How Mitsubishi’s PHEV System Works

Featuring an innovative series-parallel hybrid system, the plug-in Mitsubishi PHEV brings a host of advanced technologies to bear that distinguish the model amid its peers. It’s all-wheel drive, features Level 1, 2, and 3 charging, and offers seamless electric operation.

Mitsubishi’s Outlander PHEV, the world’s best-selling plug-in-hybrid SUV, features innovative technology to provide welcome performance and family-friendly, fuel efficient all-wheel-drive capability. The combination of a gasoline engine and two electric motors, lithium-ion battery, and plug-in capability allows the Outlander PHEV to travel 310 miles on hybrid power and 22 all-electric miles on  a completely charged battery. The Outlander PHEV has an EPA rating of 25 city/highway combined mpg when operating on gasoline and 74 MPGe (miles-per-gallon equivalent) when operating on battery power.

The Mitsubishi Plug-in Hybrid EV System features three modes to achieve its unique series-parallel operation. Plus, there’s the ability to select up to six levels of regenerative braking to tailor the driving experience.

An integral part of the vehicle’s plug-in hybrid drivetrain is a Mitsubishi Innovative Valve timing Electronic Control (MIVEC) engine that combines maximum power output, low fuel consumption, and a high level of clean performance. This 2.0-liter, 16-valve DOHC engine produces 117 horsepower at 4,500 rpm and 137 lb-ft torque at 4,500 rpm. It drives an electric generator that supplies electricity to the vehicle’s lithium-ion battery or directly to the electric motors. Each of its two AC synchronous permanent magnetic motors are rated at 80 horsepower (60 kW). A maximum combined 197 horsepower is available. The lack of  a driveshaft or transfer case means response and control much faster than a  traditional 4WD setup.

A 12 kilowatt-hour, high-energy density, lithium-ion battery is located beneath the floor where it contributes to a low center of gravity and stable driving performance. This battery can be charged in 10 hours with a household Level 1, 110-volt source or four hours with a Level 2, 240-volt charger. Using DC Fast Charging that’s available at commercial charging facilities, the Outlander PHEV will charge up to 80 percent capacity in as little as 25 minutes. The Outlander PHEV holds the distinction as being the first PHEV capable of DC Fast Charging capability.

The  Outlander PHEV’s parallel-series hybrid features three operating modes that are automatically selected for maximum efficiency, according to the driving conditions. These modes are EV Drive, Series Hybrid, and Parallel-Series.

In the EV Drive mode the Outlander is powered exclusively by the electric motors, with no battery charging except from regenerative braking. EV Drive is used for medium- to low-speeds during city driving. The two electric motors power the Outlander when operating in Series Hybrid mode, except when battery power is low or quick acceleration or hill climbing is needed. Then, the gasoline engine automatically starts to drive the generator and provide electric power for the electric motors to augment battery power. The engine-generator also charges the battery.

In Parallel Hybrid mode the gasoline engine supplies power to the front wheels with the two electric motors adding additional power as needed. The engine also charges the battery pack in Parallel Hybrid mode under certain driving conditions. At high speeds, the Parallel Hybrid mode is more efficient since internal combustion engines operate with greater efficiency than  electric motors at high rpms.

A driver can also choose Charge Mode so the generator charges the lithium-ion battery at any time. Save Mode conserves the battery charge for later use. EV Priority Mode, which can be used at any time, ensures the gasoline engine only runs when maximum power is required. Mitsubishi’s Twin Motor  S-AWC integrated control system delivers optimal power and control by managing Active Yaw Control (AYC), an Anti-lock braking system (ABS), and Active Stability Control (ASC) with Traction Control (TCL).

No matter the hybrid mode, whenever the Outlander PHEV decelerates regenerative braking charges the battery to augment electric driving range. There are six levels of regenerative braking –B1 to B5 plus a B0 coast  mode – that are conveniently selected by a pair of paddles behind the steering wheel. Regenerative braking strength can also be selected by console-mounted controls. Automatic Stop and Go (AS&G) automatically stops and restarts the engine when the vehicle stops, further conserving fuel.     

The Outlander PHEV benefits from Mitsubishi Innovative Valve timing Electronic Control system (MIVEC) technology that controls valve timing and amount of lift to achieve optimum power output, low fuel consumption, and low exhaust emissions. MIVEC adjusts intake air volume by varying intake valve lift stroke and throttle valves, reducing pumping losses and thus improving fuel efficiency. The MIVEC engine improves fuel consumption through other strategies, including improvement of combustion stability through optimization of the combustion chamber and reduction of friction through optimization of the piston structure.