three decades. A lot has changed over the years, with fuel efficiency now reaching previously-unexpected levels and electric cars achieving surprising momentum. While environmentally friendly vehicle choices have expanded greatly, the same can’t be said of commercial transportation. But there is significant movement in the form of electric trucks and potentially commercial vehicles running on hydrogen.

Today, legacy truck makers and smaller start-ups alike see the imperative to clean up commercial transportation. Chalk it up to increasing government regulation and the recognition that mitigating carbon emissions and climate change must be resolved on all levels. Not to mention, in these days of extraordinarily high fuel prices and petroleum supply volatility there is even greater reason to look toward new and cleaner answers for motor vehicles of all classes. Larger commercial vehicles are now part of the momentum.

Volvo VNR electric trucks are on the road.

Better Electric Trucks

Green Car Journal’s prestigious Green Car Awards™ have been recognizing new vehicle models exhibiting laudable environmental achievement for the past 17 years. Deserving light-duty vehicles were recognized in eight popular categories earlier in the 2022 model year auto show season. Now, it’s time to turn attention to the next frontier: medium- and heavy-duty commercial trucks.

While the mind’s eye can conjure images of large diesel trucks emitting plumes of soot from years past, this has been changing for the better through the application of advanced emissions technologies and alternative fuels. Now, there’s movement afoot to remake the image of medium- and heavy-duty trucks through electrification. The result? Silent, zero-carbon, powerful trucks running exclusively on batteries and electric motors, charging up in lieu of fueling with liquid hydrocarbons.

There’s no better example of this than Volvo’s zero-emission VNR Electric, a battery powered model that’s been undergoing trials through the Volvo LIGHTS (Low Impact Green Heavy Transport Solutions) program over the past several years, conducted in partnership with the South Coast Air Quality Management District and a dozen other organizations. The result is the new production Volvo VNR Electric, Green Car Journal’s 2022 Commercial Green Truck of the Year™.

The Class 8 Volvo VNR Electric, based on Volvo Trucks’ popular VNR model, aims to provide a sustainable transportation strategy to fill local and regional distribution, pickup, and delivery needs. Power is provided by a 455 horsepower electric motor featuring 4,051 lb-ft peak torque that’s coupled to a two-speed I-Shift automatic transmission. Top speed is 68 mph. It’s available with six-battery pack options that provide up to a 275 mile driving range and comes with fast-charge capability that enables gaining up to 80 percent state-of-charge within 60 to 90 minutes. The VNR Electric is available in five straight truck and tractor configurations.

Product of Excellence Winners

There’s significant competition out there in the evolving field of ‘greener’ commercial trucks with environmental leadership exhibited in many high-profile ways. The following models are standouts being honored with Green Car Journal’s 2022 Green Car Product of Excellence™ award.

Freightliner eCascadia: This Class 8 electric truck is intended for short haul or last-mile delivery, regional deliver, and drayage. It features 500 horsepower and a 250 mile range.

International eMV: An electrified version of International’s proven MV medium-duty truck, the eMV features 215 continuous horsepower, a 135 mile range, and DC fast-charge capability.

Kenworth T680E: Available as a Class 8 tractor or straight truck, the zero-emission T680E features 536 horsepower, 1623 lb-ft torque, and a 150 mile electric driving range.

Lion Electric Lion6: The Lion6 is a Class 6 urban electric truck featuring 335 horsepower, 1800 lb-ft torque, a 252 kWh battery, and a driving range of up to 200 miles.

Mack LR Electric:  The next-generation Mack LR Electric is a Class 8 truck aimed at refuse and recycling duty. It has a 376 kWh battery and twin electric motors producing 448 horsepower.

Nikola Tre BEV: Nikola’s Tre BEV is an all-electric Class 8 tractor for regional applications featuring 645 horsepower, a 753 kWh battery pack, and an operating range up to 350 miles.

Peterbilt 579EV: The 579EV is a Class 8 Day Cab configuration intended for short haul and drayage operations. It features 536 electric horsepower, a 396 kWh battery, and 150 mile range.

SEA Hino M5 EV: Sea Electric’s Hino truck-based M5 EV Class 5 electric truck integrates the company’s electric SEA-Drive Power System to provide 110 horsepower and a 200 mile range.

One of the motivations to go hybrid is the promise of significantly higher fuel efficiency. This has never been lost to us at Green Car Journal, though it did take quite a few years to catch on with car buyers in general since the very first Honda and Toyota hybrids were introduced here more than two decades ago, followed by the first gas-electric SUV, the Ford Escape Hybrid.

Today, the reasons to opt for a hybrid are more evident than ever. In the midst of historically high gas prices, we seriously appreciate that the Ford Escape Hybrid we drive every day is amazingly fuel efficient. Even though we complain like everyone else whenever we fill up now, we gripe perhaps a bit less because we know our Escape is consistently delivering its promised 41 mpg combined fuel economy. As many know quite well, EPA fuel economy estimates lend an idea, but not a promise, of what actual fuel efficiency expectations should be for any given model. In this case it’s spot on based on a lot of miles on the road.

