Green Car Journal logo
Kia EV9 on a mountain road.

First teased back in 2021 with a bold, forward-looking design that’s still signature Kia, the automaker’s electric EV9 emerged in recent months to great expectations. Not the least of these expectations is from Kia itself, which aims for the Kia EV9 to take the family SUV market by storm, much like its spiritual Telluride sibling did when it was released four years ago.

Kia’s signature EV model line was launched in 2021 with the EV6, an all-electric compact crossover. The EV9 is the automaker’s second volley in the EV wars, sharing Kia’s E-GMP platform also used by the EV6, Hyundai Ioniq 5 and 6, and the Genesis GV60. Kia hasn’t released much info regarding trim levels, but we do know the EV9 will be offered in Kia’s GT trim sporting unique 21-inch wheels, roof rack, and dark chrome exterior accents. Entry pricing is speculated to begin around $55,000.

Three row seating in Kia EV9.

Three Rows, Two Powertrains

As of now, Kia has announced two powertrain choices for the upcoming EV9. First will be a base RWD option sporting 215 horsepower and 258 lb-ft torque utilizing a 77.6 kWh battery. The second is an AWD variant capable of producing 379 horsepower and 516 lb-ft torque with a long range 99.8 kWh battery. Kia is targeting 300 miles with its long range battery setup, while estimates for the base 77.6 kWh battery variant are currently unknown. Kia boasts a towing capacity of up to 5000 pounds, matching the Telluride. Charging the battery from 10 to 80 percent is handled in just 25 minutes thanks to Kia’s fourth-generation battery technology and use of an 800-volt fast charger.

The Kia EV9 has a surprisingly well-blended combination of varying styles, most prominent being its sci-fi essence. At the front, Kia’s ‘Tiger Face’ front fascia design metric is ruggedly futuristic with a large, black grille that emphasizes an appealing design flow, accentuated by slim, vertically oriented headlights that angle diagonally toward the grille. A high, sloping hood reminds us we are in the presence of a large and capable SUV. Hidden windshield wipers mean the continuity of the hood is uninterrupted, adding a subtle sleekness to this SUV.

Kia EV9 distinctive wheels.

Kia EV9 Has Futuristic Styling

Along the sides, the EV9’s most striking feature is its wheels. Kia’s use of simple geometric shapes as a base for the wheel design underscores how futuristic the model is meant to be perceived. That, along with its chunky, trapezoidal wheel arches, sharp fender lines, and smoothly uninterrupted body lines, provide an appealing amalgamation of styles. Around back, we see a very minimalist hatch with a subtle spoiler extending out from the roofline. The taillights were designed along the lines of Kia’s ‘Star-map Signature Lighting’ system, with the intent to emphasize the flow of body lines as they wrap into the rear of the EV9. Another styling benefit of this lighting system is its ability to frame the rear window, which represents yet another futuristic design cue.

Inside is a different story. Here’s Kia’s intent is to offer a cabin designed to be as comfortable and calming as possible without the complexity and futurism of its exterior. Most functions are controlled through the infotainment screen, which extends into the driver’s sightline to also act as a digital gauge cluster. Beneath the screen, Kia added dash-integrated haptic buttons that control key functions of the infotainment system. Buttons and switches are kept to a minimum to reinforce the model’s calm and comfortable interior theme.

Calming cabin of the Kia EV9.

A Calming Cabin in the Kia EV9

The EV9 makes good use of negative space, with decorative cloth inserts placed in the doors and the passenger side dash fascia. A floating center console stretches into the second row and features a reasonable amount of storage space. Optional 8-way reclining seats are offered for the first and second rows featuring heating and cooling capabilities. The EV9 follows Kia’s 10 essential materials interior production method using synthetic leather and recycled material throughout the cabin. Using a flat floor, cargo room is ample within the EV9, with 20 cubic feet of cargo room when all three rows are in use, as well as nearly 82 cubic feet with the second and third rows folded down.

The EV9 features a lot of tech with 20 collision avoidance and active driver technologies, three of which are all-new for Kia. These include standard Highway Driving Assist 2 that combines adaptive cruise control, stop-and-go assist, and lane-centering assistance. Standard Lane Following Assist helps the driver stay centered in their lane by delivering slight steering inputs, and optional Advanced Highway Driving Assist uses LiDAR technology to scan the road for potential hazards. Also standard is Remote Parking Assist 2, allowing drivers to remotely park their vehicles using Kia’s smartphone app, Kia Connect. The EV9 also employs over-the-air software updates.

Kia EV9 has spacious cargo area with the seats folded down.

With the speedy advance of electric vehicles, it’s no surprise that legacy automakers are starting to make strides in tech and production, and the Kia EV9 is poised to make a big impact. The EV9 is pointed squarely at Kia’s plans for the future of the brand and should begin arriving at dealers by the end of 2023.

Side view of electric BMW i5 Series sedan.

The BMW 5 Series has proved to be a huge success for the Bavarian automaker since its introduction in 1972. The all-new eighth generation 5 series carries on this tradition with its many innovations and improvements, and a few welcome surprises. Offering five trim levels including the base 530i, mid-range 530i xDrive, and the 540i xDrive, those surprises come in the form of two electric models in the series– the i5 eDrive40 and the range-topping i5 M60 xDrive. 

Gas-powered models receive a pair of updated engines. The 530i and 530i xDrive are powered by a 2.0-liter TwinPower four-cylinder producing 255 horsepower and 295 lb-ft torque. The 540i xDrive receives a refreshed 3.0-liter inline-six cylinder fitted with the same TwinPower turbo and a 48-volt mild hybrid system, which delivers a combined 375 horsepower and 398 lb-ft torque.

BMW 5 Series Power

The hallmark of this new generation 5 Series is the inclusion of all-electric models with strong power and efficiency numbers. The i5 eDrive40 features 335 horsepower and 317 lb-ft torque at the ready with an electric motor driving the rear wheels. The sport-focused i5 M60 xDrive ups those numbers considerably, with its maximum power output of 590 horsepower and 605 lb-ft torque delivering a 0-60 mph sprint in a reported 3.7 seconds. Two electric motors power the all-wheel drive i5 M60 xDrive, one at the rear and another at the front.

Both electric models use an 84.3 kWh battery that provides a range of 295 miles for the i5 eDrive40, and 256 miles for the i5 M60 xDrive. The battery includes BMW’s Combined Charging Unit, allowing Level 2 AC charging up to 11 kW and the ability to charge from 10 to 80 percent in about 30 minutes. BMW’s selectable MAX RANGE system enables drivers to further increase their i5’s range in low-battery situations. 

Rear view of electric BMW i5 Series sedan.

Signature BMW Design

The exterior of the new eighth generation 5 Series takes BMW’s sporty past and infuses it with the automaker’s current design form. BMW’s omnipresent, signature kidney grille makes its expected appearance and takes center stage on the 5 Series’ front end. A long, sloping with muscular lines ties into a steeply angled windshield to create a sleek and uninterrupted line continuing through the roofline. The flanks of the i5 see a much more refined and minimalist approach with inset door handles and a subtle body crease near the rocker panels. 

At the rear, BMW has redesigned the model’s taillights with a more understated look, presenting a thin appearance with two slim red LED bars running across the taillight.` Turn signals and reverse lights are nestled in between. A downward-sloping trunk decreasing the gradient from the rear window and roofline makes the i5 appear very streamlined. 

A Premier Interior

Inside the i5 is a new experience as well. Chiseled lines and premier surfaces, expected of BMW, are abundant. Hidden HVAC vents are placed strategically throughout the interior with leather-free seating surfaces available. The most noticeable new feature is q 14.9-inch infotainment screen and 12.3-inch digital gauge cluster. Both screens meet to create an uninterrupted and impressive digital display. An in-car gaming console, which BMW dubs the AirConsole, makes its appearance in the i5, allowing users to choose from 20 games to play while the car is stationary. A new BMW Operating System 8.5 controls all functions within the i5 and accommodates over-the-air updates. 

The BMW 5 Series has always been a strong model. Positioned in the midst of BMW’s sedan lineup, the 5 Series has historically delivered the sportiness of the 3 Series with a dash of refinement and the calm nature of the 7 Series. This new generation is no different. Deliveries of the new 5 Series are set to begin in fall 2023 at an entry price of $57,900.

Side view of electric Honda e:Ny1.

Honda recently unveiled its e:Ny1 electric crossover, the first EV model based on the automaker’s all-new e:N Architecture F platform. The oddly named e:Ny1 is important because it shares Honda’s evolving EV design language and shows a direction that includes electrifying smaller and lighter models. That said, the Honda e:Ny1 holds less importance to drivers in the U.S. since it will be sold exclusively in Europe and Japan. Still, given the overall similarity of this Honda EV to the automaker’s HR-V, it isn’t a stretch to imagine a similar electric model destined for our shores.

Holding to Honda’s usual tradition, the e:Ny1 blends both a conservative and reserved appearance with splashes of chiseled and chunky sportiness peppered throughout. At the front, the e:Ny1 features slim and flat headlights that wrap in from the front fenders with angular LED running lights at the top. Separating the headlights is a matte-finished panel with charging status lights, and below that we find a large chargeport port door that’s well integrated into the overall front end design. Two discrete LED fog lights are located at the bottom of the bumper, with a thin strip of chrome beneath that runs the width of the front fascia. 

Front detail of the electric Honda e:Ny1.

Honda e:Ny1: Compact, Sleek, Stylish

The Honda e:Ny1 features a high belt line and flanks that are sleek and smooth save for a creased line along the top and bottom of the doors. Black side-mirror caps, wheel arches, and window trim reveal sporty undertones, reinforced by thin-spoke alloy wheels with black accents. At the rear, a subtle roof spoiler extends slightly above the rear window, curving in at the sides. A red LED light bar runs the width of the rear hatch with two slim taillights at either end. A single, sharp body line runs just beneath with a typeface Honda badge.

