We are all enamored by the advanced technologies at work in vehicles today. And why wouldn’t we be? The incredibly efficient cars we have today, and the even more efficient models coming in the years ahead, are testament to a process that combines ingenuity, market competitiveness, and government mandate in bringing ever more efficient vehicles to our highways.

It’s been a long and evolutionary process. I remember clearly when PZEV (Partial Zero Emission Vehicle) technology was first introduced in the early 1990s, a breakthrough that brought near-zero tailpipe emissions from gasoline internal combustion engine vehicles. That move was led by Honda and Nissan, with others quickly following. Then there were the first hybrids – Honda’s Insight and Toyota’s Prius – that arrived on our shores at the end of that decade. Both technologies brought incredible operating efficiencies that drastically reduced a vehicle’s emissions, increased fuel economy to unexpected levels, or both.

Of course, there were first-generation battery electric vehicles in the mid-1990s that foretold what would become possible years later. That first foray into EV marketing was deemed by many a failure, yet it set the stage for the advanced and truly impressive EVs we have today. Those vehicles may not yet be cost-competitive with conventionally powered vehicles due to very high battery costs, but that doesn’t diminish the genius engineering that’s brought them to today’s highways.

Even conventionally-powered cars today are achieving fuel efficiency levels approaching that of more technologically complex hybrids. Who would have imagined popular cars getting 40 mpg or better, like the Dodge Dart, Chevy Cruze, Mazda3, Ford Fiesta, and many more in a field that’s growing ever larger each year?

VW and Audi have proven that clean diesel technology can also achieve 40+ mpg fuel efficiency while providing press-you-back-in-your-seat performance, and importantly, doing this while meeting 50 state emissions criteria. That’s saying something considering diesel has historically had a tough go of it meeting increasingly stringent emissions standards in California and elsewhere. Yet, with elegant engineering by these automakers and their diesel technology supplier Bosch – plus this country’s move to low-sulfur diesel fuel late last decade – ‘clean’ diesel was born.

I would be remiss if I didn’t mention natural gas vehicles. There was a time when quite a few automakers were exploring natural gas power in the U.S., but that faded and left Honda as the lone player in this market with its Civic Natural Gas sedan. Now others are joining in with dual-fuel natural gas pickups and vans, benefitting from advanced engine technologies, better natural gas tanks, and a sense that with increasing natural gas reserves in the U.S., demand for natural gas vehicles will grow. As Honda has shown with its Civic, it’s possible to operate on this alternative fuel while also netting admirable fuel efficiency.

All this advanced powertrain technology is important. It makes air quality and petroleum reduction goals achievable, even ones like the ethereal 54.5 mpg fleet fuel economy average requirement that looms for automakers by 2025. There’s no doubt that advanced technologies come at a cost and reaching a 54.5 mpg average will require the full range of efficiency technologies available, from better powerplants and transmissions to greater use of lightweight materials, aerodynamic design, and answers not yet apparent. But I’m betting we’ll get there in the most efficient way possible.


Ron Cogan is editor and publisher of Green Car Journal and editor of CarsOfChange.com