Escape Plug-In Hybrid Delayed

We feel compelled to point out that the Escape, which Ford introduced as an all-new generation in the 2020 model year, is a bit of a tease. True, Ford made waves at its introduction by offering a pair of EcoBoost four-cylinder engines, an efficient hybrid, and promising a plug-in hybrid. But the ever-changing automotive field that’s been hugely impacted by the pandemic and a persistent silicon chip shortage upended lots of plans, including the rollout of the new Escape and in particular the Escape PHEV.

To wit: Whatever the reason – though the pandemic likely had as much to do with it as anything – the abundance of new-generation Escapes on Ford dealer lots was significant in 2020 and 2021. Loads of 2020 Escapes were still being heavily promoted and discounted well into the 2021 model year, with the same occurring with 2021 models when 2022 Escapes were on sale. That meant some pretty sweet deals for those on the hunt for a new crossover SUV.

That’s all changed now that the chip shortage has become entrenched, new car availability tightened considerably, and prices shot upward across the board. Amid this changing backdrop, the highly-anticipated 2020 Escape PHEV variant never happened. The aforementioned challenges and a battery issue delayed the planned plug-in hybrid intro here until late in the 2021 model year.

When the all-new, fourth-generation Escape debuted it did so with a lower and smoother look and a distinctively more car-like front end than earlier iterations. A bit longer and wider with a slightly lower roofline, the popular crossover features slightly more interior space with additional rear legroom and up to 37.5 cubic feet of useable stowage behind the rear seats. A Panoramic sunroof is available on specific models like the Escape Hybrid Titanium we drive daily.

High MPG Hybrid Power

Gasoline and standard hybrid variants of the Escape are offered with front- and four-wheel-drive, while the plug-in hybrid comes exclusively with front-wheel drive. Our Escape Hybrid test car’s combustion part of the power equation is a  2.5-liter Atkinson cycle four-cylinder engine. This engine is augmented with two electric motors that bring total combined system power to 200 horsepower. A PowerSplit electronic continuously variable transmission (CVT) transfers power to the road. The hybrid is energized with a 1.1 kWh lithium-ion battery pack positioned under the floor.

Start-stop engine technology enhances efficiency, though we’ve found it to be a bit abrupt under certain conditions, like when backing out of a driveway on brief battery power and then shifting into drive. Every time, we’ve found the changeover from electric to combustion power happens within seconds of moving forward and feels more noticeable than we’d like.

Being the car enthusiasts that we are, there’s always a yearning to eke more performance from many of the most efficient vehicles we test drive. But honestly, the Escape Hybrid hits a pretty impressive sweet spot. Acceleration and overall performance are just what you need in an efficient compact SUV, with its 200 horsepower delivered confidently and seamlessly whenever needed for passing or just a bit of fun on twisty roads.

Big Features in a Smaller SUV

Inside, this compact SUV strikes a good balance of comfort and economy of space, the latter expected in a crossover in this segment and the former not always delivered in smaller SUVs. In this case, the Escape Hybrid feels like a good fit. There’s plenty of seating and elbow room up front and a good amount of space for rear seat passengers. Of course, squeezing three adults in the back is possible since this is a five-seater, but we’ll bet that most families will have at least a few younger passengers in the rear so three side-to-side adults riding along will be a rarity. Legroom in the back is reasonable though things can get cramped if tall folks are up front and seats are adjusted considerably back. Adding comfort to the rear are 60/40 split back seats offering limited recline and the ability to slide rearward to add extra legroom when needed.

Escape Hybrid offers an array of desired comfort, infotainment, and driver assist systems to enhance safety and the driving experience. Our Titanium model includes a 12.3-inch digital instrument cluster and center 8-inch touch screen display. Ford Co-Pilot360 features include Adaptive Cruise Control with Stop-and-Go, Lane-Centering, Evasive Steering Assist, and Voice-Activated Navigation. Wi-Fi for up to 10 mobile devices is provided through FordPass Connect. We found USB connections in the front console to be handy, along with the 110-volt AC outlet located in the rear seat area below the center console’s air register. For everyday drives when the weather turns colder, we especially like the heated steering wheel and front seats, which come up to temperature surprisingly fast.

Our considerable time behind the wheel of the Escape Hybrid has found us appreciating its welcome compact SUV functionality, satisfying performance, and comfortable ride. It has proved to be an enjoyable and dependable daily ride that lends some comfort during these times of exceptionally high gas prices. An additional benefit is that the Escape Hybrid runs on less pricy regular grade gas and its combined gas-electric power provides a 550 mile driving range that means fewer fill-ups…something that’s just fine by us.

Photography by Sheree Gardner Cogan