A stylish and techy interior greets the driver. While Honda has yet to divulge details about the array of onboard systems to be featured in the e:Ny1, we do note the inclusion of a 10.2 inch digital instrument cluster facing the driver and a 15.1 inch portrait-style infotainment screen at the center of the dash. The infotainment screen is split into three sections with navigation and related applications at the top, entertainment and vehicle functions mid-screen, and climate information and selections at the bottom. Colored LED accents are inset in the doors and dashboard, with two-tone stitching adding a sporty touch to the dash and door upholstery. The center console, window switch panels, and steering wheel showcase gloss black-finished accents. Leather upholstery on all seating surfaces is 50 percent thicker and treated to increase softness for added passenger comfort.

Stylish cabin of the Honda e:Ny1 electric car.

Nicely Appointed Cabin

Rear seating in the e:Ny1 is very similar to that of the HR-V but without the ability to fold the rear seats flat, which impacts total available cargo area and limits carrying capacity to 11.3 cubic feet. The cargo area itself is also very similar to the HR-V, although employing a new smart-close capability that allows activating the self-closing hatch and walking away before it begins closing.

Power ratings are adequate with the e:Ny1 producing 201 horsepower and 229 lb-ft torque using a single-motor driving the front wheels. A 68.8 kWh battery pack is said to deliver a European WLTP drive cycle range estimate of 256 miles. Because of the fundamental differences in how WLPT and EPA testing measures EV range, that number would likely translate to about 200 miles of electric driving here in the States. Fast-charging via the car’s front-mounted chargeport is said to replenish the battery from 10 to 80 percent in about 45 minutes, somewhat slower than many other EVs at similar price points. 

Rear view of the electric Honda e:Ny1 electric car.

The Honda e:Ny1 is set to be delivered to dealers in Europe and Japan late this year, with pricing expected to begin at a USD equivalent of about $40,000. 

2025 RAM REV electric pickup driving on trail.

RAM has been around as a distinct brand for some 14 years now, having split from its former identity as a Dodge nameplate in 2009. Since then, RAM has focused solely on pickup trucks and work vans with considerable success, especially with regard to its pickup truck line, which has won Green Car Journal’s Green Truck of the Year™ award three times in recent years. Now RAM has revealed details on its highly anticipated next act in the pickup realm, the all-electric RAM 1500 REV.

Building on the excitement generated by the wild electric RAM Revolution concept shown earlier this year, the 2025 RAM REV rides on the automaker’s all new STLA Frame optimized for full-size electric vehicle models with a body-on-frame design. This high strength steel frame is wider in the middle to accommodate battery packs while affording protection between the frame rails. It also features additional protection beneath courtesy of a full-length underbody belly pan.

2025 RAM REV electric pickup hood scoop.

RAM 1500 REV Power Options

This electric RAM pickup is especially noteworthy in that it boasts specs surpassing those of Ford’s F-150 Lightning and upcoming Chevrolet’s Silverado EV. REV will offer two EV powertrain options, with the base package featuring a standard 168 kWh battery pack projected to deliver a driving range of up to 350 miles. A more powerful option brings a 229 kWh battery pack with a targeted range of 500 miles, a feature sure to resonate with pickup buyers whose primary concerns are range and functionality. Normal and one-pedal driving capabilities are built in and regenerative braking comes as a matter of course.

Power won’t be a problem. We know the optional 229 kWh battery pack variant will offer a targeted rating of 654 horsepower and 620 lb-ft torque. Power ratings for the standard 168 kWh battery pack variant have yet to be disclosed. The REV’s projected towing capacity is said to be up to 14,000 pounds, with a payload capacity up to 2,700 pounds.

2025 Ram 1500 REV electric pickup chargeport.

Fast Charges in 10 Minutes

Charging is handled through the REV’s charge port located at the driver’s side front fender. Illuminated LED lighting and an audible chime lets a driver know that the truck is plugged in and charging. The charge port accommodates Level 1 and Level 2 AC charging connectivity on top and DC fast charging connectivity at the bottom of the charging interface. Drivers should expect the usual overnight charging experience if they have a 240-volt Level 2 wall charger at home. Those on the move can take advantage of the REV’s fast-charge capability at public fast chargers. If an 800-volt DC fast charger is available then the REV can add up to 110 miles of range in just 10 minutes while charging at up to 350 kW.

A handy feature is the RAM 1500 REV’s bi-directional vehicle-to-vehicle, vehicle-to-home, and vehicle-to-grid charging capability. With the use of a 7.2 kW on-board power panel mounted in the bed or a 3.6 kW power panel in the front trunk (frunk), this feature is very helpful during power outages in homes, or for individuals who will potentially use their truck to power equipment. It can also be used to charge your everyday devices if necessary.

RAM 1500 REV electric pickup.

Sporty RAM 1500 REV Styling

REV’s exterior styling lets us know this truck is electric without moving beyond the burly and commanding nature of the brand. A blend of elegance and toughness shows that RAM’s designers certainly didn’t want buyers forgetting what RAM stands for, while also conveying their vision for the future. To that end, the front fascia of this electric pickup features a sporty nature with its muscular hood and low grill. The look is accented with aptly named ‘tuning fork’ LED headlights and unique EV-specific RAM badging. At the rear we find a set of angular LED taillights that span a portion of the tailgate, and are specific to the RAM 1500 REV. RAM is boldly shown at the center of the tailgate and, like the front end, uses an exclusive lettering style to show us that this RAM is indeed electric.

Styling along the REV’s flanks remains quite similar to the current RAM truck with the exception of a flush-mounted chargeport at the driver’s side front fender and unique REV. Familiar lockable ‘RAM Boxes’ are available and positioned beneath the bed rails on either side of the pickup box and feature a handy 115-volt outlet. These boxes are also illuminated to facilitate easy access under low light conditions.

Interior view of the 2025 Ram 1500 REV electric pickup.

Premium and High Tech Interior

Inside, the blend of practicality and luxury is seamless with premium materials like carbon fiber, metal, and leather with tech peppered throughout. Ample passenger room is built in and functionality is enhanced with second row seats that can fold up for additional cargo capacity. Optional 24-way power adjustments are available for the front seats, including three memory settings and massage capability. Also optional is a 23 speaker Klipsch Reference Premiere audio system.

The REV cabin features a central 14.5 inch touchscreen, 12.3 inch digital instrument display, and a 10.25 inch digital screen mounted in front of the passenger seat. These screens utilize the automaker’s Uconnect 5 system that allows access to eight EV-specific functions across all screens, and entertainment functionality for the passenger screen. The REV also features a configurable head-up display capable of showing an array of selected information beyond vehicle speed, such as turn-by-turn navigation, speed limit, Lane Departure, Lane Keep Assist, and adaptive cruise control. A Uconnect 5 mobile app supports remote start and touchless door lock/unlock functions.

Front passenger screen in the 2025 Ram 1500 REV electric pickup.

Showcasing many industry-leading specs and visionary style, the RAM 1500 REV is shaping up to be a model in demand when sales begin in advance of its likely arrival at dealers toward the end of 2024. Of course, RAM will continue offering its popular gas-powered pickups to a willing market even as it dives ever deeper into electrification. In the meantime, the 2025 REV shows us that RAM aims to be a serious contender in the electric pickup truck competition.

Rear view of Hyundai Kona Electric.

Hyundai's first generation Kona arrived in the U.S. market in 2018, expanding the Hyundai lineup with a new subcompact crossover SUV. An electrified version, the Kona Electric, added a new choice the next year. Now the popular Kona is entering its second generation for the 2024 model year with a complete redesign and scaled up dimensions to help drivers make the most of the model’s sport-utility potential. Five trim levels are offered including SE, SEL, Limited, N Line, and the Kona Electric. While prices have not yet been disclosed, we expect the Kona’s point of entry to be in the $25,000 range with the electric pushing $36,000 or so.

Along with its new looks, Kona brings a surprising amount of tech and pep for the price including two ways to go electric. Kona's base electric powertrain features a 133 horsepower electric motor producing 188 lb-ft torque and a 48.6 kWh battery. A more powerful option uses a 64.8 kWh battery and a 201 horsepower motor delivering 188 lb-ft torque. Hyundai estimates the new Kona Electric’s range at 197 miles with the standard battery and 260 miles with the upgraded battery package, the latter offering just a few miles more range than the 2023 Kona Electric. Both Electric trims feature Hyundai’s new ‘i-Pedal’ driving mode that enables acceleration, deceleration, and regenerative braking from just the accelerator pedal under many driving conditions.

Vehicle-to-Load Capable

Charging is handled via a chargeport located in the Kona’s front fascia, making it easy to park and charge from a public charger on either side of the vehicle. An illuminated chargeport door lamp makes night charging more convenient. Hyundai built in 400 volt fast charging capability in its new Kona, which means drivers should be able to charge their battery pack from 10 to 80 percent in just over 40 minutes when a quick charge is needed, and if a 400 volt public fast charger is available.

Hyundai integrated handy bi-directional charging capability in the Kona that enables Vehicle-to-Load (V2L) functionality. That means Kona not only can charge its batteries from the front chargeport, but it can also charge equipment or power devices plugged into a chargeport adaptor. This can come in handy for those who take along electric bikes or scooters on their travels, or camp with equipment that needs to be plugged in or could use a charge. During power outages, the system can even help power home appliances or other necessities to the extent of its power capabilities.

Other Powertrain Options

Hyundai Kona Electric underhood.

For those less inclined to go electric, the 2024 Kona also comes with two available gas engine options to complement its electric power choices. The base powerplant is a 2.0-liter four-cylinder that produces 147 horsepower and 132 lb-ft torque, paired with a continuously variable transmission. The more powerful powertrain option is Kona’s 1.6-liter turbocharged four-cylinder that makes 190 horsepower and 195 lb-ft torque and is paired with an 8-speed automatic transmission. The turbo engine is standard with the sporty N Line and Limited trims.

A step up from the previous generation, Kona’s styling is more aerodynamic with sleek with clean lines that hint its designers had the future in mind. This appealing design reveals a conservatively rugged nature with elements of edgy styling that make it stand out amid the usual flock of cars. Kona’s visual appeal is headlined by an LED ‘seamless horizon lamp’ running light spanning the width of the front fascia, a design feature complemented by an equally striking fender-to-fender taillight design at the rear. Interestingly, Hyundai reversed the usual protocol for designing a new vehicle, which takes into account combustion power first and electric as a secondary consideration. Instead, Kona has been developed from the start as an electric vehicle with its need for an electric motor, battery packaging, and other components and electronics unique to EVs.

A Driver-Centric Cabin

Inside, the new Kona presents an updated and more futuristic experience. A driver-oriented cabin sports dual integrated 12.3 inch panoramic display screens. The gear selector has been relocated from the center console to a stalk behind the steering wheel to provide more storage space in the center console. Front seat backs are 30 percent thinner than the previous model to give rear seat passengers more knee and leg room. A ‘curveless bench seat’ design further improves space and comfort for rear seat passengers. The rear cargo area provides 25.5 cubic feet of space for everyday needs, and if you fold down the seat backs that capacity increases to 63.7 cubic feet of cargo area. A small front trunk (frunk) adds about another cubic foot of storage.

Hyundai’s SmartSense ADAS is available in the new Kona, which includes remote parking assist, forward-collision avoidance, lane-keep assist capability, navigation-based smart cruise control with stop-and-go, and other features. Particularly handy is blind spot view monitoring, which presents live video within the instrument cluster showing the blind spot encountered during a lane change.

Well-Connected Kona Electric

Center display in Hyundai Kona Electric.

Kona also includes other desired advanced connectivity features with the ability to process over-the-air (OTA) software updates, a breakthrough technology popularized by Tesla that’s now being embraced by a growing number of automakers. This allows wireless communication to deliver software and firmware updates for the Kona’s various on board systems to enhance its features. OTA technology can also update the vehicle’s multimedia software and navigation maps.

The new 2024 Kona Electric is sure to please with its fresh style, agreeable pricing, and multitude of user-friendly tech. We can expect the Kona Electric to arrive at dealers later in the fall following the debut of its gas-powered sibling sometime this summer.

Driving mode controls in the Hyundai Kona Electric.
Kristina Fritz, California Hydrogen Business Council.
Katrina Fritz is Executive Director of the California Hydrogen Business Council.

In recent years, state energy and regulatory agencies have modeled plans that conclude hydrogen is required to achieve deep decarbonization targets. Air pollution continues to worsen across the U.S. with hydrogen and fuel cells seen as part of the answer. For example, as a one-to-one replacement for diesel powered vehicles, equipment, and generators, hydrogen fuel cells have significant potential to decrease the negative air quality impacts this diesel equipment causes and eliminate their carbon emissions.  

With California’s current grid reliability challenges and need for more power generation capacity – coupled with the state’s continuing “overdemand” – all energy and mobility solutions must be brought to bear. National Lab studies have demonstrated the grid infrastructure required to charge battery electric vehicles of all sizes. The use of fuel cell electric vehicles, fueled by hydrogen, avoid further compounding grid reliability challenges.  The California Air Resources Board recent Hydrogen Station Self-Sufficiency Report  determined that an additional $300 million investment in hydrogen infrastructure, coupled with existing incentives like the Low Carbon Fuel Standard,  would lead to financial self-sufficiency of a fuel cell electric vehicle and hydrogen station network by 2030, avoiding additional upgrade costs and strain on the grid.

At the federal level, the multi-billion-dollar commitment to hydrogen and fuel cell programs in the 2021 Infrastructure Investment and Job Act (IIJA) has spurred a flurry of planning, project development, and investment in the hydrogen sector. States in every U.S. region have expressed support for project applications to the $8 billion Department of Energy hydrogen hub program. The awarded hubs will showcase production of hydrogen, distribution and delivery infrastructure, and broad end uses of hydrogen and fuel cells in the electricity, industrial, and transportation sectors.

Strong Support for Hydrogen

States from California to New York to Texas are committing significant funding and resources to support the development of these hydrogen hubs. The DOE and other agencies are launching additional energy manufacturing, clean electricity, zero-emission vehicle, and goods movement programs funded by the IIJA to further support hydrogen use alongside other clean energy technologies. Project developers and investors are simultaneously seeking guidance on the use of tax credits for hydrogen and fuel cells that came from the Inflation Reduction Act of 2022.

Hydrogen fuel cell big rig truck.

On the passenger light-duty vehicle side, Toyota and Hyundai continue to sell Mirai and Nexo hydrogen fuel cell vehicles in California. There are now over 15,471  fuel cell electric cars sold and leased in the U.S. In February, Honda announced a joint venture with General Motors to deliver a new fuel cell system not only for its light-duty vehicles but also for use in heavy-duty trucks, stationary power generation, and construction equipment. In early 2022, BMW announced its continued commitment to develop hydrogen-powered fuel cell vehicles with on-road demonstration of the iX5 to begin in 2023. 

Traditional manufacturers of engines and heavy-duty vehicles are partnering with clean energy companies to rapidly bring fuel cell electric vehicles to market in high volume, heavily polluted transportation corridors, with the assistance of the Hybrid and Zero-Emission Truck and Bus Voucher Incentive Program.  Already, on-road testing of fuel cell systems and vehicles made by Ballard Power Systems, Cummins, Hyzon Motors, Nikola Motors, and Toyota is underway. Off-road, the Port of Long Beach is working with Toyota and FuelCell Energy using a fuel cell to generate power, heat, and hydrogen, the latter used to fuel Toyota equipment at the port and Toyota Mirai vehicles coming off the ship. Byproduct water from the fuel cell’s hydrogen production is used to wash the cars.

Off Road and Materials Handling

Hydrogen fuel cell mining truck.

Presently, the largest throughput of hydrogen is in the off-road and materials handling sectors. In creating the first commercially viable market for hydrogen fuel cell technology, Plug Power has deployed more than 60,000 fuel cell systems and over 200 fueling stations, more than anyone else in the world, and is the largest buyer of liquid hydrogen. Plug customers have completed more than 55 million hydrogen fills into forklifts and other material handling equipment used in warehouses, including those operated by companies like Amazon and Walmart, showing the economic value of fuel cell powered forklifts. Contributing to their increased productivity throughput are advantages like rapid hydrogen refueling and a smaller overall footprint than battery electric counterparts that require space for chargers.

The State of California is considering the level of support needed for the required hydrogen fueling infrastructure to service all on-road fuel cell electric vehicles. Documents from the Hydrogen Fuel Cell Partnership illustrate the fueling stations needed for light-duty passenger vehicles and heavy-duty trucks  that would create a refueling network for launching a self-sustaining market. This would serve to quickly decarbonize key transportation corridors and improve air quality in the urban, rural, and agricultural communities along these corridors.

Hydrogen Powers Clean Transit

Hydrogen fuel cell bus on street.

Public transit agencies have been operating or conducting real-world testing of hydrogen fuel cell buses in their fleets . Following operational bus trials, many agencies concluded that both battery and fuel cell electric buses are required. Among the benefits cited for fuel cell buses are lower operating costs, often due to avoiding the investment required for battery electric buses such as charging stations and the need to expand capacity at local electric substations. In addition, the longer range and greater power density of fuel cell electric vehicles can support transit operations that must deal with varied, hilly terrain and longer routes.

California currently has 66 fuel cell electric buses in service with another 100+ committed to be placed in operation. Many transit agencies are set to follow the pioneering efforts of Alameda-Contra Costa Transit and SunLine Transit with their fleets of fuel cell electric buses and hydrogen refueling infrastructure. Among these are California’s Foothill Transit, Orange County Transit, and Humboldt Transit. Outside California, Stark County Transit in Ohio and Southeastern Pennsylvania Transportation Authority (SEPTA) in Philadelphia are committed to using hydrogen fuel cell buses to meet their service needs.

Hydrogen is here. Debates on energy resources should include discussion of best fit, rather than either-or. There is significant public and private recognition across the U.S that an all-of-the-above strategy is needed to meet our varied energy requirements and decarbonization goals, and hydrogen is poised to make an immediate and growing contribution to a global decarbonization strategy.

Katrina Fritz is the Executive Director of the California Hydrogen Business Council (CHBC).

Steve Hornyak, chief commercial officer of BrightDrop.
Steve Hornyak, BrightDrop Chief Commercial Officer.

Perhaps the most well-known benefit of switching to an electric vehicle is the environmental impact due to the elimination of tailpipe emissions compared to an internal combustion engine (ICE) vehicle. But what isn’t as obvious is that they can also be less expensive over the operating lifecycle.

Why? For starters, we tend to focus on fuel prices, yet one thing that often gets overlooked is the reduced maintenance costs electric vehicles can offer. The U.S. Government's Office of Energy Efficiency and Renewable Energy estimates that scheduled maintenance costs for light-duty battery electric vehicles are about 6 cents per mile, compared to 10 cents per mile for a conventional vehicle. Someone buying a passenger car for private use is less likely to worry about maintenance, but for large fleet managers these cost savings can be meaningful over time.

Another costly issue for fleets is unscheduled repairs caused by breakdowns. According to the Deepview True Cost Second Owner Study by predictive analytics and data company We Predict, unplanned repair costs for electric commercial vans are on average 22 percent lower compared to internal combustion engine equivalents after three years on the road. The reason for this is that electric vehicles have fewer mechanical parts than internal combustion engine vehicles. This is significant because reductions in repairs also mean more time on the road for busy delivery fleets. In a world where downtime is death for fleets, keeping vehicles on the road is critical to meeting the ever-increasing demand for last-mile deliveries.

Charging BrightDrop electric delivery van.

Meanwhile, in March 2022, CNBC reported that diesel fuel was already costing over $5 (USD) per gallon nationally, with gasoline hitting $6 (USD) in some parts of the country. So there can be important fuel cost savings to be made for fleets that switch to electric vans. In fact, BrightDrop estimates fleet owners will save over $10,000 (USD) per vehicle per year in fuel and maintenance when switching to one of our Zevo 600 electric vans, compared to its diesel equivalent. Let’s take a closer look.

Fewer Moving Parts

Why do we expect electric vehicles will need less maintenance? Moving parts are a big part of it, because it’s the moving parts that most often encounter problems. Standard internal combustion engine vehicles usually have over 2,000 moving parts in the drivetrain, while electric vehicles tend only to have about 20. For example, a battery electric vehicle has no timing or fan belt and no alternator. Additionally, an electric vehicle also lacks many of the complex non-moving parts that often fail in internal combustion engines, such as oxygen sensors, spark plugs, and catalytic converters. A 2020 CarMD Vehicle Health Index assessment of the top 10 most popular car repairs in America found replacing a catalytic converter was the most common, while replacing an oxygen sensor came second. According to Forbes, only one of these top ten repairs could ever happen to an electric vehicle (and it was the cheapest to fix at $15). The lack of moving parts also means that repairs on electric vehicles can be less complicated.

Additionally, electric vehicles usually don’t use transmissions, meaning that the common (and expensive) issue of damage to gears is not an issue. Many electric vehicles also use regenerative braking to repurpose expended energy back into the batteries. In addition to electricity savings, regenerative braking can also increase the life (and therefore reduce spending on replacing) of conventional brake parts, due to minimal use. Finally, electric vehicles don’t use engine oil and, although they do use engine lubricants, these rarely require a refill or change.

BrightDrop is electrifying fleets for last mile delivery.

Advantages of Electrifying Fleets

Electric vehicles can be cheaper to maintain and repair than their ICE or diesel alternatives. They also can be kept on the road longer by reducing the frequency of unplanned repairs, as well as reducing the amount of labor that would otherwise be spent dealing with these problems. All of these benefits take time to accrue. They can only be realized if fleet managers take a ‘total cost of ownership’ perspective that considers all costs over the lifetime of a fleet.

Perhaps the biggest concern that electric vehicle buyers have is that the battery will degrade over time, ultimately requiring an expensive replacement. We believe that such concerns can be overhyped or misplaced. Battery range has improved markedly in recent years, and all BrightDrop vehicles adhere to or exceed federal regulations, which require that electric vehicle batteries are covered by warranty for a minimum of eight years or 100,000 miles, whichever comes first.

Now is the time to switch fleets to electric vans. It's an opportunity not only to help reduce vehicle emissions, but also to help realize potential cost savings.

Steve Hornyak is Chief Commercial Officer and Executive Director at BrightDrop

Instrument display as you drive electric.

You know the drill. Get in the car, commute to work, run your usual errands, and at regular intervals stop at the gas station to fill up. It’s a routine that’s been ingrained in the driving psyche for decades. If you want to simplify, then consider a move from gas and instead drive electric. Driving an EV is not a panacea to life’s constant demands but all in all, it calls for less of your time and attention. Here are a few reasons why driving an electric vehicle may be for you.

EVs Can Enhance Convenience

How much is your time worth? Charging an EV’s battery can conveniently be done at home with a garage charger, through a growing public charging network, and increasingly at workplace chargers. Those regular trips to gas stations? Cross them off your list, forever. Another benefit that can save time – and frustration – is the ability for solo EV drivers to use high occupancy vehicle (HOV/carpool) lanes in some states, which can shave plenty of time off a commute.

It's Cheaper to Drive Electric

Electricity is a far cheaper way to fuel a car than gasoline. In fact, electric motors are so much more efficient than internal combustion engines, the most efficient electric vehicle today nets an EPA combined city/highway rating of 140 MPGe. The savings don't stop there. If you charge at home, additional savings can be realized by signing up for an electric utility’s favorable electric vehicle rate plan, then timing a charging session during a plan’s specified hours.

Less Maintenance Required

Vehicle maintenance is key to a healthy vehicle. Tune-ups keep a typical car running its best over the long haul, making the most efficient use of the gas it consumes and optimizing combustion so it produces fewer tailpipe emissions. One of the important benefits of an electric vehicle is that maintenance needs and costs are significantly diminished. Simply, there are far fewer moving parts in an EV than a conventional internal combustion vehicle, which means there’s less to take care of and fewer appointments needed for service.

Get a Subsidy to Drive Electric

Electric vehicles today are almost universally more expensive than those powered by traditional internal combustion engines. But if you want one, the federal government – along with many states, electric utilities, and other sources – can make it easier to buy an EV with generous subsidies of many thousands of dollars. The most valuable of these subsidies comes from the recently passed Inflation Reduction Act of 2022, which offers a potential clean vehicle tax credit up to $7,500 if you buy a new plug-in electric vehicle and up to $4,000 on a qualifying used EV.

Polestar 2 driving on highway.

Status Comes with the Territory

Driving an EV makes a statement. We’ve seen this over time as Toyota’s Prius hybrid made its way to U.S. highways just over 20 years ago and was embraced by environmentalists and celebrities. The instantly recognizable profile of the Prius was part of the attraction, which shouted, “Look, I care about the Earth!” To many, that was reason enough to drive a Prius. To a whole lot of others it was just kind of obnoxious. Thankfully, today’s expanding field of eco-friendly electric vehicles offer a different approach. Some feature futuristic design cues that push the envelope in a positive way, but most are so mainstream you have to look for EV badging. Either way, your immediate circle of influence will recognize that you’re driving an electric vehicle and that confers positive status.

Green Car Time Machine - archive articles from Green Car Journal.

The world’s automakers have long pursued diverse alternative fuel technologies for good reason. Simply, the future of transportation may well unfold in surprising ways. Among the many advanced fuels explored has been hydrogen, and in fact, even amid today’s focus on battery electric power there continues to be significant interest in this zero-carbon fuel. Here’s a look at the amazing developmental work that BMW was conducting on hydrogen vehicles 18 years ago, as documented in Green Car Journal at the time. We lend perspective on the BMW H2R hydrogen vehicle’s evolutionary importance by presenting this article just as it ran in Green Car Journal’s Winter 2004 issue.

Excerpted from Winter 2004 Issue: In the quest for environmental leadership, there’s often a delicate balancing act as designers strive to create cars that are environmentally positive, yet offer the features drivers most desire. Clearly, core values must remain in focus during the process to retain the values and identity that distinguish carmakers from their peers.

BMW H2R hydrogen race car in shop.

Hydrogen a Focus at BMW

This has been BMW’s mission over the past decade as it has pursued hydrogen cars and the performance to go with them. You can’t, after all, lay claim to the title “ultimate driving machine” if your zero-to-sixty times are glacial and you slog through corners, even if powered by clean-burning hydrogen.

For years, BMW has been refining the liquid hydrogen fueled sedans that it has placed in field trials on multiple continents, championing the use of hydrogen in conventional engines in lieu of the more popular fuel cell. These hydrogen vehicles have improved over the years, making the most of renewable hydrogen fuel in their internal combustion powerplants.

BMW H2R hydrogen car on race track.

Record Setting BMW H2R

Now, this automaker is putting its stamp on the hydrogen record book with adaptations of this hydrogen engine technology, fielding a land speed record car that has passed the 185 mph mark and claimed an additional eight records as well. Along the way it has achieved recognition by the Federation Internationale de l’Automobile as the fastest hydrogen car in the world.

A distinction achieved at the high-speed Miramas Proving Grounds in France, BMW’s 285 horsepower H2R hydrogen car was propelled to 100 km/h in about 6 seconds, setting records in the flying-start kilometer; standing-start ½ kilometer, kilometer, and 10 kilometers; flying-start mile; and standing start 1/8 mile, ¼ mile, mile, and 10 miles. The record car was piloted by BMW works drivers Alfred Hilger, Jörg Weidinger, and Günther Weber, who took turns at the wheel of the H2R during their record-breaking session.

Cutaway view of BMW H2R hydrogen race car.

Powered by a V-12 Hydrogen Engine

The sleek and imposing car was conceived, designed, and developed by the automaker’s subsidiary, BMW Forschung und Technik GmbH. Its carbon fiber exterior was designed by DesignworksUSA, the California-based strategic design consultancy owned by BMW Group. This is the same design house that worked on the BMW E1 and E2 electric car prototypes in the early 1990s.

This BMW is motivated by a 6.0-liter V-12 engine modified to run on hydrogen, a gasoline powerplant normally found in the automaker’s 760i model. Among the engine modifications is a fuel injection system adapted to handle hydrogen, which uses injection valves integrated into the intake manifolds. Special materials are also used for the combustion chambers. Liquid hydrogen is carried in a vacuum-insulated, double-wall tank that’s fitted next to the driver’s seat.

Front of hydrogen BMW H2R developmental car.

Is the H2R just a whimsical exercise? Nope, it’s part of a larger vision. In fact, BMW plans to launch a dual-fuel 7 Series that will run on hydrogen or gasoline, sometime during the production cycle of the present model, surely at a price far lower than that of a hydrogen fuel cell vehicle. Exercises like the H2R help pave the way.

Green Car Time Machine - archive articles from Green Car Journal.

One of the more interesting electric cars in the early 1990s was the German-designed BMW E1 and then the U.S.-designed E2, innovative yet mainstream looking vehicles that illustrated BMW electric vehicle aspirations. The E2 was slightly more compact than the futuristic-leaning BMW i3 ‘megacity’ electric car that was to come some 25 years later. It was 8 inches shorter, 6 inches narrower, and 5 inches lower than the i3, plus 700 pounds lighter. The E2’s ‘hot’ sodium-sulfur battery was projected to deliver a 161 mile driving range, about 8 miles farther than the i3. To enlighten readers on BMW’s early electric vehicle development efforts, we’re sharing the following article from the Green Car Journal archives as it originally appeared in the January 1992 issue.

Excerpted from January 1992 issue: BMW’s E1, an electric concept vehicle now undergoing road testing in Europe, has just been joined by a new U.S. variant. Introduced at the Greater Los Angeles Auto Show, BMW’s new E2 prototype appears mainstream enough to be a mid-‘90s model. Its appearance is somewhat reminiscent of both a downsized minivan and sedan, leaning toward the look of Mitsubishi’s new 1992 Expo and LRV, and the Mitsu-built Eagle Summit.

E2: A Coming BMW Electric Vehicle?

Is this the precursor of a production model? We asked Robert Mitchel, product information manager of BMW of North America. “It’s a concept car,” Mitchell shares, “although it is fairly close to what a production car could be. Rather than taking a current 3 Series and modifying it as we have in the past, we’ve built this solely with the intent of designing a car that would satisfy consumer needs and potential legislation.”

BMW E2 electric vehicle illustration.

Among the important consumer needs to be served is a handsome package, and the E2 does provide that. Lower ground effects panels, distinctive BMW grillework, and an aero exterior are distinct design features. While the initial E1 was designed in Germany by BMW Technik GmbH, the automaker turned to California-based Designworks/USA (which is 50 percent owned by BMW AG) for the U.S. version.

Designing the BMW E2

According to Designworks/USA president Chuck Pelly, the studio’s intent was to give the E2 a formidable stance, with strong wheel flares and tires moved outboard as much as possible. A more substantial hood and bumper system were also integrated. “It’s a totally new body,” adds Pelly, “that’s more traditionally BMW styled, with less reversals” than the original E1. It’s also longer, wider, and lower with a smoother overall shape.

Inside the E2 variant is seating for four with storage behind the rear seat. A rounded dash integrates driver and passenger side airbags and a speedometer, range indicator, and clock. Forward/reverse controls and an electric handbrake are also provided. Designworks/USA is currently working on a completely new and more luxurious interior for the E2.

Illustration of BMW E2 electric vehicle interior.

Efficient But Not BMW Quick

Both rear drive models use a new Unique Mobility [UQM Technologies] brushless DC motor mounted at the rear axle. The 45 hp, motor is efficient, offering very respectable power by EV standards. But the E2’s acceleration numbers point to fairly sedate performance when compared to internal combustion vehicles.

Bottom line: Could the E2 sell if it were produced as a mid-‘90s model? Green Car Journal editors believe so, with a few caveats. Acceleration is passable for an EV utilizing current state-of-the-art technology. But a projected 15.6 second 0-50 mpg (80 kph) time may not be acceptable to the mainstream BMW buyer who expects sporting performance from his driving machine – even if the E2 does exhibit a typically upscale BMW image.

BMW-style performance is possible by combining more potent electric propulsion with the E2’s advantageous curb weight. Perhaps integrating twin UQM motors would do the job (90 hp total), or using an advanced generation motor available closer to the time the E2 could make it to market. The LRV’s 1.8-liter engine supplies 113 hp total, 1 hp less than the GM Impact prototype’s twin electric motors … so electric propulsion can offer the level of highway performance driver’s have come to expect. It doesn’t seem such a stretch to conjure visions of contemporary BMW performance from an ideally configured E2.

Technical specifications for the E2 BMW electric vehicle..
Green Car Time Machine - archive articles from Green Car Journal.

Everyone is familiar with Tesla these days. In its early years, though, Tesla was just another aspiring automaker with big dreams and enormous challenges, and at times, seemingly insurmountable financial hurdles. That’s all changed and Tesla is now viewed as a serious competitor by the world’s legacy automakers. Today there’s the Tesla Model 3, Model S, Model X, Model Y, and Tesla Semi. Coming up will be a second-generation Tesla Roadster and Tesla's highly-anticipated Cybertruck. Sixteen years ago, Green Car Journal featured the company’s original electric Roadster and shared the emergence of Tesla as a potential competitor in the electric vehicle field. We present this article just as it ran in Green Car Journal’s Fall 2006 issue to lend context to the ever-unfolding Tesla story.

Excerpted from Fall 2006 issue: Only giant corporations have the resources to develop competent, competitive automobiles, and only internal combustion-powered cars offer the performance and practicality required by today’s drivers. The team at Tesla Motors is tasked with turning these conventions onto their respective heads…and they’re doing it. 

Tesla Roadster cutaway illustration.

Lithium-Ion Battery Pack

From its founding in 2003, most of the company’s efforts have gone into developing the heart of the car, the Energy Storage System (ESS). Some 6,831 lithium-ion cells – each slightly larger than a typical AA battery – are contained inside a large enclosure that fits neatly behind the Roadster’s two seats. The batteries are liquid cooled and attached to an elaborate array of sensors and microprocessors that maintain charge balance between the cells. Tesla chose a commonly used lithium-ion cell so that battery development will continue to drive down the cost and improve performance.

Also developed internally is the motor, which features remarkably high output for its small size: 248 hp and 180 lbs-ft of torque. The motor acts as a generator whenever the driver lifts off the throttle, providing an ‘engine braking’ effect similar to conventional cars, while also recharging the batteries.

Tesla Roadster driving on highway.

Tesla Roadster has Lotus Influence

The Roadster’s chassis is based on that of the Lotus Elise sports car, but lengthened and beefed up to handle the Roadster’s roughly 350 pounds of extra weight, largely attributable to the battery pack. The body design was penned by the Lotus Design Studio, and final assembly is completed at the Lotus manufacturing facility in England.

Along with a top speed of 130 mph, the company claims a zero to 60 mph time of four seconds, on par with some of the world’s top supercars. But the real test for an electric car is range. Tesla says the batteries will last for 250 miles of pure highway driving, and can be recharged using Tesla’s home-based charging system in under four hours. The batteries are expected to last five years or 100,000 miles, after which time they’ll have 80 percent of their original capacity. In terms of real-world practicality, these are some of the most impressive numbers we’ve seen from an electric car.

Behind the wheel of the Tesla Roadster.

High Performance, High Price

There’s one more crucial number: price. The Tesla Roadster starts at $89,000 and tops out at $100,000. That’s steep, but not wholly unrealistic given the level of performance the car achieves.

Tesla Motors thinks there’s plenty of demand for their car, and early signs look good: the first 100 Roadsters were snapped up right away. It will be interesting to see if that kind of buying fervor continues as Tesla opens its direct sales and service centers, first in Northern and Southern California, followed by Chicago, New York, and Miami. The company begins the first production run of 600 to 800 cars next spring, maxing out at 2500 per year after three years if demand holds.

Tesla Roadster with blurred background.

Tesla Roadster an Ideal Launch Vehicle

Plans are already in the works for the next model, a 4-door sedan in the vein of Toyota’s Prius. Tesla’s Mike Harrigan thinks that in five to six years, the cost of batteries will have been cut in half – the Roadster’s pack costs about $25,000 today – and will be capable of providing a family sedan with a range of 500 miles, double that of the Roadster.

The Tesla Roadster may be the perfect weapon to launch the Tesla brand. It’s eye-catching and fast and targeted at a segment that can realistically command high prices, thereby helping to absorb the high cost of the batteries and high-tech control system. The next step, and perhaps the greater challenge, is to drive this high concept down to the mainstream. We’ll be watching intently.  

Rear view of Tesla Roadstery.
Toyota bZ4X electric car.

Behind the wheel of Toyota’s new bZ4X electric vehicle, I’m given to a bit of reflection as to why this car has come to be. After all, Toyota is a specialist in hybrid vehicles and is noted for its focus and leadership here, not battery electric cars. But these days Toyota is feeling the pressure – actually, lots of it – to bring all-electric vehicles to a wanting market.

In between Toyota’s hybrid offerings and its emerging focus on electric vehicles are the  automaker’s plug-in hybrids that blend characteristics of the two. The Toyota brand has a pair of these now – the RAV4 Prime offering 42 miles of electric driving and 640 miles total range, and the Prius Prime offering 25 miles on battery power with a total driving range of 600 miles. We expect other models to join in soon enough.

A Timely EV Introduction

So why the bZ4X battery electric vehicle? Because it’s time, and also because it’s a critical link to Toyota’s ‘Beyond Zero’ (bZ) future and an array of battery electric, plug-in hybrid, and hybrid Toyota models in the pipeline. The automaker is serious about this. To support its growing electrification effort, Toyota has announced massive investments in battery manufacturing for its electrified vehicles, including $3.8 billion alone for a new battery manufacturing facility in North Carolina.

Toyota has made some earlier forays into the electric vehicle field in the States, but it’s been a while. The automaker fielded its first RAV4 EVs here from 1997 to 2003 in response to California’s zero emission vehicle mandate, and then a newer generation RAV4 EV from 2012-2014, developed with Tesla. It’s been hybrids and plug-in hybrids ever since, plus of course the Toyota Mirai hydrogen fuel cell electric vehicle, though most don’t view that model as a battery electric vehicle competitor at this time.

Toyota bZ4X electric vehicle and night skyline.

Toyota bZ4X Design

Segue eight years ahead from Toyota’s last battery electric vehicle experience and here we are with the bZ4X. It’s been worth the wait. What we have in the bz4X is a stylishly modern intro to Toyota’s coming line of battery electric vehicles, sized similarly to a RAV4 but just a bit longer and lower. Its body design features disparate elements like a distinctly flat ‘hammerhead’ front fascia combined with sharp angles, pronounced fenders, sculpted sides, and a flowing roofline. All come together nicely as an appealing whole…a design not too conservative, and not leaning too far into the future.

Low-profile headlamps are accented by a dark contrast band that flows from the front fenders and across the front end. Matching contrasts are found at the rear fenders as well, with black accented rocker panels running from well to well. At the rear, the bZ4X innovates with a pair of aerodynamic roof extensions at either side of the upper hatch, lending the impression of a future-esque roofline spoiler. The bottom of the glass features a slight lip-of-a-spoiler with a thin fender-to-fender running light below, along with distinctive angular taillamps.

Toyota bZ4X cabin.

Familiar Cabin, With a Twist

Inside is a comfortable and modern interior featuring all the necessary elements for a satisfying driving experience, leaning a bit towards the spartan side. While much is familiar to the breed, there are design elements that align with the forward-thinking theme embodied by the car’s distinctive exterior. In particular, we’re thinking of the dashboard and instrument panel design ahead of the driver, which features an unusually long expanse between the steering wheel and MMI information display. Additional information and multimedia features are presented in a 12-inch widescreen display in the center dash position. Driver and passenger seats are comfortably bolstered for support and plenty of room is provided both front and rear, with rear legroom what one would expect in this size of vehicle. A panoramic roof is optional.

The bZ4X is well-equipped with the advanced driver assist features expected in today’s new models. It features the first use of Toyota’s latest TSS 3.0 Safety Sense suite, which includes advancements like improved pre-collision with guardrail, daytime motorcyclist, and low-light cyclist detection, and enhanced lane recognition. Other tech features include cloud-based navigation offering real-time traffic information and parking space availability, over-the-air software updates, and a digital key feature enabling drivers to lock, unlock, and start their bZ4X with their smartphone.

Rear seats in Toyota bZ4X electric car.

Single or Dual Motor Models

Drivers can choose single- or two-motor bZ4X variants. The former achieves an EPA estimated 119 combined MPGe with a 252 mile driving range, and the latter a combined 104 MPGe with a 228 mile range. Output for the single front-wheel drive model is 201 horsepower with the two-motor AWD version adding just 13 additional horsepower to the total. Energy is supplied by 71.4 and 72.8 kWh lithium-ion batteries, respectively. Both versions deliver a fun driving experience with confident ride and handling, quick torque at the ready, and plenty of power for anyone’s every day driving needs. With the dual-motor version delivering a 0-60 mph romp in the mid-seven second range, acceleration is brisk but does not approach the performance realm of some electric vehicles.

Toyota’s bZ4X is clearly an important introduction for this automaker that reinforces its continuing journey towards electrification. However, it does not mean that Toyota is convinced battery-powered vehicles are a proper all-inclusive strategy. The world’s largest automaker has been clear that it is not ‘all in’ with electric cars in the same way as some of its high-profile competitors, and the company has caught a lot of heat because of this. Rather, Toyota’s well-reasoned take is that multiple approaches exist to solving the interconnected issues of personal transportation and environmental sustainability.

A Balance of Electric Offerings

Electrification is a big part of this. It’s just that Toyota’s strategy does not embrace a tunnel-vision approach in which all roads lead to a plug, or a model without a gas cap. Some take form as hybrid, plug-in hybrid, hydrogen fuel cell, and yes, even battery electric vehicles. There is a balance here because one is needed since not everyone’s needs are the same.

An earlier Green Car Journal perspective shared by Toyota’s chief scientist, Dr. Gill Pratt, adds food for thought. Considering the finite resources available for worldwide battery cell production, and the carbon emitted in their production, charging, and use over time, it’s important they are used in the best way possible. Optimum use achieves a higher carbon return on investment (CROA) as cells are used closer to their full potential. EVs with large battery packs regularly making use of their range potential make sense and offer a higher return.

Toyota bZ4X charge port.

Best Use of Battery Cells

In Dr. Pratt’s illustrations, however, a fully electric vehicle with hundreds of miles of range primarily driving a short daily commute offers a poor return, since the majority of the cells are unneeded most of the time and are simply carried along as dead weight. Using this same number of cells in numerous plug-in hybrid models requiring smaller battery packs would offer a much more favorable carbon return, if these PHEVs are driven in ways that make best use of their more limited battery electric range.

This isn’t to say that plug-in hybrids are an inherently better choice than electric vehicles, or the other way around. It just means that needs vary, and pairing needs with an electrified vehicle’s capabilities makes the most environmental sense.

With hybrids and plug-in hybrids covered in the Toyota lineup, the missing link – the all-electric bZ4X – is now here to fill the need. Those seeking a crossover SUV offering expected zero-emission driving range, eye-catching style, and a comfortable and confident driving experience should look into Toyota’s new electric crossover. At a base price of $42,000, it provides what the brand promises – quality, thoughtful design, and user-friendliness, and no doubt the satisfying ownership experience the Toyota brand is known to deliver. Plus, of course, zero emission driving every mile you travel.

Green Car Time Machine - archive articles from Green Car Journal.

Toyota’s path to producing all-electric vehicles has been a long one, highlighted by the RAV4 EV model it fielded to fleets in response to the California Air Resources Board’s Zero Emission Mandate in the 1990s. Green Car Journal editors test drove variations of this small electric SUV during those early years of the modern electric vehicle’s development. We were impressed by Toyota’s exploration of the potential market for battery EVs at the time. To lend perspective on this automaker’s electric vehicle development, we present this article on the Toyota RAV4 EV pulled from our archives, just as it ran in our January 2002 issue.

Excerpted from January 2002 issue: Many thought the RAV4 EV – the electrically motivated compact sport utility vehicle from Toyota – was gone, the victim of a completed agreement with the State of California in the late 1990s. But it’s not. Toyota Motor Sales USA is bringing the sporty little EV back, this time making it available to retail customers in California, not just fleets. Sales are slated to begin in February 2002.

Rear view of Toyota RAV4 EV.

Fleet Service First

RAV4 EVs made their mark during the late-1990s as hundreds of these were leased and placed in fleet service. Some 700 of the 900 RAV4 EVs were in use in California. That occurred because of requirements imposed on automakers, including Toyota, by the California Air Resources Board, the result of the Memoranda of Agreement that accompanied postponement of the 1998 Zero Emission Vehicle Mandate.

That was then, this is now. No mandate exists this year, although all automakers are feeling the pressure of the impending 2003 ZEV rule that will require major automakers to sell large numbers of EVs to meet a 2 percent threshold. In retrospect, maybe Toyota’s move to bring the RAV4 EV back isn’t surprising after all.

RAV4 EV Powertrain

The RAV4 EV is powered by a maintenance-free, permanent magnet motor that produces 67 horsepower (50kW) and 140 lb.-ft. torque, providing an electronically governed top speed of 79 mph. Front wheel drive is via a single speed transaxle, with reverse provided by backward motor rotation.

A sealed, 288 volt nickel-metal-hydride (NiMH) battery pack provides energy to the motor. This pack, comprised of 24 12-volt modules, is located beneath the SUV’s floor to minimize intrusion into the passenger compartment and optimize the vehicle’s center of gravity. Charging this pack requires five to six hours.

Driving the Toyota RAV4 EV

Stopping power is supplied by an anti-lock and regenerative braking system that utilizes solid aluminum front discs and steel rear drums. The regenerative system returns energy to the batteries whenever the RAV4 EV is coasting or braking.

Time spent behind the wheel of the RAV4 EV has shown this vehicle to be fun, dependable, and capable of fulfilling most daily missions with ease, so long as they fit within the vehicle’s range capabilities. Since an electric motor produces peak torque immediately, the RAV4 EV offers good off-the-line acceleration but a rather modest 0-60 mph elapsed time of about 18 seconds. Driving range is between 80 to 100 miles per charge.

Efficient Heat Pump HVAC

Seating for five and ample space for cargo is provided in this five-door compact SUV. The interior offers the high level of function and comfort expected of a Toyota product, featuring such standard amenities as split fold-down rear seats, heated driver and front-passenger seats, adjustable-height front seatbelt anchors, and dual front airbags. Convenience is well accommodated by a heated windshield, rear-window wiper and defogger, and power door mirrors, windows, and door locks. An AM/FM stereo system with CD provides the needed tunes. Rear seat heaters and traction control are available options for cold climate use.

One of the advantages of electric vehicles is their use of heat-pump type air conditioning, an innovation that allows climate control functions to operate while a vehicle is turned off and parked. RAV4 EV drivers have the ability to set a timer and adjust their vehicle’s pre-heat or pre-cool function so the SUV’s interior is at a desired comfort level regardless of outside temperatures.

RAV4 EV Priced at $42,000

Toyota says the RAV4 EV will have a rather lofty suggested retail price of $42,000, although a $9,000 California Air Resources Board incentive and $3,000 federal tax credit brings the price of entry down to $30,000. This includes an in-home charger. Three introductory lease options will be offered that also include the use of the charger.

Every major metro market in California will soon find a participating RAV4 EV dealer. While initial sales are aimed exclusively in California due to Toyota’s need to address this state’s 2003 ZEV mandate, success here would certainly find the RAV4 EV making its way to other markets soon enough, starting with those poised to follow California’s lead by adopting the state’s ZEV requirements.

Toyota aims to make it easy for buyers to connect with their new electric vehicle. Like the Prius gas/electric hybrid, customers will have the ability to order the RAV4 EV online and take delivery through a participating dealer, as is the case with the Prius currently.

Jeep Grand Cherokee front end.

Jeep is on a roll. This enduring brand, symbolically aligned with the American persona due to its rich history here, is certainly getting it right. Long popular with those seeking on- and off-road capabilities and the rugged image that comes with that, there’s a Jeep model to fit diverse desires and needs. The Jeep Grand Cherokee, introduced in its fifth generation in 2021, is at the luxe side of the spectrum.

Beyond the Jeep Grand Cherokee’s obvious benefits for families – roominess, high functionality, desirable features, and style – this full-size SUV offers something that’s increasingly important to a great many new car buyers today: electrification. This comes in the form of the Grand Cherokee 4xe model, a plug-in hybrid offering efficient hybrid operation as well as the ability to plug in, the latter capability enabling 25 miles of zero-emission, on- and off-road driving on battery power at the flick of a switch.

Plug-in charging port in Jeep Grand Cherokee 4xe.

Best-Selling PHEV

We’ve noted Jeep’s interest in electrification for some time as part of Chrysler/Dodge/Jeep electric concept vehicle explorations, most notably back in 2008. Jeep started its modern electrification push with the ever-popular Wrangler, introducing the Wrangler 4xe plug-in hybrid variant in the 2021 model year. By 2022, this model laid claim to being the best-selling plug-in hybrid in North America. That’s saying a lot given the wide array of PHEVs now available to consumers.

The electrified Grand Cherokee 4xe is the expected, and welcome, follow up. Sporting an appealing and sophisticated design, the Grand Cherokee 4xe features distinctive Jeep styling cues, low-silhouette headlights and taillights, a handy roof rack, and angular, metal-trimmed through-the-bumper exhaust. Blue front tow hooks are exclusive to the 4xe model, as is a chargeport found at the driver’s side front fender.

Rancho-Guadalupe Dunes Preserve sign.

Jeep Grand Cherokee on the Road

We recently had the opportunity to take a road trip in Jeep’s electrified Grand Cherokee 4xe, which included a fascinating visit to the Guadalupe-Nipomo Dunes National Wildlife Refuge on California’s Central Coast. Our time behind the wheel illustrated why this is such a popular model. The ride is comfortable and performance solid, with all the acceleration you need delivered by a turbocharged 2.0-liter four cylinder engine and a pair of electric motors. Together, this package delivers an abundant 375 hp and 470 lb-ft torque that’s delivered to the road via a TorqueFlite eight-speed automatic transmission. Energy is provided by a temperature controlled 17 kWh lithium-ion battery pack packaged beneath the vehicle’s floor and protected by skid plates.

Driving modes are selectable on a panel at the lower left of the steering column – Hybrid, Electric, and e-Save. The first enables driving in gas-electric hybrid mode using both the combustion engine and electric motors. Electric mode uses motor-battery propulsion exclusively for zero-emission driving. The e-Save function allows running without any use of battery power, allowing a driver to save maximum energy for all-electric driving in desired areas, such as on trails. The Jeep’s Selec-Terrain system features controls on the center console that allow optimizing driving characteristics with selections for Sport, Rock, Snow, Mud/Sand, and Auto. Hill Descent Control and 4WD Low are also selectable on the center console. Shifting to Park, Reverse, Neutral, and Drive is handled with a rotary dial.

Driving mode selections in Jeep Grand Cherokee 4xe.

Trail Rated Jeep PHEV

We drove mostly in hybrid drive during our trip, though we did spend time driving exclusively in electric mode when we had the ability to charge up during our journey. Both deliver all the acceleration you really need. Overall efficiency while driving in conventional mode is pegged at a combined city/highway 23 mpg by EPA. Driving exclusively on battery power nets a 56 MPGe (miles per gallon equivalent) combined rating, all the while running emissions-free.

Though we didn’t do serious off-roading during our journey or tow any toys along with us, this vehicle’s capabilities in these areas are considerable. The Trail Rated Grand Cherokee 4xe features Jeep’s Quadra Trac II 4x4 system with two-speed transfer case, up to 10.9 inches of ground clearance, and is capable of towing up to 6,000 pounds. This electrified Jeep can also ford up to 24 inches of water without issue since all high-voltages electronics are sealed and waterproof.

Jeep Grand Cherokee 4xe on road.

Jeep Grand Cherokee 4xe Interior

During our drive, we really came to appreciate this Jeep’s accommodating interior and thoughtful appointments. The automaker’s latest Uconnect 5 infotainment system is integrated, along with wireless Apple CarPlay and Android Auto. Driver information, system controls, and entertainment functions are displayed on three digital display screens. The far-right screen, which can be turned on and off with a dash-mounted switch, offers the right-seat passenger digital entertainment, co-pilot and navigation assistance, and camera viewing. Found at the front of the center console are USB and USB-C ports, a port for 12-volt DC accessories, and an HTML port.

Seats are upholstered in handsome gray leather with contrast stitching, a luxury-oriented theme carried throughout the interior with leather-trimmed door panels, center console, dashboard, and steering wheel. Sophisticated gray wood accents on the dash and door panels a stylish touch. Front seats are nicely bolstered for support and comfort.

Accommodating Third Row Seats

Seating in in the rear of this full-size SUV is quite accommodating, affording plenty of legroom and headroom. Rear seating features a center fold-down armrest with drink holders, plus 60/40 split seatback functionality to enhance rear cargo-carrying capacity. Rear side windows offer lift up sunshades, a nice touch. Back seat passengers are provided controls at the rear of the center console for their own seat heaters, a display with controls for heating and air conditioning, and registers for directing airflow as needed. Below that is a 115 volt, 150 watt AC plug for a computer or other devices that use standard household current. Also found here are USB and mini USB ports for mobile devices.

Of course, advanced driver assist systems are part of the package. The Grand Cherokee 4xe includes standard adaptive cruise control with stop and go, lane departure warning with active lane keep assist, full-speed collision warning with active braking, intersection collision assist, and much more. Beyond the daily convenience afforded by a rear back-up camera, rear park assist sensors, and a 360-degree surround view camera system, there’s also parallel and perpendicular park assist to make any kind of parking situation easier.

Display screen in Jeep Grand Cherokee 4xe.

Electric Drive is Handy

High levels of comfort, expansive connectivity, and confident driving are delivered in good measure by the Grand Cherokee 4xe. The fact that this is also a plug-in hybrid with 25 all-electric miles at the ready for our usual daily drives is a resounding plus.

We have many years of experience living with different plug-in hybrid models, and have found that our trips to gas stations are infrequent and our around-town driving handled almost exclusively on battery power. That is, until another road trip beckons and we head off with confidence knowing will be driving largely on hybrid power, with no charging stops needed unless they are convenient and fit into our schedule. This was our experience with the Jeep Grand Cherokee 4xe and we just wish it were staying longer in our care.

Jeep Grand Cherokee 4xe second row seating.

Rear of an Audi e-tron S Sportback.

We’ve driven a great many Audi models over the years, and to a one they have met and often far exceeded our expectations. That’s saying a lot since Audi is a premium brand and those expectations are set pretty high. Thus was our mindset as we did an initial walk-around of our Audi e-tron S Sportback test car before heading out on the road.

Stylish in its Navarra Blue metallic finish, this e-tron sports a subtly aggressive crossover profile that flows rearward in a sleek sportback design. This softens the expected SUV roofline while lending the influences of a coupe, with the rear finishing into an integrated spoiler. Up front is a stylized closed grille as one might expect of an electric vehicle, flanked by air ducts on either side and an aggressive headlamp design with distinctive running lights. Nicely sculpted sides with pronounced rocker panels complete the package. Charge ports are provided on either side of the car below the e-tron badging on the front fenders. An electronic pushbutton releases the panel, which swings down.

Audi e-tron S Sportback cabin.

A Well-Appointed Cabin

Inside the e-tron S Sportback is a well-designed and comfortable interior featuring grey Valcona leather with contrast stitching, nicely bolstered front seats, and elegant instrument panel accents. Driver information is presented in a fully-digital LCD instrument cluster featuring selectable Classic, Sport, and e-tron modes. A pair of flush, center-mounted touchscreens feature infotainment functions and controls. Below the lower screen is the start button and a cleverly-designed gear selector with a grip and thumb control.

This midsize SUV features plenty of interior space with welcome legroom and headroom, plus comfortable seating for rear passengers. Among the many conveniences afforded those in the rear are air conditioning and heating registers, plus a digital display at the rear of the center console that allows setting the desired temperature. Controls are also provided for rear seat heaters. Other niceties include pull-up window shades at each rear door window, a pair of rear map lights, and the functionality of 60/40 split folding rear seat backs for expanding cargo capacity.

Audi e-tron S Sportback rear seat.

Driving the Audi E-tron S Sportback

Driving the stylish and well-appointed electric e-tron S Sportback is satisfying and fun, with its three electric motors delivering great acceleration and bursts of speed on demand. These motors produce a combined 429 horsepower and 596 lb-ft torque, with a greater 496 horsepower and 718 lb-ft torque on tap during an available 8 second boost mode. This ups the ante considerably from the standard but still compelling two-motor e-tron Sportback, which features 402 horsepower/490 lb-ft torque in boost mode.

The e-tron’s ride is smooth and cornering responsive, with the car feeling well-planted as we powered through the curves on canyon roads. The cabin is quiet and well isolated from the road. If you’re inclined, as we were, you can adjust the degree of regenerative braking with paddles at either side of the steering wheel. This enables introducing greater levels of drag during coast-down while the motors generate increased electricity to feed back to the batteries. We appreciated the car’s head-up display that presents speed and posted speed limit information so eyes can remain on the road ahead. The e-tron S Sportback lends additional driving confidence since it’s also equipped with an array of the latest advanced safety and driver-assist systems.

Front detail of an Audi e-tron S Sportback electric car.

This Audi e-tron S is Fast

Performance is impressive. The e-tron S Sportback rockets to 60 mph from a standstill in a quick 4.3 seconds with boost mode selected. Its 95 kWh lithium-ion battery delivers an estimated 212 mile driving range, with EPA fuel efficiency estimates rating this electric car at 75 MPGe (miles-per-gallon equivalent). A full charge is achieved with a 240-volt Level 2 charger in about 10 hours, while charging from 0 to 80 percent capacity takes just 30 minutes when charging at a public 150 kW DC fast charger.

Those in the market for Audi’s more performance-oriented e-tron S Sportback will find it coming in at an MSRP of $87,400, a $18,700 premium over the standard e-tron Sportback.

Dimitris Psillakis, CEO of Mercedes-Benz USA

As the global automotive industry transitions to an electric future, Mercedes-Benz aims to become the most desired electric brand in the world. From 2025 onwards, all newly launched vehicle architectures will be electric-first, demonstrating Mercedes’ commitment to electrification and efforts to provide a variety of options to consumers. To refine this strategy, Mercedes recently announced ambitions to expand its luxury purchasing experience in addition to focusing on luxury automobiles.

We’re in a steady race to decarbonization. With that, we realize that there cannot be luxury in the future without sustainability. Now that we’ve made a full commitment to electric, surpassing milestones along the way, we are shifting capital allocation and engineering resources to the luxury segment because the demand is there. We are focused on bringing real value to our customers, dealer partners, and shareholders worldwide.

Mercedes-Benz will rebalance its product portfolio, allocating more than 75 percent of its investments to the most profitable market segments. Mercedes is transitioning from one electric vehicle line to a full lineup of vehicles focusing on three key product categories:high-end luxury, core luxury, and entry-level luxury. This increased focus on luxury products is reflective of our rising customer demand in these segments.

Our goal to go totally electric by 2030 – where market conditions permit – and become CO2-neutral by 2039 are key components in strengthening the link between luxury and sustainability. With a higher concentration on the top end of the market, Mercedes will generate a strong financial performance even under increasingly adverse market conditions. By the end of this decade, Mercedes aims to have reduced CO2 emissions per passenger car by half from 2020 levels. Electrifying the car fleet, charging with green energy, increasing battery technology, and a large use of recyclable materials and renewable energy in manufacturing are all important components in the overall electrification strategy.

The Customer is the Focal Point

Xray view of Mercedes-Benz EQS electric car.

Success in the future requires changes today. In order for this new portfolio approach to work, we recognize that the number-one component driving demand in luxurious mobility is digital and sustainable luxury. This is being defined by values and benefits that go beyond physical experiences. Customers seek and demand valuable resources such as time. As a result, everything is being viewed through the lens of innovation, addressing this urgent need of customer convenience. We’re making incredible progress on all fronts. And we’re doing it as a team.

We are committed to providing a superior customer experience that extends beyond traditional channels and senses. Mercedes-Benz has launched a brand-new effort as a result of this: "Customer First" – an all-new initiative designed to address overall brand perception issues, improve customer satisfaction, and drive loyalty by. Customer First will channel customer issues directly to an HQ Central Team for quick answers to questions and swift resolution of potential issues. This initiative is part of our commitment to deliver the best white-glove service possible.

Evolving for an Electric Future

Mercedes-Benz Vision AMG illustrates the company's electric future.

We’re also hard at work establishing new marketing and sales channels, both online and offline, to ensure a seamless consumer experience. The world is changing because of technology and we have to utilize its full potential to provide meaningful added value to our consumers. At every touchpoint, beginning with digital communication, the greatest user software offers high usability and an immersive customer experience. Additionally, Mercedes will begin combining equipment packages in an effort to simplify configuration and meet customer needs. The packages will be tailored to the tastes of customers and geographical demand, allowing for faster delivery.

For 130 years, Mercedes has placed emphasis on creating unforgettable brand experiences across all customer touch points inside and outside of the car. It’s important to us that customers are able to view a new vehicle in person, experience it with all of their senses, and drive it. We're excited to continue this good work, focusing on giving customers the unique Mercedes-Benz brand experience they demand and deserve.

Dimitris Psillakis is Head of Marketing and Sales at Mercedes-Benz Cars North America and CEO of MBUSA

Frank Wolak, president and CEO of the Fuel Cell and Hydrogen Energy Association.
Frank Wolak, Fuel Cell and Hydrogen Energy Association

There is no denying the recent growth in the hydrogen and fuel cell industry – growth in interest and awareness; in public and private sector investment; in federal, state, and regional commitments; in the overall portfolio and scale of product offerings; and in the range of new players entering the marketplace.

As the national advocate for the industry, the Fuel Cell and Hydrogen Energy Association (FCHEA) has long been active on Capitol Hill in Washington, DC, and around the country, working with champions in Congress, key allies, and our diverse membership on key issues such as policies and programmatic funding, codes and standards development and harmonization, and education and outreach.

Over the past year, FCHEA has grown as well, expanding the association not just in size, but also in scope of market sectors, innovative technologies, and hydrogen generation pathways, representing the full spectrum of the industry from production to utilization, including mobility.

Around the world, hydrogen is increasingly recognized as a key tool in the decarbonization of society, specifically hard to abate sectors, including medium- and heavy-duty transportation, both on the road and off. Here in the U.S., there are already tens of thousands of fuel cell-powered cars, buses, and material handling vehicles deployed across the country, all running on hydrogen. In parallel, fuel cells are also providing resilient, reliant backup power to hybrid zero-emission EV charging solutions. Customers include major retailers such as Walmart and Amazon, as well as transit agencies and delivery companies.

Hydrogen’s potential to reduce emissions and fossil fuel use, and with the advantages of fast refueling, lighter weight, and long range, are opening pathways in logistics, aviation, and shipping. We are seeing more fuel cell trucks, utility vehicles, and even planes, trains, and ships enter operation and testing in the U.S. and around the world.

Hydrogen Hubs Across America

Hydrogen fueled mobile electric vehicle charging center.

At the federal level, hydrogen and fuel cell technologies received a well-deserved boost in funding and support through the bipartisan Infrastructure Investment and Jobs Act. The law, signed in November 2021, included $9.5 billion for clean hydrogen, with the bulk ($8 billion) allocated to developing ‘Hydrogen Hubs’ that will demonstrate diverse methods of production, processing, delivery, storage, and end-use of clean hydrogen across America.

While the hub funding has deservedly received a lot of attention from interested parties seeking to stake a claim in their respective region or state, the Infrastructure Act also contained numerous other provisions where hydrogen and fuel cells could make a significant impact in decarbonizing the nation’s transportation network. This includes programs focused on Congestion Mitigation and Air Quality Improvement; Alternative Fuel Infrastructure; Zero-Emission Ferries and Buses; Port Infrastructure; and more.

Increasing Hydrogen Production

Hydrogen fuel cell emblem on vehicle.

FCHEA’s membership includes automotive, trucking, and fuel cell original equipment manufacturers (OEMs) with products geared towards light, medium, and heavy-duty transportation applications. These companies are developing and deploying a range of zero-emission vehicles for land, sea, and air, as well as working with other members and partners on the necessary hydrogen infrastructure to support them. As these other sections of the Infrastructure Bill start to take shape, we expect more prospects for our members and the technologies they offer, especially in support of the Hydrogen Hubs once that funding is awarded, as well as initiatives to green the nation’s ports, airports, and highways.

Outside of federal funding, members are investing billions of dollars in new and expanded facilities to increase U.S. hydrogen generation capacity across the country, and into new states and areas. These investments will not only expand supply but will also create jobs and boost economic growth in and around those locations.

Decarbonizing Transportation

Fueling hydrogen fuel cell Toyota Mirai.

FCHEA is excited for these opportunities because we believe in hydrogen and fuel cells and see firsthand the tremendous benefits they already bring to a range of applications and customers.  With significant plans for scale-up of hydrogen production and utilization across the country, those benefits will be amplified, helping us reach the necessary environmental goals to decarbonize across industry sectors and stay competitive with the rest of the world down the road.

Frank Wolak is President and CEO of the Fuel Cell and Hydrogen Energy Association in Washington DC.

2023 Chevrolet Bolt EV charging.

Chevrolet’s Bolt EV, introduced as the industry’s first affordable long-range electric vehicle as a 2017 model, expanded its focus for the 2022 model year to include the Bolt EUV (electric utility vehicle). This was a strategic move for the automaker as it provided buyers an additional choice for its popular Bolt electric vehicle, even as it was developing new models based on GM’s Ultium electric vehicle platform. Then disaster hit.

There were Bolt battery fires and the potential for others, so GM halted production and recalled each and every Chevy Bolt and Bolt EUV sold to fix the problem. This was no easy thing and the process has taken time, a significant hit to GM’s electric vehicle program and, no doubt, its pride. The fact that the battery defect was the fault of the Bolt’s battery supplier and not Chevrolet was small comfort, no doubt. Now that some 50 percent of the recalled Bolt battery packs have been replaced with the balance underway, there’s positive news: the Bolt is back in production.

Red badging on the 2023 Chevrolet Bolt EUV Redline Edition.

New Redline Edition

Further good news is that with the 2023 model year, Chevy is stepping up the Bolt EUV’s sportiness with an available Redline Edition sport package. This Bolt EUV iteration is offered in black, white, and silver exterior choices accented with black and red Bolt EUV badging at the rear and red accents on the side mirrors. Gloss black 17-inch aluminum wheels with red accents complete the package. Those opting for the EUV with LT or Premier trims can also add black leather upholstery with red accent stitching.

While Chevy aimed to categorize its Bolt EV a crossover back at its launch five years ago, we said then that its dimensions and style really made it a five-door hatchback from our perspective. Strategically, the automaker ventured further into the crossover space with its bigger EUV sibling. The Bolt EUV features somewhat larger dimensions compared to the original Bolt with six inches greater length and three inches of additional legroom, in a package that remains easy to maneuver and park in crowded urban spaces.

2023 Chevrolet Bolt EV charge port.

Different than Bolt EV

While there is an extremely close family resemblance between the Bolt and Bolt EUV and they do share the same architecture, there are no sheetmetal panels common between the two. A close look shows Chevy SUV styling cues like a crease line running up the center of the front fascia and along the hood. Subtle but distinct design elements that differentiate the Bolt EUV from the Bolt EV include a larger opening below the closed grille area on the Bolt EUV along with more pronounced sculpting along the wheel well arches, plus angular lines and a slightly beefier look at the rear to support the EUV’s sport utility persona.

Power in both models is provided by a 200 horsepower electric motor driving the front wheels, which delivers 0-60 acceleration in an estimated 7.0 seconds. Energy comes from a 65 kWh lithium-ion battery pack with thermal management to keep it at optimum operating temperature. This combination allows the Bolt EUV to deliver an EPA estimated 247 miles of range. The EUV is fast-charge capable and can add 95 miles of range in a half-hour at a public fast charge station.

2023 Chevrolet Bolt EUV Redline Edition interior.

A More Refined Interior

The Bolt EUV’s interior, like that of the Bolt EV, is a bit more refined and high tech than that of the previous model year Bolt. Along with the 8-inch configurable gauge cluster at the driver’s position, there’s a 10.2-inch color infotainment touchscreen neatly integrated into the center of the instrument panel. Shifting is now done through electronic gearshift controls located at the lower left of the center console that use pushbuttons and pull toggles. The car’s Regen on Demand function, which controls the degree of energy regeneration and drag during coast-down, is literally at the driver’s fingertips with a convenient steering wheel paddle. Adjusting to a higher level of regen makes ‘one pedal driving’ possible, with little use of the brakes under certain driving conditions.

Bolt EUV features Chevy Safety Assist as standard equipment. Among the desired driver assist technologies included are Automatic Emergency Braking, Front Pedestrian Braking, Lane Keep Assist with Lane Departure Warning, and Front Pedestrian Braking. Other systems like Adaptive Cruise Control are also available. No doubt, the biggest news in the way of advanced electronics is the Bolt EUV’s availability of GM’s vaunted Super Cruise. Initially offered in GM’s luxury Cadillac brand, Bolt EUV features the first use of this highly-acclaimed, hands-free driving assistance technology in a Chevrolet model. Base price for the current year Bolt EV is $32,495 with the EUV coming in at $34,495. Pricing for 2023 models has not yet been announced.